JP3456700B2 - Sliding material injection control method for leading pipe and method for controlling slip material injection amount - Google Patents

Sliding material injection control method for leading pipe and method for controlling slip material injection amount

Info

Publication number
JP3456700B2
JP3456700B2 JP2001116811A JP2001116811A JP3456700B2 JP 3456700 B2 JP3456700 B2 JP 3456700B2 JP 2001116811 A JP2001116811 A JP 2001116811A JP 2001116811 A JP2001116811 A JP 2001116811A JP 3456700 B2 JP3456700 B2 JP 3456700B2
Authority
JP
Japan
Prior art keywords
propulsion
lubricant
force
pipe
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001116811A
Other languages
Japanese (ja)
Other versions
JP2001349178A (en
Inventor
典夫 高橋
豊 加藤
庸治 春日
松幸 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2001116811A priority Critical patent/JP3456700B2/en
Publication of JP2001349178A publication Critical patent/JP2001349178A/en
Application granted granted Critical
Publication of JP3456700B2 publication Critical patent/JP3456700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上下水道管やガス管、
電力線用の管等を非開削によって埋設するトンネル掘削
装置に係り、特に発進立坑に設けた元押し装置(推進ジ
ャッキ)によって管を順次継ぎ足しつつ推進する、いわ
ゆる管推進工法に使用するトンネル掘削装置における先
導管の滑材注入制御方法及び滑材注入量制御方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to water and sewer pipes, gas pipes,
The present invention relates to tunnel excavation equipment for burying power line pipes, etc. by non-excavation, and particularly for tunnel excavation equipment used in the so-called pipe propulsion method in which pipes are sequentially added and propelled by a pushing device (propulsion jack) installed in the starting shaft. The present invention relates to a lubricant injection control method for a front conduit and a lubricant injection amount control method.

【0002】[0002]

【従来の技術】管推進工法は、一般に発進立坑に設置し
た元押し装置(推進ジャッキ)によって、トンネルを形
成する管を継ぎ足しながら、カッタヘッドを有する先導
管を推進させる。そして、先導管を推進する場合、先導
管から周囲の地山に滑材を注入し、地山から受ける抵抗
を小さくして推進し易くするとともに、管の破壊の発生
を防止している。この滑材の注入は、従来、オペレータ
が制御装置に表示された推進抵抗を読み取り、オペレー
タの経験と勘とに基づいて、滑材の注入量を調節してい
た。また、推進ジャッキによる推進力の調整は、滑材の
注入と同様に、オペレータが制御装置に表示された推進
抵抗を確認し、経験と勘とに基づいて、推進ジャッキを
駆動する油圧系のリリーフ弁を調整し、使用する管の耐
荷力(管が破損せずに耐えることができる荷重)を超え
ないように推進ジャッキの出力を制御していた。
2. Description of the Related Art In the pipe propulsion method, generally, an original pushing device (propulsion jack) installed in a starting shaft propels a leading conduit having a cutter head while adding pipes forming a tunnel. When propelling the front conduit, a lubricant is injected from the front conduit into the surrounding ground to reduce the resistance received from the ground to facilitate the propulsion and prevent breakage of the pipe. In the injection of the lubricant, the operator conventionally reads the propulsion resistance displayed on the control device and adjusts the injection amount of the lubricant based on the experience and intuition of the operator. In addition, the adjustment of the propulsion force by the propulsion jack is performed by the operator checking the propulsion resistance displayed on the control device, similar to the injection of the lubricant, and based on experience and intuition, the relief of the hydraulic system that drives the propulsion jack. The valve was adjusted and the output of the propulsion jack was controlled so that the load capacity of the pipe used (the load that the pipe can withstand without being damaged) is not exceeded.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のように
オペレータの経験と勘とにより滑材の注入量を求める場
合、オペレータの経験、技量に左右されるばかりでな
く、常に一定した結果が得られず、滑材の注入過多によ
る滑材のロスや施工精度に影響を与える。また、オペレ
ータの経験と勘とによって推進力を調節する場合、
(1)管耐荷力を意識しながら推進作業を行うため、オ
ペレータの負担が大きい、(2)人為的なミスにより、
管耐荷力を超えた推進圧力が推進管に負荷され、推進管
が破裂する危険がある、などの欠点を有している。
However, when the injection amount of the lubricant is obtained based on the experience and intuition of the operator as described above, not only is the experience and skill of the operator affected, but a constant result is always obtained. Cannot be achieved, and the loss of lubricant due to excessive injection of lubricant and construction accuracy are affected. Also, when adjusting the propulsion force based on the experience and intuition of the operator,
(1) Since the propulsion work is performed while paying attention to the pipe load bearing capacity, the operator's burden is large. (2) Due to human error,
Propulsion pressure exceeding the pipe load bearing capacity is applied to the propulsion pipe, and there is a risk that the propulsion pipe may burst.

【0004】本発明は、前記従来技術の欠点を解消する
ためになされたもので、滑材の注入を適正に制御できる
ようにすることを目的としている。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and an object thereof is to make it possible to appropriately control the injection of the lubricant.

【0005】[0005]

【課題を解決するための手段及び作用効果】上記の目的
を達成するために、本発明に係る先導管の滑材注入制御
方法は、後方の推進力発生手段により推進力を与えられ
て推進する先導管における、その滑材吐出口から周囲の
地山への滑材の注入を制御する方法であって、推進作業
に先立って予め入力された管種、管径、土質、総推進長
さ等の施工条件から管耐荷力を求め、推進作業中に、前
記推進力発生手段が発生した推進力と推進距離とを計測
し、前記計測した推進距離と前記各施行条件とにより到
達立坑に到達時の予測推進抵抗を求め、計測した推進力
と前記予測推進抵抗とから到達立坑に到達時の予測最終
推進力を求め、前記予測最終推進力と予め求めた管耐荷
力とを比較し、予測最終推進力が管耐荷力を上回る時、
先導管の滑材吐出口から滑材を吐出させることを特徴と
している。
In order to achieve the above object, the lubricant injection control method for a front conduit according to the present invention is driven by a rear propulsion force generating means to give a propulsion force. A method of controlling the injection of lubricant from the lubricant outlet of the previous conduit into the surrounding ground, which is the pipe type, pipe diameter, soil quality, total propulsion length, etc. that were input in advance prior to the propulsion work. The pipe load-bearing capacity is obtained from the construction conditions of, the propulsion force generated by the propulsion force generation means and the propulsion distance are measured during the propulsion work, and the reaching shaft is reached by the measured propulsion distance and the respective enforcement conditions. Predicted propulsive resistance of, the predicted final propulsive force when reaching the reaching shaft from the measured propulsive force and the predicted propulsive resistance is obtained, and the predicted final propulsive force is compared with the pipe load capacity previously obtained, and the predicted final When the propulsion force exceeds the pipe load capacity,
The feature is that the lubricant is discharged from the lubricant discharge port of the leading conduit.

【0006】上記滑材注入制御方法によれば、到達立坑
に到達時の予測最終推進力が管耐荷力を上回る時、先導
管の滑材吐出口から滑材を吐出させる制御がなされるた
め、適正な推進力で先導管を推進できるようになる。別
言すれば、滑材の無駄な注入を避けることができるた
め、コスト削減が可能となる。しかも、適正な推進力も
確保できるため、先導管に設けたカッタ部や推進力発生
手段に必要以上の負荷がかかるのを防止することがで
き、各種機械の故障の発生の減少、装置の寿命の延長を
図ることができる。また、推進力発生手段の油圧用リリ
ーフ弁の過度な稼働を防止でき、安全な施工ができる
し、管の破損等が防止できて、施工効率の向上が図れ
る。
According to the above-described lubricant injection control method, when the predicted final propulsive force at the arrival at the reaching shaft exceeds the pipe load bearing capacity, the lubricant is discharged from the lubricant discharge port of the leading conduit. It will be possible to propel the front conduit with proper propulsive force. In other words, it is possible to avoid wasteful injection of the lubricant, which enables cost reduction. Moreover, since it is possible to secure an appropriate propulsion force, it is possible to prevent an unnecessary load from being applied to the cutter portion and the propulsion force generation means provided in the leading conduit, reducing the occurrence of various machine failures and shortening the life of the device. It can be extended. Further, it is possible to prevent excessive operation of the hydraulic pressure relief valve of the propulsive force generating means, to perform safe construction, to prevent damage to the pipe, and to improve construction efficiency.

【0007】また、先導管の滑材注入量制御方法は、後
方の推進力発生手段により推進力を与えられて推進する
先導管における、その滑材吐出口から周囲の地山への滑
材の注入量を制御する方法であって、推進作業中に、前
記推進力発生手段が発生した推進力と推進距離とを計測
し、予め与えられた、管種、管径、土質等の施工条件
と、前記計測した推進距離に基き計測時点での理論推進
抵抗を求め、前記計測した推進力から前記理論推進抵抗
を減じた値ΔFが予め設定した許容偏差ΔFoよりも大
きい場合に、予め定めた滑材の基準注入量QoにΔFoに
対するΔFの比率を乗じた量の滑材を注入することを特
徴としている。
Further, the method for controlling the amount of lubricant injected into the front conduit is such that the lubricant from the lubricant discharge port to the surrounding ground in the front conduit, which is propelled by the rearward propulsive force generating means, propels the lubricant. A method of controlling the injection amount, during the propulsion work, measuring the propulsion force and the propulsion distance generated by the propulsion force generation means, and given in advance, the pipe type, pipe diameter, soil conditions, etc. , The theoretical propulsion resistance at the time of measurement is calculated based on the measured propulsion distance, and when a value ΔF obtained by subtracting the theoretical propulsion resistance from the measured propulsion force is larger than a preset allowable deviation ΔFo, a predetermined slippage is determined. The feature is that the lubricant is injected in an amount obtained by multiplying the reference injection amount Qo of the material by the ratio of ΔF to ΔFo.

【0008】上記滑材注入量制御方法によれば、予め定
めた滑材の基準注入量QoにΔFoに対するΔFの比率を
乗じた量の滑材を注入するため、推進に適した滑材の注
入量が得られ、滑材の節約ができてトンネル工事のコス
トの削減が可能となるばかりでなく、トンネル掘削装置
の過負荷を防止することができ、各種機械の故障の減
少、長寿命化を図ることができる。また、管の破損の発
生がなくなるため、施工効率を向上することができる。
そして、過大な負荷が作用するのを防止できるため、油
圧用リリーフ弁の過稼働をなくせ、リリーフ圧の自動設
定によって安全な施工が可能となる。即ち、熟練したオ
ペレータでなくとも、管の破損の発生等をなくすことが
でき、省エネルギーおよび効率のよい安全な施工が可能
となる。
According to the above-described lubricant injection amount control method, since the lubricant is injected in an amount obtained by multiplying the predetermined reference injection amount Qo of the lubricant by the ratio of ΔF to ΔFo, the injection of the lubricant suitable for propulsion is performed. In addition to being able to save the amount of lubricants and reduce the cost of tunnel construction, it is possible to prevent overloading of the tunnel excavation equipment, reduce the breakdown of various machines, and extend the service life. Can be planned. Further, since the pipe is not damaged, the construction efficiency can be improved.
Further, since it is possible to prevent an excessive load from being applied, it is possible to prevent the hydraulic relief valve from overoperating, and it is possible to perform a safe construction by automatically setting the relief pressure. That is, even if not a skilled operator, the occurrence of breakage of the pipe can be eliminated, and energy saving and efficient and safe construction can be performed.

【0009】[0009]

【実施例】本発明に係るトンネル掘削装置の好ましい実
施例を添付図面に従って詳細に説明する。図1は、本発
明の実施例に係るトンネル掘削装置の概略構成を示した
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a tunnel excavating device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a schematic configuration of a tunnel excavation device according to an embodiment of the present invention.

【0010】図1において、先導管10の先端には、カ
ッタヘッド12が設けてある。そして、先導管10の中
央部には、カッタヘッド12が掘削した土砂を搬送する
ための排土用スクリュー14が軸方向に沿って設けてあ
る。また、先導管10の周面には、滑材を吐出する滑材
吐出口16が形成してある。この吐出口16は、管路1
8を介して滑材注入手段である注入ポンプ20に接続し
てある。そして、注入ポンプ20は、滑材タンク22内
の滑材を吸引して吐出口16に圧送し、吐出口16から
滑材を先導管10周囲の地山に注入する。
In FIG. 1, a cutter head 12 is provided at the tip of the leading conduit 10. A screw 14 for discharging soil for transporting the soil excavated by the cutter head 12 is provided along the axial direction at the center of the leading conduit 10. A lubricant discharge port 16 for discharging lubricant is formed on the peripheral surface of the leading conduit 10. This discharge port 16 is provided in the conduit 1
It is connected via 8 to an injection pump 20 which is a lubricant injection means. Then, the injection pump 20 sucks the lubricant in the lubricant tank 22 and pressure-feeds it to the discharge port 16, and injects the lubricant from the discharge port 16 into the ground around the leading conduit 10.

【0011】先導管10の後方には、推進ジャッキ24
が配置してある。この推進ジャッキ24は、図示しない
発進立坑に設置され、油圧ポンプ26から圧油を供給さ
れ、先導管10に前進させる推進力を与える推進力発生
手段となっている。そして、油圧ポンプ26と注入ポン
プ20とは、詳細を後述するコントローラ30によって
制御されている。
Behind the front conduit 10, a propulsion jack 24 is provided.
Has been placed. The propulsion jack 24 is installed in a start shaft (not shown), is supplied with pressure oil from a hydraulic pump 26, and serves as a propulsion force generation unit that gives a propulsion force to the forward conduit 10. The hydraulic pump 26 and the infusion pump 20 are controlled by the controller 30 whose details will be described later.

【0012】コントローラ30には、図2に示すよう
に、入力出力インターフェース(I/O)32を介し
て、推進ジャッキ24の油圧回路に設けた推進力検出手
段としての油圧センサ34と、コントローラ30へ各種
のデータや命令を入力するためのキーボード36と、推
進ジャッキ24が1本の管を推進し終わるごとに信号を
出力する近接スイッチ(近接SW)38とが接続してあ
り、コントローラ30はこれらから入力した情報に基づ
いて、後述するように滑材の注入量を求める。また、コ
ントローラ30には、I/O40を介して滑材の注入ポ
ンプ20を直接制御するポンプ制御器42が接続してあ
As shown in FIG. 2, the controller 30 includes a hydraulic pressure sensor 34 as a propulsive force detecting means provided in a hydraulic circuit of the propulsion jack 24 via an input / output interface (I / O) 32, and a controller 30. A keyboard 36 for inputting various kinds of data and commands is connected to a proximity switch (proximity SW) 38 that outputs a signal each time the propulsion jack 24 has completed propelling a single pipe. Based on the information input from these, the injection amount of the lubricant is obtained as described later. A pump controller 42 for directly controlling the lubricant injection pump 20 is connected to the controller 30 via the I / O 40.

【0013】コントローラ30は、図3に示すように、
滑材注入開始判断部50と、滑材注入量演算部60と、
推進状態判断部70とを有する。さらに、コントローラ
30は、近接スイッチ38の出力を受け、与えられた管
の長さから先導管10を推進した距離を求める推進距離
演算部80と、キーボード36から入力された管の種類
や掘削する土質、目標推進長さ、推進抵抗を求めるため
の演算式やその係数等を記憶するメモリ82と、滑材注
入開始判断部50、滑材注入量演算部60及び推進状態
判断部70の出力を受け、ポンプ制御器42に制御信号
を出力する注入量制御部84とを有している。尚、推進
距離の演算はこれに限るものでなく、ケーブル長センサ
等を使用して実際の長さを測定してもよい。
The controller 30, as shown in FIG.
A lubricant injection start determination unit 50, a lubricant injection amount calculation unit 60,
The propulsion state determination unit 70 is included. Further, the controller 30 receives the output of the proximity switch 38, and a propulsion distance calculation unit 80 that obtains a distance for propelling the front conduit 10 from the given length of the pipe, and a pipe type or excavation input from the keyboard 36. The output of the memory 82 for storing the arithmetic expression for obtaining the soil quality, the target propulsion length, the propulsion resistance and the coefficient thereof, and the output of the lubricant injection start determination unit 50, the lubricant injection amount calculation unit 60, and the propulsion state determination unit 70. And an injection amount control unit 84 that receives and outputs a control signal to the pump controller 42. The calculation of the propulsion distance is not limited to this, and the actual length may be measured using a cable length sensor or the like.

【0014】滑材注入開始判断部50は、メモリ82内
のデータと推進距離演算部80の求めた推進距離とか
ら、到達立坑に達した際の最終的な推進抵抗を予測する
予測推進抵抗演算回路52と、油圧センサ34が検出し
た推進ジャッキ24の油圧、即ち、推進力と予測推進抵
抗演算回路52の出力とに基づいて、最終的な推進力を
演算する最終推進力演算回路54と、メモリ82に格納
されている管耐荷力と最終推進力演算回路54の求めた
値とを比較し、最終推進力によって管が破損するか否か
を判断し、注入量制御部84に滑材の注入開始信号を入
力する管破損判断回路56とから構成してある。
The lubricant injection start judgment unit 50 calculates a predicted propulsion resistance for predicting the final propulsion resistance when the reaching shaft is reached from the data in the memory 82 and the propulsion distance calculated by the propulsion distance calculation unit 80. A circuit 52 and a final propulsion force calculation circuit 54 that calculates a final propulsion force based on the hydraulic pressure of the propulsion jack 24 detected by the hydraulic pressure sensor 34, that is, the propulsion force and the output of the predicted propulsion resistance calculation circuit 52, The pipe load bearing capacity stored in the memory 82 is compared with the value obtained by the final propulsion force calculation circuit 54 to determine whether or not the pipe will be damaged by the final propulsion force. It is composed of a pipe damage judging circuit 56 for inputting an injection start signal.

【0015】滑材注入量演算部60は、メモリ82内の
データと推進距離演算部80の求めた推進距離とから、
その推進距離における理論的な推進抵抗を求める推進抵
抗演算回路62と、油圧センサ34が検出した推進力と
推進抵抗演算回路62の求めた推進抵抗との偏差を求め
る偏差演算回路64と、偏差演算回路64の求めた偏差
に応じて滑材の注入量を求め、注入量制御部84に入力
する注入量演算回路66とから構成してある。
From the data in the memory 82 and the propulsion distance obtained by the propulsion distance calculation unit 80, the lubricant injection amount calculation unit 60
A propulsion resistance calculation circuit 62 for obtaining a theoretical propulsion resistance at the propulsion distance, a deviation calculation circuit 64 for obtaining a deviation between the propulsion force detected by the hydraulic pressure sensor 34 and the propulsion resistance calculated by the propulsion resistance calculation circuit 62, and a deviation calculation It comprises an injection amount calculation circuit 66 which calculates the injection amount of the lubricant according to the deviation calculated by the circuit 64 and inputs it to the injection amount control unit 84.

【0016】推進状態判断部70は、油圧センサ34が
検出した推進力を記憶する推進力メモリ72と、この推
進力メモリ72に記憶してある値を読み出し、過去複数
回の推進の際の平均的な推進力を求める平均値演算回路
74と、この平均値演算回路74が求めた平均推進力と
油圧センサ34の検出した推進力とを比較し、注入量制
御部84に滑材の注入停止信号を入力する注入停止判断
回路76とからなっている。
The propulsion state determination unit 70 reads the propulsion force memory 72 that stores the propulsion force detected by the hydraulic pressure sensor 34 and the value stored in the propulsion force memory 72, and averages the values obtained when the propulsion is performed a plurality of times in the past. Value calculation circuit 74 for obtaining a dynamic propulsive force and the average propulsion force calculated by the average value calculation circuit 74 and the propulsion force detected by the hydraulic pressure sensor 34 are compared, and the injection amount control unit 84 stops the injection of the lubricant. It comprises an injection stop judgment circuit 76 for inputting a signal.

【0017】上記の如く構成した実施例においては、推
進に先立って、キーボード36や外部記憶装置等から管
の種類や管の径、埋設する1本の管の長さLb 、到達立
坑までの最終的な推進距離L0 、土質、管耐荷力、推進
抵抗を求めるための計算式や係数等がコントローラ30
に与えられ、メモリ82に記憶される(図4ステップ1
00)。そして、このように基礎的なデータが入力され
て推進が開始されると、滑材注入開始判断部50の予測
推進抵抗演算回路52は、メモリ82から予測推進抵抗
を算出する式の係数を読み出す(ステップ101)。ま
た、推進距離演算部80は、近接スイッチ38からの信
号により、推進回数(継ぎ足した管の本数)Nを計数
し、現在の推進距離L1 =Ls +N×Lb を演算して滑
材注入開始判断部50の予測推進抵抗演算回路52と滑
材注入量演算部60の推進抵抗演算回路62とに入力す
る。尚、ここにLs は、先導管10の長さである。
In the embodiment constructed as described above, prior to propulsion, the type of the pipe, the diameter of the pipe, the length Lb of one pipe to be buried, the final length from the reaching vertical shaft to the final vertical shaft, from the keyboard 36 and the external storage device. The controller 30 has calculation formulas and coefficients for obtaining the effective propulsion distance L0, soil quality, pipe load bearing capacity, and propulsion resistance.
And stored in the memory 82 (step 1 in FIG. 4).
00). Then, when the basic data is input and the propulsion is started in this way, the predicted thrust resistance calculation circuit 52 of the lubricant injection start determination unit 50 reads the coefficient of the formula for calculating the predicted thrust resistance from the memory 82. (Step 101). In addition, the propulsion distance calculation unit 80 counts the number of times of propulsion (the number of added pipes) N by a signal from the proximity switch 38, calculates the current propulsion distance L1 = Ls + N × Lb, and determines the injection of lubricant. It is input to the predicted thrust resistance calculation circuit 52 of the unit 50 and the thrust resistance calculation circuit 62 of the lubricant injection amount calculation unit 60. Here, Ls is the length of the leading conduit 10.

【0018】予測推進抵抗演算回路52は、推進距離演
算部80が求めた現在の推進距離L1を読み取り、残り
の推進距離L2 =L0 −L1 を算出する(ステップ10
2、103)。そして、予測推進抵抗演算回路52は、
残りの推進距離L2 を推進した場合の最終的な予測推進
抵抗F2 を次式により演算し(ステップ104)、最終
推進力演算回路54に入力する。
The predicted propulsion resistance calculation circuit 52 reads the current propulsion distance L1 obtained by the propulsion distance calculation unit 80 and calculates the remaining propulsion distance L2 = L0-L1 (step 10).
2, 103). Then, the prediction thrust resistance calculation circuit 52
The final predicted propulsion resistance F2 when the remaining propulsion distance L2 is promoted is calculated by the following equation (step 104) and input to the final propulsion force calculation circuit 54.

【数1】 但し、ここにRは管外周面の単位面積に生じる抵抗力、
Sは管の外周長である。
[Equation 1] However, R is a resistance force generated in a unit area of the outer peripheral surface of the pipe,
S is the outer peripheral length of the tube.

【0019】最終推進力演算回路54は、予測推進抵抗
演算回路52から到達立坑に到達する際の最終的な予測
推進抵抗F2 を受け取ると、油圧センサ34が検出した
現在の推進力F1 を読み込み(ステップ105)、目標
の到達立坑に到達するときの最終推進力Fa を次式のよ
うに求め、管破損判断回路56に送る(ステップ10
6)。
When the final propulsive force calculating circuit 54 receives the final predicted propulsive resistance F2 when reaching the reaching shaft from the predictive propulsive resistance calculating circuit 52, it reads the current propulsive force F1 detected by the hydraulic pressure sensor 34 ( In step 105, the final propulsion force Fa when reaching the target reaching shaft is obtained by the following equation and sent to the pipe breakage judging circuit 56 (step 10).
6).

【数2】 [Equation 2]

【0020】管破損判断回路56は、最終推進力演算回
路54から入力してきた最終推進力Fa を、メモリ82
に格納してある管耐荷力FMAX と比較する(ステップ1
07)。そして、滑材注入開始判断部50は、管破損判
断回路56がFa <FMAX と判断すると、ステップ10
2に戻って上記の処理を繰り返す。しかし、図5の2点
鎖線で示したように、最終推進距離L0 におけるFa が
FMAX を上回ることが予想され、管破損判断回路56が
Fa ≧FMAX であると判断した場合、管破損判断回路5
6は注入量制御部84に滑材の注入開始命令を与えてこ
の処理を終了する。これにより、コントローラ30は、
注入ポンプ20を駆動して滑材の注入を開始する。この
ため、注入開始点aを境に推進抵抗率(単位長さ当たり
の推進抵抗)が小さくなり、図5の一点鎖線で示したよ
うな推進力によって推進することができ、管の破壊を避
けることができる。
The pipe damage determination circuit 56 stores the final propulsion force Fa input from the final propulsion force calculation circuit 54 in the memory 82.
Compare with the pipe load capacity FMAX stored in (Step 1
07). Then, when the pipe breakage judging circuit 56 judges that Fa <FMAX, the lubricant injection start judging unit 50 determines that the step 10
Returning to step 2, the above processing is repeated. However, as shown by the chain double-dashed line in FIG. 5, when Fa at the final propulsion distance L0 is expected to exceed FMAX and the pipe breakage judgment circuit 56 judges that Fa ≧ FMAX, the pipe breakage judgment circuit 5
Reference numeral 6 gives an injection start command of the lubricant to the injection amount control section 84 to end this processing. As a result, the controller 30
The injection pump 20 is driven to start the injection of the lubricant. Therefore, the propulsion resistivity (propulsion resistance per unit length) becomes small at the injection start point a, and the propulsion force as shown by the alternate long and short dash line in FIG. be able to.

【0021】一方、滑材注入量演算部60は、前記のス
テップ100のように初期値が設定されると、推進抵抗
演算回路62が推進距離演算部80の求めた現在の推進
距離L1 を読み込み(図6ステップ110)、予め与え
られている次式に基づいて、L1 における理論的な推進
抵抗fS を求め、偏差演算回路64に送出する(ステッ
プ111)。
On the other hand, when the initial value is set as in step 100, the lubricant injection amount calculation unit 60 reads the current thrust distance L1 obtained by the thrust distance calculation unit 80 by the thrust resistance calculation circuit 62. (Step 110 in FIG. 6), the theoretical propulsion resistance fS at L1 is calculated based on the following equation given in advance and sent to the deviation calculation circuit 64 (step 111).

【数3】 但し、R及びSは前記数1で説明した内容と同じであ
る。
[Equation 3] However, R and S are the same as the contents described in the above equation 1.

【0022】偏差演算回路64は、推進抵抗演算回路6
2が求めた推進距離L1 における推進抵抗fS が入力し
てくると、油圧センサ34が検出した現在の推進力F1
を読み込んで、両者の偏差ΔF=F1 −fS を求めて注
入量演算回路66に送る(ステップ112、113)。
そして、注入量演算回路66は、ステップ114のよう
に、偏差演算回路64の求めた偏差ΔFが、演算により
求めた推進抵抗fS に対する許容偏差ΔFo 以内である
か否かを判断する(図7参照)。ΔF≦ΔFoであれ
ば、滑材注入量演算部60の処理はステップ110に戻
る。しかし、図7のように、ΔF>ΔFo であると、注
入量演算回路66は、ΔF≦ΔFo となるような滑材の
注入量を次式に従って演算し、注入量制御部84に送出
する(ステップ115)。
The deviation calculation circuit 64 is the propulsion resistance calculation circuit 6
When the propulsion resistance fS at the propulsion distance L1 obtained by 2 is input, the current propulsion force F1 detected by the hydraulic pressure sensor 34 is input.
Is read and the deviation ΔF = F1 -fs of the two is calculated and sent to the injection amount calculation circuit 66 (steps 112, 113).
Then, as in step 114, the injection amount calculation circuit 66 determines whether the deviation ΔF obtained by the deviation calculation circuit 64 is within the allowable deviation ΔFo with respect to the propulsion resistance fS obtained by the calculation (see FIG. 7). ). If ΔF ≦ ΔFo, the processing of the lubricant injection amount calculation unit 60 returns to step 110. However, as shown in FIG. 7, when ΔF> ΔFo, the injection amount calculation circuit 66 calculates the injection amount of the lubricant such that ΔF ≦ ΔFo according to the following equation and sends it to the injection amount control unit 84 ( Step 115).

【数4】 ここでQo は土質条件、滑材の種類等によって決定され
る滑材注入量基準値であり、Qは滑材注入量である。注
入量制御部84が滑材の注入量に応じた制御信号をポン
プ制御器42に与えると、滑材注入量演算部60の処理
はステップ110に戻る。
[Equation 4] Here, Qo is a reference value for the amount of injected lubricant, which is determined by soil conditions, type of lubricant, etc., and Q is the injected amount of lubricant. When the injection amount control unit 84 gives a control signal according to the injection amount of the lubricant to the pump controller 42, the process of the lubricant injection amount calculation unit 60 returns to step 110.

【0023】これにより、推進に適した滑材の注入量が
得られ、滑材の節約ができてトンネル工事のコストの削
減が可能となるばかりでなく、トンネル掘削装置の過負
荷を防止することができ、各種機械の故障の減少、長寿
命化を図ることができる。また、管の破損の発生がなく
なるため、施工効率を向上することができる。そして、
過大な負荷が作用するのを防止できるため、油圧用リリ
ーフ弁の過稼働をなくせ、リリーフ圧の自動設定によっ
て安全な施工が可能となる。即ち、熟練したオペレータ
でなくとも、管の破損の発生等をなくすことができ、省
エネルギーおよび効率のよい安全な施工が可能となる。
As a result, not only is the injection amount of the lubricant suitable for propulsion obtained, the lubricant can be saved and the tunnel construction cost can be reduced, and also the tunnel excavation equipment can be prevented from being overloaded. Therefore, it is possible to reduce breakdowns of various machines and prolong the service life. Further, since the pipe is not damaged, the construction efficiency can be improved. And
Since it is possible to prevent an excessive load from acting, it is possible to prevent the hydraulic relief valve from overoperating, and it is possible to perform safe construction by automatically setting the relief pressure. That is, even if not a skilled operator, the occurrence of breakage of the pipe can be eliminated, and energy saving and efficient and safe construction can be performed.

【0024】一方、推進状態判断部70は、図8のステ
ップ120のように、まず油圧センサ34が検出した現
在の推進力F1 を読み取り、推進力メモリ72に記憶す
るとともに、注入停止判断回路76に入力する。そし
て、平均値演算回路74が推進力メモリ72に格納して
ある今回の検出した推進力F1の直前の過去数回分(例
えば10回分)の推進力を読み出し、その平均値を演算
して注入停止判断回路76に出力する(ステップ12
1)。注入停止判断回路76は、今回読み込んだ推進力
F1 が平均値演算回路74の求めた平均推進力の2倍以
上であるか否かを判断する(ステップ122)。そし
て、推進状態判断部70は、注入停止判断回路76が今
回の推進力が平均推進力の2倍より小さいと判断する
と、ステップ120に戻ってさらに推進力F1 を読み込
んで上記の処理をし、また2倍以上であるとステップ1
23に進んで滑材の注入を停止させる信号を出力すると
ともに、推進ジャッキ24による推進速度を遅くする。
On the other hand, the propulsion state determination unit 70 first reads the current propulsive force F1 detected by the hydraulic pressure sensor 34, stores it in the propulsive force memory 72, and the injection stop determination circuit 76, as in step 120 of FIG. To enter. Then, the average value calculation circuit 74 reads the propulsive force of the past several times (for example, ten times) immediately before the detected propulsive force F1 stored in the propulsive force memory 72, calculates the average value, and stops injection. Output to the judgment circuit 76 (step 12)
1). The injection stop determination circuit 76 determines whether or not the propulsive force F1 read this time is at least twice the average propulsive force determined by the average value calculation circuit 74 (step 122). Then, if the injection stop determination circuit 76 determines that the current propulsion force is smaller than twice the average propulsion force, the propulsion state determination unit 70 returns to step 120 and further reads the propulsion force F1 to perform the above processing, If it is more than double, step 1
23, the signal for stopping the injection of the lubricant is output, and the propulsion speed of the propulsion jack 24 is reduced.

【0025】これは、検出推進力が平均推進力の2倍以
上になったことは、推進抵抗が急激に変化したことを示
しており、このような場合、一般的に通常の推進抵抗で
はなく、カッタ前面の状態が変化することによる。そし
て、このような現象は、一般に推進速度を遅くすると、
カッタからの土砂の取り込みがよくなって前面抵抗が小
さくなるとともに、土に対する粘性抵抗と考えられる管
の摩擦抵抗(推進抵抗)が小さくなるため、推進速度を
遅くすると解決できる場合が多い。そこで、注入停止判
断回路76は、推進力(推進抵抗)が異常に上昇する
と、滑材の注入を中止して推進速度を低下させ、推進力
(推進抵抗)が通常の状態に戻ったか否かを判断する
(ステップ124)。そして、注入停止判断回路76
は、推進力が正常に戻ると滑材の注入再開命令を注入量
制御部84に与え(ステップ125)、推進状態判断部
70による処理がステップ120に戻る。なお、平均値
を求める回数は10回でなくともよいし、異常を検出す
るための閾値は平均値の2倍に限定されない。
This means that the detected propulsion force is more than twice the average propulsion force, which means that the propulsion resistance has changed abruptly. In such a case, it is generally not the normal propulsion resistance. , The state of the front of the cutter changes. And, in general, such a phenomenon is
Incorporation of soil from the cutter is improved to reduce the frontal resistance, and the frictional resistance (propulsion resistance) of the pipe, which is considered to be viscous resistance to soil, is decreased. Therefore, slowing down the propulsion speed can often solve the problem. Therefore, if the propulsion force (propulsion resistance) rises abnormally, the injection stop determination circuit 76 stops the injection of the lubricant and reduces the propulsion speed to determine whether the propulsion force (propulsion resistance) has returned to the normal state. Is determined (step 124). Then, the injection stop determination circuit 76
When the propulsion force returns to normal, a command to restart injection of the lubricant is given to the injection amount control unit 84 (step 125), and the process by the propulsion state determination unit 70 returns to step 120. The number of times the average value is calculated does not have to be 10, and the threshold value for detecting an abnormality is not limited to twice the average value.

【0026】[0026]

【発明の効果】以上に説明したように、本発明によれ
ば、推進力発生手段が発生した推進力を検出し、この検
出した推進力が予め理論的に求めた推進抵抗より大きい
場合に、その大きさに応じて滑材の注入量を求め、適正
な滑材の注入によって適正な推進力による先導管の推進
をできるようにしたことにより、滑材の節約によるコス
ト削減が可能となるとともに、先導管に設けたカッタ部
や推進力発生手段に必要以上の負荷がかかるのを防止す
ることができ、故障の発生の減少、装置の寿命の延長を
図ることができる。
As described above, according to the present invention, the propulsive force generated by the propulsive force generating means is detected, and when the detected propulsive force is larger than the theoretical theoretically obtained propulsive resistance, By calculating the injection amount of lubricant according to the size and enabling injection of the appropriate lubricant to propel the front conduit with an appropriate propulsion force, it is possible to reduce costs by saving lubricant. Further, it is possible to prevent an unnecessary load from being applied to the cutter portion and the propulsive force generating means provided in the leading conduit, and it is possible to reduce the occurrence of failures and extend the life of the device.

【0027】また、推進力発生手段が発生した推進力を
検出し、この検出した推進力が管の耐荷力に応じて定め
た許容限界推進力より大きい場合に、推進力発生手段の
作動を停止するため、管の破壊といった人為的な施工ミ
スを回避することができ、安全な施工を行うことができ
る。
Further, the propulsive force generated by the propulsive force generating means is detected, and when the detected propulsive force is larger than the allowable limit propulsive force determined according to the load bearing capacity of the pipe, the operation of the propulsive force generating means is stopped. Therefore, it is possible to avoid an artificial construction error such as breakage of the pipe, and it is possible to perform a safe construction.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係るトンネル掘削装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of a tunnel excavating device according to an embodiment.

【図2】実施例の概略構成ブロック図である。FIG. 2 is a schematic configuration block diagram of an embodiment.

【図3】実施例に係るトンネル掘削装置のコントローラ
のブロック図である。
FIG. 3 is a block diagram of a controller of the tunnel excavating device according to the embodiment.

【図4】実施例に係るコントローラの滑材注入開始判断
部の作用を説明するフローチャートである。
FIG. 4 is a flowchart illustrating an operation of a lubricant injection start determination unit of the controller according to the embodiment.

【図5】実施例に係る滑材の注入開始時期を説明する図
である。
FIG. 5 is a diagram for explaining the injection start timing of the lubricant according to the embodiment.

【図6】実施例に係るコントローラの滑材注入量演算部
の作用を説明するフローチャートである。
FIG. 6 is a flowchart illustrating an operation of a lubricant injection amount calculation unit of the controller according to the embodiment.

【図7】実施例の滑材の注入量の求め方を示す図であ
る。
FIG. 7 is a diagram showing how to determine the injection amount of the lubricant according to the embodiment.

【図8】実施例に係るコントローラの推進状態判断部の
作用を説明するフローチャートである。
FIG. 8 is a flowchart illustrating an operation of a propulsion state determination unit of the controller according to the example.

【符号の説明】[Explanation of symbols]

10:先導管、12:カッタヘッド、16:滑材吐出
口、20:滑材注入手段(注入ポンプ)、24:推進力
発生手段(推進ジャッキ)、30:コントローラ、3
4:推進力検出手段(油圧センサ)、50:滑材注入開
始判断部、60:滑材注入量演算部、70:推進状態判
断部、80:推進距離演算部、84:注入量制御部、f
s:理論推進抵抗、F1:推進力、F2:予測推進抵抗、F
a:予測最終推進力、FMAX:管耐荷力、ΔF:偏差、Δ
Fo:許容偏差、Q:滑材注入量、Qo:滑材基準注入量
(滑材注入量基準値)、L0:総推進長さ(到達立坑ま
での推進距離)、L1:推進距離。
10: Front conduit, 12: Cutter head, 16: Lubricant discharge port, 20: Lubricant injection means (injection pump), 24: Propulsion force generation means (propulsion jack), 30: Controller, 3
4: Propulsion force detection means (hydraulic pressure sensor), 50: Lubricant injection start determination unit, 60: Lubricant injection amount calculation unit, 70: Propulsion state determination unit, 80: Propulsion distance calculation unit, 84: Injection amount control unit, f
s: theoretical thrust, F1: thrust, F2: predicted thrust, F
a: predicted final propulsion force, FMAX: pipe load bearing capacity, ΔF: deviation, Δ
Fo: Allowable deviation, Q: Lubricant injection amount, Qo: Lubricant reference injection amount (lubricant injection amount reference value), L0: Total propulsion length (propulsion distance to the reaching shaft), L1: Propulsion distance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−59889(JP,A) 特開 平5−141185(JP,A) 特開 昭57−77794(JP,A) 実開 平2−125096(JP,U) 実開 昭64−19693(JP,U) (58)調査した分野(Int.Cl.7,DB名) E21D 9/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-59889 (JP, A) JP-A-5-141185 (JP, A) JP-A-57-77794 (JP, A) Actual Kaihei 2- 125096 (JP, U) Actual development Sho 64-19693 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) E21D 9/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 後方の推進力発生手段により推進力を与
えられて推進する先導管における、その滑材吐出口から
周囲の地山への滑材の注入を制御する方法であって、推
進作業に先立って予め入力された管種、管径、土質、総
推進長さ等の施工条件から管耐荷力を求め、推進作業中
に、前記推進力発生手段が発生した推進力と推進距離と
を計測し、前記計測した推進距離と前記各施行条件とに
より到達立坑に到達時の予測推進抵抗を求め、計測した
推進力と前記予測推進抵抗とから到達立坑に到達時の予
測最終推進力を求め、前記予測最終推進力と予め求めた
管耐荷力とを比較し、予測最終推進力が管耐荷力を上回
る時、先導管の滑材吐出口から滑材を吐出させることを
特徴とする先導管の滑材注入制御方法。
1. A method for controlling injection of a lubricant from a lubricant discharge port into a surrounding ground in a leading conduit which is propelled by a propulsive force generated by a rear propulsive force generating means. The pipe load capacity is calculated from the construction conditions such as the pipe type, pipe diameter, soil quality, and total propulsion length that are input in advance, and the propulsion force and the propulsion distance generated by the propulsion force generation means are calculated during the propulsion work. Measure, obtain the predicted propulsion resistance when reaching the reaching shaft by the measured propulsion distance and each of the enforcement conditions, and obtain the predicted final propulsion force when reaching the reaching shaft from the measured propulsion force and the predicted propulsion resistance. Comparing the predicted final propulsive force with a previously determined pipe load bearing capacity, when the predicted final propulsive force exceeds the pipe load bearing capacity, the lubricant is discharged from the lubricant discharge port of the lead conduit. Control method for injection of lubricant.
【請求項2】 後方の推進力発生手段により推進力を与
えられて推進する先導管における、その滑材吐出口から
周囲の地山への滑材の注入量を制御する方法であって、
推進作業中に、前記推進力発生手段が発生した推進力と
推進距離とを計測し、予め与えられた、管種、管径、土
質等の施工条件と、前記計測した推進距離に基き計測時
点での理論推進抵抗を求め、前記計測した推進力から前
記理論推進抵抗を減じた値ΔFが予め設定した許容偏差
ΔFoよりも大きい場合に、予め定めた滑材の基準注入
量QoにΔFoに対するΔFの比率を乗じた量の滑材を注
入することを特徴とする先導管の滑材注入量制御方法。
2. A method of controlling an injection amount of a lubricant from a lubricant discharge port of the leading conduit, which is propelled by a rearward thrust generating means to propel the surrounding lubricant,
During the propulsion work, the propulsive force generated by the propulsive force generating means and the propulsive distance are measured, and the predetermined working conditions such as pipe type, pipe diameter, and soil quality, and the measurement time point based on the measured propulsive distance. If the value ΔF obtained by subtracting the theoretical propulsion resistance from the measured propulsion force is larger than a preset allowable deviation ΔFo, the predetermined reference injection amount Qo of the lubricant is ΔF with respect to ΔFo. A method for controlling the injection amount of lubricant in the leading conduit, which comprises injecting an amount of lubricant that is multiplied by the ratio.
JP2001116811A 2001-04-16 2001-04-16 Sliding material injection control method for leading pipe and method for controlling slip material injection amount Expired - Fee Related JP3456700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116811A JP3456700B2 (en) 2001-04-16 2001-04-16 Sliding material injection control method for leading pipe and method for controlling slip material injection amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116811A JP3456700B2 (en) 2001-04-16 2001-04-16 Sliding material injection control method for leading pipe and method for controlling slip material injection amount

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01601494A Division JP3307759B2 (en) 1994-01-14 1994-01-14 Control method of propulsion generation means

Publications (2)

Publication Number Publication Date
JP2001349178A JP2001349178A (en) 2001-12-21
JP3456700B2 true JP3456700B2 (en) 2003-10-14

Family

ID=18967479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116811A Expired - Fee Related JP3456700B2 (en) 2001-04-16 2001-04-16 Sliding material injection control method for leading pipe and method for controlling slip material injection amount

Country Status (1)

Country Link
JP (1) JP3456700B2 (en)

Also Published As

Publication number Publication date
JP2001349178A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
KR101657868B1 (en) Construction machine
KR101512207B1 (en) Engine control device for construction machine
EP2851475B1 (en) Hybrid construction machinery
KR101334234B1 (en) Hybrid construction machine and control method for hybrid construction machine
EP3275753B1 (en) Hybrid working vehicle
JP5470394B2 (en) Control method and structure of rock drill
KR101776543B1 (en) Work machine
JP5585488B2 (en) Power source device for hybrid construction machinery
KR20150141872A (en) Hybrid construction machine
JP3456700B2 (en) Sliding material injection control method for leading pipe and method for controlling slip material injection amount
JP3307759B2 (en) Control method of propulsion generation means
EP2851540B1 (en) Anti-lug and anti-stall control unit
JP3463703B2 (en) Control device and control method for cutter torque of tunnel excavator
US20050150143A1 (en) Loader/excavator-type heavy construction machine and method of controlling the operation of one such machine
JPS6220359B2 (en)
JPH06129183A (en) Automatic excavation control device for earth pressure type shield machine
KR100240091B1 (en) An automatic excavating apparatus and method of construction machine
JP2003286797A (en) Base pushing device, speed controller and speed control method of small-diameter pipe propulsion machine
JPH08338021A (en) Method for excavating press-in construction and device thereof
JPH11173056A (en) Excavation control method for casing driver, excavation controller, peripheral surface frictional torque measuring method and peripheral surface friction torque measuring equipment
JPH0621996Y2 (en) Buried pipe propulsion device
JP3483224B2 (en) Measuring device for earth removal in shield machine
JP2004346615A (en) Slurry type pipe jacking method and apparatus for use in the same
KR20100064037A (en) Power control apparatus for hybrid contruction machinery
JPH05272294A (en) Cutter torque control device for shield machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees