JP3460776B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JP3460776B2
JP3460776B2 JP32232796A JP32232796A JP3460776B2 JP 3460776 B2 JP3460776 B2 JP 3460776B2 JP 32232796 A JP32232796 A JP 32232796A JP 32232796 A JP32232796 A JP 32232796A JP 3460776 B2 JP3460776 B2 JP 3460776B2
Authority
JP
Japan
Prior art keywords
polarizable electrode
powder
electric double
conductive agent
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32232796A
Other languages
Japanese (ja)
Other versions
JPH10149956A (en
Inventor
要 栗原
真直 小林
好克 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP32232796A priority Critical patent/JP3460776B2/en
Publication of JPH10149956A publication Critical patent/JPH10149956A/en
Application granted granted Critical
Publication of JP3460776B2 publication Critical patent/JP3460776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は内部抵抗が小さく、
大電流で急速に充放電できる電気二重層コンデンサに
する。 【0002】 【従来の技術】電気二重層コンデンサは、集電体と比表
面積が大きい活性炭粉末を主体とする分極性電極層から
なる一対又は複数対の分極性電極を有する素子を電解液
中に浸し、活性炭粉末の大きな表面と接する電解液中に
形成される電気二重層を利用して電荷を蓄めるコンデン
サであり、他の形式のコンデンサと比べて容量が格段に
大きいのが特徴である。また、充放電するときに化学反
応を伴う二次電池と比較すると、化学反応を伴わない電
気二重層コンデンサは繰り返し充放電しても容量等が劣
化しにくいという優れた特徴がある。 【0003】しかし、活性炭粉末を主体とする分極性電
極層中の電気抵抗がかなり大きく、これに分極性電極層
と集電体との間の接続抵抗が加わって電気二重層コンデ
ンサの内部抵抗が大きくなり、大電流で充放電できない
という問題点があった。この問題点を解消するための対
策として、集電体をアルミニウムのエッチング箔とした
り、集電体と分極性電極層の間を導電性接着剤で接着し
たり、分極性電極層を薄くしたり、素子を積層型にして
対向する分極性電極の対向面積を増やしたり、分極性電
極中に活性炭粉末より小さい平均粒径を有する導電剤粉
末を添加したり、電気抵抗が小さい電解液を選定したり
する方法が検討されている。 【0004】その一例として、特開昭56−67920
号には、分極性電極層に添加する導電剤粉末として50
0μm以下の平均粒径を有する各種カーボンブラックを
使用した電気二重層コンデンサが開示されている。カー
ボンブラックにはチャンネルブラック、ファーネスブラ
ック、サーマルブラック、アセチレンブラックなどの品
種があり、特開昭56−67920号に記載の実施例に
は、導電材に平均粒径が0.01μmのコンダクテブチ
ャンネルブラックを使用した電気二重層コンデンサが開
示されている。 【0005】上述した従来の種々の対策も電気二重層コ
ンデンサの内部抵抗の低減に有効であるが、これらの対
策を種々組み合わせても実現可能な電気二重層コンデン
サの内部抵抗は使用する目的によっては依然として十分
低いと言えず、さらに内部抵抗が小さく、大電流で充放
電できるパワー用途に適した電気二重層コンデンサの提
供が望まれている。 【0006】 【発明が解決しようとする課題】本発明の目的は、前述
の従来技術における電気二重層コンデンサの内部抵抗の
低減対策に加えて、さらに内部抵抗を小さくできる電気
二重層コンデンサを提供することにある。 【0007】 【課題を解決するための手段】上記目的を達成するた
め、本発明は、活性炭粉末、導電剤粉末およびバインダ
ーを含む分極性電極層が金属箔の集電体上に塗工して形
成された一対のシート状分極性電極が各シート状分極性
電極間にセパレータを挟んだ状態で捲回されてなる素
子、または活性炭粉末、導電材粉末およびバインダーを
含む分極性電極層が金属箔の集電体上に塗工して形成さ
れた多数のシート状分極性電極が各シート状分極性電極
間にセパレータを挟んだ状態で積層されてなる素子が、
非水系電解液とともに容器中に封入されている電気二重
層コンデンサにおいて前記導電剤粉末が細かい導電剤
粉末と、平均粒径が前記細かい導電剤粉末の平均粒径の
1/3以下の0.01〜0.1μmである微細なカーボ
ン粉末からなるとともに、前記細かい導電剤粉末がカ
ーボンブラックであり、前記バインダーがポリビニリデ
ンフルオライドであり、前記金属箔の集電体がエッチン
グ処理されたアルミニウム箔であり、前記非水系電解液
がプロピレンカーボネイトにテトラエチルアンモニウム
テトラフルオロボレイトを溶解した電解液であることを
特徴としている。 【0008】このように、導電剤粉末として一種類の細
かい導電剤粉末のみでなく、微細なカーボン粉末の導電
剤を分極性電極層中に混在させることによってミクロな
領域における導電剤粉末粒子のパッキング状態を向上さ
せ、これによって分極性電極層中の電気抵抗を小さくし
得るという知見を得、本発明の電気二重層コンデンサは
この知見に基づいて発明されたものである。すなわち、
ミクロな領域における導電剤粉末粒子のパッキング効果
が得られるように、微細なカーボン粉末の平均粒径を、
細かい導電剤粉末の平均粒径の1/3以下としている。
微細なカーボン粉末の平均粒径と細かい導電剤粉末の平
均粒径のより好ましい比は1/5以下である。 【0009】本発明の電気二重層コンデンサは好まし
い態様として、活性炭粉末、導電剤粉末、バインダー
び溶媒の混合物に、平均粒径が0.01〜0.1μm
の微細なカーボン粉末を溶媒中に予め分散させたスラリ
ーを混合、混練して分極性電極材料のペーストとし、該
ペーストをエッチング処理したアルミニウム箔の表面に
塗工してシート状分極性電極とし、一対のシート状分極
性電極の各シート状分極性電極間にセパレータを挟んだ
状態で捲回して素子とし、または多数のシート状分極性
電極の各シート状分極性電極間にセパレータを挟んだ状
態で積層して素子とし、該素子を前記非水系電解液とと
もに容器中に封入することにより製造することができ
。 【0010】この製造方法は、実用的な製造方法で
る。すなわち、一次粒子の平均粒径が0.01〜0.1
μmの微細なカーボン粉末は通常凝集した二次粒子とな
っているので、好ましくは溶媒を加えてミル中で混合、
粉砕し、微細な一次粒子が溶媒中に分散した状態のスラ
リーとする。電気二重層コンデンサを製造するときは、
先ず微細な一次粒子からなるカーボン粉末を、たとえば
アトリションミルに溶媒とともに入れ、湿式粉砕して一
次粒子が溶媒中に分散した状態のスラリーを予め準備す
る。このスラリーを分極性電極材料の混合物と混合し、
混練して塗工用のペーストとする。通常、粉末粒子の粒
度分布や平均粒径は、沈降法によって測定されることが
多いが、サブミクロンの微細な粒子からなるカーボン粉
末の粒度分布と平均粒径は、沈降法のような粒度分析法
で測定するのが難しい。このため、微細なカーボン粉末
の平均粒径は、溶媒中でよく分散させた微細なカーボン
粉末スラリーを試料としてその電子顕微鏡写真を撮って
解析し、測定する。 【0011】 【発明の実施形態】電気二重層コンデンサにはコイン
型、捲回型、積層型などの種類があるが、大電流で充放
電できるものとするため、本発明の電気二重層コンデン
サは捲回型又は積層型とされる。捲回型電気二重層コン
デンサは後述する図1に示すものであり、積層型電気二
重層コンデンサは図2に示す構成を有する。ここで多数
のシート状分極性電極をセパレータを介して積層した積
層型素子というのは、大容量の積層型素子が得られるよ
うに6枚以上のシート状分極性電極、好ましくは10枚
以上のシート状分極性電極を積層した素子とする。図2
において、20、21は集電端子、26は負極、27は
正極、30、31は集電体リード、32はアルミニウム
容器、33は正極端子、34は負極端子、35は上蓋で
ある。 【0012】活性炭にはやしがらなどの植物系、石油
系、石炭系、フェノール樹脂系などがあり、賦活方法に
も溶融KOH賦活法等の薬品賦活法、水蒸気賦活法等が
あり、種々の活性炭粉末を使用できる。活性炭粉末は比
表面積の大きい方が電気二重層コンデンサの容量を大き
くできるので、比表面積が1500m/g以上のもの
を使用するのが好ましい。また、比表面積が大き過ぎる
活性炭粉末は充填密度が小さく、分極性電極の単位体積
当たりの容量が小さくなるので、3000m/g以下
のものを使用するのが好ましい。 【0013】導電剤粉末としては、カーボンブラック、
黒鉛粉末、ポリアセチレン、ポリピロール、ポリアセン
等の導電性有機高分子粉末、酸化ルテニウム等の金属酸
化物粉末等がある。これらの内、良好な導電性向上効果
がある細かい粉末が安価に入手できることからカーボン
ブラックを使用するのが好ましい。カーボンブラックと
しては、導電性を向上させる効果が大きいので、平均粒
径の小さい種類のカーボンブラックを使用するのが好ま
しい。細かいカーボンブラックの導電剤粉末は、比表面
積も相当大きく、その粒子表面に電気二重層を形成して
電荷を蓄める働きもあり、活性炭粉末と同じくその表面
に電荷を蓄えて電気二重層コンデンサの容量を増す働き
をする。 【0014】分極性電極層は、ロール等で予めシート状
に形成したものを集電体上に導電性接着剤で接合する方
法もあるが、本発明の電気二重層コンデンサでは、集電
体上に薄くて密着性のよい分極性電極層を形成できるこ
とから、金属箔の集電体上にペーストを塗工して形成す
る。この方法では、一度の塗工で所望の厚さの分極性電
極層を形成できない場合には重ねて塗工する必要があ
る。集電体の材料には、アルミニウム、ステンレス鋼、
ニッケル、銅が使用できる。アルミニウム箔の集電体
は、分極性電極層との密着性を向上させるため、エッチ
ング処理して表面に凹凸を形成したものを使用するのが
好ましい。アルミニウム箔の厚さは、集電体の抵抗値が
大きくならない程度の厚さとし、ペーストの塗工時や分
極性電極シートの捲回、積層時に破れず、かつアルミニ
ウム箔に端子を接続しやすいように20〜150μmと
するのが好ましい。 【0015】電解液には、使用電圧を高くできて、エネ
ルギー密度の大きい電気二重層コンデンサを得やすいこ
とから、分解電圧が高い非水系電解液を使用する。非水
系電解液としては、電気二重層コンデンサの使用温度範
囲を広く取れ、電気伝導度の大きい電解液を使用するの
が好ましい。具体的には、性能的に優れ、安価であるこ
とから、テトラエチルアンモニウムテトラフルオロボレ
イトをプロピレンカーボネイトに溶解した電解液を使用
するのが好ましい。電解液の濃度は、良好な電気伝導性
が得られるように、テトラエチルアンモニウムテトラフ
ルオロボレイトをプロピレンカーボネートに0.6〜
1.4モル濃度溶かしたものを使用するのが好ましい。 【0016】セパレータには、微細な連続気孔を有し、
電解液によって変質しない電解液に濡れる各種の絶縁シ
ートを使用できる。セパレータとしては、性能的に良好
で、安価であるマニラ紙を使用するのが好ましい。シー
ト状分極性電極は、集電体の両面に分極性電極層を塗工
したもの、又は集電体の片面に塗工したもののいずれで
あってもよい。捲回型の素子では捲回するシート状分極
性電極の分極性電極層に歪みが導入されて損傷しやすい
ので、あまり厚くない方が好ましく、集電体の片面にの
み塗工したシート状分極性電極を使用するのが好まし
い。しかし、積層型の場合はシート状分極性電極を屈曲
させる必要がないので、集電体の両面に分極性電極層を
塗工したシート状分極性電極を使用するのが好ましい。 【0017】セパレータは、隣接するシート状分極性電
極が互いにショートしないように、隣接する各シート状
分極性電極間のすべてに配置される。容器は電解液に対
して安定で電解液を素子とともに密閉して保護できるも
のであればよい。容器の金属材料としては、電解液に対
して安定で入手が容易なステンレス鋼又はアルミニウム
の容器を使用するのが好ましい。素子の各シート状分極
性電極は、その端部でかしめや超音波溶接によって端子
線に接続し、端子線をゴム等の絶縁封入部を貫通せしめ
て容器外に引き出す。容器は素子の外形状に合わせて必
要最小限の容積を有するものを使用するのが好ましく、
捲回型素子の場合は円筒形の容器を使用し、積層型の素
子の場合は直方体形の容器を使用するのが好ましい。 【0018】本発明の好ましい電気二重層コンデンサで
は、金属箔に塗工された分極性電極層が導電剤の一部と
して微細なカーボン粉末を3〜20重量%、さらに好ま
しくは8〜12重量%含む。微細なカーボン粉末の混入
量が少ないと、分極性電極層の電気抵抗の低減効果が小
さく、20重量%より多くしても分極性電極層の電気抵
抗の低減効果はそれ以上増えない。また、微細なカーボ
ン粉末の平均粒径は、分極性電極層の電気抵抗の低減効
果を充分確保できるように0.01〜0.1μmとする
のが好ましい。平均粒径が0.01μmより微細なカー
ボン粉末を相当量製造するには多くの手間がかかり、現
状ではコストが高くなる割りに得られる効果が少ない。
微細なカーボン粉末と組み合わせる導電剤粉末の平均粒
径にもよるが、平均粒径が0.1μmより大きい微細な
カーボン粉末の配合では得られる電気抵抗の低減効果が
小さい。微細なカーボン粉末の平均粒径は、0.02〜
0.7μmとするのがさらに好ましい。 【0019】本発明の好ましい電気二重層コンデンサで
は、導電剤粉末にカーボンブラックを使用する。導電剤
粉末には種々のカーボンブラック、酸化ルテニウム等の
金属酸化物粉末、黒鉛粉末、ポリアセチレン、ポリピロ
ール、ポリアセン等の有機系導電性材料粉末が使用でき
る。これらの内、カーボンブラックには良好な導電性付
与効果があり、比較的入手が容易で、よく分散させた粉
末は狭い粒度分布を有するので使いやすい。カーボンブ
ラックには、チャンネルブラック、ファーネスブラッ
ク、サーマルブラック、アセチレンブラック等の種類が
あり、いずれも好ましく使用できる。 【0020】バインダーには、非水系電解液の溶媒に対
して安定なフッ素樹脂系のバインダーを使用するのが好
ましい。バインダーの配合量が多いと分極性電極層の電
気抵抗が大きくなるので、少量の配合でも分極性電極材
料の保持力が大きいものがよく、電解液に対して安定で
溶媒に可溶なものが好ましい。この条件を充たすバイン
ダーとして、特にポリビニリデンフルオライド(以下、
PVDFと略す)を使用するのが好ましい。PVDFに
はNメチルピロリドン(以下、NMPと略す)という使
いやすい溶媒があることもPVDFが好ましいバインダ
ーである理由の一つである。Nメチルピロリドンは塗工
後の素子を容器中に組み込む前に乾燥して除かれるので
製品中には残らない。 【0021】微細な粉末は気相から析出させて製造され
ることが多い。煤などの気相から析出したカーボンの微
粒子はたいてい凝集して二次粒子になっている。凝集し
ているカーボン二次粒子の粉末は、NMP等の溶媒を加
えてミル粉砕やロール練りすることによって大部分一次
粒子からなる微細なカーボン粉末のスラリーに転化でき
るが、一次粒子をさらに細かくすることは非常に難し
い。したがって微細なカーボン粉末は所望の平均粒径の
一次粒子を有するカーボン粉末を原料としなければなら
ず、微細なカーボン粉末はカーボンブラックの一種であ
ってもよい。 【0022】 【実施例】以下本発明を実施例によって具体的に説明す
るが、本発明は以下の実施例に限定されるものではな
い。 【0023】[実施例1] 溶融KOH賦活された石油コークス系活性炭粉末(平均
粒径10μm、比表面積2000m/g)40重量
部、カーボンブラック(平均粒径2μm)10重量部、
PVDF10重量部、NMP40重量部からなる混合物
に、チャンネルブラックにNMPを加えてセラミックス
ロールで混練してよく分散させた微細なカーボン粉末
(平均粒径0.2μm)を20重量%含むスラリーを
20重量部加え、さらにボールミルで混合、混練して分
極性材料のペースト(NMPを除いた粉末中に微細なカ
ーボン粉末を10重量%含む)を得た。このペーストを
厚さ50μmのエッチングされたアルミニウム箔上にコ
ーターで塗工し、アルミニウム箔の片面に10g/m
の分極性電極層を形成した。 【0024】この分極性電極層を形成したシートを13
mm幅のリボンに切断してシート状分極性電極とした。
一対のシート状分極性電極の間に厚さ50μmのマニラ
紙のリボンを挟んで捲回し、テープの端にタブ付き端子
線をかしめて接続後、最外周をポリプロピレンの素子止
めテープで止め、外径7mm、長さ15mmの捲回型素
子を得た。この素子を120℃に加熱して乾燥後外径8
mm、高さ22mmの片端が閉じたアルミニウム容器に
収納し、プロピレンカーボネイトに1モル/リットルの
テトラエチルアンモニウムテトラフルオロボレイトを溶
かした非水系電解液を容器に注入して素子に含浸させ、
封口ゴムに端子線を通して容器の開口を封止し、図1に
示す構成の、外径8mm高さ21mmの捲回型電気二重
層コンデンサを10個試作した。 【0025】図1において、1、2は分極性電極層、3
は集電体、4は素子、6はセパレータ、7は金属容器、
8、9はタブ付きリード線、10は封口ゴムである。 [実施例2]実施例1においてペーストに混合する微細
なカーボン粉末スラリーの量を30重量部(ペーストは
NMPを除いた固形分中に微細なカーボン粉末を10重
量%含む)とした以外は実施例1と同様にして同寸法の
捲回型電気二重層コンデンサを10個試作した。 【0026】[比較例1]実施例1において微細なカー
ボン粉末のスラリーを混合しない分極性電極材料のペー
ストを使用し、他は実施例1と同様にして捲回型電気二
重層コンデンサ10個試作した。 【0027】上記により試作した各捲回型電気二重層コ
ンデンサについて2.5Vにおける容量、内部抵抗及び
LCを測定した。次いで2.5Vの電圧を印加した状態
で70℃で1000時間保持し、容量と内部抵抗の変化
を調べた。これらの結果を測定データの範囲で表1にま
とめて示した。 【0028】 【表1】 【0029】上記の試験結果から、本発明による電気二
重層コンデンサでは、その内部抵抗が顕著に小さくなっ
たことが分かる。さらに加えて、70℃での加速耐久性
試験を行なった結果から、容量等の劣化も小さいことが
確認された。 【0030】 【発明の効果】分極性電極層を塗工して形成するペース
トに配合する導電剤に、通常の導電剤に加えて平均粒径
が通常の導電剤の平均粒径の1/3以下の微細なカーボ
ン粉末の導電剤を配合することによって分極性電極層中
の粉末のミクロなパッキング性が向上し、電気二重層コ
ンデンサの内部抵抗を顕著に小さくできた。電気二重層
コンデンサの内部抵抗が小さいことは、その充放電に際
しての発熱が少なく、充放電に際してのエネルギーロス
が小さいことであり、現在開発途上にあって今後の交通
手段として期待されている電気自動車の制動エネルギー
回生向けなどのパワー用途向けに好適であり、本発明の
産業上の利用効果は多大である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention
Seki to <br/> the electric double layer capacitor capable of rapid charging and discharging at a large current. 2. Description of the Related Art An electric double layer capacitor is composed of an element having one or more pairs of polarizable electrodes comprising a current collector and a polarizable electrode layer mainly composed of activated carbon powder having a large specific surface area. A capacitor that is immersed and stores electric charge using an electric double layer formed in the electrolyte that is in contact with the large surface of activated carbon powder.It is characterized by a much larger capacity than other types of capacitors. . In addition, when compared with a secondary battery that involves a chemical reaction when charging and discharging, an electric double layer capacitor that does not involve a chemical reaction has an excellent feature that the capacity and the like are less likely to deteriorate even when repeatedly charged and discharged. However, the electric resistance in the polarizable electrode layer mainly