JP3454542B2 - Magnesium-based molten metal supply device - Google Patents

Magnesium-based molten metal supply device

Info

Publication number
JP3454542B2
JP3454542B2 JP18062593A JP18062593A JP3454542B2 JP 3454542 B2 JP3454542 B2 JP 3454542B2 JP 18062593 A JP18062593 A JP 18062593A JP 18062593 A JP18062593 A JP 18062593A JP 3454542 B2 JP3454542 B2 JP 3454542B2
Authority
JP
Japan
Prior art keywords
magnesium
molten metal
supply device
electromagnetic pump
metal supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18062593A
Other languages
Japanese (ja)
Other versions
JPH0715945A (en
Inventor
克美 鈴木
Original Assignee
旭テック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭テック株式会社 filed Critical 旭テック株式会社
Priority to JP18062593A priority Critical patent/JP3454542B2/en
Publication of JPH0715945A publication Critical patent/JPH0715945A/en
Application granted granted Critical
Publication of JP3454542B2 publication Critical patent/JP3454542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、保温炉やるつぼ等に貯
留されているマグネシウムまたはマグネシウムにアルミ
ニウムや亜鉛等を含むマグネシウム合金からなる溶湯
を、重力鋳造,低圧鋳造,ダイキャスト等の各種鋳造法
における砂型または金型等に電磁ポンプを用いて供給す
るマグネシウム系溶湯供給装置に関する。 【0002】 【従来の技術】従来、この種のマグネシウム系溶湯供給
装置の電磁ポンプは、セラミックスのような非磁性体か
らなるダクトの周囲にコイルを配置して構成されている
(例えば、特開平1−126154号公報等)。 【0003】したがって、コイルに通電されると鉄芯
(コア)との間に移動磁界が発生し、マグネシウム系溶
湯に所定方向の力が生じて搬送力が発生する。 【0004】 【発明が解決しようとする課題】しかしながら、上記従
来のマグネシウム系溶湯供給装置においては、マグネシ
ウム系溶湯と接するSUS304等からなるマグネシウ
ム系溶湯供給装置を構成する電磁ポンプの本体から、そ
の本体の成分の一部である鉄(Fe)又はニッケル(N
i)等が溶損し、その溶損したマグネシウム系溶湯が砂
型や金型に供給されて製品化されたときのマグネシウム
合金からなる製品の耐蝕性が低下するという問題点があ
った。 【0005】また、特開昭63−166104号公報に
開示されているようなSUS347は、コバルトを含ん
でいるので、このコバルトの溶損によっても製品の耐蝕
性が低下するという問題点を含んでいる。 【0006】このような問題点を解決するために、供給
装置本体を腐蝕促進元素を含まないセラミックスで構成
することも考えられるが、セラミックスは、マグネシウ
ム溶湯による還元反応により劣化して実用化できないと
いう欠点がある。 【0007】そこで、本発明は、上記欠点を解決するた
めになされたものであって、その目的は、非磁性体の条
件を満たし、かつ腐蝕促進元素の溶損の少ない材質を用
いたマグネシウム系溶湯供給装置を提供することにあ
る。 【0008】 【課題を解決するための手段】本発明に係るマグネシウ
ム系溶湯供給装置は、上記目的を達成するために、電磁
ポンプを用いてマグネシウム系溶湯を供給するマグネシ
ウム系溶湯供給装置において、少なくともそのマグネシ
ウム系溶湯と接するその電磁ポンプの本体の部分をニッ
ケル成分が重量パーセントで1.0未満の高マンガン鋼
で構成することを特徴としている。 【0009】マグネシウム系溶湯は、マグネシウム(M
g)にアルミニウム(Al),亜鉛(Zn)やマンガン
(Mn)等を含むマグネシウム合金の溶湯であって、ダ
イカスト金型や低圧鋳造装置等へ供給される。 【0010】電磁ポンプは、非磁性体のダクトの周囲に
コイルを配置した周知の電磁ポンプから構成される。そ
して、その電磁ポンプの本体の少なくともマグネシウム
溶湯と接する部分、つまりその電磁ポンプの本体のダク
トの内側およびコアの外側は、高マンガン鋼から構成さ
れる。 【0011】高マンガン鋼は、マンガン(Mn)を13
〜31%含む高マンガン鋼である。そして、その高マン
ガン鋼は、Niを1.0%未満しか含まず、つまり、N
iをほとんど含んでいない高マンガン鋼である。 【0012】 【作用】上記構成において、ニッケル成分が重量パーセ
ントで1.0未満の高マンガン鋼で構成されるマグネシ
ウム系溶湯と接する電磁ポンプの本体の部分からは、
の溶損は少なく、また、その高マンガン鋼にNiがほ
とんど含まれていないので、Feの溶損が抑制される。 【0013】 【実施例】以下、本発明の一実施例装置について説明す
る。一実施例装置に係る電磁ポンプは、図示しないが、
例えば、特開平1−126154号公報に示されるよう
に、従来と同様な、ダクトの周囲にコイルを配置した構
成をしている。そして、そのダクトは高マンガン鋼で、
しかも、その高マンガン鋼はNiの含有量が1.0%未
満、好ましくは0.1%未満であれば、よりFeの溶損
を抑制することができる。 【0014】 【実験例】上記ダクトを構成する材料からのマグネシウ
ム系合金溶湯への溶損を実験した。 【0015】実験は、マグネシウム合金(AZ91D;
JISのMD1D相当)を25Kg溶解し、保持炉(保
温炉)内に、SF0.3%,残COの混合ガスを流
入させて720℃に維持し、200×500(mm)の
板材で、表1に示す成分の5種類の供試材(1)〜
(5)をそれぞれ浸漬して行った。また、比較例として
上述と同形状のSUS304の板材も浸漬した。 【表1】なお、表1には、実験結果が示されているが、これにつ
いては後述する。 【0016】供試材(3)とSUS304のマグネシウ
ム合金溶湯中への、FeとNiのそれぞれの溶損の経時
変化が図1に示されている、この図1から明らかなよう
に、供試材(3)はFe,Niとも溶損が少ないことが
分る。 【0017】なお、図示しないが、供試材(1),
(2)及び(4)もFe及びNiの溶損は供試材(3)
とほぼ同じであった。また、供試材(5)は、Fe及び
Niの溶損が少々認められた。 【0018】供試材(1)〜(4)は、いずれもマグネ
シウム合金へのFeの溶損が少なく、したがって、製品
の耐蝕性を低下させるという従来の欠点を有していな
い。 【0019】また、図1から明らかなように、Niを
8.8%含むSUS304は、時間経過とともにマグネ
シウム合金溶湯へのNiの溶損が増加するだけでなく、
その増加とともに、Feの増加が著しいことが分る。し
たがって、Niが1.0%未満である高マンガン鋼は、
Feの溶損がなく、このことは、Niを含有しない低炭
素鋼によっても伺い知ることができる。 【0020】表1において、Mn及びNi以外の炭素
(C)等の成分も示したのは、評価の欄に示したよう
に、供試材(1)〜(4)を用いて電磁ポンプのダクト
を製造するときの加工性を分析するためである。 【0021】すなわち、ダクトへの加工時におけるマル
テンサイト変態を回避するためには、炭素量が高い方が
良いが、この炭素量が高過ぎると曲げ加工性が悪くな
り、溶接性も低下する。また、Mnは、25〜30%の
高含有量の方が、オーステナイト相が安定している。 【0022】なお、ダクトの加工時に、曲率を大きくし
たり、薄肉化するためには、必要により、熱間(105
0℃〜1250℃)加工、又は、加工と焼鈍をくり返す
工程を取ることにより、所望形状のダクトに加工するこ
とができる。 【0023】 【発明の効果】本発明に係るマグネシウム系溶湯供給装
置は、少なくともマグネシウム系溶湯と接する電磁ポン
プの本体の部分をニッケル成分が重量パーセントで1.
0未満の高マンガン鋼で構成したので、マグネシウム系
溶湯へのFe及びNiの溶損を少なくでき、マグネシウ
ム系溶湯から得られる製品の耐蝕を高めることができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to gravity casting of molten magnesium or magnesium alloy containing aluminum, zinc or the like in magnesium stored in an insulated furnace or crucible. The present invention relates to a magnesium-based molten metal supply device for supplying a sand mold or a mold using an electromagnetic pump in various casting methods such as low pressure casting, die casting and the like. 2. Description of the Related Art Heretofore, an electromagnetic pump of this kind of a magnesium-based molten metal supply device is configured by disposing a coil around a duct made of a non-magnetic material such as ceramics (for example, Japanese Patent Laid-Open No. 1-1126154 and the like). [0003] Therefore, when the coil is energized, a moving magnetic field is generated between the coil and the iron core, and a force in a predetermined direction is generated in the magnesium-based molten metal to generate a conveying force. [0004] However, in the above-mentioned conventional magnesium-based melt supply device, the main body of the electromagnetic pump constituting the magnesium-based melt supply device made of SUS304 or the like, which is in contact with the magnesium-based melt, is removed. (Fe) or nickel (N
i) etc. are melted, and the melted magnesium-based
Magnesium when supplied to molds and molds and commercialized
There is a problem that the corrosion resistance of the product made of the alloy is reduced. Further, since SUS347 as disclosed in Japanese Patent Application Laid-Open No. 63-166104 contains cobalt, there is a problem that the corrosion resistance of the product is reduced by the erosion of cobalt. I have. In order to solve such problems, it is conceivable that the main body of the supply device is made of ceramics containing no corrosion promoting element, but the ceramics are deteriorated by a reduction reaction with molten magnesium and cannot be put to practical use. There are drawbacks. Accordingly, the present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide a magnesium-based material which satisfies the condition of a non-magnetic material and uses a material which is less eroded by corrosion promoting elements. It is to provide a molten metal supply device. According to the present invention, there is provided a magnesium-based molten metal supply apparatus for supplying a magnesium-based molten metal by using an electromagnetic pump. Nip the part of the body of the electromagnetic pump in contact with the magnesium-based melt.
Kell components that are characterized in that it constitutes a high manganese steel of less than 1.0 percent by weight. The magnesium-based melt is magnesium (M
g) is a melt of a magnesium alloy containing aluminum (Al), zinc (Zn), manganese (Mn), etc., and is supplied to a die casting mold, a low-pressure casting device, or the like. The electromagnetic pump comprises a known electromagnetic pump in which a coil is arranged around a non-magnetic duct. Then, a portion in contact with at least the molten magnesium in the body of the electromagnetic pump, i.e. outside of the inner and cores duct <br/> bets of the body of the electromagnetic pump is comprised of a high manganese steel. [0011] High manganese steel contains 13% manganese (Mn).
High manganese steel containing up to 31%. And the high manganese steel contains less than 1.0% Ni, that is, N
High manganese steel containing almost no i. In the above arrangement, the nickel component is contained in a weight percentage.
From the parts of the body of the electromagnetic pump in contact with the magnesium-based melt consisting of high manganese steel of less than 1.0 in cement, N
erosion of i is less, and since Ni is not contained almost its high manganese steel, corrosion of Fe is suppressed. An embodiment of the present invention will be described below. Although the electromagnetic pump according to one embodiment device is not shown,
For example, as shown in Japanese Patent Application Laid-Open No. 1-126154, a configuration is employed in which a coil is arranged around a duct as in the conventional case. And the duct is high manganese steel,
Moreover, if the high manganese steel has a Ni content of less than 1.0%, preferably less than 0.1%, the erosion of Fe can be further suppressed. [Experimental Example] An experiment was conducted on the melting of a magnesium-based alloy melt from the material constituting the duct. The experiments were conducted on magnesium alloys (AZ91D;
25 kg of JIS MD1D) is melted, and a mixed gas of 0.3% of SF 6 and the remaining CO 2 is introduced into a holding furnace (heating furnace), and maintained at 720 ° C., and a 200 × 500 (mm) plate material Then, five kinds of test materials (1) to the components shown in Table 1
(5) was performed by immersing each. As a comparative example, a SUS304 plate having the same shape as that described above was immersed. [Table 1] Table 1 shows the experimental results, which will be described later. FIG. 1 shows the time-dependent changes in the erosion of each of Fe and Ni in the test material (3) and the magnesium alloy melt of SUS304. As is apparent from FIG. It can be seen that the material (3) has little erosion for both Fe and Ni. Although not shown, the test materials (1),
(2) and (4) also show that the test pieces (3)
Was almost the same as Further, in the test material (5), erosion of Fe and Ni was slightly recognized. All of the test materials (1) to (4) do not suffer from the conventional disadvantage of reducing the erosion of Fe in the magnesium alloy and, therefore, lowering the corrosion resistance of the product. As is apparent from FIG. 1, SUS304 containing 8.8% of Ni not only increases the erosion of Ni in the molten magnesium alloy with time, but also
It can be seen that the increase of Fe is remarkable with the increase. Therefore, high manganese steels with less than 1.0% Ni are:
There is no erosion of Fe, which can be seen even with low carbon steel containing no Ni. In Table 1, components other than Mn and Ni, such as carbon (C), are also shown. As shown in the column of evaluation, the electromagnetic pumps were prepared using the test materials (1) to (4). This is for analyzing the workability when manufacturing the duct. In other words, in order to avoid martensitic transformation during processing into a duct, it is better to have a high carbon content. However, if the carbon content is too high, bending workability deteriorates and weldability also decreases. In addition, the higher the content of Mn, 25 to 30%, the more stable the austenite phase. In order to increase the curvature or reduce the thickness of the duct during processing of the duct, it is necessary to use a hot (105)
(0 ° C. to 1250 ° C.) Processing or a step of repeating processing and annealing can be performed to form a duct having a desired shape. According to the magnesium-based molten metal supply apparatus of the present invention, at least the nickel component in the body of the electromagnetic pump in contact with the magnesium-based molten metal has a nickel content of 1% by weight.
Since it is composed of a high manganese steel of less than 0 , it is possible to reduce the erosion of Fe and Ni in the magnesium-based molten metal,
Can improve the corrosion resistance of products obtained from
You.

【図面の簡単な説明】 【図1】マグネシウム合金溶湯へのFe,Niの溶損状
態を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the state of erosion of Fe and Ni in a molten magnesium alloy.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 電磁ポンプを用いてマグネシウム系溶湯
を供給するマグネシウム系溶湯供給装置において、 少なくとも前記マグネシウム系溶湯と接する前記電磁ポ
ンプの本体の部分をニッケル成分が重量パーセントで
1.0未満の高マンガン鋼で構成することを特徴とする
マグネシウム系溶湯供給装置。
(57) [Claim 1] In a magnesium-based melt supply device for supplying a magnesium-based melt using an electromagnetic pump, at least a portion of the body of the electromagnetic pump that is in contact with the magnesium-based melt has a nickel component. In weight percent
A magnesium-based molten metal supply device comprising a high manganese steel of less than 1.0 .
JP18062593A 1993-06-25 1993-06-25 Magnesium-based molten metal supply device Expired - Fee Related JP3454542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18062593A JP3454542B2 (en) 1993-06-25 1993-06-25 Magnesium-based molten metal supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18062593A JP3454542B2 (en) 1993-06-25 1993-06-25 Magnesium-based molten metal supply device

Publications (2)

Publication Number Publication Date
JPH0715945A JPH0715945A (en) 1995-01-17
JP3454542B2 true JP3454542B2 (en) 2003-10-06

Family

ID=16086479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18062593A Expired - Fee Related JP3454542B2 (en) 1993-06-25 1993-06-25 Magnesium-based molten metal supply device

Country Status (1)

Country Link
JP (1) JP3454542B2 (en)

Also Published As

Publication number Publication date
JPH0715945A (en) 1995-01-17

Similar Documents

Publication Publication Date Title
CA2926184C (en) Recrystallization, refinement, and strengthening mechanisms for production of advanced high strength metal alloys
CA2508079C (en) Castable magnesium alloys
WO2018052515A9 (en) Surface-hardened aluminum-race earth alloys and methods of making the same
MX2010012226A (en) Stainless steel product, use of the product and method of its manufacture.
KR20090043555A (en) Steel plate for producing light structures and method for producing said plate
KR20150119231A (en) Cold-rolled flat steel product for deep-drawing applications and method for the production thereof
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
US4121924A (en) Alloy for rare earth treatment of molten metals and method
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP3454542B2 (en) Magnesium-based molten metal supply device
JP2010507021A (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP2002194477A (en) Member for molten nonferrous metal
CN104060154A (en) QT500 casting and production method thereof
JP2002275574A (en) High strength high toughness spheroidal graphite cast iron
JPS5922780B2 (en) wear-resistant cast iron
JP2004218069A (en) High rigidity steel producible by melting method, and production method therefor
EP3283608B1 (en) Grain refinement in iron-based materials
JP2006322025A (en) Heat resistant cast alloy and its manufacturing method
JP3654159B2 (en) Nonferrous metal casting tool and tool steel therefor
JP2003342630A (en) Method for continuous casting molten steel containing added rare earth element
Panov et al. Influence of the Degree of Oxidation of Magnesium Master Alloys on the Mechanical Properties of Nodular Irons
CN104060151A (en) QT600 casting and a production method thereof
CN110714157B (en) Corrosion-resistant cast iron alloy and preparation method thereof
JP2646061B2 (en) High manganese non-magnetic casting
JP2001040456A (en) Electromagnetic material having excellent cold forgeability and weat resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees