JP3461877B2 - Light modulation circuit - Google Patents
Light modulation circuitInfo
- Publication number
- JP3461877B2 JP3461877B2 JP25225293A JP25225293A JP3461877B2 JP 3461877 B2 JP3461877 B2 JP 3461877B2 JP 25225293 A JP25225293 A JP 25225293A JP 25225293 A JP25225293 A JP 25225293A JP 3461877 B2 JP3461877 B2 JP 3461877B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- pulse width
- light
- pulse
- modulation circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は光ファイバ通信用の光送
信装置等に用いられる光変調回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator circuit used in an optical transmitter or the like for optical fiber communication.
【0002】高速光通信システムにおいては、光信号の
スペクトル広がりと光ファイバの波長分散によって生じ
る光パルスの波形劣化を抑制し伝送距離を改善すること
が必要とされる。In a high-speed optical communication system, it is necessary to suppress the waveform deterioration of an optical pulse caused by the spectrum spread of an optical signal and the chromatic dispersion of an optical fiber and improve the transmission distance.
【0003】[0003]
【従来の技術】上述の目的にあった光変調回路の一つと
してマッハツェンダ干渉計形光変調回路などの干渉形光
変調回路がある。マッハツェンダ干渉計形光変調回路で
は、入射光を分岐して二つの光導波路に通し、この二つ
の光導波路に互いに逆相の電界を印加することでそれを
伝搬する光を逆方向に位相変調して位相差を持たせた後
に再び合成することで、その合成された干渉光を光強度
変化させて光変調を行うもので、これにより波長チャー
ピングのない光変調が可能である。2. Description of the Related Art As one of the optical modulation circuits for the above-mentioned purpose, there is an interference type optical modulation circuit such as a Mach-Zehnder interferometer type optical modulation circuit. In a Mach-Zehnder interferometer type optical modulation circuit, incident light is split and passed through two optical waveguides, and electric fields of opposite phases are applied to these two optical waveguides to phase-modulate the light propagating in the opposite directions. Then, the combined interference light is subjected to optical modulation by changing the light intensity by giving a phase difference and then synthesizing again, whereby optical modulation without wavelength chirping is possible.
【0004】[0004]
【発明が解決しようとする課題】ところが伝送速度がさ
らに高速化されて数Gbit /秒以上になると、波長チャ
ーピングを零にしても、変調波形のフーリエ成分である
変調側波帯によるスペクトル広がりと伝送路となる光フ
ァイバの波長分散による光パルスの波形劣化が無視でき
なくなり、波長分散の大きい光ファイバでは伝送距離が
制限されて長距離伝送ができないという問題がある。However, when the transmission speed is further increased to several Gbit / sec or more, even if the wavelength chirping is set to zero, the spectrum spread due to the modulation sideband, which is the Fourier component of the modulation waveform, occurs. There is a problem that the waveform deterioration of the optical pulse due to the chromatic dispersion of the optical fiber serving as the transmission path cannot be ignored, and the optical fiber having a large chromatic dispersion limits the transmission distance and cannot perform long-distance transmission.
【0005】すなわち、図9には従来のマッハツェンダ
干渉計形光変調回路の構成例が示される。図中、1は入
射光を発生するDFB(distributed feedback)構造の光
源、2は入射光の二分岐する光分岐部、3、4は電気光
学効果を持つ物質の屈折率を電界により変化させること
で伝搬光の位相を変化させる光導波路、5は光導波路
3、4の出射光を合成して干渉させる光結合部である。
6は入力された電気信号を二分岐する二分岐部、7は分
岐された一方の電気信号の極性を反転する反転部、8、
9は光導波路3、4に電界を印加するための電極であ
る。That is, FIG. 9 shows a configuration example of a conventional Mach-Zehnder interferometer type optical modulation circuit. In the figure, 1 is a light source of a DFB (distributed feedback) structure that generates incident light, 2 is a light branching portion that splits incident light into two, and 3 and 4 are to change the refractive index of a substance having an electro-optical effect by an electric field. The optical waveguide 5 for changing the phase of the propagating light is an optical coupling portion for combining the light emitted from the optical waveguides 3 and 4 to cause interference.
6 is a bifurcating unit that bifurcates the input electric signal; 7 is an inverting unit that inverts the polarity of one of the bifurcated electric signals;
Reference numeral 9 is an electrode for applying an electric field to the optical waveguides 3 and 4.
【0006】図10はこの従来のマッハツェンダ干渉計
形光変調回路の動作説明図である。入力された電気パル
ス信号(図10のA)は二分岐され、その一方が反転部
7で極性反転されて電極8に印加され(図10のB)、
他方がそのまま電極9に印加される(図10のC)。こ
れにより当該電気パルス信号の期間中は光導波路3の出
射光の光波位相φ1は入射光の位相φ0よりも遅れ側に
シフトし(図10のD)、光導波路4の出射光の光波位
相φ2は入射光の位相φ0よりも進み側にシフトする
(図10のF)。FIG. 10 is an operation explanatory diagram of this conventional Mach-Zehnder interferometer type optical modulation circuit. The inputted electric pulse signal (A in FIG. 10) is branched into two, one of which is inverted in polarity by the inversion unit 7 and applied to the electrode 8 (B in FIG. 10),
The other is directly applied to the electrode 9 (C in FIG. 10). As a result, during the period of the electric pulse signal, the light wave phase φ1 of the light emitted from the optical waveguide 3 is shifted to the delay side of the phase φ0 of the incident light (D in FIG. 10), and the light wave phase φ2 of the light emitted from the optical waveguide 4 is changed. Shifts to the leading side of the phase φ0 of the incident light (F in FIG. 10).
【0007】この光導波路3、4の出射光の位相が変化
している部分(位相変化の立上り/立下り部分)では結
局、出射光の波長λが変化することとなり、出射光の光
波位相が遅れ側に変化している部分(図中の立下り部
分)では波長は長くなり、進み側に変化している部分
(図中の立上り部分)では波長は短くなる(図10のE
とG)。In the portion where the phase of the emitted light of the optical waveguides 3 and 4 changes (the rising / falling portion of the phase change), the wavelength λ of the emitted light eventually changes, and the light wave phase of the emitted light changes. The wavelength becomes long at the part changing to the delay side (falling part in the figure), and becomes short at the part changing to the advance side (rising part in the figure) (E in FIG. 10).
And G).
【0008】これら二つの光導波路3、4の出射光は光
結合部5で結合されてその光波位相差はφ1−φ2(図
10のH)となり、この光波位相差を変調により0また
はπとすることで光分岐部2に入射された入射光は電気
パルス信号期間が干渉により強め合い、それ以外の期間
が互いに相殺され、よって干渉光はパルス状の光強度波
形として光結合部5から出力される(図10のI)。Light emitted from these two optical waveguides 3 and 4 is coupled by the optical coupling portion 5 and the light wave phase difference becomes φ1-φ2 (H in FIG. 10), and this light wave phase difference is set to 0 or π by modulation. By doing so, the incident light incident on the optical branching portion 2 strengthens the electric pulse signal period due to interference, and the other periods cancel each other out, so that the interference light is output from the optical coupling portion 5 as a pulsed light intensity waveform. (I in FIG. 10).
【0009】さて、この光変調回路の出力光が光ファイ
バ伝送路を伝搬すると、光ファイバの波長分散の影響を
受けることになり、例えば伝搬光の長波長の成分は到達
時刻が遅れ、短波長の成分は到達時刻が進むなど光ファ
イバの特性に応じて波長の長短に対し到達時刻の進み遅
れが発生する。この結果、光導波路3の出射光成分は、
ファイバ伝送後は図10の(J)、(K)に示されるよ
うに長波長の成分が遅れ、短波長の成分が進むので位相
変調パルスのパルス幅が圧縮し、一方、光導波路4の出
射光成分は図10の(L)、(M)に示されるようにパ
ルス幅が伸長することになる。この各パルス成分の圧
縮、伸長によりそれを合成した波形、すなわちファイバ
伝送後の光信号の光強度波形は図10の(O)に示すよ
うに波形歪を生じることになる。When the output light of the optical modulator propagates through the optical fiber transmission line, it is affected by the chromatic dispersion of the optical fiber. For example, the long wavelength component of the propagated light has a delayed arrival time and a short wavelength. As for the component, the arrival time advances or lags with respect to the length of the wavelength depending on the characteristics of the optical fiber such as the arrival time advances. As a result, the output light component of the optical waveguide 3 is
After the fiber transmission, as shown in (J) and (K) of FIG. 10, the long wavelength component is delayed and the short wavelength component is advanced so that the pulse width of the phase modulation pulse is compressed. The pulse width of the emitted light component is extended as shown in (L) and (M) of FIG. The waveform obtained by synthesizing the pulse components by compression and expansion, that is, the optical intensity waveform of the optical signal after fiber transmission, causes waveform distortion as shown in (O) of FIG.
【0010】このような問題点を解決する手法として本
出願人は先に特願平1−61534(特開平2−269
309)において光変調方式を提案した。この光変調方
式は図11に示されるように、電極8、9に印加する電
気信号のパルス振幅をパルス振幅幅拡大部14、パルス
振幅縮小部15により一方を拡大、他方を縮小させるこ
とで出力光をパルス圧縮して、変調側波帯とファイバの
波長分散によって生じる波形劣化を補償し伝送距離限界
を改善するものである。As a method for solving such a problem, the present applicant has previously filed Japanese Patent Application No. 1-61534 (Japanese Patent Application Laid-Open No. 2-269).
309) proposed an optical modulation method. As shown in FIG. 11, this optical modulation method outputs the pulse amplitude of the electric signal applied to the electrodes 8 and 9 by enlarging one of the pulse amplitudes by the pulse amplitude width expanding unit 14 and the pulse amplitude reducing unit 15 and reducing the other. The light is pulse-compressed to compensate for waveform deterioration caused by the modulation sideband and chromatic dispersion of the fiber and improve the transmission distance limit.
【0011】本発明は上記光変調方式と同様に、光ファ
イバの波長分散などにより生じる光信号の波形歪の発生
を抑制して伝送距離限界の改善を図ることを目的とす
る。An object of the present invention is to improve the transmission distance limit by suppressing the generation of the waveform distortion of the optical signal caused by the wavelength dispersion of the optical fiber as in the case of the optical modulation method.
【0012】[0012]
【課題を解決するための手段】図1は本発明に係る原理
説明図である。上述の課題を解決するために、本発明に
係る光変調回路は、一つの形態として、互いに逆相の電
界が印加される二つの光導波路50、51に入射光を分
岐入射した後に再び合成する構成の光変調回路におい
て、二つの光導波路50、51の電極52、53にそれ
ぞれ印加する電気パルス信号を、伝送路となる光ファイ
バ60の波長分散を補償する大きさだけその一方をパル
ス幅拡大、他方をパルス幅縮小するパルス幅制御回路5
4、55を備えたことを特徴とする。FIG. 1 is a diagram illustrating the principle of the present invention. In order to solve the above-mentioned problems, the optical modulation circuit according to the present invention, as one form, splits incident light into two optical waveguides 50 and 51 to which electric fields of opposite phases are applied, and then combines them again. In the optical modulation circuit having the configuration, one of the electric pulse signals applied to the electrodes 52 and 53 of the two optical waveguides 50 and 51 is enlarged in pulse width by one of the magnitudes to compensate for chromatic dispersion of the optical fiber 60 serving as a transmission line. , A pulse width control circuit 5 for reducing the pulse width of the other
4, 55 are provided.
【0013】また本発明に係る光変調回路は、他の形態
として、上述の光変調回路において、電気パルス信号の
立上り時間と立下り時間が一定となるように制御する立
上り/立下り制御回路を更に備えたことを特徴とする。As another form of the optical modulation circuit according to the present invention, in the above-described optical modulation circuit, a rise / fall control circuit for controlling the rise time and the fall time of the electric pulse signal to be constant is provided. It is further characterized by being provided.
【0014】[0014]
【作用】光ファイバ60を伝送後の光パルスの波形歪を
除去するために、その光ファイバ60で受ける波長分散
の大きさ分だけ、予め送信側で光導波路50、51の出
射光の位相変調波形をパルス圧縮/伸長しておく。した
がってファイバ伝送後にはそのファイバ波長分散により
生じる位相変調波形のパルス圧縮/伸長がキャンセルさ
れることになるので、波形歪を除去できる。In order to remove the waveform distortion of the optical pulse after being transmitted through the optical fiber 60, the phase modulation of the light emitted from the optical waveguides 50 and 51 is previously performed on the transmitting side by the amount of the chromatic dispersion received by the optical fiber 60. The waveform is pulse compressed / expanded. Therefore, after fiber transmission, the pulse compression / expansion of the phase modulation waveform caused by the fiber chromatic dispersion is canceled, so that the waveform distortion can be removed.
【0015】この際、光ファイバ伝送路での波長分散の
影響を一定にするためには、受信側において電気パルス
信号の立上り/立下り時間を一定としておくことが望ま
しい。At this time, in order to make the influence of chromatic dispersion on the optical fiber transmission line constant, it is desirable to keep the rise / fall time of the electric pulse signal constant on the receiving side.
【0016】[0016]
【実施例】以下、図面を参照して本発明の実施例を説明
する。図2には本発明の一実施例としての光変調回路が
示される。この実施例の光変調回路は上述の従来技術で
述べたいわゆるマッハツェンダ干渉計形の干渉形光変調
回路であり、光源1、光分岐部2、光導波路3、4、光
結合部5、二分岐部6、反転部7、電極8、9などは同
じ構成となっている。このマッハツェンダ干渉計形光変
調回路としては、例えばLi Nb O3 マッハツェンダ干
渉計形あるいは半導体マッハツェンダ干渉計形などを用
いることができる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an optical modulation circuit as an embodiment of the present invention. The optical modulation circuit of this embodiment is a so-called Mach-Zehnder interferometer type interferometric optical modulation circuit described in the above-mentioned prior art, and includes a light source 1, an optical branching section 2, optical waveguides 3, 4, an optical coupling section 5, and a bifurcating section. The part 6, the inversion part 7, the electrodes 8 and 9 have the same configuration. As this Mach-Zehnder interferometer type optical modulation circuit, for example, a Li Nb O 3 Mach-Zehnder interferometer type or a semiconductor Mach-Zehnder interferometer type can be used.
【0017】相違点として、反転部7から出力された一
方の電気パルス信号はパルス幅拡大部10と立上り/立
下り制御部12を介して電極8に印加され、一方、二分
岐部6から出力された他方の電気パルス信号はパルス幅
縮小部11と立上り/立下り制御部13を介して電極9
に印加されるように構成されている。The difference is that one electric pulse signal output from the inversion unit 7 is applied to the electrode 8 via the pulse width expansion unit 10 and the rising / falling control unit 12, while being output from the bifurcating unit 6. The other electric pulse signal thus generated is transmitted through the pulse width reduction unit 11 and the rising / falling control unit 13 to the electrode 9
Is configured to be applied to.
【0018】ここで、パルス幅拡大部10とパルス幅縮
小部11は伝送路となる光ファイバの波長分散の影響を
補償する大きさだけ、入力した電気パルス信号のパルス
幅をそれぞれ拡大、縮小する。また立上り/立下り制御
部12、13は入力した電気パルス信号の立上り時間t
r と立下り時間tf が一定の大きさになるように制御を
行う。Here, the pulse width expansion unit 10 and the pulse width reduction unit 11 respectively expand and reduce the pulse width of the input electric pulse signal by a size that compensates for the influence of the chromatic dispersion of the optical fiber serving as the transmission path. . Further, the rising / falling control units 12 and 13 determine the rising time t of the input electric pulse signal.
Control is performed so that r and the fall time t f have a constant magnitude.
【0019】実施例装置の動作を図3を参照して以下に
説明する。この光変調回路の基本的な動作は前述の従来
例のものと同じであるが、相違点として、電極8に印加
する電気パルス信号のパルス幅をパルス幅拡大部10に
より拡大し(図3のB)、一方、電極9に印加する電気
パルス信号のパルス幅をパルス幅縮小部11により縮小
している(図3のC)。このパルス幅の拡大、縮小の大
きさは、光ファイバの波長分散を受けた光ファイバ伝送
後のそれらの位相変調光(光導波路3からの出射光成分
と光導波路4からの出射光成分)のパルス幅が送信側の
パルス幅拡大/縮小前の電気パルス信号のパルス幅と一
致するようにする(図3のJ、K、L、M)。The operation of the embodiment apparatus will be described below with reference to FIG. The basic operation of this optical modulation circuit is the same as that of the above-described conventional example, except that the pulse width of the electric pulse signal applied to the electrode 8 is expanded by the pulse width expansion unit 10 (see FIG. 3). B) On the other hand, the pulse width of the electric pulse signal applied to the electrode 9 is reduced by the pulse width reduction unit 11 (C in FIG. 3). The magnitude of expansion and contraction of the pulse width depends on the phase-modulated light (output light component from the optical waveguide 3 and output light component from the optical waveguide 4) of the phase-modulated light that has undergone wavelength dispersion of the optical fiber and has been transmitted through the optical fiber. The pulse width is made to match the pulse width of the electric pulse signal before the pulse width expansion / reduction on the transmission side (J, K, L, M in FIG. 3).
【0020】このようにすると、光導波路3の出射光が
パルス伸長、光導波路4の出射光がパルス圧縮を受ける
ため、それらを合成干渉した送信側の光変調回路からの
出力パルス光はその光強度波形が歪んだものとなるが
(図3のI)、光ファイバ伝送路を伝送後はファイバ波
長分散を受けることにより、光導波路3、4の各出射光
成分がそれぞれ送信側の入力電気パルス信号のパルス幅
になるようそれぞれパルス圧縮、パルス伸長を受けるの
で、結局、その伝送後のパルス光の光強度波形はファイ
バ波長分散の影響が補償されて歪が除去され、整形され
たものとなる(図3のO)。In this way, the light emitted from the optical waveguide 3 undergoes pulse expansion, and the light emitted from the optical waveguide 4 undergoes pulse compression, so that the output pulsed light from the optical modulator circuit on the transmission side that interferes with them synthetically interferes with the light. Although the intensity waveform is distorted (I in FIG. 3), after being transmitted through the optical fiber transmission line, it is subjected to fiber chromatic dispersion, so that the respective output light components of the optical waveguides 3 and 4 are respectively input electrical pulses on the transmission side. Since the signal is pulse-compressed and pulse-expanded so as to have the pulse width of the signal, the optical intensity waveform of the pulsed light after transmission is eventually shaped by removing the distortion by compensating the influence of fiber chromatic dispersion. (O in FIG. 3).
【0021】なお、送信側において立上り/立下り制御
部12、13により電極8、9に印加する電気パルス信
号の立上り/立下り時間を一定にしたのは、この立上り
/立下り時間tr 、tf がばらばらの値になると、これ
は結局、光導波路3、4の出射光の光波波長の変化量Δ
λがばらばらの値となり(すなわち、立上り/立下り時
間tr 、tf 内における位相変化量の時間微分が波長変
化量Δλとなるため)、その結果、光ファイバで受ける
波長分散の大きさが一定にならず、その補償が厄介にな
るためである。[0021] Note that the transmission was a constant rise / fall control section 12, 13 an electrical pulse signal rise / fall time to be applied to the electrodes 8 and 9 by the side, this rise / fall time t r, When t f becomes a disjoint value, this eventually results in a change amount Δ of the light wave wavelength of the light emitted from the optical waveguides 3 and 4.
λ is a discrete value (i.e., because the rise / fall time t r, the phase change amount of the time derivative in the t f becomes wavelength variation [Delta] [lambda]), as a result, the size of the wavelength dispersion which receives the optical fiber This is because it is not constant and the compensation becomes troublesome.
【0022】上述のように光変調回路を構成した場合の
ファイバ分散量とパルス幅の関係および各種適用限界は
以下のようになる。The relationship between the fiber dispersion amount and the pulse width and various application limits in the case where the optical modulation circuit is constructed as described above are as follows.
【0023】(a)ファイバ分散量とパルス幅の関係
パルス圧縮/伸長すべき量τ(図8参照)は、以下のよ
うに決定される。
τ=m・L Δλ ・・・(1)
ここで、
Δλ=− dφ/ dt・λ2 /(2πC)
≒−π/2/tr ・λ2 /(2πC)
=−λ2 /(4C・tr ) ・・・(2)
ただし、mはファイバ分散係数(ps/nm/km)、Lは光ファ
イバの長さ(km)、Δλは波長変化量、φは位相、Cは光
速、tr は立上り時間(立下り時間)である。よって、
|τ|=m・L・λ2 /(4C・tr ) ・・・(3)
となる。(A) Relationship between fiber dispersion amount and pulse width The pulse compression / expansion amount τ (see FIG. 8) is determined as follows. τ = m · L Δλ (1) where Δλ = −dφ / dt · λ 2 / (2πC) ≈−π / 2 / t r · λ 2 / (2πC) = −λ 2 / (4C・ T r ) ・ ・ ・ (2) where m is the fiber dispersion coefficient (ps / nm / km), L is the length of the optical fiber (km), Δλ is the wavelength change amount, φ is the phase, C is the speed of light, tr is a rise time (fall time). Therefore, | τ | = m · L · λ 2 / (4C · tr ) (3)
【0024】(b)適用限界
適用限界として、図8から分かるように、
tr ≦T ・・・(4)
|τ|+tr /2≦T/2 ・・・(5)
となる。ここで、Tは入力電気パルス信号の繰返し時間
で、ビットレートをBとすると、T=1/Bの関係にあ
る。上記(1)〜(5)式から、
m・L・λ2 /4C=|τ|・tr ≦tr ・(T−tr )/2
≦T2 /4≦1/(4B2 )(等号はtr =T/2の時) ・・・(6)
となる。 よって、ビットレートBと分散に関する適用
限界は、
m・L≦4C/(λ2 ・4B2 ) ・・・(7)
となり、この条件を満足するように各種パラメータを選
定すればよい。(B) Applicable limit As the applicable limit, as can be seen from FIG. 8, t r ≦ T (4) | τ | + t r / 2 ≦ T / 2 (5) Here, T is the repetition time of the input electric pulse signal, and assuming that the bit rate is B, there is a relation of T = 1 / B. (1) to (5) below, m · L · λ 2 / 4C = | τ | · t r ≦ t r · (T-t r) / 2 ≦ T 2/4 ≦ 1 / (4B 2) (When the equal sign is tr = T / 2) ... (6) Therefore, the application limit for the bit rate B and the dispersion is m · L ≦ 4C / (λ 2 · 4B 2 ) (7), and various parameters may be selected so as to satisfy this condition.
【0025】なお、これらの適用限界を満足しない条件
下に本発明の干渉形光変調回路を用いる場合であって
も、ファイバ波長分散による伝送後の光パルスの波形劣
化を緩和する手段として本発明が有効であることは言う
までもない。Even when the interferometric optical modulation circuit of the present invention is used under the condition that these application limits are not satisfied, the present invention is used as a means for mitigating waveform deterioration of an optical pulse after transmission due to fiber wavelength dispersion. Needless to say, is effective.
【0026】なお、上述の実施例において電極8、9に
印加する電気パルス信号を発生する駆動回路(二分岐部
6、反転部7、パルス幅拡大部10、パルス幅縮小部1
1に相当する回路)は例えば図4〜図7のように構成す
ることができる。In the above-described embodiment, a drive circuit (two-branching unit 6, inverting unit 7, pulse width expanding unit 10, pulse width reducing unit 1) for generating electric pulse signals applied to the electrodes 8 and 9.
The circuit corresponding to 1) can be configured as shown in FIGS. 4 to 7, for example.
【0027】すなわち、図4(1)に示されるように、
入力電気パルス信号を回路21で分岐してその非反転出
力Qを一方をそのまま他方を遅延させてAND回路22
に入力し、また、その反転出力*Qを一方をそのまま他
方を遅延させてAND回路23に入力し、それぞれのA
ND出力を極性制御回路24、25で極性制御して、駆
動電圧V1、V2とする。これにより図4(2)に示さ
れるように、上記の遅延の与え量により拡大/縮小する
パルス幅が調整でき、また極性制御回路24、25での
極性の与え方によりモードA、モードBのように駆動電
圧V1、V2の正負を反転できる。That is, as shown in FIG.
The AND circuit 22 divides the input electric pulse signal by the circuit 21 and delays the non-inverted output Q of the non-inverted output Q of the other one as it is
To the AND circuit 23 by delaying one of the inverted output * Q and the other, and
The polarity of the ND output is controlled by the polarity control circuits 24 and 25 to obtain the drive voltages V1 and V2. As a result, as shown in FIG. 4B, the pulse width to be enlarged / reduced can be adjusted by the amount of delay given above, and the polarity control circuits 24 and 25 can set the polarity of the mode A and the mode B. Thus, the positive and negative of the drive voltages V1 and V2 can be inverted.
【0028】また、図5に示されるように、入力電気パ
ルス信号を回路26で分岐してその非反転出力Qを一方
をそのまま他方を遅延させてAND回路27に入力し、
また、その非反転出力Qを一方をそのまま他方を遅延さ
せてOR回路28に入力し、それぞれの出力を極性制御
回路29、30で極性制御して、駆動電圧V1、V2と
するようにしてもよい。Further, as shown in FIG. 5, the input electric pulse signal is branched by the circuit 26 and its non-inverted output Q is input to the AND circuit 27 with one being delayed as it is and the other being delayed.
Further, the non-inverted output Q is input to the OR circuit 28 while delaying the other one as it is, and the polarities of the respective outputs are controlled by the polarity control circuits 29 and 30, so that the drive voltages V1 and V2 are obtained. Good.
【0029】また、図6に示されるように、入力電気パ
ルス信号を回路31で非反転出力Qと反転出力*Qに分
岐してそれぞれを低域フィルタ32、33でろ波して波
形を丸め、その波形をスライス回路34、35でしきい
値Vht1でスライスすることで拡大/縮小されたパルス
幅を作り、そのパルス出力を極性制御回路36、37で
極性制御して、駆動電圧V1、V2とするようにしても
よい。Further, as shown in FIG. 6, the input electric pulse signal is branched into the non-inverted output Q and the inverted output * Q in the circuit 31, and each is filtered by the low-pass filters 32 and 33 to round the waveform, By slicing the waveform with the threshold value Vht1 by the slicing circuits 34 and 35, an enlarged / reduced pulse width is created, and the polarity of the pulse output is controlled with the polarity control circuits 36 and 37 to obtain the drive voltages V1 and V2. You may do it.
【0030】また、図7に示されるように、入力電気パ
ルス信号を回路38で非反転出力Qに分岐してそれぞれ
を低域フィルタ39、40でろ波して波形を丸め、その
波形をスライス回路41、42でしきい値Vht1、Vht
2でスライスすることで拡大/縮小されたパルス幅を作
り、そのパルス出力を極性制御回路43、44で極性制
御して、駆動電圧V1、V2とするようにしてもよい。Further, as shown in FIG. 7, the input electric pulse signal is branched to the non-inverted output Q by the circuit 38, each is filtered by the low-pass filters 39 and 40 to round the waveform, and the waveform is sliced. 41, 42 threshold Vht1, Vht
The pulse width may be enlarged / reduced by slicing at 2, and the pulse output may be polarity-controlled by the polarity control circuits 43 and 44 to be the drive voltages V1 and V2.
【0031】なお、上述の実施例において変調器の動作
点を安定化させる回路〔例えば特願平2−50189号
(特開平3−251815号)に記載の回路〕を組み込
むと安定な動作が得られる。また立上り/立下り制御部
12、13は実施例のようにパルス幅拡大部10、パル
ス幅縮小部11の後段に配置する場合だけに限らず、そ
の前段に配置してもよいし、二分岐部6に入力される電
気パルス信号の立上り/立下り時間を一定に制御するも
のであってもよい。If a circuit for stabilizing the operating point of the modulator (for example, the circuit described in Japanese Patent Application No. 2-50189 (Japanese Patent Application Laid-Open No. 3-251815)) is incorporated in the above embodiment, stable operation can be obtained. To be Further, the rising / falling control units 12 and 13 are not limited to the case of being arranged in the latter stage of the pulse width expanding unit 10 and the pulse width contracting unit 11 as in the embodiment, but may be arranged in the former stage thereof, or may be divided into two. The rising / falling time of the electric pulse signal input to the unit 6 may be controlled to be constant.
【0032】[0032]
【発明の効果】以上に説明したように、本発明によれ
ば、光ファイバの波長分散などにより生じる光信号の波
形歪の発生を抑制でき、伝送距離限界の改善を図って伝
送距離の長距離化が可能となる。As described above, according to the present invention, it is possible to suppress the occurrence of waveform distortion of an optical signal caused by chromatic dispersion of an optical fiber, improve the transmission distance limit, and increase the transmission distance. Can be realized.
【図1】本発明に係る原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.
【図2】本発明の一実施例としての光変調回路を示す図
である。FIG. 2 is a diagram showing an optical modulation circuit as an embodiment of the present invention.
【図3】実施例装置の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the apparatus according to the embodiment.
【図4】実施例における駆動回路の例を示す図である。FIG. 4 is a diagram showing an example of a drive circuit in an embodiment.
【図5】実施例における駆動回路の他の例を示す図であ
る。FIG. 5 is a diagram showing another example of the drive circuit in the embodiment.
【図6】実施例における駆動回路のまた他の例を示す図
である。FIG. 6 is a diagram showing still another example of the drive circuit according to the embodiment.
【図7】実施例における駆動回路のさらに他の例を示す
図である。FIG. 7 is a diagram showing still another example of the drive circuit according to the embodiment.
【図8】実施例におけるTとtr とτの関係を説明する
ための図である。FIG. 8 is a diagram for explaining the relationship between T, tr and τ in the example.
【図9】光変調回路の従来例を示す図である。FIG. 9 is a diagram showing a conventional example of an optical modulation circuit.
【図10】従来装置の動作を説明するための図である。FIG. 10 is a diagram for explaining the operation of the conventional device.
【図11】光変調回路の他の従来例を示す図である。FIG. 11 is a diagram showing another conventional example of the light modulation circuit.
1 光源 2 光分岐部 3、4 光導波路、 5 光結合部 6 二分岐部 7 反転部 8、9 電極 10 パルス幅拡大部 11 パルス幅縮小部 12、13 立上り/立下り制御部 14 パルス振幅拡大部 15 パルス振幅縮小部 1 light source 2 Optical branch 3, 4 optical waveguide, 5 Optical coupling section 6 bifurcation 7 Inversion section 8, 9 electrodes 10 Pulse width expansion section 11 Pulse width reduction section 12, 13 Rise / fall control unit 14 Pulse amplitude expansion section 15 Pulse amplitude reduction unit
Claims (2)
導波路(50、51)に入射光を分岐入射した後に再び
合成する構成の光変調回路において、 該二つの光導波路の電極(51、52)にそれぞれ印加
する電気パルス信号を、伝送路となる光ファイバの波長
分散を補償する大きさだけその一方をパルス幅拡大、他
方をパルス幅縮小するパルス幅制御回路(54、55)
を備えたことを特徴とする光変調回路。1. An optical modulation circuit configured to split incident light into two optical waveguides (50, 51) to which electric fields having opposite phases are applied and then combine the incident light again. , 52) respectively, the pulse width control circuit (54, 55) for enlarging the pulse width of one of the electric pulse signals and the other for reducing the pulse width by a size that compensates the chromatic dispersion of the optical fiber serving as the transmission line.
An optical modulation circuit comprising:
時間が一定となるように制御する立上り/立下り制御回
路を更に備えたことを特徴とする請求項1記載の光変調
回路。2. The optical modulation circuit according to claim 1, further comprising a rising / falling control circuit for controlling the rising time and the falling time of the electric pulse signal to be constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25225293A JP3461877B2 (en) | 1993-09-14 | 1993-09-14 | Light modulation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25225293A JP3461877B2 (en) | 1993-09-14 | 1993-09-14 | Light modulation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0784227A JPH0784227A (en) | 1995-03-31 |
JP3461877B2 true JP3461877B2 (en) | 2003-10-27 |
Family
ID=17234646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25225293A Expired - Fee Related JP3461877B2 (en) | 1993-09-14 | 1993-09-14 | Light modulation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3461877B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4091027B2 (en) | 2004-03-19 | 2008-05-28 | 富士通株式会社 | Optical modulator driving method, and optical transmitter and optical transmission system using the same |
JP5267409B2 (en) * | 2009-10-05 | 2013-08-21 | 富士通株式会社 | Mach-Zehnder interferometric optical modulator driving method and optical modulator |
-
1993
- 1993-09-14 JP JP25225293A patent/JP3461877B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0784227A (en) | 1995-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5786918A (en) | Optical communication system and optical transmitting device | |
US7280766B2 (en) | Method and device for processing an optical signal | |
JP3223562B2 (en) | Optical transmission device, optical transmission device, and optical modulator | |
KR100221265B1 (en) | Syncrhonous polarization and phase modulation using a periodic waveform with complex harmonics for improved performance of optical transmission systems | |
EP0622916A1 (en) | Optical soliton generator | |
GB2316821A (en) | Optical modulator using time division multiplexing and chirping | |
US6052496A (en) | Integrated optical modulators | |
US5889607A (en) | Optical modulator, optical short pulse generating device, optical waveform shaping device, and optical demultiplexer device | |
JP3886147B2 (en) | Dispersion compensation | |
US5995685A (en) | Optical modulator and an optical modulating method | |
WO2005066707A1 (en) | Optical fourier transform device and method | |
JP2679223B2 (en) | Optical modulation method and optical modulator | |
US7747175B2 (en) | Optical transmission method and optical transmission apparatus | |
US20030030882A1 (en) | Optical pulse generation | |
US7672593B2 (en) | OTDM transmission method and apparatus | |
US6535316B1 (en) | Generation of high-speed digital optical signals | |
JP3461877B2 (en) | Light modulation circuit | |
JP3289657B2 (en) | Optical communication device | |
JP2823872B2 (en) | Optical transmitter | |
EP0491272B1 (en) | Optical transmitter | |
JP4745096B2 (en) | Drive device for optical modulator | |
US20030215173A1 (en) | Multiphase optical pulse generator | |
JPH0886991A (en) | Method and device for transmitting light and light transmission system | |
JP2005303974A (en) | Driving method of optical modulator, and optical transmitter and optical transmission system using same | |
JP2512520B2 (en) | Optical repeater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030805 |
|
LAPS | Cancellation because of no payment of annual fees |