composed of activated carbon powder is quite large, and the connection resistance between the polarizable electrode layer and the current collector is added to increase the internal resistance of the electric double layer capacitor. However, there is a problem that charging and discharging cannot be performed with a large current. As measures to solve this problem, the current collector may be made of etched aluminum foil, the current collector and the polarizable electrode layer may be bonded with a conductive adhesive, or the polarizable electrode layer may be thinned. By increasing the opposing area of the opposing polarizable electrodes by stacking the elements, adding a conductive agent powder having an average particle size smaller than the activated carbon powder into the polarizable electrodes, or selecting an electrolyte having a small electric resistance. Or how to do it. [0004] One example is disclosed in Japanese Patent Application Laid-Open No. 56-67920.
No. 50 as a conductive agent powder added to the polarizable electrode layer.
An electric double layer capacitor using various carbon blacks having an average particle size of 0 μm or less is disclosed. Examples of carbon black include varieties such as channel black, furnace black, thermal black, and acetylene black. An electric double layer capacitor using channel black is disclosed. Although the above-mentioned various conventional measures are also effective in reducing the internal resistance of the electric double layer capacitor, the internal resistance of the electric double layer capacitor which can be realized by variously combining these measures depends on the purpose of use. There is still a demand for an electric double-layer capacitor suitable for power applications that cannot be said to be sufficiently low, has a low internal resistance, and can be charged and discharged with a large current. [0006] An object of the present invention is to solve the above, in addition to the measures for reducing internal resistance of the electric double layer capacitor in the prior art described above, provides an electric double layer capacitor can be further reduced internal resistance Is to do. [0007] To achieve the above object,
Because, the onset Ming, activated carbon powder, a conductive agent powder and a pair of sheet-like polarizable electrode polarizable electrode layer is formed by coating on a current collector metal foil containing a binder like each sheet wound in a state sandwiching the separator between the polarizable electrodes comprising elements, or forming polarizable electrode layer containing activated carbon powder, a conductive material powder and a binder is coated on a current collector of a metal foil An element in which a large number of sheet-like polarizable electrodes are stacked with a separator interposed between each sheet-like polarizable electrode,
Electric double sealed in container with non-aqueous electrolyte
In layer capacitor, and the conductive agent powder fine conductive powders, an average grain size of the average particle diameter of the fine conductive powders wherein
1/3 following 0.01~0.1μm a is fine carbon powder and Tona Rutotomoni, the fine conductive powders mosquitoes
Carbon black, and the binder is polyvinylidene.
And the current collector of the metal foil is
Aluminum foil which has been subjected to a non-aqueous electrolytic solution.
Adds tetraethylammonium to propylene carbonate
That it is characterized by an electrolytic solution obtained by dissolving a tetrafluoroborate. [0008] As described above , not only one kind of fine conductive agent powder but also fine carbon powder conductive agent is mixed in the polarizable electrode layer to pack conductive agent powder particles in a micro region. It has been found that the state can be improved and thereby the electrical resistance in the polarizable electrode layer can be reduced, and the electric double layer capacitor of the present invention has been invented based on this finding. That is,
In order to obtain a packing effect of the conductive agent powder particles in a micro area, the average particle diameter of the fine carbon powder is
The average particle diameter of the fine conductive agent powder is 1/3 or less.
The more preferable ratio of the average particle size of the fine carbon powder to the average particle size of the fine conductive agent powder is 1/5 or less. [0009] The electric double layer capacitor of the present invention, preferably
As had embodiments, activated carbon powder, a conductive agent powder, a binder Contact
A good beauty mixture of solvents, the average particle size 0.01~0.1μm
A slurry prepared by previously dispersing fine carbon powder in a solvent is mixed and kneaded to form a paste of a polarizable electrode material, and the paste is applied to the surface of an etched aluminum foil to form a sheet-like polarizable electrode. a device by winding in a state of sandwiching the separator between each sheet polarizable electrode of the pair of sheet-like polarizable electrode, or across the separator between each sheet polarizable electrode of a number of sheet-shaped polarizable electrodes and elements stacked with, can be prepared by encapsulating the the element in a container together with the non-aqueous electrolyte solution
You . [0010] This production how is, Ru Oh <br/> in real for manufacturing how. That is, the average primary particle size is 0.01 to 0.1.
μm fine carbon powder is usually agglomerated secondary particles, so it is preferable to add a solvent and mix in a mill,
The slurry is pulverized to form a slurry in which fine primary particles are dispersed in a solvent. When manufacturing electric double layer capacitors,
First, a carbon powder composed of fine primary particles is put together with a solvent in, for example, an attrition mill, and wet-milled to prepare a slurry in which the primary particles are dispersed in the solvent. Mixing this slurry with a mixture of polarizable electrode materials,
It is kneaded to make a paste for coating. Normally, the particle size distribution and average particle size of powder particles are often measured by the sedimentation method, but the particle size distribution and average particle size of carbon powder composed of submicron fine particles are determined by particle size analysis like the sedimentation method. It is difficult to measure by the method. For this reason, the average particle size of the fine carbon powder is measured by taking an electron microscope photograph of a fine carbon powder slurry well dispersed in a solvent and taking a sample. DESCRIPTION OF THE PREFERRED EMBODIMENTS There are various types of electric double layer capacitors, such as coin type, wound type, laminated type, etc. In order to be able to charge and discharge with a large current, the electric double layer capacitor of the present invention is It is a wound type or a laminated type. The wound electric double layer capacitor is shown in FIG. 1 described later, and the multilayer electric double layer capacitor has a configuration shown in FIG. Here, the term "laminated element in which a large number of sheet-shaped polarizable electrodes are laminated via a separator" means that six or more sheet-shaped polarizable electrodes, preferably ten or more, are used so that a large-capacity laminated element is obtained. An element in which sheet-shaped polarizable electrodes are laminated. FIG.
, 20 and 21 are current collector terminals, 26 is a negative electrode, 27 is a positive electrode, 30 and 31 are current collector leads, 32 is an aluminum container, 33 is a positive electrode terminal, 34 is a negative electrode terminal, and 35 is an upper lid. Activated carbon includes plant, petroleum, coal, phenolic resin, etc., such as coconut pods. The activation method includes a chemical activation method, such as a molten KOH activation method, and a steam activation method. Can be used. Since the activated carbon powder having a larger specific surface area can increase the capacity of the electric double layer capacitor, it is preferable to use one having a specific surface area of 1500 m 2 / g or more. Activated carbon powder having a too large specific surface area has a low packing density and a small capacity per unit volume of the polarizable electrode. Therefore, it is preferable to use a powder of 3000 m 2 / g or less. As the conductive agent powder, carbon black,
Examples include graphite powder, conductive organic polymer powder such as polyacetylene, polypyrrole, and polyacene, and metal oxide powder such as ruthenium oxide. Of these, it is preferable to use carbon black because fine powder having a good conductivity improving effect can be obtained at low cost. Since carbon black has a large effect of improving conductivity, it is preferable to use a carbon black of a type having a small average particle size. Fine carbon black conductive agent powder has a considerably large specific surface area and also has the function of forming an electric double layer on the particle surface to store electric charge. Works to increase the capacity of The polarizable electrode layer may be formed in a sheet shape in advance by a roll or the like and then bonded to the current collector with a conductive adhesive. However, in the electric double layer capacitor of the present invention, the polarizable electrode layer is formed on the current collector. Since a polarizable electrode layer having a small thickness and good adhesion can be formed, it is formed by coating a paste on a metal foil current collector. In this method, when a polarizable electrode layer having a desired thickness cannot be formed by a single application, it is necessary to apply the polarizable electrode layers repeatedly. Current collector materials include aluminum, stainless steel,
Nickel and copper can be used. As the current collector of the aluminum foil, it is preferable to use a current collector having an uneven surface formed by etching to improve the adhesion to the polarizable electrode layer. The thickness of the aluminum foil should be such that the resistance value of the current collector does not increase, so that it does not break when applying paste or winding or laminating the polarizable electrode sheet, and it is easy to connect terminals to the aluminum foil. It is preferably 20 to 150 μm. As the electrolytic solution, a nonaqueous electrolytic solution having a high decomposition voltage is used because the working voltage can be increased and an electric double layer capacitor having a large energy density can be easily obtained. As the non-aqueous electrolyte, it is preferable to use an electrolyte having a wide electric temperature range for the electric double layer capacitor and having high electric conductivity. Specifically, it is preferable to use an electrolytic solution obtained by dissolving tetraethylammonium tetrafluoroborate in propylene carbonate since it is excellent in performance and inexpensive. The concentration of the electrolytic solution is set to 0.6 to 1.0% in propylene carbonate so that good electric conductivity can be obtained.
It is preferable to use one dissolved at 1.4 molar concentration. The separator has fine continuous pores,
Various insulating sheets that are wetted by the electrolyte solution that is not deteriorated by the electrolyte solution can be used. As the separator, it is preferable to use manila paper which is good in performance and inexpensive. The sheet-shaped polarizable electrode may be either a current collector with both surfaces coated with a polarizable electrode layer or a current collector with one surface coated. In a wound-type element, the polarizable electrode layer of the sheet-shaped polarizable electrode to be wound is easily damaged by the introduction of strain. Therefore, it is preferable that the thickness is not too large. Preferably, polar electrodes are used. However, in the case of a stacked type, it is not necessary to bend the sheet-shaped polarizable electrode, and thus it is preferable to use a sheet-shaped polarizable electrode in which a polarizable electrode layer is coated on both surfaces of the current collector. The separators are arranged between all the adjacent sheet-shaped polarizable electrodes so that the adjacent sheet-shaped polarizable electrodes are not short-circuited to each other. The container may be any as long as it is stable with respect to the electrolytic solution and can seal and protect the electrolytic solution with the element. As the metal material of the container, it is preferable to use a stainless steel or aluminum container which is stable to the electrolyte and easily available. Each sheet-shaped polarizable electrode of the element is connected to a terminal wire by caulking or ultrasonic welding at an end thereof, and the terminal wire is passed through an insulating enclosing portion made of rubber or the like and pulled out of the container. It is preferable to use a container having a minimum necessary volume according to the outer shape of the element,
In the case of a wound type element, it is preferable to use a cylindrical container, and in the case of a laminated type element, it is preferable to use a rectangular parallelepiped container. In a preferred electric double layer capacitor of the present invention, the polarizable electrode layer coated on the metal foil contains 3 to 20% by weight of fine carbon powder as a part of the conductive agent, more preferably 8 to 12% by weight. Including. If the amount of the fine carbon powder mixed is small, the effect of reducing the electric resistance of the polarizable electrode layer is small, and even if it exceeds 20% by weight, the effect of reducing the electric resistance of the polarizable electrode layer does not increase any more. The average particle size of the fine carbon powder is preferably 0.01 to 0.1 μm so as to sufficiently secure the effect of reducing the electric resistance of the polarizable electrode layer. It takes a lot of labor to produce a considerable amount of carbon powder having an average particle size smaller than 0.01 μm, and at present, the effect obtained is small in spite of the high cost.
Depending on the average particle diameter of the conductive agent powder combined with the fine carbon powder, the effect of reducing the obtained electric resistance is small when the fine carbon powder having an average particle diameter larger than 0.1 μm is blended. The average particle size of the fine carbon powder is 0.02 to
0. It is more preferable that the thickness be 0.7 μm. In the preferred electric double layer capacitor of the present invention, carbon black is used as the conductive agent powder. As the conductive agent powder, various kinds of metal oxide powders such as carbon black and ruthenium oxide, graphite powders, and organic conductive material powders such as polyacetylene, polypyrrole, and polyacene can be used. Of these, carbon black has a good conductivity-imparting effect, is relatively easy to obtain, and a well-dispersed powder has a narrow particle size distribution and is easy to use. There are various types of carbon black, such as channel black, furnace black, thermal black, and acetylene black, all of which can be preferably used. As the binder, it is preferable to use a fluororesin-based binder which is stable with respect to the solvent of the non-aqueous electrolyte. When the amount of the binder is large, the electric resistance of the polarizable electrode layer becomes large, so that even a small amount of the binder, a material having a large holding power of the polarizable electrode material is good. preferable. As a binder satisfying this condition, in particular, polyvinylidene fluoride (hereinafter, referred to as
It is preferable to use PVDF. One of the reasons why PVDF is a preferable binder is that PVDF has an easy-to-use solvent called N-methylpyrrolidone (hereinafter abbreviated as NMP). N-methylpyrrolidone does not remain in the product because it is removed by drying before the coated element is incorporated into the container. Fine powders are often produced by precipitation from the gas phase. Fine particles of carbon precipitated from the gas phase such as soot are often aggregated into secondary particles. The powder of the aggregated carbon secondary particles can be converted into a slurry of fine carbon powder composed mostly of primary particles by milling or kneading with a solvent such as NMP, but further reducing the primary particles. It is very difficult. Therefore, the fine carbon powder must be a carbon powder having primary particles of a desired average particle size as a raw material, and the fine carbon powder may be a kind of carbon black. EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the following examples. Example 1 40 parts by weight of petroleum coke-based activated carbon powder (average particle size: 10 μm, specific surface area: 2000 m 2 / g) activated by molten KOH, 10 parts by weight of carbon black (average particle size: 2 μm),
PVDF10 parts, to a mixture consisting of NMP40 parts, a slurry containing fine carbon powders dispersed well kneaded by a ceramic roll NMP was added to the channel black (average particle size 0. 0 2 [mu] m) 20 wt% 20 By weight, the mixture was further mixed and kneaded with a ball mill to obtain a paste of a polarizable material (the powder excluding NMP contained 10% by weight of fine carbon powder). This paste is applied by a coater on an etched aluminum foil having a thickness of 50 μm, and 10 g / m 2 is applied on one side of the aluminum foil.
Was formed. The sheet on which the polarizable electrode layer was formed was 13
It was cut into a ribbon having a width of mm to obtain a sheet-shaped polarizable electrode.
After winding a manila paper ribbon having a thickness of 50 μm between a pair of sheet-shaped polarizable electrodes, crimping a terminal wire with a tab to the end of the tape and connecting the same, stopping the outermost periphery with a polypropylene element fixing tape, A wound element having a diameter of 7 mm and a length of 15 mm was obtained. After heating this element to 120 ° C. and drying,
mm, 22 mm in height, housed in a closed aluminum container, a non-aqueous electrolyte solution of 1 mol / L tetraethylammonium tetrafluoroborate dissolved in propylene carbonate is injected into the container, and impregnated in the element.
The opening of the container was sealed through a terminal wire through a sealing rubber, and ten wound electric double-layer capacitors having an outer diameter of 8 mm and a height of 21 mm having the configuration shown in FIG. 1 were prototyped. In FIG. 1, reference numerals 1 and 2 denote polarizable electrode layers, 3
Is a current collector, 4 is an element, 6 is a separator, 7 is a metal container,
Reference numerals 8 and 9 denote lead wires with tabs, and reference numeral 10 denotes sealing rubber. Example 2 Example 2 was repeated except that the amount of the fine carbon powder slurry mixed with the paste was 30 parts by weight (the paste contained 10% by weight of the fine carbon powder in the solid content excluding NMP) in Example 1. In the same manner as in Example 1, ten wound electric double layer capacitors having the same dimensions were prototyped. Comparative Example 1 Ten wound electric double layer capacitors were prototyped in the same manner as in Example 1 except that the paste of the polarizable electrode material was used without mixing the slurry of fine carbon powder in Example 1. did. The capacity, internal resistance, and LC at 2.5 V of each wound electric double layer capacitor produced as described above were measured. Then, the substrate was kept at 70 ° C. for 1000 hours while a voltage of 2.5 V was applied, and changes in capacitance and internal resistance were examined. These results are summarized in Table 1 in the range of the measurement data. [Table 1] From the above test results, it can be seen that the internal resistance of the electric double layer capacitor according to the present invention was significantly reduced. In addition, as a result of an accelerated durability test at 70 ° C., it was confirmed that deterioration of the capacity and the like was small. According to the present invention, the average particle size of the conductive agent to be added to the paste formed by coating the polarizable electrode layer is 1/3 of the average particle size of the normal conductive agent in addition to the normal conductive agent. By adding the following fine carbon powder conductive agent, the micro-packing property of the powder in the polarizable electrode layer was improved, and the internal resistance of the electric double layer capacitor was significantly reduced. The low internal resistance of electric double-layer capacitors means that they generate less heat during charging and discharging and have a small energy loss during charging and discharging. Electric vehicles that are currently under development and are expected as a means of transportation in the future It is suitable for power applications such as braking energy regeneration, and the industrial use effect of the present invention is great.

【図面の簡単な説明】 【図1】 本発明による捲回型電気二重層コンデンサの
一例の概要を示す斜視図。 【図2】 本発明による積層型電気二重層コンデンサの
一例の概要を示す斜視図。 【符号の説明】 1、2 分極性電極 3 集電体 4 素子 6 セパレータ 7 アルミニウム容器 8、9 タブ付きリード線 10 封口ゴム 20、21 集電端子 26 負極 27 正極 30、31 集電体リード 32 アルミニウム容器 33 正極端子 34 負極端子 35 上蓋
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an outline of an example of a wound electric double layer capacitor according to the present invention. FIG. 2 is a perspective view showing an outline of an example of a multilayer electric double layer capacitor according to the present invention. [Explanation of Signs] 1 and 2 polarized electrodes 3 Current collector 4 Element 6 Separator 7 Aluminum container 8, 9 Tabbed lead wire 10 Sealing rubber 20, 21 Current collecting terminal 26 Negative electrode 27 Positive electrode 30, 31 Current collector lead 32 Aluminum container 33 Positive electrode terminal 34 Negative electrode terminal 35 Top cover

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−307250(JP,A) 特開 平6−204085(JP,A) 特開 平8−293443(JP,A) 特開 昭63−58814(JP,A) 特開 平10−4037(JP,A) 特開 平5−304048(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/058 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-307250 (JP, A) JP-A-6-204085 (JP, A) JP-A 8-293443 (JP, A) JP-A-63-1988 58814 (JP, A) JP-A-10-4037 (JP, A) JP-A-5-304048 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 9/058

Claims (1)

(57)【特許請求の範囲】 【請求項1】 活性炭粉末、導電剤粉末およびバインダ
ーを含む分極性電極層が金属箔の集電体上に塗工して形
成された一対のシート状分極性電極が各シート状分極性
電極間にセパレータを挟んだ状態で捲回されてなる素
子、または活性炭粉末、導電材粉末およびバインダーを
含む分極性電極層が金属箔の集電体上に塗工して形成さ
れた多数のシート状分極性電極が各シート状分極性電極
間にセパレータを挟んだ状態で積層されてなる素子が、
非水系電解液とともに容器中に封入されている電気二重
層コンデンサにおいて前記 導電剤粉末が細かい導電剤粉末と、平均粒径が前記
細かい導電剤粉末の平均粒径の1/3以下の0.01〜
0.1μmである微細なカーボン粉末からなるととも
に、前記細かい導電剤粉末がカーボンブラックであり、
前記バインダーがポリビニリデンフルオライドであり、
前記金属箔の集電体がエッチング処理されたアルミニウ
ム箔であり、前記非水系電解液がプロピレンカーボネイ
トにテトラエチルアンモニウムテトラフルオロボレイト
を溶解した電解液であることを特徴とする電気二重層コ
ンデンサ。
(57) [Claims 1 Activated carbon powder, a conductive agent powder and a pair of sheet-like polarizable electrode layer is formed by coating on a current collector metal foil containing a binder element polarizable electrode is made of the wound in a state sandwiching the separator between each sheet polarizable electrode, or the current collector of the polarizable electrode layer is a metal foil containing activated carbon powder, a conductive material powder and a binder An element in which a large number of sheet-shaped polarizable electrodes formed by coating on are stacked in a state where a separator is sandwiched between each sheet-shaped polarizable electrode,
Electric double sealed in container with non-aqueous electrolyte
In layer capacitor, a conductive agent powder the conductive agent powder is fine, average particle size the
0.01 to 1/3 or less of the average particle diameter of the fine conductive agent powder
Fine carbon powder is 0.1μm and Tona Rutotomo
The fine conductive agent powder is carbon black,
The binder is polyvinylidene fluoride,
The aluminum foil in which the current collector of the metal foil is etched.
Foil, wherein the non-aqueous electrolyte is propylene carbonate.
To tetraethylammonium tetrafluoroborate
An electric double layer capacitor characterized by being an electrolytic solution in which is dissolved .
JP32232796A 1996-11-18 1996-11-18 Electric double layer capacitor Expired - Fee Related JP3460776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32232796A JP3460776B2 (en) 1996-11-18 1996-11-18 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32232796A JP3460776B2 (en) 1996-11-18 1996-11-18 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH10149956A JPH10149956A (en) 1998-06-02
JP3460776B2 true JP3460776B2 (en) 2003-10-27

Family

ID=18142408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32232796A Expired - Fee Related JP3460776B2 (en) 1996-11-18 1996-11-18 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3460776B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1762200A (en) * 1998-12-05 2000-06-26 Energy Storage Systems Pty Ltd A charge storage device
JP5209171B2 (en) * 2004-03-11 2013-06-12 株式会社Kri Capacitor and manufacturing method thereof
WO2006098525A1 (en) * 2005-03-18 2006-09-21 Japan Gore-Tex Inc. Electrode for electric double layer capacitor and electric double layer capacitor
JP2006295153A (en) * 2005-03-18 2006-10-26 Japan Gore Tex Inc Electrode for electric double layer capacitor and electric double layer capacitor
JP4983743B2 (en) * 2007-08-10 2012-07-25 ミツミ電機株式会社 Manufacturing method of polarizable electrode and manufacturing method of electric double layer capacitor
KR100951100B1 (en) * 2008-11-28 2010-04-07 스톨베르그 앤드 삼일 주식회사 Method of manufacturing granular mold flux using liquid free carbon, and apparatus for manufacturing and supplying liquid free carbon

Also Published As

Publication number Publication date
JPH10149956A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
US6282081B1 (en) Electrode for capacitor, method for producing the same and capacitor
US6946007B2 (en) Electrochemical double layer capacitor having carbon powder electrodes
EP2034542B1 (en) Composite positive electrode material for lithium ion battery and battery using the same
CN107431241B (en) Composite electrolyte for secondary battery, and battery pack
CN1127165C (en) Lithium ion battery
JP5163439B2 (en) FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
JP4041044B2 (en) Method for manufacturing electrochemical device
JPH097896A (en) Electric double-layer capacitor
KR20100129307A (en) Ionic liquid-containing electrode membrane and electrode, process for producing the electrode membrane and the electrode, and electric storage device
JP5880555B2 (en) Power storage device separator, power storage device element, power storage device, and method for manufacturing the same
JP3460776B2 (en) Electric double layer capacitor
KR101635763B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP3526223B2 (en) Lithium secondary battery
US10981794B1 (en) Stable aqueous dispersion of carbon
JP3721642B2 (en) Manufacturing method of large-capacity electric double layer capacitor
JPH1097956A (en) Electric double-layer capacitor
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JPH06243856A (en) Electricity accumulating element
JP3364460B2 (en) Electrochemical capacitor
KR101493976B1 (en) Manufacturing method of Asymmetrical Super Capacitor with Cylindrical Type
JP3680883B2 (en) Electric double layer capacitor and manufacturing method thereof
JP3692735B2 (en) Current collector for electric double layer capacitor and electric double layer capacitor
JPH07307250A (en) Electric double-layer capacitor
KR101409178B1 (en) Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite
JP2002260971A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030716

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees