JP3449308B2 - Light processing equipment - Google Patents

Light processing equipment

Info

Publication number
JP3449308B2
JP3449308B2 JP24452899A JP24452899A JP3449308B2 JP 3449308 B2 JP3449308 B2 JP 3449308B2 JP 24452899 A JP24452899 A JP 24452899A JP 24452899 A JP24452899 A JP 24452899A JP 3449308 B2 JP3449308 B2 JP 3449308B2
Authority
JP
Japan
Prior art keywords
light
filter
heat ray
liquid crystal
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24452899A
Other languages
Japanese (ja)
Other versions
JP2001066563A (en
Inventor
知之 飯田
光太郎 諸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP24452899A priority Critical patent/JP3449308B2/en
Priority to TW089117277A priority patent/TWI251094B/en
Priority to KR10-2000-0050728A priority patent/KR100518715B1/en
Publication of JP2001066563A publication Critical patent/JP2001066563A/en
Application granted granted Critical
Publication of JP3449308B2 publication Critical patent/JP3449308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • G02F2203/055Function characteristic wavelength dependent wavelength filtering

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被照射物に紫外線
を照射して被照射物に塗布された光化学反応を生じる物
質を反応させる光処理装置に関するものであり、更に
は、紫外線硬化型の接着剤を用いて2枚の基板を貼り合
わせるのに適した光処理装置に関し、特に、液晶表示素
子の製造工程において、液晶基板を貼り合わせるのに適
した光処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phototreatment device for irradiating an object to be irradiated with ultraviolet rays to react a substance which causes a photochemical reaction applied to the object to be irradiated, and further to an ultraviolet curing type. The present invention relates to an optical processing device suitable for bonding two substrates using an adhesive, and more particularly to an optical processing device suitable for bonding liquid crystal substrates in a manufacturing process of a liquid crystal display element.

【0002】[0002]

【従来の技術】光処理装置から紫外線を照射し、被処理
物に塗布された保護膜、接着剤、塗料、インキ、レジス
トなどを紫外線による光化学反応によって硬化させた
り、乾燥、溶融、軟化させるなどの光照射処理が行われ
るが、最近では、情報記録層としてアルミが蒸着された
光ディスク基板の保護膜の硬化や貼り合わせや、カラー
フィルタが設けられた液晶基板の貼り合わせなどの光照
射処理が盛んに行われている。
2. Description of the Related Art A protective film, adhesive, paint, ink, resist, etc. applied to an object to be processed is irradiated with ultraviolet light from a photoprocessing device to cure, dry, melt, soften, etc. However, recently, light irradiation processing such as hardening and bonding of a protective film of an optical disk substrate on which aluminum is deposited as an information recording layer and bonding of a liquid crystal substrate provided with a color filter are performed. It is being actively conducted.

【0003】液晶基板は、2枚の透明基板または半透明
基板を張り合わせ、その間に液晶を封入して作られる
が、2枚の基板の接着には、紫外線硬化型の接着剤を用
い、紫外線を照射して接着剤に光化学反応を起すことに
より行われる。2枚の液晶基板を紫外線硬化型の接着剤
で接着することは、例えば特開平8−146436号公
報に開示されている。
A liquid crystal substrate is made by laminating two transparent or semi-transparent substrates and enclosing a liquid crystal between them. An ultraviolet curable adhesive is used to adhere the two substrates to ultraviolet rays. It is performed by irradiating and causing a photochemical reaction in the adhesive. Adhesion of two liquid crystal substrates with an ultraviolet curing adhesive is disclosed in, for example, Japanese Patent Laid-Open No. 8-146436.

【0004】紫外線硬化型の接着剤としては、波長が3
65nmの紫外線を硬化波長とするものが一般的に使用
されている。そして、光源ランプとしては、この硬化波
長を効率よく放射する放電ランプが選ばれるが、365
nm付近の紫外線を効率よく放射する放電ランプとし
て、鉄などの金属と水銀が封入されたメタルハライドラ
ンプがある。
The wavelength of the ultraviolet curable adhesive is 3
A material having an ultraviolet ray of 65 nm as a curing wavelength is generally used. A discharge lamp that efficiently radiates this curing wavelength is selected as the light source lamp.
As a discharge lamp that efficiently radiates ultraviolet rays in the vicinity of nm, there is a metal halide lamp in which a metal such as iron and mercury are enclosed.

【0005】図4は、鉄と水銀が封入されたメタルハラ
イドランプの分光放射束の一例を示す。これから分かる
ように、かかるメタルハライドランプからは、波長が3
65nm付近の紫外線の他に、300nm以下の遠紫外
線や、波長が750nm以上の赤外線も放射される。従
って、メタルハライドランプから放射される光をそのま
ま被照射物である2枚の液晶基板に照射すると、基板に
赤外線が吸収されて液晶基板が昇温する。このとき、2
枚の基板のうち、光源ランプに近い側の基板の方が大き
く昇温するので、2枚の基板の間で熱膨張量の差が生
じ、この状態で接着すると2枚の基板の間で位置ずれが
生じる。そして、この位置ずれ量が2〜3μm以上にな
ると画素の細かい高精細の液晶表示素子として不良にな
る。
FIG. 4 shows an example of the spectral radiant flux of a metal halide lamp containing iron and mercury. As you can see, the wavelength of this metal halide lamp is 3
In addition to the ultraviolet light having a wavelength of around 65 nm, far ultraviolet light having a wavelength of 300 nm or less and infrared light having a wavelength of 750 nm or more are also emitted. Therefore, when the light emitted from the metal halide lamp is directly applied to the two liquid crystal substrates that are the objects to be irradiated, infrared rays are absorbed by the substrates and the temperature of the liquid crystal substrate rises. At this time, 2
Of the two substrates, the one closer to the light source lamp has a larger temperature rise, so a difference in the amount of thermal expansion occurs between the two substrates, and if the two substrates are bonded in this state, they will be positioned between the two substrates. Misalignment occurs. When the amount of displacement is 2 to 3 μm or more, the liquid crystal display element with fine pixels becomes defective.

【0006】また、被照射物が2枚の基板を貼り合わせ
るもの以外の場合、例えば、光ディスクの保護膜硬化の
ために、ポリカーボネートのディスクの表面に光硬化型
アクリル樹脂を塗布し、波長が300〜400nmの光
を照射して光硬化型アクリル樹脂を乾燥して固化する場
合も、ディスクが赤外線を吸収して昇温すると、ディス
クに規格以上の「そり」が生じて不良品になる。また、
フィルムの印刷の乾燥、例えばペットボトルのラベル印
刷のように、波長が300〜400nmの光を照射して
光硬化型のインキを乾燥する場合も、プラスチックフイ
ルムが赤外線を吸収して昇温すると、プラスチックフイ
ルムの伸縮が生じ、また、多色印刷の場合は、色のずれ
が生じるなどの不具合がある。
When the object to be irradiated is other than one in which two substrates are bonded together, for example, in order to cure the protective film of the optical disk, a photocurable acrylic resin is applied to the surface of the polycarbonate disk, and the wavelength is 300. Even when the light-curable acrylic resin is dried and solidified by irradiating light of up to 400 nm, if the disk absorbs infrared rays and rises in temperature, a "warp" exceeding the standard occurs on the disk, resulting in a defective product. Also,
When the photocurable ink is dried by irradiating light having a wavelength of 300 to 400 nm, such as drying of printing of a film, for example, label printing of a PET bottle, when the plastic film absorbs infrared rays and rises in temperature, There is a problem that the plastic film expands and contracts, and in the case of multicolor printing, color shift occurs.

【0007】[0007]

【発明が解決しようとする課題】このように、光照射処
理を行う際に、被照射物が昇温すると不都合が生じるた
め、光源ランプと被照射物の間に熱線吸収フィルタを配
置して被照射物の昇温を抑制することが考えられる。そ
して、例えば液晶表示素子の製造工程において、液晶基
板の温度上昇を防ぐために、光源ランプと液晶基板の間
に熱線吸収フィルタを設けることが特開平11−153
799号に開示されている。
As described above, when the light irradiation process is performed, a problem occurs if the temperature of the object to be irradiated rises. Therefore, a heat ray absorption filter is arranged between the light source lamp and the object to be irradiated. It can be considered to suppress the temperature rise of the irradiation object. Then, for example, in a manufacturing process of a liquid crystal display element, a heat ray absorption filter is provided between the light source lamp and the liquid crystal substrate in order to prevent the temperature rise of the liquid crystal substrate.
No. 799.

【0008】熱線吸収フィルタとしては、一般的に色ガ
ラスフィルタが使用されている。この色ガラスフィルタ
は、ガラス中に金属原子を含むものであり、短波長の光
はよく透過させるが、長波長の光を吸収することによ
り、長波長の光を除去または減衰させる。
A colored glass filter is generally used as the heat ray absorbing filter. This colored glass filter contains metal atoms in the glass, and transmits short-wavelength light well, but absorbs long-wavelength light to remove or attenuate long-wavelength light.

【0009】しかし、かかる色ガラスフィルタに、波長
が330nm以下の波長の光を照射すると、色ガラスフ
ィルタの特性が劣化し、短波長の光の透過率が低下し、
紫外線硬化型接着剤の硬化波長である365nm付近の
紫外線の透過率も著しく低下する。そして、メタルハラ
イドランプには、前述のとおり、300nm以下の遠紫
外線が含まれているので、メタルハライドランプと液晶
基板の間に色ガラスフィルタを配置して光照射すると、
色ガラスフィルタの特性劣化により、硬化波長の透過率
が減少して接着剤の硬化に長時間要するようになり、更
には、十分に硬化しなくなる。従って、例えば液晶表示
素子の貼り合わせの場合、スループットの低下や接着不
良を引き起こす。
However, when the colored glass filter is irradiated with light having a wavelength of 330 nm or less, the characteristics of the colored glass filter are deteriorated, and the transmittance of short wavelength light is lowered,
The transmittance of ultraviolet rays near the curing wavelength of 365 nm of the ultraviolet curable adhesive also remarkably decreases. As described above, since the metal halide lamp contains deep ultraviolet rays having a wavelength of 300 nm or less, when a colored glass filter is arranged between the metal halide lamp and the liquid crystal substrate to irradiate light,
Due to the deterioration of the characteristics of the colored glass filter, the transmittance of the curing wavelength is reduced, and it takes a long time to cure the adhesive, and further, the adhesive is not sufficiently cured. Therefore, for example, in the case of laminating liquid crystal display elements, a decrease in throughput and poor adhesion are caused.

【0010】また、色ガラスフィルタは、長波長の光を
吸収することにより長波長の光を除去または減衰させる
ので、吸収した長波長の光が熱に変換されて色ガラスフ
ィルタ自体が昇温する。従って、色ガラスフィルタから
の輻射熱により被照射物が加熱されることがある。色ガ
ラスフィルタや被照射物に直接冷却風を吹き付けると昇
温を防止できる。しかし、被照射物が液晶表示素子など
クリーンな環境で製造する必要があるものの場合、色ガ
ラスフィルタや被照射物に冷却風を不用意に吹き付ける
と、この冷却風が予め製造環境に設定されているクリー
ンなエアーの流れを乱し、ダスト発生の原因になる。
Further, since the colored glass filter absorbs or absorbs long-wavelength light to remove or attenuate the long-wavelength light, the absorbed long-wavelength light is converted into heat to raise the temperature of the colored glass filter itself. . Therefore, the object to be irradiated may be heated by the radiant heat from the colored glass filter. The temperature rise can be prevented by directly blowing the cooling air onto the colored glass filter or the object to be irradiated. However, if the object to be irradiated needs to be manufactured in a clean environment such as a liquid crystal display element, if cooling air is inadvertently blown onto the colored glass filter or the object to be irradiated, this cooling air is set in advance in the manufacturing environment. It disturbs the flow of clean air and causes dust.

【0011】そこで本発明の第1の目的は、被照射物の
昇温を抑制する熱線吸収フィルタの特性を劣化させるこ
となく、光処理することが可能な光処理装置を提供する
ことであり、第2の目的は、熱線吸収フィルタの特性を
劣化させないとともに、色ガラスフィルタの輻射熱によ
り被照射物が昇温することがない光処理装置を提供する
ことである。
Therefore, a first object of the present invention is to provide an optical processing device capable of performing optical processing without deteriorating the characteristics of the heat ray absorption filter for suppressing the temperature rise of the object to be irradiated, A second object is to provide an optical processing device that does not deteriorate the characteristics of the heat ray absorption filter and that does not raise the temperature of the irradiated object due to the radiant heat of the colored glass filter.

【0012】[0012]

【課題を解決するための手段】前記第1の目的を達成す
るために、請求項1の発明は、光化学反応を生じる物質
が塗布された被照射物に紫外線を照射して該光化学反応
を生じる物質を反応させる光処理装置において、紫外線
を含む光を照射する光源部と、330nm以下の波長の
光を除去または減衰させる遠紫外線カットフィルタと、
750nm以上の波長の光を除去または減衰させる熱線
吸収フィルタとを備え、光源部の光が、遠紫外線カット
フィルタを透過した後、熱線吸収フィルタを透過して被
照射物に照射するようにする。
In order to achieve the first object, the invention of claim 1 irradiates an object to be irradiated with a substance causing a photochemical reaction with ultraviolet rays to cause the photochemical reaction. In a light processing device for reacting a substance, a light source unit for irradiating light including ultraviolet light, a far-ultraviolet light cut filter for removing or attenuating light having a wavelength of 330 nm or less,
A heat ray absorption filter for removing or attenuating light having a wavelength of 750 nm or more is provided, and the light of the light source unit passes through the far ultraviolet ray cut filter and then passes through the heat ray absorption filter to irradiate the irradiation object.

【0013】前記第2の目的を達成するために、請求項
2の発明は、請求項1の発明において、熱線吸収フィル
タの被照射物側に石英板を配置し、熱線吸収フィルタと
石英板の間に冷却風が流れる通風路を形成する。また、
請求項3の発明は、請求項1の発明において、遠紫外線
カットフィルタと熱線吸収フィルタの間に冷却風が流れ
る通風路を形成する。
In order to achieve the second object, the invention of claim 2 is the invention of claim 1 in which a quartz plate is arranged on the object side of the heat ray absorbing filter, and the quartz plate is placed between the heat ray absorbing filter and the quartz plate. Form a ventilation path through which cooling air flows. Also,
According to a third aspect of the invention, in the first aspect of the invention, a ventilation passage through which cooling air flows is formed between the far ultraviolet ray cut filter and the heat ray absorption filter.

【0014】請求項4の発明は、前記の第1の目的また
は第2の目的を達成できる光処理装置であって、被照射
物が2枚の基板であり、この基板を紫外線硬化型の接着
剤で接着するための光処理装置に関するものであり、請
求項5の発明は、液晶基板の貼り合わせ工程に使用され
る光処理装置に関するものである。
According to a fourth aspect of the present invention, there is provided an optical processing device capable of achieving the first or second object, wherein the object to be irradiated is two substrates, and the substrates are UV-curable adhesive. The present invention relates to an optical processing device for bonding with a chemical, and the invention of claim 5 relates to an optical processing device used in a step of bonding liquid crystal substrates.

【0015】[0015]

【発明の実施の形態】以下に、図面に基づいて本発明の
実施の形態を具体的に説明する。図1は、請求項1の発
明の実施の形態を示すものである。図1において、被照
射物は液晶表示素子Lである。すなわち、透明または半
透明の2枚の液晶基板P1,P2の周縁には、硬化波長
が365nmである紫外線硬化型の接着剤Sが、液晶基
板P1,P2間の空間を封止するように塗布されてい
る。そして、この液晶表示素子Lが保持台である石英プ
レート6に載置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows an embodiment of the invention according to claim 1. In FIG. 1, the irradiation target is the liquid crystal display element L. That is, an ultraviolet curable adhesive S having a curing wavelength of 365 nm is applied to the peripheral edges of the two transparent or translucent liquid crystal substrates P1 and P2 so as to seal the space between the liquid crystal substrates P1 and P2. Has been done. The liquid crystal display element L is mounted on the quartz plate 6 which is a holding table.

【0016】被照射物である液晶表示素子Lが載置され
た石英プレート6の下方にランプ1が配置されている。
ランプ1は、管形のバルブ内に鉄と水銀が封入されたメ
タルハライドランプであり、ランプ放射出力は16kW
である。そして、分光放射束は図4に示すとおりであ
り、365nm付近の光を効率よく放射する。ランプ1
は樋形のミラー2で覆われており、ランプ1とミラー2
で光源部を構成している。ランプ1の直接光、およびミ
ラー2の反射光は液晶表示素子Lに向けて放射される。
ミラー2は、ランプ1からの光を全て反射する全反射ミ
ラーを用いてもよいが、長波長の熱線を透過する多層膜
を蒸着した「コールドミラー」を用いるのが好ましい。
A lamp 1 is arranged below a quartz plate 6 on which a liquid crystal display element L which is an object to be irradiated is mounted.
Lamp 1 is a metal halide lamp in which iron and mercury are enclosed in a tubular bulb, and the lamp radiation output is 16 kW.
Is. The spectral radiant flux is as shown in FIG. 4 and efficiently radiates light near 365 nm. Lamp 1
Is covered with a gutter-shaped mirror 2, a lamp 1 and a mirror 2
It constitutes the light source section. The direct light of the lamp 1 and the reflected light of the mirror 2 are emitted toward the liquid crystal display element L.
The mirror 2 may be a total reflection mirror that reflects all the light from the lamp 1, but it is preferable to use a “cold mirror” in which a multilayer film that transmits heat rays of long wavelength is deposited.

【0017】ランプ1と被照射物である液晶表示素子L
の間に、遠紫外線カットフィルタ3および色ガラスフィ
ルタである熱線吸収フィルタ4が配置されている。ここ
で、遠紫外線カットフィルタ3はランプ1側に、熱線吸
収フィルタ4は液晶表示素子L側に配置されている。遠
紫外線カットフィルタ3は、石英板に波長330nm以
下の光が反射するように設計された多層膜を蒸着したも
のであり、透過率は、例えば300〜330nmの範囲
で50%以下であり、300nm以下は0%である。つ
まり、300nm以下の光は完全に除去し、300〜3
30nmの波長の光を50%以上減衰させる特性を有す
る。色ガラスフィルタは、吸収する波長域が異なるもの
が種々市販されているので、本発明に使用する熱線吸収
フィルタ4として、透過率が、720〜730nmの範
囲で50%、1001〜1100nmの範囲で1%以下
のものを選んだが、750nm以上の波長の光を完全に
除去するか、または50%以上減衰させる特性を有する
ものであればよい。
The lamp 1 and the liquid crystal display element L which is the object to be irradiated
A far-ultraviolet ray cut filter 3 and a heat ray absorption filter 4 which is a colored glass filter are arranged between the two. Here, the far ultraviolet ray cut filter 3 is arranged on the lamp 1 side, and the heat ray absorption filter 4 is arranged on the liquid crystal display element L side. The far-ultraviolet cut filter 3 is a quartz plate on which a multilayer film designed to reflect light having a wavelength of 330 nm or less is deposited, and the transmittance is, for example, 50% or less in the range of 300 to 330 nm, and 300 nm. The following is 0%. That is, light of 300 nm or less is completely removed, and 300 to 3
It has a characteristic of attenuating light having a wavelength of 30 nm by 50% or more. Since various colored glass filters having different absorption wavelength ranges are commercially available, the heat ray absorption filter 4 used in the present invention has a transmittance of 50% in the range of 720 to 730 nm and 1001 to 1100 nm. 1% or less is selected, but any material having a property of completely removing light having a wavelength of 750 nm or more or attenuating it by 50% or more may be used.

【0018】ランプ1から放射された365nm付近の
光は、後述するように、遠紫外線カットフィルタ3およ
び熱線吸収フィルタ4の順に透過して液晶表示素子Lに
照射される。そして、液晶表示素子Lが図示略の加圧手
段により上方から加圧されてた状態で、接着剤Sは36
5nmの紫外線により硬化され、2枚の液晶基板P1,
P2は貼り合わされる。貼り合わせ処理が完了すると、
液晶表示素子Lの周辺部に設けられた注入口から液晶が
2枚の液晶基板P1,P2間の空間内に注入される。
The light in the vicinity of 365 nm emitted from the lamp 1 is transmitted through the far-ultraviolet ray cut filter 3 and the heat ray absorption filter 4 in this order and applied to the liquid crystal display element L, as described later. Then, in a state where the liquid crystal display element L is pressed from above by a pressing means (not shown), the adhesive S
Two liquid crystal substrates P1, which are cured by 5 nm ultraviolet light
P2 is pasted together. When the bonding process is completed,
Liquid crystal is injected into the space between the two liquid crystal substrates P1 and P2 from an injection port provided in the peripheral portion of the liquid crystal display element L.

【0019】図5は、遠紫外線カットフィルタ3を透過
した光の分光放射束を示すが、330nm以下の遠紫外
線は完全に除去され、ないし大きく減衰している。そし
て、遠紫外線カットフィルタ3を透過した光が色ガラス
フィルタからなる熱線吸収フィルタ4に入射する。図6
は、熱線吸収フィルタ4を透過した光の分光放射束を示
すが、熱線吸収フィルタ4によって、750nm以上の
長波長の光はほとんど除去されており、365nm付近
の紫外線のみが被照射物である液晶表示素子Lに照射さ
れ、これによって、硬化波長が365nmである接着剤
Sは効率よく硬化する。
FIG. 5 shows the spectral radiant flux of the light transmitted through the far-ultraviolet ray cut filter 3. Far-ultraviolet rays having a wavelength of 330 nm or less are completely removed or largely attenuated. Then, the light transmitted through the far-ultraviolet ray cut filter 3 enters the heat ray absorption filter 4 formed of a colored glass filter. Figure 6
Shows the spectral radiant flux of the light transmitted through the heat ray absorption filter 4. The heat ray absorption filter 4 almost eliminates the light having a long wavelength of 750 nm or more, and only the ultraviolet light around 365 nm is the irradiated liquid crystal. The display element L is irradiated and the adhesive S having a curing wavelength of 365 nm is efficiently cured.

【0020】このように、遠紫外線カットフィルタ3に
よって330nm以下の遠紫外線が除去され、ないし大
きく減衰した光が色ガラスフィルタからなる熱線吸収フ
ィルタ4に入射するので、熱線吸収フィルタ4の特性劣
化が抑制される。図7は、熱線吸収フィルタの特性劣化
曲線を示す。図7において、点線曲線は、遠紫外線カッ
トフィルタを使用せず、放電ランプから放射される光が
そのまま熱線吸収フィルタに入射する従来例の特性劣化
曲線を示すが、当初85〜90%程度であった波長36
5nmの光の透過率は、照射時間と共に大きく低下し、
照射時間100時間においては60〜65%程度であっ
ておよそ25〜30%低下する。従って、接着剤の硬化
波長である波長365nmの紫外線が大きく減衰してし
まう。これに対して、実線曲線は、本発明の実施例にお
ける特性劣化曲線を示すが、波長365nmの光の透過
率の低下は、90時間照射しても10%程度である。従
って、長時間照射しても、接着剤の硬化波長である波長
365nmの紫外線の減衰を従来の半分に抑えることが
でき、液晶表示素子Lのスループットの低下や接着不良
を防止することができる。
As described above, the far-ultraviolet cut filter 3 removes far-ultraviolet rays having a wavelength of 330 nm or less, or the light greatly attenuated enters the heat-ray absorption filter 4 formed of a colored glass filter, so that the characteristics of the heat-ray absorption filter 4 are deteriorated. Suppressed. FIG. 7 shows a characteristic deterioration curve of the heat ray absorption filter. In FIG. 7, the dotted curve shows the characteristic deterioration curve of the conventional example in which the light emitted from the discharge lamp is directly incident on the heat ray absorption filter without using the far-ultraviolet ray cut filter, which is initially about 85 to 90%. Wavelength 36
The transmittance of 5 nm light decreases greatly with irradiation time,
When the irradiation time is 100 hours, it is about 60 to 65%, which is about 25 to 30% lower. Therefore, ultraviolet rays having a wavelength of 365 nm, which is the curing wavelength of the adhesive, are greatly attenuated. On the other hand, the solid curve shows the characteristic deterioration curve in the example of the present invention, but the decrease in the transmittance of light having a wavelength of 365 nm is about 10% even after irradiation for 90 hours. Therefore, even if irradiation is performed for a long time, the attenuation of ultraviolet rays having a wavelength of 365 nm, which is the curing wavelength of the adhesive, can be suppressed to half that of the conventional case, and the decrease in throughput of the liquid crystal display element L and the adhesion failure can be prevented.

【0021】また、遠紫外線カットフィルタ3および熱
線吸収フィルタ4を透過して、図6に示す分光放射束の
光が被照射物である液晶表示素子Lに照射されるので、
赤外線が液晶基板に照射されず、液晶表示素子Lはほと
んど昇温しない。このため、2枚の液晶基板P1,P2
の温度差は極く僅かであり、熱膨張量の差による2枚の
液晶基板P1,P2の「ずれ」は発生せず、製品歩留り
を向上することができる。
Further, since the light of the spectral radiant flux shown in FIG. 6 is transmitted to the liquid crystal display element L, which is the object to be irradiated, after passing through the far ultraviolet ray cut filter 3 and the heat ray absorption filter 4,
The liquid crystal substrate is not irradiated with infrared rays, and the temperature of the liquid crystal display element L hardly rises. Therefore, the two liquid crystal substrates P1 and P2 are
The temperature difference is extremely small, and the "deviation" between the two liquid crystal substrates P1 and P2 due to the difference in thermal expansion does not occur, and the product yield can be improved.

【0022】図2は、請求項2の発明の実施の形態を示
す。被照射物である液晶表示素子Lおよび光源部あるラ
ンプ1とミラー2は図1に示す請求項1の発明の実施の
形態と同じである。熱線吸収フィルタ4は、寸法の大き
なものがあまり市販されていないので、50×50mm
程度の大きさの複数枚の熱線吸収フィルタ4を遠紫外線
カットフィルタ3の上に並べている。遠紫外線カットフ
ィルタ3および熱線吸収フィルタ4の特性は、前述のと
おりである。
FIG. 2 shows an embodiment of the invention of claim 2. The liquid crystal display element L which is the object to be illuminated and the lamp 1 and the mirror 2 which are the light source section are the same as those of the embodiment of the invention of claim 1 shown in FIG. The heat ray absorption filter 4 has a large size and is not commercially available.
A plurality of heat ray absorption filters 4 having a size of about 3 are arranged on the far-ultraviolet ray cut filter 3. The characteristics of the far ultraviolet ray cut filter 3 and the heat ray absorption filter 4 are as described above.

【0023】熱線吸収フィルタ4と遠紫外線カットフィ
ルタ3を保持する保持枠7は、その側面に給気口71と
排気口72が形成され、上面と下面が開放されている。
そして、熱線吸収フィルタ4と遠紫外線カットフィルタ
3は、保持枠7の開放された下面を覆うように保持され
ている。冷却風用のブロワ8がダクト9を介して給気口
71に接続されており、排気口72にも排風を外部に導
くダクト9が接続されている。そして、石英板5が保持
枠7の開放された上面を覆うように保持されており、熱
線吸収フィルタ4と石英板5および保持枠7で郭定され
る閉空間が冷却風の通風路10になっている。そして、
ブロワ8が作動すると、通風路10を流れる冷却風が、
長波長の光を吸収して昇温した熱線吸収フィルタ4を冷
却するようになっている。なお、ブロワ8を排気口72
側に設けた排風型(プル型)の冷却装置としてもよい。
The holding frame 7 for holding the heat ray absorbing filter 4 and the far-ultraviolet ray cut filter 3 has an air supply port 71 and an exhaust port 72 formed on its side surface, and its upper and lower surfaces are open.
The heat ray absorption filter 4 and the far ultraviolet ray cut filter 3 are held so as to cover the opened lower surface of the holding frame 7. The blower 8 for cooling air is connected to the air supply port 71 through the duct 9, and the exhaust port 72 is also connected to the duct 9 that guides the exhausted air to the outside. The quartz plate 5 is held so as to cover the open upper surface of the holding frame 7, and the closed space defined by the heat ray absorbing filter 4, the quartz plate 5 and the holding frame 7 is provided in the cooling air ventilation passage 10. Has become. And
When the blower 8 operates, the cooling air flowing through the ventilation passage 10
The heat ray absorption filter 4 that absorbs long-wavelength light and rises in temperature is cooled. The blower 8 is connected to the exhaust port 72
An exhaust type (pull type) cooling device provided on the side may be used.

【0024】図3は、請求項3の発明の実施の形態を示
す。ここでは、遠紫外線カットフィルタ3と同じ寸法の
1枚の熱線吸収フィルタ4を使用しており、遠紫外線カ
ットフィルタ3と熱線吸収フィルタ4が保持枠7の下面
と上面をそれぞれ覆うように保持されている。そして、
熱線吸収フィルタ4と遠紫外線カットフィルタ3および
保持枠7で郭定される閉空間が冷却風の通風路10にな
っている。その他の構成は、図2に示す請求項2の発明
の実施の形態と同じである。
FIG. 3 shows an embodiment of the invention according to claim 3. Here, one heat ray absorption filter 4 having the same size as the far ultraviolet ray cut filter 3 is used, and the far ultraviolet ray cut filter 3 and the heat ray absorption filter 4 are held so as to cover the lower surface and the upper surface of the holding frame 7, respectively. ing. And
A closed space defined by the heat ray absorption filter 4, the far-ultraviolet ray cut filter 3, and the holding frame 7 serves as a ventilation passage 10 for cooling air. Other configurations are the same as those of the embodiment of the invention of claim 2 shown in FIG.

【0025】図2及び図3において、ブロワ8を作動さ
せるとともに、ランプ1を点灯すると、ランプ1から放
射する光のうち、365nm付近の紫外線は、遠紫外線
カットフィルタ3および熱線吸収フィルタ4を透過して
液晶表示素子Lに照射され、接着剤Sが硬化する。この
とき、330nm以下の光が遠紫外線カットフィルタ3
で除去、ないし減衰されるので熱線吸収フィルタ4の特
性劣化が起らず、また、750nm以上の長波長の光が
熱線吸収フィルタ4で除去、ないし減衰されるので、液
晶表示素子Lが長波長の光を吸収せず、昇温しないの
で、熱膨張量の差による2枚の液晶基板P1,P2の
「ずれ」を防止できることは図1に示す請求項1の発明
の実施の形態と同じである。
2 and 3, when the blower 8 is actuated and the lamp 1 is turned on, the ultraviolet light of about 365 nm among the light emitted from the lamp 1 passes through the far ultraviolet cut filter 3 and the heat ray absorption filter 4. Then, the liquid crystal display element L is irradiated and the adhesive S is cured. At this time, the light of 330 nm or less is emitted by the far-ultraviolet cut filter 3.
The heat ray absorption filter 4 does not deteriorate in characteristics because it is removed or attenuated by the heat ray absorption filter 4. Also, since the light having a long wavelength of 750 nm or more is removed or attenuated by the heat ray absorption filter 4, the liquid crystal display element L has a long wavelength. This is the same as the embodiment of the invention of claim 1 shown in FIG. 1 in that it is possible to prevent the “deviation” between the two liquid crystal substrates P1 and P2 due to the difference in the amount of thermal expansion, since it does not absorb the above light and does not heat up. is there.

【0026】そして、ブロワ8から送り出される冷却風
により、長波長の光を吸収して昇温した熱線吸収フィル
タ4が冷却されるので、熱線吸収フィルタ4から輻射熱
がほとんど放射せず、被照射物である液晶表示素子Lの
昇温防止に大きな効果を得ることができる。因に、図2
において、ランプ1の入力が200W、下側の液晶基板
P2と石英板5の間の距離が550mm、液晶基板P2
の大きさが370×470mmであって液晶基板P2に
カラーフィルタを設けたものである場合、冷却風の風量
が3.5m/minであれば、2枚の液晶基板P1、
P2の温度差は0.9〜1.3deg程度であり、2枚
の液晶基板P1、P2の「ずれ」は2〜3μm以下とな
り、高精細の液晶表示素子の貼り合わせにおいてさえも
実用上問題のないことが分かった。また、冷却風は、閉
空間の通風路10を通って外部に排出されるので、この
冷却風が予め製造環境に設定されているクリーンなエア
ーの流れを乱すことがなく、クリーンな環境を維持して
光照射処理を行うことができる。
Then, the cooling air sent from the blower 8 cools the heat ray absorption filter 4 which has absorbed long-wavelength light and has risen in temperature, so that almost no radiant heat is emitted from the heat ray absorption filter 4 and the object to be irradiated is radiated. That is, a great effect can be obtained in preventing the temperature rise of the liquid crystal display element L. By the way,
, The input of the lamp 1 is 200 W, the distance between the lower liquid crystal substrate P2 and the quartz plate 5 is 550 mm, and the liquid crystal substrate P2 is
Is 370 × 470 mm and a color filter is provided on the liquid crystal substrate P2, if the cooling air volume is 3.5 m 3 / min, then the two liquid crystal substrates P1,
The temperature difference of P2 is about 0.9 to 1.3 deg, and the “deviation” between the two liquid crystal substrates P1 and P2 is 2 to 3 μm or less, which is a practical problem even when bonding high-definition liquid crystal display elements. It turns out that there is no. Further, since the cooling air is discharged to the outside through the ventilation passage 10 in the closed space, the cooling air does not disturb the flow of clean air that is set in the manufacturing environment in advance, and the clean environment is maintained. Then, the light irradiation process can be performed.

【0027】図2に示す請求項2の発明の実施の形態で
は、複数枚の熱線吸収フィルタ4を互いに固定しないで
並べるので、熱線吸収フィルタ4が長波長の光を吸収し
て昇温したとき、その熱膨張を熱線吸収フィルタ4間に
生じる微小な隙間によって吸収させることができ、熱線
吸収フィルタ4の熱膨張による変形や破損などのトラブ
ルを防止できる利点がある。また、熱線吸収フィルタ4
は、ランプ1の光が入射する下面(ランプ1側の面)の
方が高温になるが、図3に示す請求項3の発明の実施の
形態では、熱線吸収フィルタ4の下面を冷却風で冷却す
るので、効率よく熱線吸収フィルタ4を冷却できる利点
がある。
In the embodiment of the invention of claim 2 shown in FIG. 2, since a plurality of heat ray absorbing filters 4 are arranged without being fixed to each other, when the heat ray absorbing filter 4 absorbs long wavelength light and rises in temperature. The thermal expansion can be absorbed by the minute gap generated between the heat ray absorption filters 4, and there is an advantage that troubles such as deformation and damage due to the heat expansion of the heat ray absorption filter 4 can be prevented. In addition, the heat ray absorption filter 4
In the embodiment of the invention of claim 3 shown in FIG. 3, the lower surface on which the light of the lamp 1 is incident (the surface on the side of the lamp 1) is heated by cooling air. Since it is cooled, there is an advantage that the heat ray absorption filter 4 can be efficiently cooled.

【0028】以上の実施の形態では、被照射物は2枚の
液晶基板P1、P2を貼り合わせる液晶表示素子Lであ
ったが、例えば、光ディスクの保護膜硬化処理やフィル
ムの印刷の乾燥処理のように、2枚の板状物を貼り合わ
せるものではないが、光照射処理時に、被照射物が長波
長の光を吸収して昇温することにより不具合が生じる場
合にも本発明を有効に適用することかできる。
In the above embodiment, the object to be irradiated is the liquid crystal display element L in which the two liquid crystal substrates P1 and P2 are bonded together. However, for example, a protective film curing process for an optical disc or a drying process for printing a film is performed. As described above, although the two plate-like objects are not attached to each other, the present invention can be effectively applied even when the object to be irradiated absorbs long-wavelength light and rises in temperature during the light irradiation process. Can be applied.

【0029】[0029]

【発明の効果】以上説明したように、ランプの光は、3
30nm以下の波長の光を除去または減衰させる遠紫外
線カットフィルタと、750nm以上の波長の光を除去
または減衰させる熱線吸収フィルタをこの順序に透過し
て被照射物に照射されるので、熱線吸収フィルタの特性
劣化が生じることがなくて長時間有効に365nm付近
の紫外線を被照射物に照射できるとともに、被照射物が
長波長の光を吸収して昇温することを防止できる。ま
た、熱線吸収フィルタを通閉空間である通風路を流れる
冷却風により冷却するので、長波長の光を吸収する熱線
吸収フィルタの昇温を防止でき、熱線吸収フィルタの輻
射熱による被照射物の昇温防止に大きな効果を得ること
ができる。従って、本発明は、被照射物が紫外線硬化型
接着剤で貼り合わされる2枚の液晶基板のように、被照
射物が昇温すると不良率が増大するものの光照射処理に
有効に適用することができる。
As described above, the light of the lamp is 3
Since a far-ultraviolet ray cut filter that removes or attenuates light having a wavelength of 30 nm or less and a heat ray absorption filter that removes or attenuates light having a wavelength of 750 nm or more is transmitted in this order to the object to be irradiated, the heat ray absorbing filter It is possible to effectively irradiate the irradiation target with ultraviolet rays in the vicinity of 365 nm for a long time without causing the characteristic deterioration, and to prevent the irradiation target from absorbing light having a long wavelength and raising the temperature. Further, since the heat ray absorption filter is cooled by the cooling air flowing through the ventilation passage which is a closed space, it is possible to prevent the temperature rise of the heat ray absorption filter which absorbs the light of long wavelength, and to raise the irradiated object due to the radiation heat of the heat ray absorption filter. A great effect can be obtained in preventing temperature. Therefore, the present invention can be effectively applied to a light irradiation process although the defect rate increases as the temperature of the irradiation target increases, such as two liquid crystal substrates in which the irradiation target is bonded with an ultraviolet curable adhesive. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の実施の形態の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the invention of claim 1.

【図2】請求項2の発明の実施の形態の説明図である。FIG. 2 is an explanatory diagram of an embodiment of the invention of claim 2;

【図3】請求項3の発明の実施の形態の説明図である。FIG. 3 is an explanatory diagram of an embodiment of the invention of claim 3;

【図4】ランプの分光放射束図である。FIG. 4 is a spectral radiant flux diagram of a lamp.

【図5】遠紫外線カットフィルタを透過した光の分光放
射束図である。
FIG. 5 is a spectral radiant flux diagram of light transmitted through a far-ultraviolet ray cut filter.

【図6】遠紫外線カットフィルタおよび熱線吸収フィル
タを透過した光の分光放射束図である。
FIG. 6 is a spectral radiant flux diagram of light transmitted through a far ultraviolet ray cut filter and a heat ray absorption filter.

【図7】熱線吸収フィルタの特性劣化の説明図である。FIG. 7 is an explanatory diagram of characteristic deterioration of the heat ray absorption filter.

【符号の説明】[Explanation of symbols]

1 ランプ 2 ミラー 3 遠紫外線カットフィルタ 4 熱線吸収フィルタ 5 石英板 6 石英プレート 7 保持枠 71 給気口 72 排気口 8 ブロワ 9 ダクト 10 通風路 L 液晶表示素子 P1,P2 液晶基板 S 接着剤 1 lamp 2 mirror 3 Deep UV cut filter 4 Heat ray absorption filter 5 Quartz plate 6 Quartz plate 7 holding frame 71 Air inlet 72 Exhaust port 8 Blower 9 ducts 10 Ventilation path L liquid crystal display element P1, P2 liquid crystal substrate S adhesive

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−254540(JP,A) 特開 平8−114787(JP,A) 特開 平9−185071(JP,A) 特開 平8−146436(JP,A) 特開 平6−144890(JP,A) 特開 平9−258026(JP,A) 特開 平8−101395(JP,A) 特開 昭61−219932(JP,A) 特開 平8−211396(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/13 - 1/141 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-11-254540 (JP, A) JP-A-8-114787 (JP, A) JP-A-9-185071 (JP, A) JP-A-8- 146436 (JP, A) JP-A-6-144890 (JP, A) JP-A-9-258026 (JP, A) JP-A-8-101395 (JP, A) JP-A-61-219932 (JP, A) JP-A-8-211396 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G02F 1/13-1/141

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光化学反応を生じる物質が塗布された被
照射物に紫外線を照射して該光化学反応を生じる物質を
反応させる光照射装置において、 紫外線を含む光を照射する光源部と、330nm以下の
波長の光を除去または減衰させる遠紫外線カットフィル
タと、750nm以上の波長の光を除去または減衰させ
る熱線吸収フィルタとを備え、 前記光源部の光が、遠紫外線カットフィルタを透過した
後、熱線吸収フィルタを透過して被照射物に照射される
ことを特徴とする光処理装置。
1. A light irradiation device for irradiating an object to which a substance that causes a photochemical reaction is applied with ultraviolet rays to react the substance that causes the photochemical reaction, a light source section for irradiating light including ultraviolet rays, and 330 nm or less. A far ultraviolet cut filter for removing or attenuating light having a wavelength of 750 nm and a heat ray absorbing filter for removing or attenuating light having a wavelength of 750 nm or more. An optical processing device, characterized in that it is transmitted through an absorption filter and irradiated onto an object to be irradiated.
【請求項2】 前記熱線吸収フィルタの被照射物側に石
英板が配置され、該熱線吸収フィルタと石英板の間に冷
却風が流れる通風路が形成されたことを特徴とする請求
項1記載の光処理装置。
2. The light according to claim 1, wherein a quartz plate is arranged on the object side of the heat ray absorbing filter, and a ventilation passage through which cooling air flows is formed between the heat ray absorbing filter and the quartz plate. Processing equipment.
【請求項3】 前記遠紫外線カットフィルタと熱線吸収
フィルタの間に冷却風が流れる通風路が形成されたこと
を特徴とする請求項1記載の光処理装置。
3. The optical processing device according to claim 1, wherein a ventilation passage through which cooling air flows is formed between the far ultraviolet ray cut filter and the heat ray absorption filter.
【請求項4】前記光化学反応を生じる物質は紫外線硬化
型の接着剤であり、該被照射物は2枚の基板であり、2
枚の基板の間に塗布された接着剤に紫外線を照射して2
枚の基板を貼り合わせることを特徴とする請求項1、請
求項2、請求項3のいずれかに記載の光処理装置。
4. The substance that causes the photochemical reaction is an ultraviolet curable adhesive, and the object to be irradiated is two substrates.
Irradiate the adhesive applied between the two substrates with ultraviolet rays and
The optical processing apparatus according to any one of claims 1, 2, and 3, wherein a plurality of substrates are bonded together.
【請求項5】前記基板が液晶基板であることを特徴とす
る請求項4記載の光処理装置。
5. The optical processing apparatus according to claim 4, wherein the substrate is a liquid crystal substrate.
JP24452899A 1999-08-31 1999-08-31 Light processing equipment Expired - Fee Related JP3449308B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24452899A JP3449308B2 (en) 1999-08-31 1999-08-31 Light processing equipment
TW089117277A TWI251094B (en) 1999-08-31 2000-08-25 Optical processing device
KR10-2000-0050728A KR100518715B1 (en) 1999-08-31 2000-08-30 Light processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24452899A JP3449308B2 (en) 1999-08-31 1999-08-31 Light processing equipment

Publications (2)

Publication Number Publication Date
JP2001066563A JP2001066563A (en) 2001-03-16
JP3449308B2 true JP3449308B2 (en) 2003-09-22

Family

ID=17120043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24452899A Expired - Fee Related JP3449308B2 (en) 1999-08-31 1999-08-31 Light processing equipment

Country Status (3)

Country Link
JP (1) JP3449308B2 (en)
KR (1) KR100518715B1 (en)
TW (1) TWI251094B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029180A (en) * 2002-06-24 2004-01-29 Nitto Denko Corp Ultra-violet light polarizing light source device and manufacturing method of liquid crystal orientation film using it
KR100889358B1 (en) * 2002-11-09 2009-03-18 삼성전자주식회사 Device for forming liquid crystal fence
KR100949501B1 (en) * 2005-12-29 2010-03-24 엘지디스플레이 주식회사 Apparatus of cooling bonded substrates and Method of fabricating Liquid Crystal Display Device using the same
DE102017006860A1 (en) * 2017-07-21 2019-01-24 Voxeljet Ag Method and device for producing 3D molded parts with spectrum converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329427A (en) * 1992-05-29 1993-12-14 Iwasaki Electric Co Ltd Irradiation device for ultraviolet curing
JPH08101395A (en) * 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH08146436A (en) * 1994-11-16 1996-06-07 Ushio Inc Method and device for bonding liquid crystal panel
JPH09292602A (en) * 1996-04-24 1997-11-11 Matsushita Electric Ind Co Ltd Production of liquid crystal display panel and producing device
JP3176844B2 (en) * 1996-05-31 2001-06-18 ウシオ電機株式会社 Disk bonding device

Also Published As

Publication number Publication date
KR20010067131A (en) 2001-07-12
TWI251094B (en) 2006-03-11
JP2001066563A (en) 2001-03-16
KR100518715B1 (en) 2005-10-04

Similar Documents

Publication Publication Date Title
JP3545337B2 (en) Cold light-ultraviolet light-irradiation device
JP3094902B2 (en) UV irradiation device
JP5279862B2 (en) Pellicle membrane, method for producing the same, and pellicle on which the membrane is stretched
EP0810592B1 (en) Process and device for bonding discs to one another
JP3449308B2 (en) Light processing equipment
CN102037405A (en) Transmissive screen and diffusion plate
JP6071212B2 (en) Manufacturing method of display device
JP4636524B2 (en) LCD panel manufacturing equipment
JP3215709B2 (en) Light irradiation device
JPH08146436A (en) Method and device for bonding liquid crystal panel
JP2003201153A (en) Method of joining transparent substance and joined quartz glass sheet and apparatus using the same
JPH11254540A (en) Ultraviolet irradiation apparatus
JP2003107433A (en) Method and apparatus for manufacturing liquid crystal display device
JP6471503B2 (en) Light irradiation device
JP4380910B2 (en) Pellicle
JP3270688B2 (en) Disk bonding device
JPH10123983A (en) Liquid crystal display device
JP3354825B2 (en) UV irradiation device
JP2007191543A (en) Ultraviolet-curing method and ultraviolet-curing apparatus
JPS59171901A (en) Cemented lens and its cementing method
JPH0646304B2 (en) UV curing irradiation device
JP3176844B2 (en) Disk bonding device
TWI556055B (en) A mask protective film module and manufacturing method thereof
JPH09258011A (en) Lens sheet
JPH07114993B2 (en) Light irradiation device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3449308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees