JP3456959B2 - Dust collector - Google Patents
Dust collectorInfo
- Publication number
- JP3456959B2 JP3456959B2 JP2000258685A JP2000258685A JP3456959B2 JP 3456959 B2 JP3456959 B2 JP 3456959B2 JP 2000258685 A JP2000258685 A JP 2000258685A JP 2000258685 A JP2000258685 A JP 2000258685A JP 3456959 B2 JP3456959 B2 JP 3456959B2
- Authority
- JP
- Japan
- Prior art keywords
- dust
- charge
- charged
- ions
- dust collecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrostatic Separation (AREA)
- Elimination Of Static Electricity (AREA)
- Ventilation (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空調および産業分
野で大気塵、室内の粉塵、ほこりなどを集塵し、また、
電気集塵であるにも関わらず集塵装置の吹出し口から電
荷を帯びた粉塵が中和し、コロナ放電を用いることな
く、また、オゾンの発生なしに、壁などへの帯電粉塵の
付着による汚れを防止する集塵装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention collects atmospheric dust, indoor dust, dust, etc. in the air conditioning and industrial fields, and
Despite being an electric dust collector, charged dust is neutralized from the outlet of the dust collector, and corona discharge is not used, and ozone is not generated. The present invention relates to a dust collector that prevents dirt.
【0002】[0002]
【従来の技術】従来、この種の電気式の集塵装置とし
て、例えば特開平6−31200号公報に記載されたも
のが知られている。2. Description of the Related Art Conventionally, an electric dust collector of this type is known, for example, one disclosed in Japanese Patent Laid-Open No. 6-31200.
【0003】以下、その集塵装置について図7を参照し
ながら説明する。The dust collecting device will be described below with reference to FIG.
【0004】図に示すように、荷電部101は放電線か
らなる放電電極A102とアース電極板A103からな
り、その荷電部101の下流側に電圧印加電極板105
とアース電極板B106からなる集塵部104を設けて
いる。通常、荷電部101においては、放電電極A10
2とアース接続されたアース電極板A103との間には
5〜15kV、また、集塵部106の電圧印加電極板1
05とアース接続されたアース電極板B106との間に
は2〜6kVの電位差が生じるように放電電極A102
と電圧印加電極板105に直流電圧が高圧安定化電源1
07によって印加されている。そして送風ファン108
によって集塵装置に粉塵を含む空気が取り込まれる。As shown in the figure, the charging unit 101 comprises a discharge electrode A102 consisting of a discharge line and a ground electrode plate A103, and a voltage application electrode plate 105 is provided on the downstream side of the charging unit 101.
A dust collecting portion 104 including a ground electrode plate B106 is provided. Usually, in the charging unit 101, the discharge electrode A10
5 to 15 kV between the ground electrode plate A 103 and the ground electrode plate A 103 connected to the ground, and the voltage applying electrode plate 1 of the dust collecting unit 106.
05 and a ground electrode plate B106 connected to the ground so that a potential difference of 2 to 6 kV is generated.
And a DC voltage is applied to the voltage applying electrode plate 105 to stabilize the high voltage power supply 1
07 is applied. And the blower fan 108
As a result, air containing dust is taken into the dust collector.
【0005】上記構成において、粉塵を含んだ空気を集
塵装置に取り入れると、荷電部101では、放電電極A
102とアース電極板A103の間でコロナ放電が生
じ、コロナ放電によってイオン化された空気イオンの付
着によって、そこを通過した空気の粉塵は帯電される。
集塵部の電圧印加電極板105とアース電極板B106
にも、コロナ放電は生じていないが、電界が生じてお
り、その電界の力を受けて、帯電した粉塵は電圧印加電
極板105もしくはアース電極板B106に付着するこ
とにより除去され、導入された空気は清浄な状態となっ
て吹出される。In the above structure, when air containing dust is introduced into the dust collector, the charging electrode 101 causes the discharge electrode A
Corona discharge occurs between 102 and the ground electrode plate A103, and air ions ionized by the corona discharge adhere to the dust of air passing therethrough to be charged.
Voltage application electrode plate 105 and earth electrode plate B106 in the dust collecting section
In addition, although no corona discharge is generated, an electric field is generated, and the charged dust is removed by being attached to the voltage application electrode plate 105 or the ground electrode plate B106 by the force of the electric field. The air is blown out in a clean state.
【0006】また、上記従来例では、放電電極として線
状のものを示したが、線状のかわりに針状の電極を用い
ても同様であり、針状の電極の先端とアース電極板A1
03の間で、コロナ放電が生じ、同様の機構で粉塵が捕
集される。Further, in the above-mentioned conventional example, a linear electrode is shown as the discharge electrode, but the same applies even if a needle-shaped electrode is used instead of the linear electrode, and the tip of the needle-shaped electrode and the ground electrode plate A1.
During 03, corona discharge occurs and dust is collected by the same mechanism.
【0007】このような従来の集塵装置では、荷電部で
荷電された粉塵は、全て集塵部で捕集されるわけではな
く、たとえば、80%の除去率であれば、残り20%の
未捕集の帯電した粉塵は室内に放出される。この帯電さ
れた粉塵は室内の壁やその他に付着しやすいという性質
を有している。特にテレビなどのような家電機器は帯電
しており、付着しやすい。また、壁は通常帯電していな
いと考えられるが、送風などにより、壁面に空気が流れ
るとその摩擦により静電気が発生し、壁面も帯電し、や
はり壁面も帯電した粉塵が付着しやすい状態になる。In such a conventional dust collecting apparatus, all the dust charged in the charging section is not collected in the dust collecting section. For example, if the removal rate is 80%, the remaining 20% remains. Uncollected charged dust is released indoors. The charged dust has a property of easily adhering to the wall inside the room and the like. In particular, household electric appliances such as TVs are charged and easily stick to them. Also, it is considered that the wall is not normally charged, but when air flows to the wall surface due to air blow, static electricity is generated due to the friction, and the wall surface is also charged, and the wall surface is also in a state where charged dust is likely to adhere. .
【0008】また、100%に近い集塵効率であって
も、一度集塵部に捕集された粉塵が何らかの原因で集塵
部から離れるという再飛散があり、この再飛散した粉塵
も帯電している。また、帯電粉塵が少なくても、イオン
のみ(空気イオンなど)は放出されており、そのイオン
が周囲の粉塵と付着して、帯電した粉塵になる。したが
って、電気式の集塵装置は、たとえ集塵効率が高くて
も、再飛散した粉塵やイオンと結合した粉塵が吹出し側
の壁などに付着するため、汚れの原因となっていた。Further, even if the dust collection efficiency is close to 100%, the dust once collected in the dust collection section may be separated from the dust collection section for some reason, and re-scattered, and the re-scattered dust is also charged. ing. Even if the amount of charged dust is small, only ions (such as air ions) are emitted, and the ions adhere to the surrounding dust to become charged dust. Therefore, even if the electric dust collector has a high dust collecting efficiency, dust that has re-scattered or dust combined with ions adheres to the blow-out side wall or the like, causing dirt.
【0009】従来、このような帯電された粉塵による汚
れを防止する方法として、帯電粉塵の電荷を逆の極性の
電荷によって電気的に相殺するという方法があり、その
ことを帯電粉塵の中和と定義する。帯電粉塵を中和して
汚れを防止する方法として、正極性および負極性集塵
機を並列に並べて、集塵機から吹出されたそれぞれの極
性の帯電粉塵を混合させてお互いを電気的に中和する方
法(特開昭53−64878号公報)、集塵部後方に
おいて、一段おきに逆極性の放電部を設け、前段の荷電
部で帯電した粉塵と逆極性の粉塵を等量生成して混合す
ることにより粉塵を粗粒子化する方法(特開昭55−1
57348号公報)、荷電部において並列に並んだ放
電電極に交互に異なる極性の電圧を印加し、集塵しきれ
ずに集塵部から出てくるそれぞれの極性の帯電粉塵が混
合してお互いを中和する方法、集塵部の電圧印加電極
板をむき出しにして非絶縁にした状態で、荷電部放電線
と逆極性の電圧を集塵部印加電極板に印加することによ
り、荷電部とは逆の極性のコロナ放電を集塵部で起こし
て帯電粉塵を中和する方法(とも特開平8−898
42号公報)などにより、対策が検討されてきた。Conventionally, as a method of preventing such dirt due to charged dust, there is a method of electrically canceling the charge of the charged dust with a charge of opposite polarity, which is called neutralization of the charged dust. Define. As a method of neutralizing charged dust and preventing dirt, a method of arranging positive and negative polarity dust collectors in parallel and mixing electrically charged dust of each polarity blown out from the dust collector to electrically neutralize each other ( Japanese Patent Laid-Open No. 53-64878), a discharge unit having an opposite polarity is provided every other stage behind the dust collecting unit, and the dust charged by the charging unit in the preceding stage and the dust having the opposite polarity are generated and mixed. Method of coarsening dust (Japanese Patent Laid-Open No. 55-1
No. 57348), voltages of different polarities are alternately applied to the discharge electrodes arranged in parallel in the charging part, and the charged dust of each polarity which comes out of the dust collecting part without being able to collect the dust is mixed with each other. The voltage applying electrode plate of the dust collecting part is exposed and not insulated, and the voltage opposite to that of the charging part discharge line is applied to the dust collecting part applying electrode plate to reverse the charging part. Method of neutralizing charged dust by causing corona discharge having the above-mentioned polarity in the dust collecting portion (see JP-A-8-898).
Measures have been studied by the Japanese Patent No. 42).
【0010】[0010]
【発明が解決しようとする課題】このような従来の方法
では、においては並列に集塵機を並べるような大きな
システムでは用いることができるが、集塵機が一つしか
ない場合は導入が難しく、においては正負それぞれ
の極性に帯電された帯電粉塵が完全に混合しないと、中
和しないでそのまま壁面を汚す可能性があり、またコロ
ナ放電を起こしているために放電電流が大きくオゾンも
発生し、においては集塵部で十分なコロナ放電が起き
る構造とはいえず、また集塵部の印加電極板を非絶縁の
状態で用いるために、アース電極板と接触しない構造に
する必要があり製造が困難かつ構造がコンパクトになら
ない。また、からに共通したイオンを放出する方法
として、コロナ放電を利用しているために、放電電流が
大きく、人体に有害なオゾンを発生するといった課題が
挙げられる。そしてどんなタイプの集塵機にも用いるこ
とができ、また極性の異なる粉塵どうしの混合に頼ら
ず、また放電電流が小さくオゾンをほとんど発生させな
いで帯電粉塵を中和することができる集塵装置が要求さ
れている。In such a conventional method, it can be used in a large system in which the dust collectors are arranged in parallel, but it is difficult to introduce it when there is only one dust collector. If the charged dust charged in each polarity is not mixed completely, the wall surface may be polluted as it is without being neutralized.Since corona discharge is occurring, the discharge current is large and ozone is generated. It cannot be said that the structure is such that sufficient corona discharge occurs in the dust part, and since the application electrode plate of the dust collection part is used in a non-insulated state, it is necessary to make a structure that does not contact the ground electrode plate, making it difficult to manufacture. Does not become compact. Further, as a method of releasing ions common to the space, since corona discharge is used, there is a problem that the discharge current is large and ozone harmful to the human body is generated. What is needed is a dust collector that can be used in any type of dust collector, does not rely on mixing dust particles of different polarities, and has a small discharge current that can neutralize charged dust particles with little ozone generation. ing.
【0011】また、電荷中和手段を設けた集塵装置にお
いて、集塵部から吹出される帯電粉塵の帯電量が一定で
なく変化する場合、変化した帯電量に合わせて電荷中和
手段から最適量のイオンを出す必要があるという課題が
あり、帯電粉塵の帯電量に合わせて逆極性かつ最適な量
のイオンを発生することができる電荷中和手段が要求さ
れている。Further, in the dust collector provided with the charge neutralizing means, when the charge amount of the charged dust blown out from the dust collecting part is not constant and changes, the charge neutralizing means is most suitable in accordance with the changed charge amount. There is a problem that it is necessary to generate a large amount of ions, and there is a demand for a charge neutralizing means capable of generating an optimal amount of ions of the opposite polarity in accordance with the charge amount of charged dust.
【0012】また、電荷中和手段を設けた集塵装置にお
いて、帯電粉塵が電荷中和手段を通過した後、実際に帯
電粉塵が中和されているかを確認して、電荷中和手段が
効果的にはたらいているかどうかを監視する必要がある
という課題があり、電荷中和手段から吹出された粉塵の
極性および帯電量を検知して帯電粉塵の中和を確認でき
ることが要求されている。Further, in the dust collector provided with the charge neutralizing means, after the charged dust has passed through the charge neutralizing means, it is confirmed whether or not the charged dust is actually neutralized, and the charge neutralizing means is effective. There is a problem that it is necessary to monitor whether or not it is working properly, and it is required to be able to confirm the neutralization of the charged dust by detecting the polarity and charge amount of the dust blown from the charge neutralization means.
【0013】また、電荷中和手段を設けた集塵装置にお
いて、帯電粉塵が電荷中和手段を通過した後、実際に帯
電粉塵が中和されているかを確認し、もしも中和できて
いない場合は、電荷中和手段の電圧設定などをリアルタ
イムで最適に制御して常に帯電粉塵の中和を行う必要が
あるという課題があり、帯電粉塵を常に中和した状態に
保つことができるように電荷中和手段を制御することが
要求されている。Further, in the dust collector provided with the charge neutralizing means, after the charged dust has passed through the charge neutralizing means, it is confirmed whether or not the charged dust is actually neutralized. Has a problem that it is necessary to always neutralize the charged dust by optimally controlling the voltage setting of the charge neutralization means in real time. In order to keep the charged dust in the neutralized state at all times, It is required to control the neutralization means.
【0014】また、道路のトンネルや工場の煤塵処理な
どに用いられている電気式の集塵装置は、粉塵の電気抵
抗が低い場合に集塵部に堆積した処理粉塵によって電極
どうしが短絡を起こし、スパークとなって電極板に衝撃
を与え、電極板上に堆積した粉塵が帯電した状態で再飛
散を起こすという問題があり、スパークによる大量の再
飛散が起こる場合にも集塵装置後方の壁面を汚さないこ
とが要求されている。Further, in an electric dust collector used for treating dust in road tunnels and factories, when the electric resistance of dust is low, the treated dust accumulated in the dust collecting portion causes a short circuit between electrodes. However, there is a problem that it becomes a spark and impacts the electrode plate, and dust accumulated on the electrode plate is re-dispersed in a charged state, and even when a large amount of re-dispersion occurs due to sparks, the wall surface behind the dust collector It is required not to pollute.
【0015】本発明はこのような従来の課題を解決する
ものであり、どんなタイプの集塵機にも用いることがで
き、極性の異なる粉塵どうしの混合に頼らず、また放電
電流が小さく人体に有害なオゾンをほとんど発生させな
いで帯電粉塵を中和できる集塵装置を提供することを目
的としている。The present invention solves such a conventional problem and can be used for any type of dust collector, does not rely on mixing dusts having different polarities, and has a small discharge current, which is harmful to the human body. An object of the present invention is to provide a dust collector that can neutralize charged dust with almost no generation of ozone.
【0016】また、集塵部から吹出された帯電粉塵の帯
電量に合わせて逆極性かつ最適な量のイオンを発生して
帯電粉塵を中和できる集塵装置を提供することを目的と
している。It is another object of the present invention to provide a dust collecting apparatus capable of neutralizing the charged dust by generating an optimal amount of ions having a reverse polarity according to the charge amount of the charged dust blown out from the dust collecting portion.
【0017】また、電荷中和手段から吹出される粉塵の
極性および帯電量を検知できる集塵装置を提供すること
を目的としている。It is another object of the present invention to provide a dust collector which can detect the polarity and the amount of charge of dust blown out from the charge neutralizing means.
【0018】また、集塵部から吹出された帯電粉塵を常
に中和した状態を保つことができる電荷中和手段の制御
方法を備えた集塵装置を提供することを目的としてい
る。Another object of the present invention is to provide a dust collecting apparatus provided with a method of controlling the charge neutralizing means capable of always keeping the neutralized state of the charged dust blown from the dust collecting section.
【0019】[0019]
【課題を解決するための手段】本発明の集塵装置は、上
記目的を達成するために、請求項1に記載のとおり、粉
塵を帯電させる荷電部と、その下流側に設けられて粉塵
を除去する集塵部からなり、集塵部から吹出される帯電
粉塵の電荷と逆極性のイオンを放出する電荷中和手段を
集塵部下流側に設けたことを特徴とする。In order to achieve the above object, the dust collecting apparatus of the present invention has a charging unit for charging dust and a dust collecting unit provided downstream of the charging unit for charging the dust. It is characterized in that it comprises a dust collecting section to be removed, and a charge neutralizing means for releasing ions having a polarity opposite to the charge of the charged dust blown from the dust collecting section is provided on the downstream side of the dust collecting section.
【0020】そして本発明によれば、どんなタイプの集
塵機にも用いることができ、極性の異なる粉塵どうしの
混合に頼らず、また放電電流が小さくオゾンをほとんど
発生させないで帯電粉塵を中和できる集塵装置が得られ
る。According to the present invention, the dust collector can be used in any type of dust collector and can neutralize the charged dust without relying on the mixing of dust particles having different polarities and with a small discharge current and hardly generating ozone. A dust device is obtained.
【0021】また、請求項2記載の集塵装置は、請求項
1記載の集塵装置において、電荷中和手段を放電電極と
アース電極からなる構成とし、放電電極とアース電極の
間に、コロナ放電を生じさせないよう絶縁体もしくは半
導電体を設けたことを特徴とする。According to a second aspect of the present invention, in the dust collector of the first aspect, the charge neutralizing means comprises a discharge electrode and a ground electrode, and a corona is provided between the discharge electrode and the ground electrode. It is characterized in that an insulator or a semi-conductor is provided so as not to generate discharge.
【0022】そして本発明によれば、電極間の距離を狭
めた電荷中和手段においてコロナ放電の抑制が確実に行
われ、放電電流が小さくオゾンをほとんど発生させない
で帯電粉塵を中和できる集塵装置が得られる。According to the present invention, the corona discharge is surely suppressed in the charge neutralizing means having the reduced distance between the electrodes, the discharge current is small, and the charged dust can be neutralized with almost no generation of ozone. The device is obtained.
【0023】また、請求項3記載の集塵装置は、請求項
1または2記載の集塵装置において、電荷中和手段を先
端が鋭利に尖った尖電極として、集塵部から吹出される
帯電粉塵の電荷量と等量かつ逆極性のイオンを放出する
手段としたことを特徴とする。The dust collector according to a third aspect of the present invention is the dust collector according to the first or second aspect, in which the charge neutralizing means is a pointed electrode having a sharp tip, and the charge is blown from the dust collector. It is characterized in that it is a means for releasing ions of the same amount as the charge amount of dust and having the opposite polarity.
【0024】そして本発明によれば、集塵部から吹出さ
れる帯電物質の電荷量に合わせて逆極性かつ最適な量の
イオンを発生することができる集塵装置が得られる。According to the present invention, it is possible to obtain a dust collecting apparatus capable of generating an optimal amount of ions of opposite polarity in accordance with the charge amount of the charged substance blown out from the dust collecting portion.
【0025】また、請求項4記載の集塵装置は、請求項
1乃至3のいずれかに記載の集塵装置において、電荷中
和手段を通過した粉塵の極性と帯電量を確認する検知手
段を有したことを特徴とする。The dust collector according to a fourth aspect is the dust collector according to any one of the first to third aspects, further comprising a detection means for confirming the polarity and charge amount of the dust that has passed through the charge neutralization means. It is characterized by having.
【0026】そして本発明によれば、電荷中和手段を通
過した粉塵の極性および帯電量を検知して帯電粉塵の中
和を確認できる集塵装置が得られる。According to the present invention, it is possible to obtain a dust collecting apparatus capable of confirming the neutralization of charged dust by detecting the polarity and charge amount of the dust that has passed through the charge neutralizing means.
【0027】また、請求項5記載の集塵装置は、請求項
4記載の集塵装置において、検知手段を壁面または帯電
プレートの表面電位を測定する手段としたことを特徴と
する。The dust collector according to a fifth aspect is the dust collector according to the fourth aspect, characterized in that the detecting means is a means for measuring the surface potential of the wall surface or the charging plate.
【0028】そして本発明によれば、壁面の帯電状態を
把握すると同時に、壁面から得られる情報から、実際に
帯電粉塵が中和されているかどうかを確認できる集塵装
置が得られる。According to the present invention, it is possible to obtain a dust collecting apparatus which can grasp the charged state of the wall surface and at the same time confirm from the information obtained from the wall surface whether or not the charged dust is actually neutralized.
【0029】また、請求項6記載の集塵装置は、請求項
1乃至5いずれかに記載の集塵装置において、電荷中和
手段から吹出される粉塵の極性と帯電量を確認する検知
手段を有し、電荷中和手段から吹出された粉塵が常に電
荷を持たないように電荷中和手段を制御することを特徴
とする。Further, a dust collector according to a sixth aspect is the dust collector according to any one of the first to fifth aspects, further comprising detection means for confirming the polarity and charge amount of the dust blown from the charge neutralization means. The charge neutralizing means is controlled so that the dust blown from the charge neutralizing means does not always have an electric charge.
【0030】そして本発明によれば、集塵部から吹出さ
れた帯電粉塵を常に中和した状態に保つことができるよ
うに電荷中和手段を制御した集塵装置が得られる。Further, according to the present invention, there can be obtained the dust collecting apparatus in which the charge neutralizing means is controlled so that the charged dust blown out from the dust collecting portion can be always kept in a neutralized state.
【0031】また、請求項7記載の集塵装置は、請求項
1乃至6記載の集塵装置において、集塵部の後方かつ電
荷中和手段手前に接地された導電性フィルタを設けたこ
とを特徴とする。The dust collector according to claim 7 is the dust collector according to any one of claims 1 to 6, wherein a grounded conductive filter is provided behind the dust collector and before the charge neutralizing means. Characterize.
【0032】そして本発明によれば、短絡が引き起こす
スパークによる大きな再飛散粒子を導電性フィルタで大
まかに除去し、除去しきれない小さな帯電粉塵を電荷中
和手段で中和することができる集塵装置が得られる。According to the present invention, large re-scattered particles due to sparks caused by a short circuit can be roughly removed by a conductive filter, and small charged dust that cannot be completely removed can be neutralized by a charge neutralizing means. The device is obtained.
【0033】[0033]
【発明の実施の形態】本発明は、粉塵を帯電させる荷電
部と、その下流側に設けられて粉塵を除去する集塵部か
らなり、集塵部から吹出される帯電粉塵の電荷と逆極性
のイオンを放出する電荷中和手段を集塵部下流側に設け
たことを特徴としたものである。荷電部としては、導電
性の線もしくは針と板で構成され、両者に高い電位差を
与えることにより、線や針の周りに高い電界を作って空
気の絶縁破壊を起こさせ、空気をイオン化して粉塵を帯
電させるものが例としてあげられる。また集塵部として
は、2つの電極板の間に電位差を与えて電界をつくり、
その電界の力で主に帯電した粉塵を捕集する集塵ユニッ
トや、ガラス繊維などを濾材にして機械的に粉塵を捕集
する濾過フィルタ、あらかじめ分極された誘電体を濾材
にして内部に電界ができるようにつくられ、機械的もし
くはその電界の力で粉塵を捕集する静電フィルタなどが
例としてあげられる。本発明の集塵装置では、前記荷電
部で帯電され、これら集塵部で捕集しきれなかった帯電
粉塵や、荷電部や集塵部の電界で発生したイオン、もし
くは集塵部から再飛散した帯電粉塵などといった電荷を
もつ物質と逆の極性の空気イオンのみを放出する電荷中
和手段で中和する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention comprises a charging section for charging dust and a dust collecting section provided downstream of the charging section for removing dust, and having a polarity opposite to that of the charged dust discharged from the dust collecting section. It is characterized in that a charge neutralizing means for releasing the ions is provided on the downstream side of the dust collecting portion. The charging part is composed of conductive wires or needles and plates.By giving a high potential difference to both, a high electric field is created around the wires and needles to cause dielectric breakdown of air and ionize the air. An example is one that charges dust. Also, as the dust collecting part, a potential difference is applied between the two electrode plates to create an electric field,
A dust collection unit that mainly collects charged dust by the force of the electric field, a filtration filter that mechanically collects dust by using glass fiber etc. as a filter material, a pre-polarized dielectric material as a filter material, and an electric field inside As an example, an electrostatic filter or the like that is made so that it can be collected and that collects dust by the force of a mechanical or electric field thereof can be given. In the dust collector of the present invention, charged dust that is charged by the charging unit and cannot be collected by these dust collecting units, ions generated by the electric field of the charging unit or the dust collecting unit, or re-scattering from the dust collecting unit It is neutralized by a charge neutralizing means that releases only air ions having a polarity opposite to that of a charged substance such as charged dust.
【0034】今までの常識では、空気イオンを放出して
帯電粉塵などを電気的に中和する手段として、コロナ放
電を用いることが有効な手段とされてきた。コロナ放電
をさせるためには、放電線や針状の電極に対向するアー
ス電極を設け、この間に高電圧を印加する。そうする
と、ある電圧までは、電流はほとんど流れない。このと
きは、空気イオンもほとんど発生しない。しかし、コロ
ナ放電が発生する電圧まで上げると、放電電極の付近が
高電界となって気体(空気)が局部的な絶縁破壊を起こ
しイオンとなると同時に放電による電流値が急激に上昇
する。これがコロナ放電である。この放電電流が大きい
というのが特徴であるコロナ放電の領域を利用すること
で、空気をイオン化して帯電粉塵を中和させることがで
きるが、放電電流が大きくオゾンが多く発生するという
問題があった。Conventional wisdom has been that it is effective to use corona discharge as a means for electrically neutralizing charged dust by releasing air ions. In order to generate corona discharge, a ground electrode facing the discharge wire or the needle-shaped electrode is provided, and a high voltage is applied between them. Then, almost no current flows up to a certain voltage. At this time, almost no air ions are generated. However, when the voltage is raised to a voltage at which corona discharge occurs, a high electric field is generated in the vicinity of the discharge electrode, and gas (air) causes local dielectric breakdown to become ions, and at the same time, the current value due to discharge rapidly increases. This is corona discharge. By utilizing the region of corona discharge, which is characterized by a large discharge current, it is possible to ionize air and neutralize charged dust, but there is a problem that the discharge current is large and a lot of ozone is generated. It was
【0035】本発明者らは、空気イオンのみを放出し、
コロナ放電をさせずに帯電した粉塵を電気的に中和させ
る方法を見出した。線状や針状の放電電極と対向するア
ース電極との間に大きな絶縁抵抗が存在する状態で放電
電極に電圧を印加すると、6〜10kVの電圧を印加し
ても空気の絶縁破壊による大きな放電電流は起こらずコ
ロナ放電とならない(ほとんど電流がながれない:グロ
ー放電の状態)が放電電極近傍の大きな電界の作用によ
って空気イオンのみを発生させることができる。このコ
ロナ放電が発生していない状態とは、具体的な目安とし
て1つの針状電極当たり、放電電流が1μA以下(一般
的な計器で測定できるレベル)、線状電極であれば、
0.1m当たり1μA以下の値である。また、この状態
をつくるためには、空気絶縁および十分な距離がとれな
い場合は、絶縁もしくは半導体材料でアースにあたる部
分を被覆する必要がある。空気絶縁の場合の絶縁距離と
しては、線状の場合は、線径、表面の平滑度、針状の場
合は、尖がりの程度によって一概に言えないが、少なく
とも1cm/kV以上、好ましくは、2cm/kV以上
の絶縁距離を設けることが必要である。絶縁もしくは半
導電性材料としては、絶縁距離によって違うが、放電電
流が1μA以下になる絶縁抵抗となるものを用いれば良
い。このような空気イオンのみを放出する放電を電荷中
和手段に用いて、集塵部から吹出された帯電粉塵と逆の
極性のイオンを放出して、帯電粉塵を中和することがで
きる。そして、電気を用いずにマイナスイオンを放出す
る手段として、レナード効果がある。滝の付近には多量
のマイナスイオンが存在することは知られている。水を
衝突させて、機械的に微細な粒子に分裂させると、小さ
な液滴はマイナスイオンが過剰に、大きな液滴はプラス
イオンが過剰な状態となり、各々イオンを放出すること
ができる。特に水分子を0.5μm以下の微細な粒子に
すると大量のマイナスイオンを放出することができる。
したがって、たとえば、集塵部から吹出されるイオンが
プラスの場合は、このレナード効果によって0.5μm
の微細な水粒子を発生することで、多量のマイナスイオ
ンを発生させ、集塵部から吹出されたプラスの帯電粉塵
を電気的に中和することができる。同様に集塵部からマ
イナスの帯電粉塵が吹出された場合は、0.5μm以
上、好ましくは1μm以上の水滴にして発生するプラス
イオンで中和することができる。We have only released air ions,
We have found a method to electrically neutralize charged dust without corona discharge. If a voltage is applied to the discharge electrode in the state where a large insulation resistance exists between the linear or needle-shaped discharge electrode and the opposing earth electrode, even if a voltage of 6 to 10 kV is applied, a large discharge due to dielectric breakdown of air occurs. Although current does not occur and corona discharge does not occur (current hardly flows: state of glow discharge), only air ions can be generated by the action of a large electric field near the discharge electrode. The state where no corona discharge is occurring means that, as a specific guideline, if the discharge current is 1 μA or less per one needle electrode (a level that can be measured by a general instrument), and if it is a linear electrode,
The value is 1 μA or less per 0.1 m. Further, in order to create this state, it is necessary to cover the portion that is grounded with an insulating or semiconductor material if air insulation and a sufficient distance cannot be maintained. As the insulation distance in the case of air insulation, in the case of a linear shape, the diameter of the wire, the surface smoothness, and in the case of a needle shape, it cannot be said unequivocally depending on the degree of sharpness, but at least 1 cm / kV or more, preferably, It is necessary to provide an insulation distance of 2 cm / kV or more. As the insulating or semi-conductive material, a material having an insulation resistance with a discharge current of 1 μA or less may be used, although it depends on the insulation distance. By using the discharge that discharges only such air ions as the charge neutralizing means, it is possible to neutralize the charged dust by discharging ions having the opposite polarity to the charged dust blown from the dust collecting portion. Then, there is a Leonard effect as a means for releasing negative ions without using electricity. It is known that many negative ions exist near the waterfall. When water is collided and mechanically divided into fine particles, negative ions are excessive in the small droplets and positive ions are excessive in the large droplets, and the respective ions can be emitted. In particular, if the water molecules are fine particles of 0.5 μm or less, a large amount of negative ions can be released.
Therefore, for example, when the ions blown out from the dust collecting portion are positive, this Leonard effect causes 0.5 μm.
By generating the fine water particles, a large amount of negative ions can be generated, and the positively charged dust blown from the dust collecting portion can be electrically neutralized. Similarly, when negatively charged dust is blown out from the dust collecting portion, it can be neutralized with positive ions generated as water droplets of 0.5 μm or more, preferably 1 μm or more.
【0036】以上のように、電荷中和手段はコロナ放電
を起こさずに空気イオンのみを生成、放出するため、コ
ロナ放電特有の、放電電流に比例して発生するオゾンは
ほとんど発生しない。オゾンは人体にとって有害であ
り、多量に摂取するとさまざまな障害が生じる。そして
帯電粉塵の電荷を、粉塵よりも軽くて電気移動度の高い
空気イオンによって直接中和する電荷中和手段を集塵部
下流側に設けているため、逆極性の帯電粉塵を新たに作
り出して混合させるよりも確実に中和して帯電粉塵によ
る壁面汚れを防止することができ、また、集塵部でコロ
ナ放電を起こして帯電粉塵を中和しなくてよいため、電
圧印加電極板をむき出しにして集塵部の設計の自由度を
無くしたり、集塵部の電圧印加電極板の電圧設定に条件
を設けたりする必要もなく、また、どんな集塵装置にも
適用することができ、また、コロナ放電を起こしていな
いために放電電流が小さく、また余分なオゾンを出さな
いという作用を有する。As described above, since the charge neutralizing means generates and releases only air ions without causing corona discharge, ozone, which is peculiar to corona discharge and is generated in proportion to the discharge current, is hardly generated. Ozone is harmful to the human body, and if it is ingested in large amounts, various disorders occur. And since a charge neutralizing means for directly neutralizing the electric charge of the charged dust by air ions, which are lighter than the dust and have high electric mobility, is provided on the downstream side of the dust collecting portion, a newly created charged dust of opposite polarity is created. Neutralization is more reliable than mixing, and wall surface contamination due to charged dust can be prevented.Because corona discharge does not have to be neutralized at the dust collecting part to neutralize charged dust, the voltage application electrode plate is exposed. There is no need to eliminate the design freedom of the dust collecting part or to set conditions for the voltage setting of the voltage application electrode plate of the dust collecting part, and it can be applied to any dust collecting device. Since the corona discharge does not occur, the discharge current is small, and the ozone is not emitted excessively.
【0037】また、電荷中和手段を放電電極とアース電
極とで構成し、放電電極とアース電極の間に、コロナ放
電を生じさせないよう絶縁体もしくは半導電体を設けた
ものである。ここでコロナ放電とは、一般的にコロナ放
電が発生する電圧まで上げると放電電極の付近が高電界
となって、気体(空気)の局部的な絶縁破壊を起こし急
激に電流値も上昇する現象である。この電流値が急激に
上昇しているコロナ放電の領域で使用することで、空気
が絶縁破壊を起こし空気イオンを発生するが、コロナ放
電には放電電流が大きいこととオゾンを発生するという
欠点がある。その欠点を克服するため、線状あるいは針
状の放電電極を用い、そして放電電極とアース電極との
間に、前述したように放電電流が1μA以下となるよう
に絶縁体もしくは半導電体を挟んで設けるか、もしくは
どちらかの電極を被覆する。放電電極には帯電粉塵と逆
の極性の電圧を印加し、放電電極近傍に大きな電界を形
成して空気をイオン化する。そして放電電極の極性がプ
ラスならば、空気イオンに電子が付着して作られたマイ
ナスイオンが放電電極に吸い寄せられて電荷を失い、空
気分子が電子を失って作られたプラスイオンは放電電極
と反発して周囲に拡散する。したがってプラスイオンが
電荷中和手段から放出される。放電電極の極性がマイナ
スならばその逆で、マイナスイオンが放出される。電荷
中和手段は帯電粉塵と逆の極性の電圧を印加されている
ため、電荷中和手段を通過した帯電粉塵は、電荷中和手
段で放出される逆の極性のイオンと結合し中和されるこ
とにより、帯電粉塵の付着による壁面汚れを防ぐことが
できる。そして電荷中和手段の放電電極とアース電極の
間に絶縁体もしくは半導電体を間に設置することによっ
てコロナ放電が抑制されて放電電流が小さくなっている
ため、電荷中和手段はオゾンをほとんど発生させずに空
気イオンのみを生成、放出する。そしてコロナ放電を起
こさないように両電極の間に絶縁体もしくは半導体を設
置して絶縁を確保しているので、両電極の間隔を狭める
ことができ、電荷中和手段をコンパクトな構成にするこ
とができるという作用を有する。The charge neutralizing means is composed of a discharge electrode and a ground electrode, and an insulator or a semi-conductor is provided between the discharge electrode and the ground electrode so as not to generate corona discharge. Here, corona discharge is a phenomenon in which when the voltage is raised to a level at which corona discharge occurs, a high electric field is generated near the discharge electrode, causing local dielectric breakdown of gas (air) and causing a rapid increase in current value. Is. When used in the area of corona discharge where the current value is rapidly increasing, air causes dielectric breakdown to generate air ions, but corona discharge has the disadvantages of high discharge current and ozone generation. is there. In order to overcome the drawback, a linear or needle-shaped discharge electrode is used, and an insulator or a semi-conductor is sandwiched between the discharge electrode and the ground electrode so that the discharge current is 1 μA or less as described above. Or cover either electrode. A voltage having a polarity opposite to that of the charged dust is applied to the discharge electrode, and a large electric field is formed near the discharge electrode to ionize the air. If the polarity of the discharge electrode is positive, negative ions created by attaching electrons to air ions are attracted to the discharge electrode and lose the charge, and positive ions created by air molecules losing electrons are Repels and spreads around. Therefore, positive ions are released from the charge neutralization means. If the polarity of the discharge electrode is negative, the opposite occurs and negative ions are emitted. Since the charge neutralizing means is applied with a voltage having a polarity opposite to that of the charged dust, the charged dust passing through the charge neutralizing means is combined with ions of the opposite polarity emitted by the charge neutralizing means and neutralized. By doing so, it is possible to prevent the wall surface from being contaminated due to the adhesion of the charged dust. By installing an insulator or a semi-conductor between the discharge electrode of the charge neutralization means and the ground electrode, the corona discharge is suppressed and the discharge current is reduced, so the charge neutralization means almost eliminates ozone. Generates and releases only air ions without generating them. Since an insulator or a semiconductor is installed between both electrodes to prevent corona discharge and insulation is secured, the gap between both electrodes can be narrowed, and the charge neutralization means should have a compact structure. It has the effect that
【0038】また、電荷中和手段を先端が鋭利に尖った
尖電極として、集塵部から吹出される帯電粉塵の電荷量
と等量かつ逆極性のイオンのみを放出することを特徴と
したものであり、電荷中和手段は尖状放電電極のみで構
成され、周囲にアース電極を設けない。尖状放電電極に
は帯電粉塵と逆の極性の電圧がかけられているが、帯電
粉塵が集塵部から漏れ出てこない場合は空気イオンを放
出しない。しかし帯電粉塵が漏れ出た時、尖状放電電極
近傍の雰囲気が帯電粉塵の電荷で満たされて尖状放電電
極とその周囲に大きな電位差が生じ、尖状放電電極近傍
に大きな電界が形成されて空気がイオン化し、帯電粉塵
と逆極性の空気イオンを放出して帯電粉塵を中和する。
その時、尖状放電電極は漏れ出てきた帯電粉塵と逆極性
かつ等量の空気イオンを放出する最適電圧に設定されて
いる。また放電電流は微々たるものであるため、人体に
有害なオゾンがほとんど発生しない。このとき、もしコ
ロナ放電をさせてしまうと、空気の絶縁を破壊してイオ
ンを放出させているため、周囲のイオン量に関係なく一
定量のイオンを放出することになる。しかし、本発明で
あるコロナ放電させずにイオンのみを放出させる手段
は、周りのイオン量(電荷量)と放電電極との電界差に
よってイオン量を放出するため、例えば中和イオンとし
てマイナスイオンを放出する場合、周囲のプラスイオン
が多い場合には多くのマイナスイオンを、少ない場合に
は少ないマイナスイオンを放出するという自制作用も有
する。そして、漏れ出てくる帯電粉塵と逆極性かつ等量
の空気イオンを電荷中和手段が放出して帯電粉塵を中和
するため、放電電極の細かい電圧制御を行わずして帯電
粉塵による壁面汚れを防ぐことができ、また余分な空気
イオンを放出して集塵装置吹出しの壁面を帯電させて汚
すことが無く、またオゾンをほとんど出さないという作
用を有する。Further, the charge neutralizing means is a pointed electrode having a sharp tip so that only ions having the same amount as the charge amount of the charged dust blown out from the dust collecting portion but the opposite polarity are emitted. Therefore, the charge neutralizing means is composed only of the pointed discharge electrodes, and no ground electrode is provided in the surroundings. A voltage having the opposite polarity to the charged dust is applied to the pointed discharge electrode, but if the charged dust does not leak from the dust collecting portion, it does not emit air ions. However, when the charged dust leaks out, the atmosphere near the pointed discharge electrode is filled with the charge of the charged dust, and a large potential difference is generated between the pointed discharge electrode and its surroundings, and a large electric field is formed near the pointed discharge electrode. The air is ionized and emits air ions having the opposite polarity to the charged dust to neutralize the charged dust.
At that time, the pointed discharge electrode is set to an optimum voltage that emits air ions of opposite polarity and the same amount as the leaked charged dust. Further, since the discharge current is very small, ozone which is harmful to the human body is hardly generated. At this time, if a corona discharge is caused, the insulation of the air is destroyed and the ions are emitted, so a certain amount of ions are emitted regardless of the amount of surrounding ions. However, the means for releasing only ions without corona discharge according to the present invention releases the amount of ions due to the electric field difference between the surrounding amount of ions (the amount of charge) and the discharge electrode. In the case of releasing, it also has a self-made product that releases many negative ions when there are many surrounding positive ions and emits few negative ions when there are few surrounding positive ions. Then, since the charge neutralizing means emits air ions of the same polarity and the same amount as the leaking charged dust to neutralize the charged dust, the fine voltage control of the discharge electrode is not performed, and the surface dust caused by the charged dust is eliminated. In addition, it has an effect of preventing excessive pollution of air ions by discharging excess air ions and charging the wall surface of the dust collector blowing air, and hardly emitting ozone.
【0039】また、電荷中和手段を通過した粉塵の極性
と帯電量を確認する検知手段を有することを特徴とし、
電荷中和手段の下流側にある壁面の表面電位を測定する
か、もしくは電気的にどことも接続されていない導電体
を電荷中和手段の下流側に設置し、その表面電位を測定
するか、また粉体吸引型ファラデーゲージなどを用いて
電荷中和手段下流側の空気中の電荷量を測定するなどの
方法で、電荷中和手段下流側の壁面または空気の帯電状
態を把握する検知手段を設ける。検知手段による粉塵の
帯電状態の測定結果が電気的中性を示し、粉塵や壁面が
帯電を起こしていなければよいが、測定結果がプラスマ
イナスどちらかに偏っている場合は帯電粉塵を中和しき
れていないか、もしくは電荷中和手段による空気イオン
の放出量が多すぎて逆の極性に粉塵や壁面を帯電させて
いるために壁面が汚れやすい状態にあるといえる。そし
て電荷中和手段下流側の壁面や空気の帯電状態を知るこ
とにより、粉塵の帯電を中和して壁面汚れを防止するた
めに最適な電荷中和手段の設定を得ることができるとい
う作用を有する。Further, it is characterized in that it has a detection means for confirming the polarity and charge amount of the dust that has passed through the charge neutralization means,
Whether to measure the surface potential of the wall surface on the downstream side of the charge neutralizing means, or to install a conductor that is not electrically connected to anywhere on the downstream side of the charge neutralizing means and measure the surface potential, In addition, by using a powder suction type Faraday gauge, etc., to detect the amount of charges in the air on the downstream side of the charge neutralization means, etc. Set up. If the measurement result of the charged state of the dust by the detection means shows electrical neutrality and the dust or wall surface is not charged, if the measurement result is biased to plus or minus, neutralize the charged dust. It can be said that the wall surface is easily soiled because it is not cut off, or the amount of air ions released by the charge neutralization means is too large and the dust or the wall surface is charged with the opposite polarity. By knowing the wall surface on the downstream side of the charge neutralizing means and the charged state of the air, it is possible to obtain the optimum setting of the charge neutralizing means in order to neutralize the electrostatic charge of dust and prevent wall surface contamination. Have.
【0040】また、電荷中和手段から吹出される粉塵の
極性と帯電量を確認する検知手段を有し、電荷中和手段
から吹出された粉塵が常に電荷を持たないように電荷中
和手段のイオン放出を細かく制御するという特徴を持
つ。電荷中和手段下流側の壁面が帯電しているというこ
とは帯電粉塵を中和しきれていないか、もしくは電荷中
和手段による空気イオンの放出量が多すぎて逆の極性に
粉塵や壁面を帯電させている状態にあるといえる。した
がって帯電粉塵を常に中和した状態にするためには、検
知手段による粉塵の帯電状態の測定結果が常に無極性を
示すようにすればよい。電荷中和手段を通過した粉塵の
帯電状態を前記検知手段で測定し、もし粉塵が帯電して
いることがわかったら、電荷中和手段の放電電極の電圧
を制御する電圧制御手段が最適なイオン放出量にするよ
うに電圧を変化させ、検知手段が帯電を表示しなくなる
まで検知手段の結果をフィードバックさせて制御を続け
ることにより、常に粉塵が帯電していない状態を保ちつ
づけ、壁面汚れを常に防止するように自動管理すること
ができるという作用を有する。Further, the charge neutralizing means has a detecting means for confirming the polarity and the charge amount of the dust discharged from the charge neutralizing means, so that the dust discharged from the charge neutralizing means always has no charge. It has the feature of finely controlling ion emission. If the wall surface on the downstream side of the charge neutralization means is charged, it means that the charged dust particles have not been completely neutralized, or the amount of air ions released by the charge neutralization means is too large, and the dust particles and wall surfaces are reversed in polarity. It can be said that it is in a charged state. Therefore, in order to always keep the charged dust in a neutralized state, it suffices that the measurement result of the charged state of the dust by the detection means always shows non-polarity. The charged state of the dust passing through the charge neutralizing means is measured by the detecting means, and if it is found that the dust is charged, the voltage controlling means for controlling the voltage of the discharge electrode of the charge neutralizing means is the most suitable ion. By changing the voltage so that the discharge amount is obtained, and feeding back the result of the detection means until the detection means no longer displays the charge, and continuing the control, the dust is always kept uncharged and the wall surface is always cleaned. It has the effect that it can be automatically managed to prevent it.
【0041】また、集塵部の後方かつ電荷中和手段手前
に接地された導電性フィルタを設けるという特徴を持
つ。道路のトンネル用に用いられている電気式集塵装置
などでは、除去対象が主に自動車の排ガスに含まれるハ
イドロカーボンなどの炭素系粒子となるが、炭素系粒子
は電気抵抗が小さく、集塵部の電極板上に多量に堆積し
た時に局部的に電気を通してしまい、電極板どうしの短
絡を引き起こしてしまう。その時起こるスパークが電極
板に衝撃を与え、その衝撃により電極板に堆積していた
処理粉塵が電極板から離れてしまい、大量の再飛散粒子
が集塵部から発生する。この時電荷中和手段の電荷中和
能力を超えた量の帯電粉塵が集塵部より撒き散らされる
可能性がある。そこで目がそれほど細かくない金網やス
チールウールなどの導電性フィルタを集塵部後方、電荷
中和手段手前に設置して、大きな再飛散粒子を取り除
き、除去し切れなかった小さい再飛散粒子を電荷中和手
段で無帯電の状態に戻し、壁面の汚れをより効率的に防
止することができるという作用を有する。Further, it is characterized in that a grounded conductive filter is provided behind the dust collecting portion and before the charge neutralizing means. In electric dust collectors used for road tunnels, the target of removal is mainly carbon-based particles such as hydrocarbons contained in exhaust gas from automobiles, but carbon-based particles have a low electrical resistance and therefore dust collection. When a large amount is deposited on the electrode plates of some parts, electricity is locally applied, which causes a short circuit between the electrode plates. Sparks that occur at that time impact the electrode plate, and the impact causes the treated dust accumulated on the electrode plate to separate from the electrode plate, and a large amount of re-scattered particles are generated from the dust collecting portion. At this time, there is a possibility that an amount of charged dust that exceeds the charge neutralizing ability of the charge neutralizing means will be scattered from the dust collecting portion. Therefore, a conductive filter such as a wire mesh or steel wool with a fine mesh is installed behind the dust collector and in front of the charge neutralization means to remove large re-scattered particles and to charge the small re-scattered particles that could not be removed. There is an effect that it is possible to more effectively prevent the wall surface from being soiled by returning to the non-charged state by the summing means.
【0042】[0042]
【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0043】(実施例1)図1は、微細水滴によるイオ
ンを用いた電荷中和手段を備えた集塵装置を示してい
る。図1に示すように、荷電部101は放電線からなる
放電電極A102とアース電極板A103からなり、そ
の荷電部101の下流側に電圧印加電極板105とアー
ス電極板B106とからなる集塵部104を設けてい
る。通常、荷電部101においては、放電電極A102
には5〜15kV、また、集塵部104の電圧印加電極
板105には2〜6kVの直流電圧が高圧安定化電源1
07によって印加されている。集塵部104の下流側に
は、電荷中和手段1を設けている。電荷中和手段1は、
水を貯蔵するタンク2と水を高速で噴出するためのノズ
ル3とタンク2に貯蔵している水をノズル3へ送り出す
ためのポンプ4を設けている。(Embodiment 1) FIG. 1 shows a dust collector equipped with a charge neutralizing means using ions formed by fine water droplets. As shown in FIG. 1, the charging unit 101 includes a discharge electrode A102 formed of a discharge line and a ground electrode plate A103, and a dust collecting unit including a voltage application electrode plate 105 and a ground electrode plate B106 on the downstream side of the charging unit 101. 104 is provided. Normally, in the charging unit 101, the discharge electrode A102
5 to 15 kV, and a DC voltage of 2 to 6 kV is applied to the voltage application electrode plate 105 of the dust collecting unit 104.
07 is applied. The charge neutralizing means 1 is provided on the downstream side of the dust collecting unit 104. The charge neutralizing means 1 is
A tank 2 for storing water, a nozzle 3 for ejecting water at high speed, and a pump 4 for delivering the water stored in the tank 2 to the nozzle 3 are provided.
【0044】上記構成において、荷電部および集塵部に
プラスの直流高電圧を印加しているときは、集塵部から
プラスイオンを有した粉塵が放出されている。集塵部の
下流部に設置された除電部では、ノズルの径をできるだ
け小さくし、しかも、高速で吹出して、0.5μm以下
の微細な水滴を噴霧することで、多量のマイナスイオン
を放出する。しかも、このノズルは図では3本しか示し
ていないが、複数本のノズルでマイナスイオンを放出す
ることで、集塵部の面積に対してできるだけ均一に放出
した方が良い。このように除電部から放出されたマイナ
スイオンは、集塵部から放出されるプラスイオンを有し
た粉塵とクーロン力でお互いに引き付けられ最終的に
は、くっついて電気的に中和する。中和された粉塵は電
荷を有していないため、壁面などへ粉塵が付着すること
を防止できる。In the above structure, when positive DC high voltage is applied to the charging section and the dust collecting section, dust having positive ions is emitted from the dust collecting section. In the static eliminator installed downstream of the dust collector, the nozzle diameter is made as small as possible, and at the same time, it is blown out at a high speed to spray fine water droplets of 0.5 μm or less to release a large amount of negative ions. . Moreover, although only three nozzles are shown in the figure, it is preferable to discharge negative ions with a plurality of nozzles so as to discharge them as uniformly as possible with respect to the area of the dust collecting portion. In this way, the negative ions emitted from the charge eliminating unit are attracted to each other by the Coulomb force and the dust having the positive ions emitted from the dust collecting unit, and finally, they are attached and electrically neutralized. Since the neutralized dust has no electric charge, it is possible to prevent the dust from adhering to the wall surface.
【0045】また、荷電部および集塵部にマイナスの直
流高電圧を印加している場合は、マイナスイオンを有し
た粉塵が集塵部から放出されるため、ノズルの径を調整
し、水の粒径を0.5μm以上にすることで、プラスイ
オンを放出させ、電気的に中和し、壁などへの付着を防
止するものである。但し、水の粒径が0.5μmに近い
とプラスイオンの量が少ないため1μm以上が好まし
く、大きすぎると、水滴が下方に落ちてしまうため、風
速との関連もあるが、5μm以下が望ましい。Further, when a negative DC high voltage is applied to the charging section and the dust collecting section, dust having negative ions is discharged from the dust collecting section. By setting the particle size to 0.5 μm or more, positive ions are released and electrically neutralized to prevent adhesion to walls and the like. However, if the particle size of water is close to 0.5 μm, the amount of positive ions is small, so 1 μm or more is preferable, and if it is too large, water droplets will drop downwards, which is related to wind speed, but 5 μm or less is desirable. .
【0046】なお、水を微細化する手段として本実施例
では、ノズルを用いて水の微粒子を発生させたが、水を
高速で物質にぶっつけ、微細化する方法やその他超音波
を使用して微細化するなど、上記特定の粒径に制御でき
る方法であれば良い。しかし、単純に加湿しても微細化
されていなければイオンは発生しないため、通常の加湿
の方法とは区別される。As a means for atomizing water, in this embodiment, fine particles of water were generated using a nozzle. However, a method of impinging water on a substance at high speed to atomize the water or other ultrasonic waves is used. Any method can be used as long as it can be controlled to the above-mentioned specific particle size, such as miniaturization. However, even if it is simply humidified, ions are not generated unless it is miniaturized, and therefore it is distinguished from the usual humidification method.
【0047】また、コロナ放電をさせずにイオンのみを
放出させる手段として、上記水を微細化する方法以外に
放射線を利用する方法(アルファ線(粒子)を照射し
て、空気分子をイオン化する方法)軟X線を利用する方
法(非常に波長の短い電磁波の一種である軟X線で空気
分子をイオン化する方法)、紫外線を利用する方法(紫
外線を放射することで空気分子をイオン化する方法)な
どがあり、いずれの方法でも、帯電した粉塵を中和する
ことができる。As a means for releasing only ions without causing corona discharge, a method of utilizing radiation other than the method of atomizing water (a method of irradiating alpha rays (particles) to ionize air molecules) ) Method of using soft X-rays (method of ionizing air molecules with soft X-rays, which is a type of electromagnetic wave having a very short wavelength), method of using ultraviolet rays (method of ionizing air molecules by emitting ultraviolet rays) And the like, and any method can neutralize the charged dust.
【0048】(実施例2)図2は、帯電粉塵と逆極性の
イオンのみを放出する電荷中和手段を集塵部下流側に設
けた集塵装置を示している。荷電部101は線状の放電
電極A102とアース電極板A103で構成されてお
り、取り込んだ空気中の粉塵を放電電極A102の極性
に帯電させる。帯電した粉塵は電圧印加電極板105と
アース電極板B106で構成される集塵部104に導入
され、両電極板間の電界の力を受けてどちらかの電極板
に付着し除去される。そして除去しきれずに集塵部10
4から漏れ出た帯電粉塵は電荷中和手段1に導入され、
電荷中和手段1が放出する逆極性のイオンと結合して中
和され、無帯電の状態で送風ファン108から吹出され
る。電荷中和手段1は、帯電粉塵と逆の極性の電圧が印
加された放電電極B5と、それを挟むアース電極板C6
で構成され、帯電粉塵と逆の極性のイオンを放出してい
る。ここでアース電極板C6の表面は絶縁もしくは半導
電性皮膜層7で覆われており、放電電流を抑制して放電
電流を起こさないようにしている。そのため電荷中和手
段1の放電電極B5近傍では帯電粉塵と逆極性のイオン
のみを生成、放出しており、オゾンなど他の成分の発生
を抑制している。オゾン発生量は放電電流に比例すると
いう特徴があるため、放電電流を抑制することはオゾン
発生を抑制することにつながる。(Embodiment 2) FIG. 2 shows a dust collecting apparatus provided with a charge neutralizing means for releasing only ions having a polarity opposite to that of charged dust on the downstream side of the dust collecting portion. The charging unit 101 is composed of a linear discharge electrode A102 and a ground electrode plate A103, and charges the taken-in dust in the air to the polarity of the discharge electrode A102. The charged dust is introduced into the dust collecting portion 104 composed of the voltage application electrode plate 105 and the ground electrode plate B106, and receives the electric field force between the two electrode plates to adhere to one of the electrode plates to be removed. Then, the dust collecting portion 10 cannot be completely removed.
The charged dust leaking from 4 is introduced into the charge neutralizing means 1,
The charge is neutralized by being combined with ions of opposite polarity emitted by the charge neutralization means 1, and is blown out from the blower fan 108 in an uncharged state. The charge neutralizing means 1 includes a discharge electrode B5 to which a voltage having a polarity opposite to that of charged dust is applied, and a ground electrode plate C6 sandwiching the discharge electrode B5.
It emits ions of the opposite polarity to charged dust. Here, the surface of the ground electrode plate C6 is covered with an insulating or semi-conductive film layer 7 to suppress the discharge current and prevent the discharge current from occurring. Therefore, in the vicinity of the discharge electrode B5 of the charge neutralizing means 1, only ions having a polarity opposite to that of the charged dust are generated and released, and the generation of other components such as ozone is suppressed. Since the ozone generation amount is proportional to the discharge current, suppressing the discharge current leads to suppressing ozone generation.
【0049】(実施例3)図3は、尖状放電電極8のみ
で構成された電荷中和手段1を設けた集塵装置を示して
いる。荷電部101で粉塵が帯電し、集塵部104に導
入されて除去されるまでは図1の集塵装置と同様である
が、除去しきれずに集塵部104から漏れ出た帯電粉塵
は電荷中和手段1に導入され、電荷中和手段1が放出す
る逆極性のイオンと結合して中和され、無帯電の状態で
送風ファン108から吹出される。この時電荷中和手段
1は尖状放電電極8のみで構成され、帯電粉塵と逆の極
性の電圧が印加されている。周りに電荷が何もない状態
では、尖状放電電極8はイオンを放出しないが、集塵部
104から帯電粉塵が漏れ出て周囲に存在するようにな
ると、帯電粉塵と逆の極性をもつ尖状放電電極8と帯電
粉塵の存在する周囲とで電位差が大きくなり、結果とし
て大きな電界が存在するようになる。そしてその電界作
用を受けて電極近傍で空気のイオン化が起こり、帯電粉
塵と逆極性かつ同じ電荷量のイオンを生成、放出する。
この時尖状放電電極8から流れる放電電流は微小であ
り、オゾンはほとんど発生しない。また帯電粉塵がない
状態では、尖状放電電極はイオンを放出しないので、普
段余分なイオンを出してしまうことにより、かえって壁
面を帯電させて汚すといったことがない。(Embodiment 3) FIG. 3 shows a dust collecting apparatus provided with a charge neutralizing means 1 composed of only a pointed discharge electrode 8. The dust is charged by the charging unit 101 and is similar to the dust collector of FIG. 1 until it is introduced into the dust collecting unit 104 and removed. However, the charged dust leaked from the dust collecting unit 104 without being completely removed is charged. It is introduced into the neutralizing means 1, is combined with ions of opposite polarity emitted by the charge neutralizing means 1 to be neutralized, and is blown out from the blower fan 108 in an uncharged state. At this time, the charge neutralizing means 1 is composed of only the pointed discharge electrodes 8 and a voltage having a polarity opposite to that of the charged dust is applied. In the state where there is no electric charge in the surroundings, the pointed discharge electrode 8 does not emit ions, but when the charged dust leaks from the dust collecting section 104 and becomes present in the surroundings, the pointed electrode having a polarity opposite to that of the charged dust. The potential difference between the discharge electrode 8 and the surrounding where charged dust is present becomes large, and as a result, a large electric field is present. Then, due to the action of the electric field, air is ionized in the vicinity of the electrodes, and ions having the opposite charge polarity and the same charge amount as the charged dust are generated and released.
At this time, the discharge current flowing from the pointed discharge electrode 8 is minute and ozone is hardly generated. Further, in the state where there is no charged dust, the pointed discharge electrode does not emit ions, so that the extra wall is normally discharged, and the wall surface is not contaminated by being charged.
【0050】(実施例4)図4は電荷中和手段1を通過
した粉塵の極性と帯電量を測定する検知手段9を電荷中
和手段1の下流側に設けた集塵装置を示している。電荷
中和手段1を通過した後の粉塵の帯電状態は、その下流
側の壁面やその空気自体に反映される。そして電荷中和
手段下流側の壁面の表面電位を表面電位計10で測定す
る。もしくは電気的に宙に浮いた導電板11を電荷中和
手段1の下流側に設置し、その表面電位を表面電位計1
0で測定することにより、電荷中和手段1を通過した粉
塵が帯電しているかを知ることができる。また、空気を
吸引してその中に含む粉塵などの電荷の総和を測ること
ができる吸引型ファラデーゲージ12を電荷中和手段1
の下流側に設置して、電荷中和手段1を通過した粉塵の
帯電を直接測定することができる。これらのような検知
手段9を設けることにより、帯電粉塵が電荷中和手段1
を通過した後に粉塵の帯電が無くなっているかどうか、
また電荷中和手段1から帯電粉塵を中和する分よりも多
い過剰なイオンが出て逆の極性に粉塵を帯電させたり壁
面を帯電したりしていないかどうかを知ることができ、
電荷中和手段1のイオン放出を調節する目安にすること
ができる。(Embodiment 4) FIG. 4 shows a dust collector in which a detecting means 9 for measuring the polarity and charge amount of dust passing through the charge neutralizing means 1 is provided on the downstream side of the charge neutralizing means 1. . The charged state of the dust after passing through the charge neutralizing means 1 is reflected on the wall surface on the downstream side and the air itself. Then, the surface potential of the wall surface on the downstream side of the charge neutralizing means is measured by the surface electrometer 10. Alternatively, an electrically conductive plate 11 electrically suspended in the air is installed on the downstream side of the charge neutralizing means 1, and the surface potential thereof is measured by the surface electrometer 1
By measuring at 0, it is possible to know whether the dust passing through the charge neutralizing means 1 is charged. Further, the charge-type neutralization means 1 is equipped with a suction type Faraday gauge 12 capable of sucking air and measuring the total of charges such as dust contained therein.
Installed on the downstream side of, the charge of the dust passing through the charge neutralizing means 1 can be directly measured. By providing the detecting means 9 such as these, the charged dust is prevented from becoming the charge neutralizing means 1.
After passing through, whether the dust charge has disappeared,
Further, it is possible to know whether the charge neutralizing means 1 outputs excessive ions larger than the amount for neutralizing the charged dust to charge the dust to the opposite polarity or to charge the wall surface.
It can be used as a standard for adjusting the ion emission of the charge neutralizing means 1.
【0051】検知手段は、どのような場所、部位などが
電気的に中和されているかを確認しようとするかによっ
て違うが、壁面への付着を重要視する場合は、壁面の表
面電位を検知する。表面電位を測定する手段としては、
壁面電位をプローブに反映して測定する表面電位計など
があり、簡単に測定することができる。また、電荷中和
手段によって吹出し口で中和されているかを重要視する
場合には、既知の静電容量を持った帯電プレートにプラ
スまたはマイナスの高電圧を印加して帯電させ、その帯
電プレートにイオンが付着したときの電位を測ること
で、イオンバランスを評価でき、中和の状態を簡単に測
定することができる。The detection means differs depending on what kind of place or site is to be electrically neutralized, but when the adhesion to the wall surface is important, the surface potential of the wall surface is detected. To do. As a means for measuring the surface potential,
There is a surface electrometer that measures the wall surface potential by reflecting it on the probe, and it can be easily measured. Further, when it is important to consider whether the charge is neutralized at the outlet by the charge neutralizing means, a positive or negative high voltage is applied to the charging plate having a known electrostatic capacity to charge the charging plate. The ion balance can be evaluated by measuring the potential when the ions adhere to the, and the neutralization state can be easily measured.
【0052】(実施例5)図5は電荷中和手段1を通過
した粉塵の極性と帯電量を測定する検知手段9を有し、
電荷中和手段1を通過した粉塵が常に電荷を持たないよ
うに電荷中和手段1を制御することができる集塵装置を
示している。電荷中和手段1を通過した粉塵の帯電状態
を前記検知手段9で測定し、もし粉塵が帯電しているこ
とがわかったら、電荷中和手段1の放電電極B5の電圧
を制御する電圧制御手段10が最適なイオン放出量にす
るように電圧を変化させ、検知手段9が帯電を表示しな
くなるまで電圧制御手段13にフィードバックさせて制
御を続けることにより、常に粉塵が帯電していない状態
を保ちつづけることができる。(Embodiment 5) FIG. 5 has a detection means 9 for measuring the polarity and charge amount of the dust that has passed through the charge neutralization means 1.
1 shows a dust collector capable of controlling the charge neutralizing means 1 so that the dust that has passed through the charge neutralizing means 1 does not always have an electric charge. The charged state of the dust passing through the charge neutralizing means 1 is measured by the detecting means 9, and if it is found that the dust is charged, a voltage control means for controlling the voltage of the discharge electrode B5 of the charge neutralizing means 1. The voltage is changed so that the amount 10 of ions is optimally supplied, and the voltage control unit 13 feeds back the voltage until the detection unit 9 no longer displays the charge, and the control is continued, so that the dust is not always charged. You can continue.
【0053】次に、実施例1乃至5で説明した電荷中和
手段が実際に効果を発揮するのかどうかについて検証し
た。実験模式図を図6および図7に示す。開口寸法13
2mm×122mmのダクトの中に、送風方向から順に
荷電部101、電荷中和手段1、帯電粉塵除去装置1
4、送風ファン108が設置されている。ダクト内風速
は0.5m/sとした。帯電粉塵を作る荷電部101
は、線径0.15mm、長さ110mmのタングステン
線の放電電極A102が、図では簡略してあるが、20
mmの間隔で6本設置されており、並んでいる放電電極
A102を挟むように送風流れの長手方向の奥行寸法1
6mm、幅110mmの鋼製アース電極板A103が設
置されている。放電電極A102には+5.7kVの直
流電圧がかけられており、この時の放電電流は70μA
であった。そして中和効果がはっきり分かるようにする
ために、荷電部101の後ろには集塵部104を設置せ
ずに電荷中和手段1を設置して、荷電部101で作られ
た帯電粉塵をそのまま電荷中和手段1に導入するように
した。荷電部101と電荷中和手段1の距離は50mm
である。そして帯電粉塵の中和効果を評価するために、
帯電粉塵除去装置14を電荷中和手段1の400mm後
方に設置した。帯電粉塵除去装置14は構造的には集塵
部104と同じである。図では簡略して示しているが、
具体的には厚さ0.5mm、奥行き長さ50mm、幅1
28mmの23枚のステンレス製板を5mm間隔で重
ね、1枚おきに電圧をかけて12枚分を電圧印加電極板
とし、その間に挟まれた板11枚をアースに接続してア
ース電極板とした。電圧印加電極板には+2kVの直流
電圧がかけられている。粉塵が帯電しているならば、両
電極板の間に形成されている電界によってクーロン力を
受け、どちらかの電極板に付着して除去される。もし帯
電粉塵が電荷中和手段1によって中和されていれば、粉
塵は除去されずに帯電粉塵除去装置14を通過して出て
くる。したがって帯電粉塵除去装置14の前後の粉塵除
去率ηを測定し、粉塵通過率1−ηを求めることによっ
て、電荷中和手段1の中和性能を評価することができ
る。帯電粉塵除去装置14直前の粉塵濃度をCin、直
後の粉塵濃度をCoutとすると、粉塵通過率は
1−η=1−(Cin−Cout)/Cin=Cout
/Cin
という式で計算できる。また、電荷中和手段から発生す
る空気イオン濃度とオゾン量についても測定を行い、電
荷中和手段としての性能を評価することにした。粉塵濃
度は粒径0.3μm以上の粉塵の個数濃度を計測するリ
オン製パーティクルカウンターKC−01Cを、空気イ
オン濃度は電気移動度が0.4cm2/V・cc以上の
小イオンの個数濃度を計測する神戸電波製イオンカウン
ターKST−900を、そして発生オゾン量は荏原実業
製オゾンモニターEG−2001Fを用いてそれぞれ測
定を行った。そして下記する2つの電荷中和手段を実施
例A、Bとして用意し、それぞれの帯電粉塵の中和性能
について評価した結果を表1、表2に示す。Next, it was verified whether the charge neutralizing means described in Embodiments 1 to 5 actually exhibited the effect. Experimental schematic diagrams are shown in FIGS. 6 and 7. Aperture size 13
In a duct of 2 mm × 122 mm, a charging unit 101, a charge neutralizing unit 1, and a charged dust removing device 1 in order from the air blowing direction.
4. A blower fan 108 is installed. The wind velocity in the duct was 0.5 m / s. Charging unit 101 that creates charged dust
Is a tungsten wire discharge electrode A102 having a wire diameter of 0.15 mm and a length of 110 mm, which is simplified in the figure.
Six of them are installed at an interval of mm, and the depth dimension 1 in the longitudinal direction of the blast flow is so as to sandwich the discharge electrodes A102 arranged side by side.
A steel ground electrode plate A103 having a width of 6 mm and a width of 110 mm is installed. A DC voltage of +5.7 kV is applied to the discharge electrode A102, and the discharge current at this time is 70 μA.
Met. In order to make the neutralizing effect clearly visible, the charge neutralizing means 1 is installed without the dust collecting unit 104 behind the charging unit 101, and the charged dust produced by the charging unit 101 remains unchanged. The charge was neutralized by the means 1. The distance between the charging section 101 and the charge neutralizing means 1 is 50 mm
Is. And to evaluate the neutralizing effect of charged dust,
The charged dust removing device 14 was installed 400 mm behind the charge neutralizing means 1. The charged dust removing device 14 is structurally the same as the dust collecting unit 104. Although it is shown briefly in the figure,
Specifically, thickness 0.5mm, depth length 50mm, width 1
Twenty-three stainless steel plates of 28 mm are stacked at 5 mm intervals and a voltage is applied every other plate to form 12 voltage application electrode plates, and 11 plates sandwiched between them are connected to the ground to form a ground electrode plate. did. A DC voltage of +2 kV is applied to the voltage application electrode plate. If the dust is charged, it is subjected to a Coulomb force by the electric field formed between the two electrode plates and adheres to one of the electrode plates to be removed. If the charged dust is neutralized by the charge neutralization means 1, the dust is not removed and passes through the charged dust removing device 14 to come out. Therefore, the neutralization performance of the charge neutralization means 1 can be evaluated by measuring the dust removal rate η before and after the charged dust removing device 14 and obtaining the dust passage rate 1-η. Assuming that the dust concentration immediately before the charged dust removing device 14 is Cin and the dust concentration immediately after is Cout, the dust passage rate is 1−η = 1− (Cin−Cout) / Cin = Cout.
It can be calculated by the formula / Cin. Further, the air ion concentration and the amount of ozone generated from the charge neutralizing means were also measured to evaluate the performance as the charge neutralizing means. The dust concentration is a particle counter KC-01C made by Rion that measures the number concentration of dust with a particle size of 0.3 μm or more, and the air ion concentration is the number concentration of small ions with an electric mobility of 0.4 cm 2 / V · cc or more. An ion counter KST-900 manufactured by Kobe Denpa Co., Ltd., and an amount of generated ozone were measured using an ozone monitor EG-2001F manufactured by EBARA CORPORATION. Then, the following two charge neutralizing means were prepared as Examples A and B, and the results of evaluating the neutralizing performance of the respective charged dusts are shown in Tables 1 and 2.
【0054】図6は実施例Aの実験模式図を示したもの
である。電荷中和手段1は荷電部101とほぼ同じ構造
で作られているが、アース電極板C6を塩化ビニール製
の絶縁皮膜層7で全面被覆してある。タングステン線の
放電電極B5に0kV〜−6kVの範囲で直流電圧を印
加し、それぞれの電圧を印加した時の粉塵通過率及び空
気イオン濃度、電荷中和手段1から発生するオゾン量を
計測した。その結果を表1に示す。FIG. 6 is a schematic diagram of the experiment of Example A. The charge neutralizing means 1 has the same structure as that of the charging portion 101, but the ground electrode plate C6 is entirely covered with an insulating film layer 7 made of vinyl chloride. A direct current voltage was applied to the discharge electrode B5 of the tungsten wire in the range of 0 kV to -6 kV, and the dust passage rate, the air ion concentration, and the amount of ozone generated from the charge neutralizing means 1 were measured when each voltage was applied. The results are shown in Table 1.
【0055】[0055]
【表1】 [Table 1]
【0056】粉塵通過率を見ると、最も中和効果が高い
電圧は−4kV付近であり、その時の粉塵通過率が70
%であった。0kVの時の通過率が4%であり、全体か
らみて96%存在した帯電粉塵が100−70=30%
になったことから、
(96−30)/96 = 0.69
という計算から、全帯電粉塵の69%程度を中和できた
ことになる。空気イオンのプラスマイナスのバランスを
見てみると−2kVで中和となっているようであるが、
帯電粉塵を中和するためには−4kV程度の電圧が必要
であった。この最適中和電圧は荷電部101の放電電極
A102に+5.7kVの電圧を印加し、70μAの放
電電流を流している場合のものであり、荷電部101の
電圧や寸法などが変わればまた最適中和電圧をこのよう
な方法で探る必要がある。また、表1には記載していな
いが、荷電部101からの発生オゾン濃度は38ppb
であることを考慮すると、電荷中和手段1からの発生オ
ゾン濃度は−4kVで1ppbと非常に少なく、電荷中
和手段1は最適中和電圧付近ではほとんどオゾンを発生
しないことがわかった。Looking at the dust passage rate, the voltage with the highest neutralizing effect is around -4 kV, and the dust passage rate at that time is 70 kV.
%Met. The passing rate at 0 kV is 4%, and the charged dust that was 96% as a whole was 100-70 = 30%.
Therefore, from the calculation of (96-30) /96=0.69, it can be said that about 69% of all charged dust could be neutralized. Looking at the positive and negative balance of air ions, it seems that it is neutralized at -2 kV,
A voltage of about -4 kV was required to neutralize the charged dust. This optimum neutralization voltage is applied when a voltage of +5.7 kV is applied to the discharge electrode A102 of the charging unit 101 and a discharge current of 70 μA is applied. If the voltage or size of the charging unit 101 changes, the optimum neutralization voltage is optimum. It is necessary to search the neutralization voltage in this way. Although not shown in Table 1, the ozone concentration generated from the charging unit 101 is 38 ppb.
Therefore, it was found that the ozone concentration generated from the charge neutralization means 1 was as low as 1 ppb at -4 kV, and the charge neutralization means 1 hardly generated ozone near the optimum neutralization voltage.
【0057】図7は実施例Bの実験模式図を示したもの
である。実施例Bの電荷中和手段1は、胴体径0.7m
mで先端が鋭く尖った鋼製の針で作成した尖状放電電極
8を3本設置した構造となっており、周囲にアース電極
は設けていない。尖状放電電極8に0kV〜−6kVの
範囲で電圧を印加し、それぞれの電圧を印加した時の粉
塵通過率及び空気イオン濃度、電荷中和手段のみに電圧
を印加した時のオゾン濃度を計測した。その結果を表2
に示す。FIG. 7 is a schematic diagram of the experiment of Example B. The charge neutralizing means 1 of Example B has a body diameter of 0.7 m.
It has a structure in which three pointed discharge electrodes 8 made of a steel needle having a sharp tip at m are installed, and no ground electrode is provided in the periphery. A voltage was applied to the pointed discharge electrode 8 in the range of 0 kV to -6 kV, and the dust passage rate and the air ion concentration when each voltage was applied, and the ozone concentration when the voltage was applied only to the charge neutralizing means were measured. did. The results are shown in Table 2.
Shown in.
【0058】[0058]
【表2】 [Table 2]
【0059】最も中和効果が高い電圧は−3kVであ
り、その時の粉塵通過率は74%であった。0kVの時
の通過率が4%であり、全体からみて96%存在した帯
電粉塵が100−74=26%になったことから、
(96−26)/96 = 0.73
という計算から、全帯電粉塵の73%程度を中和できた
ことになる。また、実施例Bの電荷中和手段1の大きな
特徴は、帯電粉塵が存在しない時は空気イオンをほとん
ど放出しないが、存在する帯電粉塵の量に合わせて逆極
性のイオンを放出することである。荷電部101の放電
電極A102に電圧を印加せず帯電粉塵が存在しない場
合は、−3kVを印加しても電荷中和手段1からのイオ
ン放出量は0であるが、荷電部101の放電電極A10
2に電圧を印加して帯電粉塵を存在させるとマイナスイ
オンを24万個/ccの濃度で放出している。このマイ
ナスイオンでプラスに帯電した粉塵を中和している。し
たがって普段は逆の極性に粉塵を帯電させたり、イオン
を出して壁面を帯電させたりすることはないが、帯電粉
塵が電荷中和手段1に導入されれば逆の極性のイオンを
放出するという非常に便利な特徴をもっている。この最
適中和電圧は荷電部101の放電電極A102に+5.
7kVの電圧を印加し、70μAの放電電流を流してい
る場合のものであり、荷電部101の条件が変わればま
た最適中和電圧をこのような方法で探る必要がある。ま
た尖状放電電極を用いた電荷中和手段1からは、オゾン
の発生はほとんどなかった。The voltage with the highest neutralizing effect was -3 kV, and the dust passage rate at that time was 74%. The passing rate at 0 kV was 4%, and the charged dust, which was 96% of the whole, was 100-74 = 26%, so from the calculation of (96-26) /96=0.73, This means that about 73% of the charged dust could be neutralized. A major feature of the charge neutralizing means 1 of Example B is that air ions are hardly released when no charged dust is present, but ions of opposite polarity are released according to the amount of charged dust present. . When no voltage is applied to the discharge electrode A102 of the charging unit 101 and no charged dust is present, the amount of ions emitted from the charge neutralizing means 1 is 0 even if -3 kV is applied, but the discharge electrode of the charging unit 101 is A10
When a voltage is applied to No. 2 and charged dust is present, negative ions are emitted at a concentration of 240,000 / cc. The negative ions neutralize the positively charged dust. Therefore, normally, the dust is not charged to the opposite polarity, or the wall is not charged by emitting ions, but when the charged dust is introduced into the charge neutralization means 1, it is said that the ions of the opposite polarity are released. It has very convenient features. This optimum neutralization voltage is + 5.V to the discharge electrode A102 of the charging section 101.
This is a case where a voltage of 7 kV is applied and a discharge current of 70 μA is applied, and if the conditions of the charging section 101 change, it is necessary to find the optimum neutralization voltage by such a method. Further, almost no ozone was generated from the charge neutralizing means 1 using the pointed discharge electrode.
【0060】(実施例6)図8は集塵部後方、電荷中和
手段手前に5mm角メッシュのステンレス製の導電性フ
ィルタ15を10枚重ねて設置したものである。このフ
ィルタは全て接地されている。自動車の排ガスに含まれ
る炭素系粒子は電気抵抗が小さく、そのため道路のトン
ネル用に用いられている電気式集塵装置は、集塵部に堆
積した炭素系粒子によってよく短絡によるスパークが集
塵部で起こる。その際スパークによる衝撃で電極板に堆
積していた粉塵は対面の電極板に跳躍し、さらにまた対
向の電極板に跳躍するといった挙動を示す。そして最後
には集塵部から出ていってしまう。これが再飛散現象で
ある。そして再飛散粒子はその跳躍現象により、どちら
かの極性に帯電している場合が多い。再飛散するとき、
電極板に付着していた粉塵は一気に集塵部から出てきて
再飛散粒子となってしまうため、それが全て帯電してい
るとすると電荷中和手段の中和能力を超えてしまい、帯
電したまま集塵装置から排出されてしまう可能性があ
る。そこで圧力損失のことも考え、接地された目の粗い
導電性フィルタ15を集塵部後方、電荷中和手段手前に
設け、一気に大量に出てくる再飛散粒子をある程度取り
除くか、もしくは電荷を吸い取るようにし、除去し切れ
なかった小さな帯電粉塵を後方にある電荷中和手段で中
和する。このように導電性フィルタを設け、その後ろに
電荷中和手段を設けるといった2段構えの電荷中和方法
とすることにより、このような大量の粉塵を扱うような
場所で用いられる集塵装置においても帯電粉塵を排出せ
ず、壁面を汚さないようにすることができる。(Embodiment 6) FIG. 8 shows a case in which ten conductive filters 15 made of stainless steel having a 5 mm square mesh are stacked and arranged in front of the dust collecting portion and in front of the charge neutralizing means. This filter is all grounded. The carbon-based particles contained in the exhaust gas of automobiles have a low electric resistance.Therefore, electric-type dust collectors used for road tunnels often suffer from sparks due to short circuits due to carbon-based particles accumulated in the dust-collecting part. Happens in. At that time, the dust accumulated on the electrode plate due to the impact of the spark jumps to the facing electrode plate and then to the facing electrode plate. And finally it goes out from the dust collecting part. This is the re-scattering phenomenon. The re-scattered particles are often charged with either polarity due to the jumping phenomenon. When re-scattering,
The dust adhering to the electrode plate suddenly emerges from the dust collection part and becomes re-scattered particles, so if it were all charged, it would exceed the neutralization capacity of the charge neutralization means and became charged. There is a possibility that it will be discharged from the dust collector as it is. Considering pressure loss, therefore, a grounded open conductive filter 15 is provided behind the dust collecting part and before the charge neutralizing means to remove a large amount of re-scattered particles at once or to absorb the charge. In this way, the small charged dust that cannot be completely removed is neutralized by the charge neutralizing means located at the rear. In this way, by using a two-stage charge neutralization method in which a conductive filter is provided and a charge neutralization means is provided behind it, in a dust collector used in a place where a large amount of dust is handled. Also, it is possible to prevent the charged dust from being discharged and prevent the wall surface from being soiled.
【0061】なお、集塵部は、電圧印加電極板とアース
電極板の間に電位差を与えて電界をつくり、その電界の
力で主に帯電した粉塵を捕集するものを用いているが、
ガラス繊維などを濾材にして機械的に粉塵を捕集する濾
過フィルタや、あらかじめ分極された誘電体を濾材にし
て内部に電界ができるようにつくられ、機械的もしくは
その電界の力で粉塵を捕集する静電フィルタなど、他の
種類の集塵部を用いた場合についても同様の効果が得ら
れる。Incidentally, the dust collecting portion is one which gives an electric potential difference between the voltage applying electrode plate and the earth electrode plate to create an electric field and mainly collects the charged dust by the force of the electric field.
A filter that uses glass fibers as a filter material to mechanically collect dust, or a dielectric material that has been polarized in advance is used as a filter material to create an electric field inside and to collect dust mechanically or by the force of the electric field. Similar effects can be obtained when other types of dust collecting parts such as an electrostatic filter for collecting are used.
【0062】なお、実施例では、荷電部における線状の
放電電極としてタングステン製のものを用いたが、導電
性をもつほかの金属や樹脂を放電電極に用いた場合でも
同様の効果を生じる。In the embodiment, the linear discharge electrode in the charging section is made of tungsten, but the same effect can be obtained when other conductive metal or resin is used as the discharge electrode.
【0063】なお、実施例では、尖状放電電極として先
端が鋭利に尖った鋼製の針を用いたが、空気をイオン化
できるならば、導電性をもつ他の金属や樹脂でも同様の
効果を生じる。In the embodiment, a sharp steel needle having a sharp tip was used as the pointed discharge electrode. However, if air can be ionized, the same effect can be obtained with other conductive metals or resins. Occurs.
【0064】なお、実施例では、電荷中和手段の放電電
極に直流の電圧を印加したが、帯電粉塵と逆の極性のイ
オンを放出するのであれば、交流電圧を印加しても構わ
ない。In the embodiment, a DC voltage is applied to the discharge electrode of the charge neutralizing means, but an AC voltage may be applied as long as ions of the opposite polarity to the charged dust are emitted.
【0065】なお、電荷中和手段を通過した粉塵の帯電
を検知する検知手段として壁面の表面電位や空気の電荷
量を測る方法を例として挙げたが、帯電を検知する手段
であれば測定方法は他のものでもその効果に差は生じな
い。Although the method of measuring the surface potential of the wall surface or the amount of charge of air has been taken as an example of the detecting means for detecting the charge of the dust passing through the charge neutralizing means, any measuring method can be used if it is a means of detecting the charge. There is no difference in the effect of other things.
【0066】また、導電性フィルタとしてステンレス製
の5mm角メッシュの金網を用いたが、導電性かつ通気
性があるものなら他の材質のものを用いても同様の効果
が得られる。Further, although a metal mesh of 5 mm square mesh made of stainless steel was used as the conductive filter, the same effect can be obtained by using another material as long as it is conductive and breathable.
【0067】[0067]
【発明の効果】以上の説明から明らかなように、本発明
によれば、人体に有害なオゾンをほとんど発生させずに
壁面汚れを防止して周囲の汚染を抑えることにより美観
を保ち、壁面清掃などのメンテナンスコストを低減する
という効果のある集塵装置を提供することができる。As is apparent from the above description, according to the present invention, wall surface cleaning is performed by preventing stains on the wall surface and suppressing pollution around the wall surface while generating almost no harmful ozone to the human body, and cleaning the wall surface. It is possible to provide a dust collector having an effect of reducing maintenance costs such as.
【0068】また、寸法的にコンパクトであり、人体に
有害なオゾンをほとんど発生させずに壁面汚れを防止し
て周囲の汚染を抑えて美観を保ち、壁面清掃などのメン
テナンスコストを低減するという効果のある集塵装置を
提供することができる。Further, it is compact in size, produces almost no harmful ozone to the human body, prevents stains on the wall surface, suppresses contamination of the surroundings, maintains aesthetics, and reduces maintenance costs such as wall surface cleaning. It is possible to provide a dust collector having
【0069】また、微小な放電エネルギーのみを用いて
余分なオゾンをほとんど出すことなく壁面汚れを簡単か
つ最適に防止して周囲の汚染を抑え、小さい費用で壁面
清掃などのメンテナンスコストを低減するという効果の
ある集塵装置を提供することができる。In addition, it is possible to easily and optimally prevent stains on the wall surface by using only a small amount of discharge energy and generate little ozone, thereby suppressing contamination of the surroundings and reducing maintenance costs such as wall cleaning at a small cost. A dust collector having an effect can be provided.
【0070】また、電荷中和手段を通過した粉塵の帯電
状態を把握する検知手段を設けることによって、壁面汚
れを常に防止するための最適設定を得ることができる集
塵装置を提供することができる。Further, by providing the detecting means for grasping the charged state of the dust which has passed through the charge neutralizing means, it is possible to provide the dust collecting apparatus which can obtain the optimum setting for always preventing the wall surface contamination. .
【0071】また、電荷中和手段を通過した粉塵の帯電
状態を把握する検知手段を設け、その結果が常に中性に
なるように電荷中和手段の制御を行うことにより、壁面
汚れを常に防止するように自動管理してメンテナンスコ
スト、管理コストを低減する集塵装置を提供することが
できる。Further, detection means for grasping the charged state of the dust passing through the charge neutralizing means is provided, and the charge neutralizing means is controlled so that the result is always neutral, whereby wall surface contamination is always prevented. As described above, it is possible to provide a dust collector that automatically manages and reduces maintenance costs and management costs.
【0072】また、粉塵の量が多い、集塵部で除去した
粉塵が再飛散を起こして大量に再飛散粒子を排出するな
どの過酷な使用条件においても、導電性フィルタを電荷
中和手段手前に設けることにより大きな粉塵を除去した
り、ある程度の粉塵の帯電を接触により中和し、その後
ろにある電荷中和手段によってほぼ完全に帯電粉塵を中
和することにより、壁面汚れを防止して美観を保ち、集
塵装置周りのメンテナンスコストを低減することができ
る集塵装置を提供することができる。In addition, even under severe operating conditions such as a large amount of dust and dust removed in the dust collecting portion re-scattering and discharging a large amount of re-scattered particles, the conductive filter is placed in front of the charge neutralizing means. To remove large dust, or to neutralize the charge of dust to some extent by contact, and to neutralize the charged dust almost completely by the charge neutralization means behind it to prevent wall surface contamination. It is possible to provide a dust collector that is aesthetically pleasing and that can reduce maintenance costs around the dust collector.
【図1】微細水滴によるイオンを用いた電荷中和手段を
備えた集塵装置の構成図FIG. 1 is a block diagram of a dust collector equipped with charge neutralizing means using ions formed by fine water droplets.
【図2】皮膜層でコロナ放電を抑制された電荷中和手段
を備えた集塵装置の構成図FIG. 2 is a block diagram of a dust collector provided with a charge neutralizing means in which corona discharge is suppressed by a coating layer.
【図3】尖状放電電極で構成された電荷中和装置を備え
た集塵装置の構成図FIG. 3 is a block diagram of a dust collector including a charge neutralizing device composed of pointed discharge electrodes.
【図4】集塵部の下に検知手段を備えた集塵装置の構成
図FIG. 4 is a configuration diagram of a dust collecting device provided with a detection unit below the dust collecting unit.
【図5】検知手段と電荷中和手段の電圧制御手段を備え
た集塵装置の構成図FIG. 5 is a configuration diagram of a dust collector including a voltage control unit for a detection unit and a charge neutralization unit.
【図6】実施例Aの電荷中和手段の実験模式図FIG. 6 is an experimental schematic diagram of the charge neutralizing means of Example A.
【図7】実施例Bの電荷中和手段の実験模式図FIG. 7 is an experimental schematic diagram of the charge neutralizing means of Example B.
【図8】集塵部後方、電荷中和手段手前に導電性フィル
タを設けた集塵装置の構成図FIG. 8 is a block diagram of a dust collector in which a conductive filter is provided behind the dust collector and before the charge neutralizing means.
【図9】従来の電気集塵式集塵装置の構成図FIG. 9 is a block diagram of a conventional electric dust collector
1 電荷中和手段 2 タンク 3 ノズル 4 ポンプ 5 放電電極B 6 アース電極板C 7 絶縁もしくは半導電性皮膜層 8 尖状放電電極 9 検知手段 10 表面電位計 11 導電板 12 吸引型ファラデーゲージ 13 電圧制御手段 14 帯電粉塵除去装置 15 導電性フィルタ 1 Charge neutralization means 2 tanks 3 nozzles 4 pumps 5 Discharge electrode B 6 Earth electrode plate C 7 Insulating or semi-conductive film layer 8 Pointed discharge electrode 9 Detection means 10 Surface electrometer 11 Conductive plate 12 Suction-type Faraday gauge 13 Voltage control means 14 Charged dust remover 15 Conductive filter
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F24F 7/06 H05F 3/04 J // H05F 3/04 B03C 3/14 B (56)参考文献 特開2001−170516(JP,A) 特開 平6−247139(JP,A) 特開2000−24544(JP,A) 特開 昭53−64878(JP,A) (58)調査した分野(Int.Cl.7,DB名) B03C 3/00 - 3/88 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F24F 7/06 H05F 3/04 J // H05F 3/04 B03C 3/14 B (56) Reference JP 2001-170516 (JP , A) JP-A-6-247139 (JP, A) JP-A-2000-24544 (JP, A) JP-A-53-64878 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) ) B03C 3/00-3/88
Claims (8)
に設けられて粉塵を除去する集塵部を備え、集塵部から
吹出される帯電粉塵の電荷と逆極性のイオンを放出する
電荷中和手段として針状電極を集塵部下流側に設けた集
塵装置。And 1. A charge section for charging dust, charges that disposed downstream includes a dust collecting unit for removing dust, releasing a charge polarity opposite to the ion charge dust blown from the dust collection unit A dust collecting device in which a needle electrode is provided on the downstream side of the dust collecting portion as a neutralizing means.
極とで構成し、放電電極とアース電極の間に、コロナ放
電を生じさせないよう絶縁体もしくは半導電体を設けた
請求項1記載の集塵装置。2. The charge neutralizing means comprises a discharge electrode and a ground electrode, and an insulator or a semiconductor is provided between the discharge electrode and the ground electrode to prevent corona discharge. Dust collector.
たは複数個の針状電極として、集塵部から吹出される帯
電粉塵の電荷量と等量かつ逆極性のイオンのみを放出す
る手段とした請求項1または2記載の集塵装置。3. The charge-neutralizing means is one or a plurality of needle-shaped electrodes having sharply pointed tips, and discharges only ions having the same amount as the charge amount of the charged dust blown from the dust collecting portion but the opposite polarity. The dust collecting apparatus according to claim 1 or 2, which is used as a means.
に設けられて粉塵を除去する集塵部を備え、集塵部から
吹出される帯電粉塵の電荷と逆極性のイオンを放出する
電荷中和手段として微細水滴噴霧手段を集塵部下流側に
設けた集塵装置。4. A charging section for charging dust and its downstream side
It is equipped with a dust collector that removes dust from the
Releases ions of the opposite polarity to the charge of the charged dust
As a charge neutralizing means, a fine water droplet spraying means is provided on the downstream side of the dust collecting section.
Dust collector provided .
電量を確認する検知手段を有した請求項1乃至4のいず
れかに記載の集塵装置。5. The dust collecting apparatus according to any one of claims 1 to 4 having a detecting means for checking the polarity and charge amount of dust passing through the charge neutralizing means.
の表面電位を測定する手段とした請求項5記載の集塵装
置。6. The dust collecting apparatus according to claim 5, wherein the detecting means is means for measuring a surface potential of a wall surface or a charging plate.
電量を確認する検知手段を有し、電荷中和手段から吹出
された粉塵が電荷を持たないように常に電荷中和手段を
制御する制御手段を備えた請求項1乃至6のいずれかに
記載の集塵装置。7. A charge neutralizing means is always controlled so as to have a detecting means for confirming the polarity and charge amount of the dust which has passed through the charge neutralizing means, so that the dust blown out from the charge neutralizing means has no charge. The dust collector according to any one of claims 1 to 6 , further comprising:
地された導電性フィルタを設けた請求項1乃至7のいず
れかに記載の集塵装置。8. A dust collecting apparatus according to any one of claims 1 to 7 provided with a rear, electrically conductive filter which is grounded to the charge neutralization means before the dust collection unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000258685A JP3456959B2 (en) | 2000-02-25 | 2000-08-29 | Dust collector |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000048846 | 2000-02-25 | ||
JP2000-48846 | 2000-02-25 | ||
JP2000258685A JP3456959B2 (en) | 2000-02-25 | 2000-08-29 | Dust collector |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003159260A Division JP5025883B2 (en) | 2000-02-25 | 2003-06-04 | Dust collector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001310141A JP2001310141A (en) | 2001-11-06 |
JP3456959B2 true JP3456959B2 (en) | 2003-10-14 |
Family
ID=26586075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000258685A Expired - Fee Related JP3456959B2 (en) | 2000-02-25 | 2000-08-29 | Dust collector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3456959B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102233691B1 (en) | 2020-09-15 | 2021-03-30 | (주)에코에너지 기술연구소 | Electrostatic precipitator system and control method thereof |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003260383A (en) * | 2002-03-13 | 2003-09-16 | Matsushita Ecology Systems Co Ltd | Electrostatic dust collecting system |
US20060018804A1 (en) * | 2004-07-23 | 2006-01-26 | Sharper Image Corporation | Enhanced germicidal lamp |
EP1829614A1 (en) * | 2006-03-02 | 2007-09-05 | Technische Universiteit Delft | Method for the removal of smut, fine dust and exhaust gas particles, particle catch arrangement for use in this method and use of the particle catch arrangement to generate a static electric field |
JP2009166006A (en) * | 2008-01-21 | 2009-07-30 | Panasonic Corp | Electric dust collector |
JP5358114B2 (en) * | 2008-04-01 | 2013-12-04 | 日立コンシューマエレクトロニクス株式会社 | Projection display device |
WO2010038872A1 (en) * | 2008-10-03 | 2010-04-08 | ミドリ安全株式会社 | Electric dust collecting apparatus and electric dust collecting system |
FI123025B (en) * | 2011-01-12 | 2012-10-15 | Aavi Technologies Oy | Apparatus and method for purifying and eliminating undesirable constituents of air |
JP6465778B2 (en) * | 2015-09-10 | 2019-02-06 | 春日電機株式会社 | Dust collector |
JP6842287B2 (en) * | 2016-12-01 | 2021-03-17 | 古河産機システムズ株式会社 | Electrostatic precipitator for tunnel construction |
WO2020250263A1 (en) * | 2019-06-10 | 2020-12-17 | 三菱電機株式会社 | Dust collection device and air conditioning device provided with dust collection device |
KR102535412B1 (en) * | 2021-05-12 | 2023-05-26 | 권오준 | Microdust reduction apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5364878A (en) * | 1976-11-19 | 1978-06-09 | Matsushita Electric Ind Co Ltd | Electric dust collector |
JPH06247139A (en) * | 1993-02-25 | 1994-09-06 | Zexel Corp | Air conditioner |
JP3973764B2 (en) * | 1998-07-14 | 2007-09-12 | 松下エコシステムズ株式会社 | Electric dust collector |
JP2001170516A (en) * | 1999-12-16 | 2001-06-26 | Erudekku:Kk | Electric dust collecting system and method for neutralizing charge of air |
-
2000
- 2000-08-29 JP JP2000258685A patent/JP3456959B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102233691B1 (en) | 2020-09-15 | 2021-03-30 | (주)에코에너지 기술연구소 | Electrostatic precipitator system and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2001310141A (en) | 2001-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017201354B2 (en) | Electronic air cleaners and associated systems and methods | |
JP3362030B2 (en) | Dust collection device and method using ultrafine particles | |
KR101669295B1 (en) | Apparatus, system, and method for enhancing air purification efficiency | |
JP3456959B2 (en) | Dust collector | |
WO2001064349A9 (en) | Dust collecting apparatus and air-conditioning apparatus | |
Wang et al. | Collection and charging characteristics of particles in an electrostatic precipitator with a wet membrane collecting electrode | |
KR101957095B1 (en) | Small-sized air purifier with electrostatic precipitation function | |
WO2010038872A1 (en) | Electric dust collecting apparatus and electric dust collecting system | |
JP2007237139A (en) | Dust precipitator and air conditioner | |
JP5025883B2 (en) | Dust collector | |
JP4507405B2 (en) | Kitchen exhaust system | |
JP2005525221A (en) | Air circulation / ionization type air purifier | |
KR20130022722A (en) | Electric precipitator and air cleaner comprising the same | |
JP4488608B2 (en) | Static eliminator | |
JPH0223218B2 (en) | ||
JP7196550B2 (en) | air purifier | |
JP2006116492A (en) | Air cleaning apparatus | |
JPH09192209A (en) | Method for simply adjusting mixing ratio of plus ion and minus ion in ionization of gas by x-ray, air cleaner under application of the method, and device eliminating or giving electrostatic charge | |
JPH08252482A (en) | Method for electric dust collection and apparatus therefor | |
JP2020161465A5 (en) | ||
JPS5924375Y2 (en) | Electrostatic precipitator | |
JP2005111400A (en) | Dust collector and air conditioner | |
KR20200139866A (en) | Air cleaner | |
JPH0636876B2 (en) | Ion-style air purifier | |
JP2018089566A (en) | Electric precipitator for tunnel construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100801 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |