JP3455797B2 - Power converter - Google Patents

Power converter

Info

Publication number
JP3455797B2
JP3455797B2 JP2950098A JP2950098A JP3455797B2 JP 3455797 B2 JP3455797 B2 JP 3455797B2 JP 2950098 A JP2950098 A JP 2950098A JP 2950098 A JP2950098 A JP 2950098A JP 3455797 B2 JP3455797 B2 JP 3455797B2
Authority
JP
Japan
Prior art keywords
contactor
converter
ground fault
current
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2950098A
Other languages
Japanese (ja)
Other versions
JPH11235039A (en
Inventor
寛之 小澤
堀江  哲
清 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2950098A priority Critical patent/JP3455797B2/en
Publication of JPH11235039A publication Critical patent/JPH11235039A/en
Application granted granted Critical
Publication of JP3455797B2 publication Critical patent/JP3455797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、交流を電源として
それを直流に変換する電力変換装置に係り、特に、該装
置の地絡に伴う対応技術に関する。 【0002】 【従来の技術】従来の交流を電源としてそれを直流に変
換する電力変換装置としては、例えば、特開昭63−1865
05号公報がある。同公報の電力変換装置は交流鉄道電気
車に特定されたものであり、それは図2に示される以下
のような構成を有する。 【0003】架線より交流電力を取り込むパンタグラフ
1と変圧器3の1次巻線4とは交流遮断器2が介在され
て接続され、変圧器3の1次巻線4の他方はレール(接
地)に接する車輪15に接地ブラシ13を介して接続さ
れる。変圧器3の2次巻線5の一端は接触器7を介して
単相コンバータ51の交流入力端(u相)に、2次巻線
5の他端は単相コンバータの交流入力端(v相)に接続
される。接触器7の両端には充電抵抗器6と補助接触器
8の直列体が接続される。 【0004】単相コンバータ51の直流出力端には、フ
ィルタコンデンサ11,3相インバータ52の直流側が
接続され、該インバータの交流側には電動機12が接続
される。 【0005】ここで、単相コンバータ51は、u相にお
いては、上アームが半導体スイッチング素子(以下、素
子と略す)20uとフリーホイールダイオード24uを
逆極性で並列接続した並列体から構成され、下アームも
同様に素子21uとフリーホイールダイオード25uか
ら構成され、同相アームは上下アームの直列体からなっ
ている。また、v相においてもu相と同様に素子20
v,21v、及びフリーホイールダイオード24v,2
5vから構成される。 【0006】一方、3相インバータ52は、上記コンバ
ータと同様のアーム構成を有し、u〜相の3相分の素子
30u,31u,30v,31v,30w,31wとフ
リーホイールダイオード34u,35u,34v,35
v,34w,35wから構成される。 【0007】また、単相コンバータ51の直流側の一端
(図ではフィルタコンデンサのマイナス側)は、接地線
14により接地ブラシ13に接続(接地)され、該接地
線には地絡電流を検出する接地継電器53が設けられ
る。 【0008】60は、筺体でいわゆる制御装置内の機器
を納める制御箱であり同図記載のものでは単相コンバー
タ51,3相インバータ52,フィルタコンデンサ1
1,接触器7,充電抵抗器6,補助接触器8が筺体60
に収納される。この筺体60は電気的に接地ブラシ13
に接続(接地)される。 【0009】ここで、接触器7,充電抵抗器6及び補助
接触器8の機能は、フィルタコンデンサ11が充電され
ていない状態から接触器7を投入すると過大な充電電流
が変圧器3から単相コンバータ51に流れ込むことを防
止することにある。そこでフィルタコンデンサ11を充
電するときには、まず補助接触器8を投入して充電抵抗
器6により制限された充電電流でフィルタコンデンサ1
1を充電し、ある程度の電荷が充電されてから接触器7
を投入する。 【0010】また、フィルタコンデンサ11のマイナス
側と接地ブラシ53間を接続する接続線14に設けられ
る接地継電器53の機能は、フィルタコンデンサ11の
プラス側、又は単相コンバータ51、又は3相インバー
タ等が地絡して接地ブラシ13と同一の電位に電気的に
接続された場合に、地絡電流を検知して交流遮断器2を
開放して地絡電流が流れ続けることを防止するものであ
る。 【0011】 【発明が解決しようとする課題】図2の電力変換装置で
地絡事故が発生した場合を考える。前述のようにフィル
タコンデンサ11のプラス側、又は単相コンバータ5
1、又は3相インバータ52が地絡すると、接地継電器
53が地絡電流を検出して、交流遮断器2を開放すると
同時に接触器7及び補助交流接触器8を開放する。その
後、運転を再開するために交流遮断器2を投入するが、
このときに地絡箇所がまだ取り除かれておらず、特にそ
の地絡箇所が2次巻線5と接触器7との間に発生してい
た場合には、接触器7,補助接触器8が開放されていて
も交流遮断器2の投入と同時に再度地絡が図2の矢印で
示した経路(筺体60−接地線14−フリーホイールダ
イオード23v−2次巻線5)で発生する。 【0012】このときの変圧器3の1次巻線には、2次
巻線側の地絡による電流と、交流遮断器2を投入する時
の電源位相とのタイミングによっては大きな励磁突入電
流も流れることになり、変圧器のコイルに機械的耐量を
超えた大きな電磁力が働き、変圧器が破損するという課
題があった。 【0013】一般的に、変圧器に電源を投入するときに
1次巻線に励磁突入電流が流れ、それは電源投入時に最
も大きく時間と共に減少する。励磁突入電流の大きさ
は、電源電圧,電源位相,鉄心の残留磁気等により左右
され、同じ電源電圧であれば、電源位相0度,残留磁気
最大の時に最も大きく、例えば、1次巻線定格20k
V,80A,2次巻線定格900V,750A×2の鉄
道車両用変圧器の励磁突入電流は、1次電圧23kVの
ときに1次巻線に最大550Aが流れる。 【0014】したがって、交流遮断器2の投入時に地絡
電流と突入電流が重なる電流が変圧器に流れると定格電
流をはるかに越え、このような電流が流れても短時間で
あれば破壊しないだけの電気的,機械的耐量を有するよ
う設計する必要があり、特に電気車ではそれに伴う重量
の増加が問題となる。 【0015】そこで本願発明の目的は、電力変換装置の
如何なる場所で地絡事故が発生してもその地絡による電
流を確実に遮断すると共に、地絡事故が発生して交流遮
断器が開放した後に、接地箇所が取り除かれないままに
再度交流遮断器が投入されたとしても、変圧器に励磁突
入電流と地絡電流が重なり合って流れる過大電流を防止
することにある。 【0016】 【課題を解決するための手段】半導体スイッチング素子
にフリーホイールダイオードが逆極性で並列接続された
並列体を複数個直列接続した直列体を2組有して交流を
直流に変換する単相コンバータと、単相交流電源が交流
遮断器を介して1次巻線に接続された変圧器であって、
その変圧器の2次巻線の両端と前記コンバータの交流側
両端の接続をする第1と第2の接触器と、単相コンバー
タの直流側端子間に接続されたフィルタコンデンサと、
少なくとも第1,第2の接触器と単相コンバータ及びフ
ィルタコンデンサが収納された筺体と、単相コンバータ
の直流側の一端及び筺体を接地線で接地する手段と、第
2の接触器に並列接続される抵抗器と、単相コンバータ
の直流側の一端から接地への電流を検出する接地継電器
を備え、 【0017】単相コンデンサの交流電源からの充電は交
流遮断器、第1の接触器、第2の接触器の順で投入する
投入シーケンスとし、接地継電器の動作時は該継電器の
出力に応動して交流遮断器を遮断した後第1と第2の接
触器をほぼ同時に遮断する遮断シーケンスとしたことを
特徴とする。 【0018】これにより、前述の地絡事故と同様に2次
巻線5と接触器7との間で地絡が発生したとしても、接
地継電器からの信号により少なくとも第1の接触器が開
放されるので、図2で示した経路で流れる地絡電流を遮
断できる。また、接地箇所が取り除かれないままで交流
遮断器2が再投入された場合においても、第1と第2の
接触器により変圧器3の2次巻線5は開放されているた
め変圧器には励磁突入電流しか流れない。その後、第1
の接触器が投入された時点で地絡電流が流れ2次巻線は
短絡された状態になるが、このときには励磁突入電流は
減衰して消滅しているので励磁突入電流と短絡電流が同
時に流れることを防止できる。 【0019】 【発明の実施の形態】以下,本発明の実施形態を図面を
用いて説明する。 【0020】図1は、本発明に基づく鉄道電気車の電力
変換装置に応用した一実施形態を示す。なお、図1の基
本構成は図2と同じで同一符号で示しており、その詳細
な説明は前述しているので省略する。図2と構成的に異
なるところは、変圧器3の2次巻線5と単相コンバータ
51との接続部分と、接地線14にスイッチを設けたこ
とである。 【0021】変圧器3の2次巻線5の両端と単相コンバ
ータ51の交流側両端子が第1の接触器9と第2の接触
器7を介してそれぞれ接続される。第2の接触器7の両
端には充電抵抗器6が並列接続される。 【0022】また、フィルタコンデンサ11のマイナス
側と接地ブラシ13は、スイッチ54を介在させて接続
線14で接続される。このスイッチ54は電力変換装置
の絶縁試験用に設けられるもので、試験時には開放し、
定常動作時には投入されている。 【0023】次に、上記電力変換装置の構成において本
発明の目的を達成させるための交流遮断器2と第1の接
触器と第2の接触器相互間における開閉動作機能につい
て説明する。 【0024】〈初期充電モード〉電動機12に3相イン
バータ52より可変周波数可変電圧の交流を給電し所定
のトルクを発生させて起動させるために、通常、フィル
タコンデンサ11の直流電圧が所定値に達するまで待機
する。そこで、フィルタコンデンサ11を初期充電する
場合には次のシーケンスで行う。 【0025】先ず、交流遮断器2を投入し、続いて第1
の接触器9を投入する。するとフィルタコンデンサ11
には、2次巻線5の電圧が充電抵抗器6,フリーホイー
ルダイオード24u,23vを介して印加され充電電流
が流れる。そして充電が完了した後第2の接触器7を投
入する。 【0026】〈地絡、運転再開モード〉地絡の仮定とし
て従来技術では対応できなかった2次巻線5と第2の接
触器7との間で地絡事故が発生した場合とする。この場
合の地絡経路は、筺体60−接地線14−フリーホイー
ルダイオード23v−第1の接触器9−2次巻線5で地
絡電流が流れる。この時、接地継電器53が地絡電流を
検出し、この検出に応動して交流遮断器2を開放すると
同時に第1及び第2の接触器9,7を開放する(地絡電
流を遮断する意味では必ずしもこのとき第2の接触器を
開放しなくともよい)。これによりこの経路の地絡電流
は遮断されることになる。 【0027】その後、地絡原因不明のままで上記地絡箇
所がまだ取り除かれていない状態で運転を再開する場合
がある。その時にも先ず交流遮断器2が投入される。こ
の時点ではまだ、第1と第2の接触器により変圧器3の
2次巻線5は投入されておらず開放状態を維持する。そ
れにより変圧器には1次巻線に励磁突入電流しか流れな
い。その後(所定時間後)、第1の接触器9を投入す
る。この時点で再度同じ経路で地絡電流が流れ2次巻線
は短絡された状態になるが、このときには励磁突入電流
は減衰して消滅しているので励磁突入電流と短絡電流が
同時に流れることはない。 【0028】これにより、例え上記条件の最悪箇所での
地絡が発生し、これを無視して再運転の動作が実行され
たとしても地絡に伴う変圧器での過大電流の発生を防止
することができる。 【0029】なお、地絡事故が単相コンバータ51や3
相インバータ52側で発生している場合は、第1の接触
器9を投入した時点で該当部にかかる電圧は変圧器2次
巻線の電圧が充電抵抗器6を介したものとなるので上記
地絡条件での地絡電流は小さいものとなる。 【0030】したがって、接地箇所を取り除かずに再運
転を動作させた場合、接地継電器より地絡電流の大きさ
により接地箇所を見分けることができる。 【0031】以上本発明における交流遮断器2、第1及
び第2の接触器9,7の投入、遮断時のシーケンスを纏
めると次のようになる。 【0032】投入順序:交流遮断器2−第1の接触器9
−第2の接触器7(9より所定時間遅らせる) 遮断順序(地絡時):交流遮断器2、第1及び第2の接
触器9,7共にほぼ同時に動作させる。 次に、本発明の第2の実施形態を図3より説明する。図
1と異なるところは、単相コンバータ51を3レベルの
コンバータとしたことである。この単相コンバータ51
は、u相分として、素子20u〜23u,フリーホイー
ルダイオード24u〜27u、及びクランプダイオード
28u,29uから構成され、v相分として、素子20
v〜23v,フリーホイールダイオード24v〜27
v、及びクランプダイオード28v,29vから構成さ
れる。2直列に接続されているクランプダイオード28
uと29u、及び28vと29vの接続点は、2直列に
接続されているフィルタコンデンサ11pと11nの接
続点にそれぞれ接続されて中性点を構成している。そし
てこの3レベルのコンバータは、各相の4直列に接続さ
れた素子のスイッチングの仕方により、フィルタコンデ
ンサ11pのプラス側,中性点,フィルタコンデンサの
11nのマイナス側の3 つの電位を選択して出力する
ものである。 【0033】接地構造としては、中性点を接地ブラシ1
3の電位に接続している。この例においては、2次巻線
5と第1の接触器7の間が地絡すると、地絡電流はフィ
ルタコンデンサ11nを経由して流れることになるが、
従来例で問題となる地絡事故後の交流遮断器2の再投入
時には、先の地絡事故の時点でフィルタコンデンサ11
nの電荷は全て放電してしまっており、再度の地絡発生
時の地絡電流の第1波は2次巻線を短絡したものと同等
の電流が流れるため、本発明により励磁突入電流と、地
絡電流が重なり合うことを防ぐことができる。 【0034】なお、同図実施形態での接地構造として中
性点を接地するのが通常であるが、場合によってはフィ
ルタコンデンサのマイナス側が接地されることもある。
しかし接地構造が変わっても本発明による効果は何ら変
わることはない。 【0035】 【発明の効果】本発明によれば地絡事故が発生して交流
遮断器が開放した後に,接地箇所が取り除かれないまま
に再度交流接触器を投入しても、変圧器に励磁突入電流
と変圧器の短絡電流が重なり合って流れ、変圧器のコイ
ルに過大な電磁力が働いて変圧器が破壊に至ることを防
ぐことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter for converting an alternating current into a direct current by using an alternating current as a power supply, and more particularly to a technology for dealing with a ground fault of the device. 2. Description of the Related Art As a conventional power converter for converting an alternating current into a direct current using an alternating current as a power supply, for example, Japanese Patent Application Laid-Open No. 63-1865 / 1988
There is No. 05 publication. The power converter disclosed in the publication is specified for an AC railway electric vehicle, and has the following configuration shown in FIG. [0003] A pantograph 1 for taking in AC power from an overhead line and a primary winding 4 of a transformer 3 are connected with an AC circuit breaker 2 interposed therebetween, and the other of the primary winding 4 of the transformer 3 is a rail (ground). Is connected via a ground brush 13 to a wheel 15 in contact with the vehicle. One end of the secondary winding 5 of the transformer 3 is connected to the AC input terminal (u phase) of the single-phase converter 51 via the contactor 7, and the other end of the secondary winding 5 is connected to the AC input terminal (v Phase). A series body of the charging resistor 6 and the auxiliary contactor 8 is connected to both ends of the contactor 7. A DC output terminal of the single-phase converter 51 is connected to a filter capacitor 11 and a DC side of a three-phase inverter 52, and an AC motor 12 is connected to an AC side of the inverter. [0005] Here, the single-phase converter 51 has, in the u-phase, an upper arm formed of a parallel body in which a semiconductor switching element (hereinafter abbreviated as an element) 20u and a freewheel diode 24u are connected in parallel with opposite polarities. The arm is also composed of an element 21u and a freewheel diode 25u, and the in-phase arm is composed of a series body of upper and lower arms. Also, in the v-phase, the device 20
v, 21v and freewheeling diodes 24v, 2
5v. On the other hand, the three-phase inverter 52 has an arm configuration similar to that of the above-described converter, and includes elements 30u, 31u, 30v, 31v, 30w, 31w for three phases u to u and freewheel diodes 34u, 35u, 34v, 35
v, 34w, and 35w. [0007] One end of the single-phase converter 51 on the DC side (the negative side of the filter capacitor in the figure) is connected (grounded) to the grounding brush 13 by a grounding line 14, and a ground fault current is detected on the grounding line. A grounding relay 53 is provided. Reference numeral 60 denotes a control box for housing equipment in a so-called control device, which is a single-phase converter 51, a three-phase inverter 52, a filter capacitor 1
1, a contactor 7, a charging resistor 6, and an auxiliary contactor 8
Is stored in. The housing 60 is electrically connected to the ground brush 13.
(Ground). Here, the functions of the contactor 7, the charging resistor 6, and the auxiliary contactor 8 are as follows. When the contactor 7 is turned on from a state where the filter capacitor 11 is not charged, an excessive charging current flows from the transformer 3 to the single-phase. The purpose is to prevent the flow into the converter 51. Therefore, when charging the filter capacitor 11, first, the auxiliary contactor 8 is turned on and the filter capacitor 1 is charged with the charging current limited by the charging resistor 6.
1 and a certain amount of charge is charged before contactor 7
Input. The function of the grounding relay 53 provided on the connection line 14 connecting the negative side of the filter capacitor 11 and the grounding brush 53 is as follows: the positive side of the filter capacitor 11 or the single-phase converter 51 or a three-phase inverter. When the ground fault occurs and the ground brush 13 is electrically connected to the same potential, the ground fault current is detected and the AC circuit breaker 2 is opened to prevent the ground fault current from continuing to flow. . A case where a ground fault occurs in the power converter shown in FIG. 2 will be considered. As described above, the plus side of the filter capacitor 11 or the single-phase converter 5
When the one or three-phase inverter 52 is grounded, the grounding relay 53 detects the ground fault current, and opens the AC circuit breaker 2 and simultaneously opens the contactor 7 and the auxiliary AC contactor 8. After that, the AC circuit breaker 2 is turned on to restart the operation.
At this time, if the ground fault has not yet been removed, and particularly if the ground fault has occurred between the secondary winding 5 and the contactor 7, the contactor 7 and the auxiliary contactor 8 will be removed. Even when the AC circuit breaker 2 is open, a ground fault occurs again along the path (housing 60-ground line 14-freewheel diode 23v-secondary winding 5) indicated by the arrow in FIG. At this time, a large exciting inrush current flows through the primary winding of the transformer 3 depending on the timing between the current due to the ground fault on the secondary winding side and the power supply phase when the AC circuit breaker 2 is turned on. As a result, a large electromagnetic force exceeding the mechanical strength acts on the coil of the transformer, and there is a problem that the transformer is damaged. Generally, when the power is supplied to the transformer, an inrush current flows through the primary winding, and the maximum inrush current is reduced with time when the power is supplied. The magnitude of the excitation inrush current depends on the power supply voltage, the power supply phase, the remanence of the iron core, and the like. If the power supply voltage is the same, the magnitude is the largest when the power supply phase is 0 degree and the remanence is maximum. 20k
When the primary voltage is 23 kV, the maximum inrush current of 550 A flows through the primary winding of the transformer for railcars of V, 80 A, secondary winding rated 900 V, 750 A × 2. Therefore, when a current in which the ground fault current and the rush current overlap when the AC circuit breaker 2 is turned on flows into the transformer, the current far exceeds the rated current. It is necessary to design so as to have the electrical and mechanical withstand capability, and particularly in an electric vehicle, there is a problem that the weight increases accordingly. Therefore, an object of the present invention is to reliably cut off the current caused by a ground fault even if a ground fault occurs in any place of the power converter, and to open the AC circuit breaker due to the ground fault. Even if the AC circuit breaker is turned on again without removing the grounding portion later, it is an object of the present invention to prevent an excessive current flowing through the transformer by overlapping the inrush current and the ground fault current. Means for Solving the Problems A semiconductor switching element has two sets of serial bodies in which a plurality of parallel bodies in which freewheel diodes are connected in parallel with opposite polarities are connected in series. A phase converter and a transformer in which a single-phase AC power supply is connected to a primary winding via an AC circuit breaker ,
Both ends of the secondary winding of the transformer and the AC side of the converter
First and second contactors for connecting both ends, a filter capacitor connected between the DC-side terminals of the single-phase converter,
A housing in which at least the first and second contactors, the single-phase converter and the filter capacitor are housed, a means for grounding the DC-side end of the single-phase converter and the housing with a ground wire, and a parallel connection to the second contactor a resistor that is provided with a ground relay which detects a current from one end of the DC side of the single-phase converter to ground, [0017] charging from the AC power supply of single phase capacitor exchange
Flow breaker, first contactor, second contactor in order
When the earthing relay is operating, it should be turned on.
After the AC circuit breaker is shut off in response to the output, the first and second contacts
It is characterized in that an interrupting sequence for interrupting the touch device almost simultaneously is adopted . Thus, even if a ground fault occurs between the secondary winding 5 and the contactor 7 in the same manner as in the above-described ground fault, at least the first contactor is opened by a signal from the ground relay. Therefore, the ground fault current flowing through the path shown in FIG. 2 can be cut off. Further, even when the AC circuit breaker 2 is turned on again without removing the grounding point, the secondary winding 5 of the transformer 3 is opened by the first and second contactors, so that the transformer is connected to the transformer. Only the inrush current flows. Then the first
When the contactor is turned on, a ground fault current flows and the secondary winding is short-circuited. At this time, however, the exciting rush current and the short-circuit current flow simultaneously because the exciting rush current is attenuated and disappears. Can be prevented. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment applied to a power converter of a railway electric vehicle according to the present invention. Note that the basic configuration of FIG. 1 is the same as that of FIG. 2 and is denoted by the same reference numerals, and detailed description thereof is omitted since it has been described above. The configuration differs from that of FIG. 2 in that a switch is provided on the connection between the secondary winding 5 of the transformer 3 and the single-phase converter 51 and on the ground line 14. Both ends of the secondary winding 5 of the transformer 3 and both terminals on the AC side of the single-phase converter 51 are connected via a first contactor 9 and a second contactor 7, respectively. The charging resistor 6 is connected in parallel to both ends of the second contactor 7. The negative side of the filter capacitor 11 and the ground brush 13 are connected by a connection line 14 via a switch 54. This switch 54 is provided for an insulation test of the power converter, and is opened at the time of the test.
It is turned on during normal operation. Next, the switching operation function between the AC circuit breaker 2, the first contactor, and the second contactor for achieving the object of the present invention in the configuration of the power converter will be described. <Initial Charging Mode> In order to supply the motor 12 with alternating current of variable frequency and variable voltage from the three-phase inverter 52 to generate a predetermined torque and start the motor, the DC voltage of the filter capacitor 11 usually reaches a predetermined value. Wait until. Therefore, the following sequence is performed when the filter capacitor 11 is initially charged. First, the AC circuit breaker 2 is turned on.
Of the contactor 9 is supplied. Then, the filter capacitor 11
, The voltage of the secondary winding 5 is applied through the charging resistor 6, the freewheeling diodes 24u and 23v, and the charging current flows. After charging is completed, the second contactor 7 is turned on. <Ground fault, operation restart mode> It is assumed that a ground fault occurs between the secondary winding 5 and the second contactor 7, which cannot be dealt with by the prior art, as a ground fault assumption. In the ground fault path in this case, a ground fault current flows through the housing 60, the ground wire 14, the freewheel diode 23v, the first contactor 9 and the secondary winding 5. At this time, the grounding relay 53 detects the ground fault current, and in response to this detection, opens the AC circuit breaker 2 and simultaneously opens the first and second contactors 9 and 7 (meaning that the ground fault current is cut off). Then, it is not always necessary to open the second contactor at this time.) As a result, the ground fault current in this path is cut off. Thereafter, the operation may be restarted in a state where the ground fault location has not been removed yet with the ground fault cause unknown. At that time, the AC circuit breaker 2 is first turned on. At this time, the secondary winding 5 of the transformer 3 has not yet been turned on by the first and second contactors, and is kept open. As a result, only an inrush current flows through the primary winding of the transformer. Thereafter (after a predetermined time), the first contactor 9 is turned on. At this point, the ground fault current flows again along the same path, and the secondary winding is short-circuited. At this time, however, the exciting rush current and the short-circuit current cannot flow simultaneously because the exciting rush current is attenuated and disappears. Absent. As a result, even if a ground fault occurs at the worst place under the above-mentioned conditions, and even if the operation is restarted ignoring this, an excessive current is prevented from being generated in the transformer due to the ground fault. be able to. The ground fault is caused by the single-phase converter 51 or 3
When the voltage is generated on the phase inverter 52 side, the voltage applied to the corresponding portion at the time when the first contactor 9 is turned on is the voltage of the secondary winding of the transformer via the charging resistor 6. The ground fault current under the ground fault condition is small. Therefore, when the restart operation is performed without removing the grounding portion, the grounding portion can be distinguished from the grounding relay by the magnitude of the ground fault current. The sequence when the AC circuit breaker 2 and the first and second contactors 9 and 7 are turned on and off according to the present invention is summarized as follows. Order of application: AC circuit breaker 2-first contactor 9
A second contactor 7 (delayed by a predetermined time from 9) . Blocking sequence (ground fault): AC breaker 2 operates in first and second contactor 9,7 together substantially simultaneously. Next, a second embodiment of the present invention will be described with reference to FIG. The difference from FIG. 1 is that the single-phase converter 51 is a three-level converter. This single-phase converter 51
Is composed of elements 20u to 23u, freewheel diodes 24u to 27u, and clamp diodes 28u and 29u as u-phase components.
v to 23v, freewheel diode 24v to 27
v and clamp diodes 28v and 29v. Clamp diode 28 connected in series
The connection point between u and 29u and the connection point between 28v and 29v are respectively connected to the connection point between the filter capacitors 11p and 11n connected in series to form a neutral point. The three-level converter selects three potentials on the plus side of the filter capacitor 11p, the neutral point, and the minus side of the filter capacitor 11n according to the switching manner of the four series-connected elements of each phase. Output. As the grounding structure, the neutral point is set to the grounding brush 1
3 potential. In this example, when a ground fault occurs between the secondary winding 5 and the first contactor 7, a ground fault current flows through the filter capacitor 11n.
When the AC circuit breaker 2 is turned on again after a ground fault, which is a problem in the conventional example, the filter capacitor 11
n has been discharged, and the first wave of the ground fault current at the time of the occurrence of the ground fault again flows the same current as that obtained by short-circuiting the secondary winding. In addition, it is possible to prevent the ground fault currents from overlapping. Although the neutral point is normally grounded as the grounding structure in the embodiment of the figure, the negative side of the filter capacitor may be grounded in some cases.
However, the effect of the present invention does not change even if the grounding structure changes. According to the present invention, even after the AC circuit breaker is opened due to the occurrence of a ground fault and the AC contactor is turned on again without removing the grounding point, the transformer can be excited. The inrush current and the short-circuit current of the transformer overlap and flow, and it is possible to prevent the transformer from being damaged by an excessive electromagnetic force acting on the coil of the transformer.

【図面の簡単な説明】 【図1】本発明の第1の実施形態を示す交流鉄道車両の
電力変換装置の構成図。 【図2】従来の交流鉄道車両の電力変換装置の構成図。 【図3】本発明の第2の実施形態を示す交流鉄道車両の
電力変換装置の構成図。 【符号の説明】 1…パンタグラフ、2…交流遮断器、3…変圧器、4…
1次巻線、5…2次巻線、6…充電抵抗器、7…第2の
接触器、9…第1の接触器、11…フィルタコンデン
サ、12…電動機、13…接地ブラシ、14…接地線、
15…車輪、20u,20v,21u,21v…スイッチ
ング素子、24u,25u,22v,23v…フリーホイ
ールダイオード、51…単相コンバータ、52…3相イ
ンバータ、53…接地継電器、54…スイッチ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a power conversion device for an AC railway vehicle according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of a conventional power conversion device for an AC railway vehicle. FIG. 3 is a configuration diagram of a power conversion device for an AC railway vehicle according to a second embodiment of the present invention. [Description of Signs] 1 ... Pantograph, 2 ... AC circuit breaker, 3 ... Transformer, 4 ...
Primary winding, 5 Secondary winding, 6 Charge resistor, 7 Second contactor, 9 First contactor, 11 Filter capacitor, 12 Motor, 13 Ground brush, 14 Ground wire,
Reference numeral 15: wheels, 20u, 20v, 21u, 21v: switching elements, 24u, 25u, 22v, 23v: freewheel diodes, 51: single-phase converter, 52: three-phase inverter, 53: ground relay, 54: switch.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−186505(JP,A) 特開 昭62−230356(JP,A) 特開 平5−223906(JP,A) 特開 平3−218270(JP,A) 特開 平9−37593(JP,A) 特開 平5−22985(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/06 B60L 9/16 H02H 3/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-186505 (JP, A) JP-A-62-230356 (JP, A) JP-A-5-223906 (JP, A) JP-A-3-3 218270 (JP, A) JP-A-9-37593 (JP, A) JP-A-5-22985 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02M 7/06 B60L 9 / 16 H02H 3/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】半導体スイッチング素子にフリーホイール
ダイオードが逆極性で並列接続された並列体を複数個直
列接続した直列体を2組有して交流を直流に変換する単
相コンバータと、単相交流電源が交流遮断器を介して1
次巻線に接続された変圧器であって、その変圧器の2次
巻線の両端と前記コンバータの交流側両端の接続をする
第1と第2の接触器と、前記コンバータの直流側端子間
に接続されたフィルタコンデンサと、少なくとも前記第
1,第2の接触器と前記コンバータ及び前記フィルタコ
ンデンサが収納された筺体と、前記コンバータの直流側
の一端及び前記筺体を接地線で接地する手段と、前記第
2の接触器に並列接続される抵抗器と、前記コンバータ
の直流側の一端から接地への電流を検出する接地継電器
を備え、前記コンデンサの前記交流電源からの充電は
前記交流遮断器、前記第1の接触器、前記第2の接触器
の順で投入する投入シーケンスとし、前記接地継電器の
動作時は該継電器の出力に応動して前記交流遮断器を遮
断した後前記第1と第2の接触器をほぼ同時に遮断する
遮断シーケンスとしたことを特徴とする電力変換装置。
(57) Claims 1. A semiconductor switching element has two sets of parallel bodies in which a plurality of parallel bodies in which freewheel diodes are connected in parallel with opposite polarities are connected in series, and AC is converted to DC. A single-phase converter and a single-phase AC power supply
A transformer connected to the secondary winding, the secondary of the transformer
Connect both ends of the winding to both ends of the AC side of the converter
A first and a second contactor, a filter capacitor connected between the DC side terminals of the converter, a housing containing at least the first and second contactors, the converter and the filter capacitor, Means for grounding one end on the DC side of the converter and the housing with a ground line, a resistor connected in parallel to the second contactor, and a grounding relay for detecting a current from one end on the DC side of the converter to ground Charging the capacitor from the AC power supply
The AC circuit breaker, the first contactor, and the second contactor
The sequence is to be applied in the order of
During operation, the AC circuit breaker is shut off in response to the output of the relay.
After the disconnection, the first and second contactors are shut off almost simultaneously.
A power conversion device having a cutoff sequence .
JP2950098A 1998-02-12 1998-02-12 Power converter Expired - Lifetime JP3455797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2950098A JP3455797B2 (en) 1998-02-12 1998-02-12 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2950098A JP3455797B2 (en) 1998-02-12 1998-02-12 Power converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003029136A Division JP3843430B2 (en) 2003-02-06 2003-02-06 Power converter

Publications (2)

Publication Number Publication Date
JPH11235039A JPH11235039A (en) 1999-08-27
JP3455797B2 true JP3455797B2 (en) 2003-10-14

Family

ID=12277811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2950098A Expired - Lifetime JP3455797B2 (en) 1998-02-12 1998-02-12 Power converter

Country Status (1)

Country Link
JP (1) JP3455797B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709580B2 (en) * 2005-04-27 2011-06-22 株式会社東芝 Railway vehicle drive control device
CA2699108C (en) * 2007-09-21 2014-07-08 Mitsubishi Electric Corporation Power conversion apparatus for electric vehicle
JP5658440B2 (en) * 2009-05-21 2015-01-28 株式会社東芝 Electric vehicle control device
JP5389758B2 (en) * 2010-09-15 2014-01-15 株式会社東芝 Vehicle control device and failure detection method
CN104080640B (en) * 2012-01-30 2017-06-23 三菱电机株式会社 Electric car main circuit system
RU2632183C2 (en) * 2012-07-11 2017-10-04 Филипс Лайтинг Холдинг Б.В. Drive circuit between fluorescent ballast and led
JP5904920B2 (en) * 2012-09-28 2016-04-20 株式会社東芝 Electric vehicle power converter
WO2014122727A1 (en) * 2013-02-05 2014-08-14 三菱電機株式会社 Power converter and power conversion method
JP5649699B2 (en) * 2013-08-26 2015-01-07 株式会社東芝 Vehicle control device and failure detection method
JP5746781B2 (en) * 2014-04-11 2015-07-08 株式会社東芝 Vehicle control apparatus and failure determination method
JP5856645B2 (en) * 2014-04-28 2016-02-10 株式会社東芝 Electric vehicle control device
JP6420078B2 (en) 2014-07-01 2018-11-07 東海旅客鉄道株式会社 Railway vehicle
WO2018003029A1 (en) * 2016-06-29 2018-01-04 三菱電機株式会社 Alternating-current electric vehicle

Also Published As

Publication number Publication date
JPH11235039A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
JP3455797B2 (en) Power converter
US6804127B2 (en) Reduced capacitance AC/DC/AC power converter
US7092262B2 (en) System and method for pre-charging the DC bus of a utility connected power converter
CN109188278B (en) Three-phase unbalance detection circuit and system
JPH09298840A (en) Charger of electric vehicle
JP3572915B2 (en) A control circuit having an inrush current prevention function, an overvoltage prevention function, and a discharge function, and a power converter including the control circuit
JPH10243660A (en) Power converting apparatus
JP3843430B2 (en) Power converter
JP3695485B2 (en) 6-phase / 12-phase rectifier type inverter device
JPH077978A (en) Korndorfer method for starting motor
JP2001286160A (en) Power converter
JPS63290122A (en) Overcurrent releasing device for breaker
CN219420311U (en) Alternating current soft start circuit
CN110661331A (en) AC-DC converter
JP3927303B2 (en) Grid-connected solar power generation system
JP3388671B2 (en) Protection method for variable speed pumped storage power generation system
CN112217411B (en) Reactive power converter and soft start and overhaul method thereof
JP2888626B2 (en) Overvoltage protection device
JP2677022B2 (en) AC electric vehicle power supply
JP3531506B2 (en) Power converter with overvoltage protection device
JPS6245479Y2 (en)
JP3742329B2 (en) Electric vehicle control device
JPH01318567A (en) Driver for wound-rotor type induction generator motor
JP4218420B2 (en) Earth leakage detection device for earth leakage breaker and rated voltage change adapter for earth leakage detection device
RU1786620C (en) Device for protection of three-phase asynchronous electric motor against disappearance of voltage in phase of power supply network

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

EXPY Cancellation because of completion of term