JP3462697B2 - Tubular structure test model - Google Patents

Tubular structure test model

Info

Publication number
JP3462697B2
JP3462697B2 JP07271197A JP7271197A JP3462697B2 JP 3462697 B2 JP3462697 B2 JP 3462697B2 JP 07271197 A JP07271197 A JP 07271197A JP 7271197 A JP7271197 A JP 7271197A JP 3462697 B2 JP3462697 B2 JP 3462697B2
Authority
JP
Japan
Prior art keywords
tubular structure
model
tubular
test model
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07271197A
Other languages
Japanese (ja)
Other versions
JPH10253495A (en
Inventor
宏紀 安川
雅彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07271197A priority Critical patent/JP3462697B2/en
Publication of JPH10253495A publication Critical patent/JPH10253495A/en
Application granted granted Critical
Publication of JP3462697B2 publication Critical patent/JP3462697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ライザー(揚油
管)のように超長尺の管状構造物、すなわち洋上のプラ
ットフォーム等の浮体から海底へ垂下する海中配管等の
試験に用いられる長大吊り下げ型管状構造物の試験模型
に関する。 【0002】 【従来の技術】図3に、テンションレグプラットフォー
ムによる海洋石油生産設備の概要を示す。洋上プラット
フォーム21は、石油生産のための各種機器の収納や作
業,居住のスペースのためのデッキ構造22と、デッキ構
造22を海面01上に支えるためのコラム(鉛直円柱浮体構
造)23と、コラム23を下部で連結するとともに波の影響
を受けにくい海面下で浮力を生じさせるポンツーン(水
平浮体構造)24とから構成されている。そして、洋上プ
ラットフォーム21は、テンドンと呼ばれる鋼管製の係留
部材26によって、海底02のアンカー27に係止される。 【0003】洋上プラットフォーム21は、その全浮力が
重量以上(通常2〜3割増)になる吃水まで係留部材26
によって下方へ引き込まれており、その余剰浮力と平衡
する張力(プリテンション)によって係留部材26は常に
緊張状態に保たれている。 【0004】このような係留方式によるプラットフォー
ム21は、テンションレグプラットフォーム(TLP)と
称され、厳しい海象の下でも上下揺や傾きがほとんど無
く、水平方向への変位も水深の1割程度に押さえられる
という特徴を有するので、固定式プラットフォームの設
置が困難な大水深(300m〜1000m)海域におけ
る海洋石油生産に適している。なお、符号29は海底02に
設置されたテンプレートを示しており、ここに油井坑口
8が設けられ、この油井坑口8から石油がライザー25を
通して洋上プラットフォーム21へ揚げられる。 【0005】ところで、石油掘削に用いられるライザー
等の長大吊り下げ型管状構造物については、その強度や
挙動等を把握するため、管状構造物試験用模型を作成し
て、水槽試験等で確認試験を行なう必要がある。これ
は、吊り下げ型管状構造部の伸びに関する振動モードの
特性を把握することが目的であることが多い。 【0006】しかし、試験用模型の作成に当たっては、
管状構造物の長さの膨大さの故に、実機と相似な模型に
することは不可能である。そのため、図4に示すように
管状構造物を1種の棒と考え、その棒を適当な大きさに
分割し、その分割棒12をコイルバネ13で連結して、伸び
に関する挙動を実機と同様な特性にした管状構造物試験
用模型が提案されている。図4中の符号14は試験におけ
る張力計測用のロードセルを示している。 【0007】 【発明が解決しようとする課題】実際の管状構造物の挙
動は、管状構造物の内部に存在する流体から影響を受け
ることは明らかである。しかし上述の管状構造物試験用
模型は、管状構造物の模型といっても、実際は分割棒
(中実棒)を連結した構成であるため、管状構造物の内
部に存在する流体の運動の影響を模擬できないという課
題がある。本発明は、このような課題を解決しようとす
るものである。 【0008】 【課題を解決するための手段】本発明は、管状構造物試
験用模型を、内部に管路を有する複数の部分管状模型
と、同各部分管状模型の各管路の間を連通する複数の内
側中空な可撓性部材と、同各可撓性部材と並設され上記
各部分管状模型を連結する複数のばね部材とで構成して
課題解決の手段としている。 【0009】本発明では、管状構造物試験用模型が、内
部に管路をもつ部分管状模型を複数のばね部材で連結し
て構成されているので、実機配管の伸びに関する振動特
性を模擬できる上に、各管路が蛇腹のような内側中空な
可撓性部材で連結されて、管状構造物試験用模型の内部
に上端から下端まで連通した水路が形成されるため、模
型内部で海水が水路内を運動でき、これにより管状構造
物の張力や挙動に及ぼす管状構造物の内部の流体運動の
影響を模擬できるようになる。 【0010】 【発明の実施の形態】以下、図面により本発明の一実施
形態としての管状構造物試験用模型について説明する
と、図1はその全体構成を示す側面図、図2はその部分
管状模型を示す側面である。 【0011】この実施形態の管状構造物試験用模型も、
超長尺の管状構造物を洋上のプラットフォーム等の浮体
から海底へ垂下する海中配管等の試験に用いられるもの
で、図1に示すように、この実施形態の管状構造物試験
用模型は、5個の部分管状模型2を複数のコイルバネ1
で連結して構成されている。 【0012】部分管状模型2は、図2に示すように内部
に管路2aを形成されるとともに外部に浮力帯4の捲付
け用段部2bを形成された略円筒体で構成されている。 【0013】そして、互いに隣接する部分管状模型2
は、各管路2a相互を蛇腹のような内側中空な可撓性部
材(以下「蛇腹」という)5で連結されるとともに、蛇
腹5の外側に所定間隔で並設された複数のコイルバネ1
で相互に連結されている。 【0014】上述のとおり、各部分管状模型2の各管路
2aの相互を蛇腹5で連結したことにより、この実施形
態の管状構造物試験用模型では、その内部に上端から下
端まで連通した通路2Aが形成されることになる。 【0015】また、この蛇腹5と、各部分管状模型2を
相互に連結する複数のコイルバネ1とにより、管状構造
物試験用模型に実機パイプと同様の可撓性特性および伸
び特性を与えることができる。 【0016】各コイルバネ1は蛇腹5の外側に所定間隔
で装着されているため、コイルバネ1相互間に干渉を生
じるおそれはなく、また部分管状模型2自体の重量はコ
イルバネが担持するため、蛇腹5に荷重がかからない構
成となり、蛇腹5の耐久性の点で有利な構成となってい
る。 【0017】そして、管状構造物試験用模型の吊り下げ
時の空中重量や水中重量の調整のため、各部分管状模型
2の周りに浮力帯4が捲き付けられ、また管状構造物試
験用模型の下端部に重錘7が装着できるようになってい
る。符号6は重錘7を垂下するためのワイヤー(または
バー)を示している。 【0018】また、管状構造物試験用模型の上端部にロ
ードセル14がワイヤー8(またはバー)により装着でき
るようになっている。 【0019】上述のとおり、この実施形態の管状構造物
試験用模型は、内部に管路2aをもつ部分管状模型2を
複数のコイルバネ1で連結して構成されているので、従
来のものと同様に、実機配管の伸びに関する振動特性を
模擬できる上に、各管路2aが蛇腹5で連結されて、管
状構造物試験用模型の内部に上端から下端まで連通した
水路2Aが形成されるため、模型内部で海水が水路2A
内を運動でき、これにより、実機(パイプ)の張力や挙
動に及ぼす実機(パイプ)内部の流体運動の影響を模擬
できるようになる。 【0020】 【発明の効果】以上詳述したように、本発明の管状構造
物試験用模型によれば、内部に管路をもつ部分管状模型
を複数のばね部材で連結して構成されているので、実機
配管の伸びに関する振動特性を模擬できる上に、各管路
が内側中空な可撓性部材で連結されて、管状構造物試験
用模型の内部に上端から下端まで連通した水路が形成さ
れるため、模型内部で海水が水路内を運動でき、これに
より管状構造物の張力や挙動に及ぼす管状構造物の内部
の流体運動の影響を模擬できるようになる、という効果
が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submerged structure which is suspended from a floating structure such as a riser (oil pumping tube), that is, a floating body such as an offshore platform, to the seabed. The present invention relates to a test model of a long hanging type tubular structure used for testing a pipe or the like. 2. Description of the Related Art FIG. 3 shows an outline of a marine oil production facility using a tension leg platform. The offshore platform 21 includes a deck structure 22 for storing, working and living space for various equipment for oil production, a column (vertical column floating structure) 23 for supporting the deck structure 22 on the sea surface 01, and a column. It is composed of a pontoon (horizontal floating structure) 24 that connects 23 at the bottom and generates buoyancy under the sea surface that is not easily affected by waves. Then, the offshore platform 21 is locked to an anchor 27 on the seabed 02 by a steel pipe mooring member 26 called a tendon. [0003] The offshore platform 21 is a mooring member 26 until the total buoyancy becomes greater than the weight (usually 20 to 30% increase).
The mooring member 26 is always kept in a tensioned state by a tension (pretension) that balances the excess buoyancy. The mooring type platform 21 is called a tension leg platform (TLP), and has almost no vertical movement or inclination even under severe sea conditions, and its horizontal displacement can be suppressed to about 10% of the water depth. It is suitable for marine petroleum production in a deep water area (300 m to 1000 m) where it is difficult to install a fixed platform. Reference numeral 29 denotes a template installed on the seabed 02, where the oil wellhead 8 is provided, from which oil is lifted to the offshore platform 21 through the riser 25. Meanwhile, in order to grasp the strength, behavior, and the like of a large-sized suspended tubular structure such as a riser used for oil drilling, a test model for the tubular structure is prepared, and a confirmation test is performed in a water tank test or the like. Need to be done. This is often for the purpose of grasping the characteristics of the vibration mode relating to the elongation of the suspended tubular structure. However, in preparing a test model,
Due to the enormous length of the tubular structure, it is impossible to make a model similar to the actual machine. Therefore, as shown in FIG. 4, the tubular structure is considered as one kind of rod, the rod is divided into appropriate sizes, and the divided rods 12 are connected by coil springs 13, and the behavior regarding elongation is similar to that of the actual machine. A model for testing a tubular structure having characteristics has been proposed. Reference numeral 14 in FIG. 4 indicates a load cell for measuring tension in the test. [0007] It is clear that the behavior of the actual tubular structure is affected by the fluid present inside the tubular structure. However, even though the above-described model for testing a tubular structure is a model of a tubular structure, it is actually a configuration in which dividing rods (solid bars) are connected, so that the influence of the motion of the fluid present inside the tubular structure is affected. There is a problem that cannot be simulated. The present invention is intended to solve such a problem. According to the present invention, a model for testing a tubular structure is communicated between a plurality of partial tubular models each having a pipeline therein and each pipeline of the partial tubular models. A plurality of inner hollow flexible members and a plurality of spring members arranged in parallel with the respective flexible members and connecting the respective partial tubular models are provided as means for solving the problem. According to the present invention, since the tubular structure test model is formed by connecting a plurality of spring members to a partial tubular model having a pipe inside, vibration characteristics relating to the elongation of the pipe of the actual machine can be simulated. The pipes are connected by an inner hollow flexible member such as a bellows to form a water passage communicating from the upper end to the lower end inside the tubular structure test model. Within the tubular structure, thereby simulating the effect of fluid motion within the tubular structure on the tension and behavior of the tubular structure. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a tubular structure test model as an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing the entire structure, and FIG. FIG. The tubular structure test model of this embodiment is also
An ultra-long tubular structure is used for a test of an undersea pipe or the like that hangs from a floating body such as a platform on the sea to the seabed. As shown in FIG. Pieces of the partial tubular model 2 into a plurality of coil springs 1
It is constituted by being connected by. As shown in FIG. 2, the partial tubular model 2 is formed of a substantially cylindrical body having a pipe 2a formed therein and a stepped portion 2b for winding the buoyancy zone 4 formed outside. Then, the partial tubular models 2 adjacent to each other
Are connected to each other by an inner hollow flexible member (hereinafter, referred to as “bellows”) 5 such as a bellows, and a plurality of coil springs 1 arranged side by side at predetermined intervals outside the bellows 5.
Are interconnected. As described above, since the pipes 2a of the partial tubular models 2 are connected to each other by the bellows 5, the tubular structure test model of this embodiment has a passage communicating from the upper end to the lower end thereof. 2A will be formed. Further, the bellows 5 and the plurality of coil springs 1 interconnecting the respective partial tubular models 2 provide the tubular structure test model with the same flexibility and elongation characteristics as those of an actual pipe. it can. Since the coil springs 1 are mounted at predetermined intervals outside the bellows 5, there is no risk of interference between the coil springs 1, and the weight of the partial tubular model 2 itself is carried by the coil springs. , And is advantageous in terms of the durability of the bellows 5. A buoyancy zone 4 is wrapped around each partial tubular model 2 to adjust the weight in the air and underwater when the tubular model test model is suspended. The weight 7 can be attached to the lower end. Reference numeral 6 denotes a wire (or bar) for hanging the weight 7. A load cell 14 can be attached to the upper end of the test model for tubular structure by a wire 8 (or bar). As described above, the model for testing a tubular structure according to the present embodiment is constructed by connecting the partial tubular model 2 having the conduit 2a therein with the plurality of coil springs 1, and thus is the same as the conventional model. In addition to being able to simulate the vibration characteristics related to the elongation of the actual pipe, the pipes 2a are connected by the bellows 5 to form a water channel 2A communicating from the upper end to the lower end inside the tubular structure test model. Sea water 2A inside the model
And thereby simulate the effect of fluid motion inside the actual machine (pipe) on the tension and behavior of the actual machine (pipe). As described in detail above, according to the tubular structure test model of the present invention, a partial tubular model having a pipe inside is connected by a plurality of spring members. Therefore, in addition to being able to simulate the vibration characteristics related to the elongation of the actual machine pipe, each pipe is connected by an inner hollow flexible member, and a water channel communicating from the upper end to the lower end is formed inside the tubular structure test model. Therefore, the effect is obtained that the seawater can move in the water channel inside the model, thereby simulating the influence of the fluid motion inside the tubular structure on the tension and behavior of the tubular structure.

【図面の簡単な説明】 【図1】本発明の一実施形態としての管状構造物試験用
模型の全体構成を示す側面図。 【図2】同部分管状模型を示す側面図。 【図3】テンションレグプラットフォームによる海洋石
油生産設備の概要を示す全体図。 【図4】従来の管状構造物試験用模型の全体構成を示す
側面図。 【符号の説明】 1 ばね部材としてのコイルバネ 2 部分管状模型 2a 管路 2A 水路 4 浮体帯 5 内側中空な可撓性部材(蛇腹) 6,8 ワイヤー 7 重錘 14 ロードセル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view showing the overall configuration of a tubular structure test model as one embodiment of the present invention. FIG. 2 is a side view showing the partial tubular model. FIG. 3 is an overall view showing an outline of a marine oil production facility using a tension leg platform. FIG. 4 is a side view showing the entire configuration of a conventional model for testing a tubular structure. [Description of Signs] 1 Coil spring 2 as a spring member 2 Partial tubular model 2a Pipe 2A Waterway 4 Floating zone 5 Inner hollow flexible member (bellows) 6,8 Wire 7 Weight 14 Load cell

Claims (1)

(57)【特許請求の範囲】 【請求項1】 内部に管路を有する複数の部分管状模型
と、同各部分管状模型の各管路の間を連通する複数の内
側中空な可撓性部材と、同各可撓性部材と並設され上記
各部分管状模型を連結する複数のばね部材とからなるこ
とを特徴とする、管状構造物試験用模型。
(57) [Claims 1] A plurality of partial tubular models each having a conduit therein, and a plurality of inner hollow flexible members communicating between respective conduits of the respective partial tubular models. And a plurality of spring members arranged in parallel with the respective flexible members and connecting the partial tubular models to each other.
JP07271197A 1997-03-10 1997-03-10 Tubular structure test model Expired - Fee Related JP3462697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07271197A JP3462697B2 (en) 1997-03-10 1997-03-10 Tubular structure test model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07271197A JP3462697B2 (en) 1997-03-10 1997-03-10 Tubular structure test model

Publications (2)

Publication Number Publication Date
JPH10253495A JPH10253495A (en) 1998-09-25
JP3462697B2 true JP3462697B2 (en) 2003-11-05

Family

ID=13497223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07271197A Expired - Fee Related JP3462697B2 (en) 1997-03-10 1997-03-10 Tubular structure test model

Country Status (1)

Country Link
JP (1) JP3462697B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941457B (en) * 2017-11-24 2019-05-10 西南石油大学 A kind of tube bundle flow consolidates Coupled Dynamics vibration testing device and method
CN115897474B (en) * 2022-11-28 2024-03-26 华中科技大学 Multi-form transformation test water tank for simulating wave and wind power coupling

Also Published As

Publication number Publication date
JPH10253495A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
US6685394B1 (en) Partial shroud with perforating for VIV suppression, and method of using
RU2147334C1 (en) Lifting unit for pumping of fluid medium from sea bottom to floating vessel
JP4453842B2 (en) Underwater platform
US4473323A (en) Buoyant arm for maintaining tension on a drilling riser
US8690480B2 (en) Freestanding hybrid riser system
CN101657351B (en) Buoy platform
US8764346B1 (en) Tension-based tension leg platform
ATE265611T1 (en) TIED FLOATABLE SUPPORT FOR RISER PIPES TO A FLOATING WATERCRAFT
US7975769B2 (en) Field development with centralised power generation unit
WO2009095401A2 (en) Long distance submerged hydrocarbon transfer system
US20060056918A1 (en) Riser system connecting two fixed underwater installations to a floating surface unit
US6779949B2 (en) Device for transferring a fluid between at least two floating supports
JP3462697B2 (en) Tubular structure test model
US20110253027A1 (en) Buoyancy device for marine structures
WO2020092182A1 (en) Installation of subsea pipelines
AU2009272589B2 (en) Underwater hydrocarbon transport apparatus
NO841818L (en) OFFSHORE CONSTRUCTION FOR HYDROCARBON MANUFACTURING OR SUPPLY OF SHIPS
US9422773B2 (en) Relating to buoyancy-supported risers
US7001234B2 (en) Marine riser system
WO2001096771A1 (en) Method for providing a pipeline connection between two spaced-apart points at sea, and a transport arrangement comprising a pipeline connection between two points at sea
GB2390351A (en) Fluid transfer apparatus
RU2166611C1 (en) Sea platform to drill oil and gas wells
KR20160118793A (en) Apparatus for load-testing of the cantilever
RU2065117C1 (en) Arrangement for keeping of underwater piping (variants)
Rasmussen et al. A new and cost-beneficial approach to TLP tethering

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030723

LAPS Cancellation because of no payment of annual fees