JP3461950B2 - Ophthalmic measurement device - Google Patents

Ophthalmic measurement device

Info

Publication number
JP3461950B2
JP3461950B2 JP03928395A JP3928395A JP3461950B2 JP 3461950 B2 JP3461950 B2 JP 3461950B2 JP 03928395 A JP03928395 A JP 03928395A JP 3928395 A JP3928395 A JP 3928395A JP 3461950 B2 JP3461950 B2 JP 3461950B2
Authority
JP
Japan
Prior art keywords
optical system
laser
light
elliptical
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03928395A
Other languages
Japanese (ja)
Other versions
JPH08206071A (en
Inventor
益徳 河村
節夫 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP03928395A priority Critical patent/JP3461950B2/en
Publication of JPH08206071A publication Critical patent/JPH08206071A/en
Application granted granted Critical
Publication of JP3461950B2 publication Critical patent/JP3461950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検眼の眼球に向けて
レーザ光を収束させて照射し、このレーザ光による水晶
体内部の分子による散乱光を受光光学系を介して光電変
換素子に導き、光電変換素子の出力信号に基づいて水晶
体の性状を測定する眼科測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention converges and irradiates a laser beam toward the eyeball of an eye to be inspected, and guides the scattered light by the molecules inside the crystalline lens by this laser beam to a photoelectric conversion element through a light receiving optical system. The present invention relates to an ophthalmologic measuring device that measures the properties of a crystalline lens based on the output signal of a photoelectric conversion element.

【0002】[0002]

【従来の技術】被検眼の眼球に向けてレーザ光を収束さ
せて照射し、このレーザ光による水晶体内部の分子によ
る散乱光を受光光学系を介して光電変換素子に導き、光
電変換素子の出力信号に基づいて水晶体内部の蛋白質組
成等を測定する装置が知られている。この種の装置にお
いては、照射されたレーザ光により、被検眼の網膜など
の組織に損傷を与えないように注意する必要がある。こ
のため、照射するレーザ光強度を必要最小限の強度にす
ると同時に、レーザ光束の収束角度を大きくしてレーザ
光が網膜に達したときには、レーザ光が発散して単位面
積当たりのレーザ光強度、すなわち光密度を小さくする
ようにしている。
2. Description of the Related Art A laser beam is converged and radiated toward an eyeball of an eye to be inspected, and scattered light by molecules inside the crystalline lens by the laser beam is guided to a photoelectric conversion element through a light receiving optical system to output the photoelectric conversion element. A device for measuring the protein composition and the like inside the lens based on the signal is known. In this type of device, it is necessary to take care not to damage the tissues such as the retina of the subject's eye by the irradiated laser light. Therefore, when the laser light intensity to be irradiated is set to the minimum necessary intensity, and at the same time when the laser light reaches the retina by increasing the convergence angle of the laser light flux, the laser light diverges and the laser light intensity per unit area, That is, the light density is reduced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、円形光
束で照射されるレーザ光束の収束角度を大きくすると、
レーザ光束の集光点、すなわち測定点でのレーザ光束サ
イズが小さくなる。このため、測定領域が小さくなり、
眼球の動き等により所期する測定部位とのずれが生じや
すいという問題がある。また、測定点でのレーザ光束サ
イズが小さくなることは、複数回の測定や後日の測定に
際し、前回と同じ測定部位にアライメントすることが非
常に難しく、測定したデータは再現性に乏しい傾向があ
った。
However, when the converging angle of the laser light flux irradiated with the circular light flux is increased,
The converging point of the laser luminous flux, that is, the laser luminous flux size at the measurement point becomes small. Therefore, the measurement area becomes smaller,
There is a problem that a deviation from the intended measurement site is likely to occur due to the movement of the eyeball or the like. In addition, the small laser beam size at the measurement point makes it very difficult to align the same measurement site as the previous time when performing multiple measurements or later measurements, and the measured data tends to have poor reproducibility. It was

【0004】本発明は、上記のような欠点に鑑み案出さ
れたもので、眼球の動きや測定部位の違いによる再現性
の低下を改善した眼科測定装置を提供することを技術課
題とする。
The present invention has been devised in view of the above-mentioned drawbacks, and an object of the present invention is to provide an ophthalmologic measuring apparatus in which the deterioration of the reproducibility due to the movement of the eyeball and the difference in the measurement site is improved.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を達
成するために、以下のような構成を有することを特徴と
する。 (1) 被検眼の眼球に向けてレーザ光を収束させて照
射するレ−ザ照射光学系と、該レ−ザ照射光学系により
照射されたレーザ光の水晶体内部の分子による散乱光を
検出する散乱光検出光学系と、該散乱光検出光学系によ
り検出された光強度に基づいて水晶体の組織性状を測定
する眼科測定装置において、前記照射光学系にレ−ザ光
束を楕円光束に整形する光束整形手段を配置したことを
特徴とする眼科測定装置。
The present invention is characterized by having the following configuration in order to achieve the above object. (1) A laser irradiation optical system that converges and irradiates a laser beam toward the eyeball of the eye to be inspected, and detects scattered light of molecules inside the crystalline lens of the laser beam irradiated by the laser irradiation optical system. In a scattered light detection optical system and an ophthalmologic measuring device for measuring the tissue property of the crystalline lens based on the light intensity detected by the scattered light detection optical system, a light flux for shaping the laser light flux into an elliptical light flux in the irradiation optical system. An ophthalmologic measuring device having a shaping means.

【0006】(2) (1)の光束整形手段により整形
される楕円光束は、前記散乱光検出光学系の光軸方向に
長径を持つことを特徴とする。
(2) The elliptical light flux shaped by the light flux shaping means of (1) has a major axis in the optical axis direction of the scattered light detection optical system.

【0007】(3) (1)の光束整形手段は円筒レン
ズであることを特徴とする。
(3) The light flux shaping means of (1) is characterized by being a cylindrical lens.

【0008】(4) 被検眼の眼球に向けてレーザ光を
収束させて照射するレ−ザ照射光学系と、該レ−ザ照射
光学系により照射されたレーザ光の水晶体内部の分子に
よる散乱光を検出する散乱光検出光学系と、該散乱光検
出光学系により検出された光強度に基づいて水晶体の組
織性状を測定する眼科測定装置において、前記レ−ザ照
射光学系に楕円レ−ザ光束を出射するレ−ザ光源を用い
たことを特徴とする。
(4) A laser irradiation optical system for converging and irradiating a laser beam toward the eyeball of the eye to be inspected, and a scattered light of the laser beam irradiated by the laser irradiation optical system by molecules inside the lens. In the ophthalmologic measuring apparatus for measuring the tissue property of the crystalline lens based on the light intensity detected by the scattered light detection optical system and the scattered light detection optical system, an elliptical laser beam is provided to the laser irradiation optical system. It is characterized by using a laser light source for emitting

【0009】(5) (4)のレ−ザ光源が出射する楕
円レ−ザ光束は、前記散乱光検出光学系の光軸方向に長
径を持つことを特徴とする。
(5) The elliptical laser beam emitted from the laser light source of (4) has a major axis in the optical axis direction of the scattered light detecting optical system.

【0010】(6) (4)のレ−ザ光源とは半導体レ
−ザ光源であることを特徴とする。
(6) The laser light source of (4) is a semiconductor laser light source.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は実施例である水晶体内部の蛋白質組成を測
定する装置の光学系と電気系の概略を示す図である。光
学系は上から見た図を示している。1はHe−Neの可
視レーザ光を発するレーザ光源、2はエキスパンダレン
ズ、3は装置に対して垂直方向に母線を持つ円筒レン
ズ、4は集光レンズである。1〜4はレーザ照射光学系
を構成する。5は被検眼、6は水晶体である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an outline of an optical system and an electric system of an apparatus for measuring a protein composition in a lens as an example. The optical system is shown from above. Reference numeral 1 is a laser light source that emits a He-Ne visible laser light, 2 is an expander lens, 3 is a cylindrical lens having a generatrix in a direction perpendicular to the apparatus, and 4 is a condenser lens. 1 to 4 constitute a laser irradiation optical system. Reference numeral 5 is an eye to be inspected, and 6 is a lens.

【0012】7は固視灯用の点光源、8はビームスプリ
ッタであり、7,8は固視視標を被検眼眼底に投影する
固視視標投影光学系をなす。9は結像レンズ、10は絞
り、11はCCDカメラであり、9〜11は前眼部を観
察するための観察光学系を構成する。12は結像レン
ズ、13はアパーチャ、14は光電変換素子であり、1
2〜14は散乱光検出光学系を構成する。15は画像合
成回路、16は演算回路、17は制御コンピュータ、1
8はテレビモニタ、19は入力手段、20は記憶手段で
ある。
Reference numeral 7 is a point light source for a fixation lamp, 8 is a beam splitter, and 7 and 8 form a fixation target projection optical system for projecting a fixation target onto the fundus of the eye to be examined. Reference numeral 9 is an imaging lens, 10 is a diaphragm, 11 is a CCD camera, and 9 to 11 constitute an observation optical system for observing the anterior segment. Reference numeral 12 is an imaging lens, 13 is an aperture, 14 is a photoelectric conversion element, and 1
2 to 14 form a scattered light detection optical system. Reference numeral 15 is an image composition circuit, 16 is an arithmetic circuit, 17 is a control computer, 1
Reference numeral 8 is a television monitor, 19 is an input means, and 20 is a storage means.

【0013】次に、上記装置の動作について説明する。
点光源7を発した光はビームスプリッタ8で反射して被
検眼に向かう。被検眼には固視視標を固視させ、被検眼
の視軸を固定する。図示なき照明光源により照明された
被検眼前眼部像は観察光学系のCCDカメラ11により
受像され、その像はテレビモニタ18に映し出される。
レーザ光源1より出力されたレーザ光は、エキスパンダ
レンズ2によりその光束を拡げられ、円筒レンズ3と集
光レンズ4により、装置に対して水平方向に長径を持つ
楕円状の収束光束として被検眼5の水晶体6に斜め方向
から照射される。検者は、テレビモニタ18に映し出さ
れた前眼部と水晶体6に斜め方向から照射されるレ−ザ
収束光束を観察しながら測定部位を決定し、入力手段1
9に設けられた測定開始スイッチを押して測定を開始す
る。
Next, the operation of the above device will be described.
The light emitted from the point light source 7 is reflected by the beam splitter 8 toward the eye to be examined. The eye is fixed on the fixation target and the visual axis of the eye is fixed. The image of the anterior ocular segment of the subject's eye illuminated by an illumination light source (not shown) is received by the CCD camera 11 of the observation optical system, and the image is displayed on the television monitor 18.
The laser light output from the laser light source 1 has its luminous flux expanded by the expander lens 2 and is converted by the cylindrical lens 3 and the condenser lens 4 into an elliptical convergent luminous flux having a major axis in the horizontal direction with respect to the apparatus. The crystalline lens 6 of 5 is irradiated from an oblique direction. The examiner determines the measurement site while observing the laser converging light flux which is projected on the anterior eye part and the lens 6 projected on the television monitor 18 from an oblique direction, and determines the measurement site.
The measurement start switch provided at 9 is pressed to start the measurement.

【0014】測定光束は、前述のように、装置に対して
水平方向に長径を持つ楕円状の収束光束として被検眼5
の水晶体6に斜め方向から照射される。図2の(a)
は、レーザ照射光学系により楕円状の収束光束として被
検眼5に照射されたレ−ザ光束の状態を説明する図であ
る。図2の(a)では、円筒レンズ3の作用により収束
光束は左右方向に引き伸ばされた楕円状になっており、
この楕円状の収束光束は、受光光学系から見ると、奥行
き方向に引き伸ばされている。したがって、円筒レンズ
3を配置していない図2の(b)に示す通常の円状の収
束光束と比較して、奥行き方向に測定領域を大きくする
ことができる。
As described above, the measurement light beam is an elliptic convergent light beam having a major axis in the horizontal direction with respect to the apparatus, and the eye 5 to be inspected.
The crystalline lens 6 is irradiated from an oblique direction. Figure 2 (a)
FIG. 6 is a diagram for explaining a state of a laser light flux which is irradiated onto the eye 5 as an elliptical convergent light flux by the laser irradiation optical system. In FIG. 2A, due to the action of the cylindrical lens 3, the convergent light flux has an elliptical shape that is stretched in the left-right direction.
This elliptical convergent light flux is elongated in the depth direction when viewed from the light receiving optical system. Therefore, the measurement area can be increased in the depth direction as compared with the normal circular convergent light flux shown in FIG. 2B in which the cylindrical lens 3 is not arranged.

【0015】被検眼5の水晶体6に照射された楕円状の
収束光束は、水晶体6内の蛋白質粒子により散乱され散
乱光となり、結像レンズ12で集光し、測定領域を限定
するアパーチャ13を通過後、光電変換素子14に入射
する。光電変換素子14では、入射した散乱光の強度に
対応する電気信号が出力され、演算回路16に入力され
る。演算回路16は入力された信号に基づき、散乱光強
度の時間的変動の相関関数を求め、この相関関数により
制御コンピュータ17は水晶体内部の蛋白質組成の測定
結果を得る。この測定については、例えば、特表平6−
505650号(発明の名称「白内障の発生を検出する
方法及び装置」)に記載さるように、散乱光強度の時間
的変動の相関関数は、
The elliptical converging light flux applied to the lens 6 of the eye 5 to be examined is scattered by the protein particles in the lens 6 to become scattered light, which is condensed by the imaging lens 12 and the aperture 13 which limits the measurement area. After passing, it enters the photoelectric conversion element 14. The photoelectric conversion element 14 outputs an electric signal corresponding to the intensity of the incident scattered light and inputs the electric signal to the arithmetic circuit 16. The arithmetic circuit 16 obtains the correlation function of the temporal fluctuation of the scattered light intensity based on the input signal, and the control computer 17 obtains the measurement result of the protein composition inside the lens by this correlation function. As for this measurement, for example, Table 6-
As described in No. 505650 (Invention title “Method and apparatus for detecting occurrence of cataract”), the correlation function of the temporal variation of scattered light intensity is

【数1】の式で表され、この式中のIf(凝集していな
い粒子からの散乱光強度)とIs(凝集している粒子か
らの散乱光強度)の割合から水晶体内部の蛋白質組成が
算出される。
The protein composition inside the lens is calculated from the ratio of If (scattered light intensity from non-aggregated particles) and Is (scattered light intensity from agglomerated particles) expressed by the following equation. It is calculated.

【0016】測定結果は画像合成回路15により、CC
Dカメラ11から出力される画像と合成されてテレビモ
ニタ18に表示される。測定結果は記憶手段20によっ
て記憶することができる。以上の実施例ではレ−ザ光源
1にHe−Neレ−ザを使用しているが、半導体レ−ザ
のようにもともと楕円レ−ザ光束を出射するレ−ザ光源
を使用し、その楕円レ−ザ光束が散乱光検出光学系の光
軸方向に長径を持つようにレ−ザ光源を配置すれば、円
筒レンズ3は省略することができる。
The measurement result is sent to the CC by the image synthesizing circuit 15.
The image output from the D camera 11 is combined and displayed on the television monitor 18. The measurement result can be stored by the storage unit 20. Although the He-Ne laser is used as the laser light source 1 in the above embodiment, a laser light source that originally emits an elliptical laser beam is used as in the semiconductor laser, and the ellipse thereof is used. The cylindrical lens 3 can be omitted by disposing the laser light source so that the laser beam has a major axis in the optical axis direction of the scattered light detection optical system.

【0017】[0017]

【発明の効果】以上説明したように、本発明に係わる眼
科測定装置は、レーザ光束の収束角度を小さくすること
なく測定点でのレーザ光束サイズを大きくすることがで
きるので、測定領域を大きく確保することができる。し
たがって、所期する測定部位にアライメントしやすく、
また複数回の測定や後日の再測定に際しても、被検眼の
動きの影響やアライメントのずれによる測定の再現性の
低下を防止することができる。
As described above, the ophthalmologic measuring apparatus according to the present invention can increase the laser light flux size at the measurement point without reducing the convergence angle of the laser light flux, so that a large measurement area can be secured. can do. Therefore, it is easy to align with the desired measurement site,
In addition, even when the measurement is performed a plurality of times or the measurement is performed again later, it is possible to prevent the measurement reproducibility from being deteriorated due to the influence of the movement of the eye to be inspected or the alignment shift.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の装置の光学系と電気系の概略を示す
図である。
FIG. 1 is a diagram showing an outline of an optical system and an electric system of an apparatus of this embodiment.

【図2】(a)被検眼に照射される楕円状のレーザ収束
光束の状態を説明する図である。 (b)被検眼に照射される円状のレーザ収束光束の状態
を説明する図である。
FIG. 2A is a diagram illustrating a state of an elliptical laser convergent light flux with which an eye to be inspected is irradiated. (B) It is a figure explaining the state of the circular laser converging light flux with which the to-be-tested eye is irradiated.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 エキスパンダレンズ 3 円筒レンズ 4 集光レンズ 5 被検眼 6 水晶体 14 光電変換素子 16 演算回路 17 制御コンピュータ 1 laser light source 2 expander lens 3 cylindrical lens 4 condenser lens 5 Eye to be examined 6 crystalline lens 14 Photoelectric conversion element 16 arithmetic circuit 17 Control computer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61B 3/10 - 3/18 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) A61B 3/10-3/18

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検眼の眼球に向けてレーザ光を収束さ
せて照射するレ−ザ照射光学系と、該レ−ザ照射光学系
により照射されたレーザ光の水晶体内部の分子による散
乱光を検出する散乱光検出光学系と、該散乱光検出光学
系により検出された光強度に基づいて水晶体の組織性状
を測定する眼科測定装置において、前記照射光学系にレ
−ザ光束を楕円光束に整形する光束整形手段を配置した
ことを特徴とする眼科測定装置。
1. A laser irradiation optical system for converging and irradiating a laser beam toward an eyeball of an eye to be inspected, and a laser beam irradiated by the laser irradiation optical system for scattering light by molecules inside a crystalline lens. In a scattered light detection optical system for detecting, and an ophthalmologic measuring device for measuring the tissue property of the crystalline lens based on the light intensity detected by the scattered light detection optical system, a laser light flux is shaped into an elliptical light flux in the irradiation optical system. An ophthalmologic measuring apparatus, which is provided with a light beam shaping means for performing the above.
【請求項2】 請求項1の光束整形手段により整形され
る楕円光束は、前記散乱光検出光学系の光軸方向に長径
を持つことを特徴とする眼科測定装置。
2. An ophthalmologic measuring apparatus, wherein the elliptical light flux shaped by the light flux shaping means according to claim 1 has a major axis in the optical axis direction of the scattered light detection optical system.
【請求項3】 請求項1の光束整形手段は円筒レンズで
あることを特徴とする眼科測定装置。
3. An ophthalmologic measuring apparatus, wherein the light beam shaping means according to claim 1 is a cylindrical lens.
【請求項4】 被検眼の眼球に向けてレーザ光を収束さ
せて照射するレ−ザ照射光学系と、該レ−ザ照射光学系
により照射されたレーザ光の水晶体内部の分子による散
乱光を検出する散乱光検出光学系と、該散乱光検出光学
系により検出された光強度に基づいて水晶体の組織性状
を測定する眼科測定装置において、前記レ−ザ照射光学
系に楕円レ−ザ光束を出射するレ−ザ光源を用いたこと
を特徴とする眼科測定装置。
4. A laser irradiation optical system for converging and irradiating a laser beam toward an eyeball of an eye to be inspected, and a laser beam irradiated by the laser irradiation optical system for scattering light by molecules inside a crystalline lens. In a scattered light detection optical system to detect, and an ophthalmologic measuring device for measuring the tissue property of the crystalline lens based on the light intensity detected by the scattered light detection optical system, an elliptical laser light flux to the laser irradiation optical system. An ophthalmologic measuring device using a laser light source for emitting light.
【請求項5】 請求項4のレ−ザ光源が出射する楕円レ
−ザ光束は、前記散乱光検出光学系の光軸方向に長径を
持つことを特徴とする眼科測定装置。
5. An ophthalmologic measuring apparatus, wherein the elliptical laser light flux emitted from the laser light source according to claim 4 has a major axis in the optical axis direction of the scattered light detection optical system.
【請求項6】 請求項4のレ−ザ光源とは半導体レ−ザ
光源であることを特徴とする眼科測定装置。
6. The ophthalmologic measuring apparatus according to claim 4, wherein the laser light source is a semiconductor laser light source.
JP03928395A 1995-02-02 1995-02-02 Ophthalmic measurement device Expired - Fee Related JP3461950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03928395A JP3461950B2 (en) 1995-02-02 1995-02-02 Ophthalmic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03928395A JP3461950B2 (en) 1995-02-02 1995-02-02 Ophthalmic measurement device

Publications (2)

Publication Number Publication Date
JPH08206071A JPH08206071A (en) 1996-08-13
JP3461950B2 true JP3461950B2 (en) 2003-10-27

Family

ID=12548844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03928395A Expired - Fee Related JP3461950B2 (en) 1995-02-02 1995-02-02 Ophthalmic measurement device

Country Status (1)

Country Link
JP (1) JP3461950B2 (en)

Also Published As

Publication number Publication date
JPH08206071A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
US4227780A (en) Eye examining instrument
US5163437A (en) Ophthalmic measuring device
JP2000516500A (en) Method and apparatus for measuring features of eyes using virtual images
JPH07163532A (en) Ophthalmologic measuring system
US10433721B2 (en) Ophthalmic apparatus and control method for the same
JP2021102097A (en) Ophthalmologic apparatus
JP2003019116A (en) Opthalmologic measuring device
EP0663179A1 (en) Spatial refractometer
JP3461950B2 (en) Ophthalmic measurement device
JP3461965B2 (en) Ophthalmic measurement device
JP4630107B2 (en) Ophthalmic optical characteristic measuring device
JP2912287B2 (en) Fundus three-dimensional shape measurement device
JP2018192082A (en) Ophthalmologic apparatus and control method thereof
JP3276177B2 (en) Biological eye size measuring device with refractive power correction function
JP3396554B2 (en) Ophthalmic measurement device
JP3533254B2 (en) Ophthalmic measurement device
JP3490528B2 (en) Ophthalmic measurement device
JP3611621B2 (en) Ophthalmic measuring device
JP7096391B2 (en) Ophthalmic equipment
JP4700780B2 (en) Ophthalmic examination equipment
JPH08206069A (en) Ophthalmological measuring device
JP2000023916A (en) Eye examination instrument
JPH07163534A (en) Fundus oculi blood flow velocity measuring method and measuring instrument therefor
JP3437230B2 (en) Fundus blood flow meter
JP2022071191A (en) Ophthalmologic apparatus and control method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees