JP3449174B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine

Info

Publication number
JP3449174B2
JP3449174B2 JP15403597A JP15403597A JP3449174B2 JP 3449174 B2 JP3449174 B2 JP 3449174B2 JP 15403597 A JP15403597 A JP 15403597A JP 15403597 A JP15403597 A JP 15403597A JP 3449174 B2 JP3449174 B2 JP 3449174B2
Authority
JP
Japan
Prior art keywords
catalyst
nox
amount
way catalyst
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15403597A
Other languages
Japanese (ja)
Other versions
JPH112114A (en
Inventor
靖二 石塚
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15403597A priority Critical patent/JP3449174B2/en
Publication of JPH112114A publication Critical patent/JPH112114A/en
Application granted granted Critical
Publication of JP3449174B2 publication Critical patent/JP3449174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関し、詳しくは、排気通路にNOx吸収触媒を
備えた内燃機関において、NOxの浄化率を向上させる
ための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to a technique for improving the NOx purification rate in an internal combustion engine having an NOx absorption catalyst in an exhaust passage.

【0002】[0002]

【従来の技術】従来から、排気空燃比がリーンであると
きに排気中のNOxを吸収し、排気空燃比が理論空燃比
(ストイキ)又はリッチであるときに前記吸収したNO
xを放出して還元処理するNOx吸収触媒(NOx吸収
還元型三元触媒)を備えた機関が知られている。
2. Description of the Related Art Conventionally, when the exhaust air-fuel ratio is lean, it absorbs NOx in the exhaust gas, and when the exhaust air-fuel ratio is stoichiometric or rich, the absorbed NOx is absorbed.
An engine provided with a NOx absorption catalyst (NOx absorption reduction type three-way catalyst) that releases x and performs reduction processing is known.

【0003】また、上記NOx吸収触媒を備える排気浄
化装置において、NOx吸収触媒の上流側及び下流側に
三元触媒をそれぞれ備えるようにした構成も知られてい
る(特開平8−270440号公報等参照)。
Further, in the exhaust gas purifying apparatus having the NOx absorbing catalyst, there is also known a structure in which a three-way catalyst is provided on each of the upstream side and the downstream side of the NOx absorbing catalyst (Japanese Patent Laid-Open No. 8-270440, etc.). reference).

【0004】[0004]

【発明が解決しようとする課題】上記NOx吸収触媒で
は、燃焼混合気の空燃比がリーンからストイキ又はリッ
チに切り換えられ、排気空燃比がリッチ化し始めると、
それまでのリーン燃焼中に吸収していたNOxを脱離す
ることになり、この脱離したNOxはNOx吸収触媒の
三元層や後方の三元触媒で還元処理されることになる。
In the above NOx absorption catalyst, when the air-fuel ratio of the combustion mixture is switched from lean to stoichiometric or rich and the exhaust air-fuel ratio begins to become rich,
The NOx absorbed during the lean combustion until then is desorbed, and this desorbed NOx is reduced by the three-way layer of the NOx absorption catalyst or the three-way catalyst behind.

【0005】しかし、NOx吸収触媒やNOx吸収触媒
の上流側に配置される三元触媒には、触媒の酸素ストレ
ージ能力によってリーン燃焼中に多量の酸素が蓄積して
おり、この蓄積していた酸素の脱離によって空燃比が切
り換わっても触媒内及び触媒下流の排気空燃比はなかな
かリッチにならず、更に、NOxの還元に必要なHC,
COが前記リーン燃焼中に蓄積されていた酸素によって
酸化処理されてしまうため、NOx吸収触媒やNOx吸
収触媒の下流側に配置される三元触媒において効率良く
NOxを還元処理することができないという問題があっ
た。
However, due to the oxygen storage capacity of the catalyst, a large amount of oxygen is accumulated in the NOx absorption catalyst and the three-way catalyst arranged upstream of the NOx absorption catalyst during lean combustion. Even if the air-fuel ratio is switched by desorption of NOx, the exhaust air-fuel ratio inside the catalyst and downstream of the catalyst does not easily become rich, and further, HC, which is necessary for NOx reduction,
Since CO is oxidized by the oxygen accumulated during the lean combustion, it is not possible to efficiently reduce NOx in the NOx absorption catalyst or the three-way catalyst arranged downstream of the NOx absorption catalyst. was there.

【0006】ここで、触媒内を早期にリッチ化させてN
Ox浄化率を向上させるには、大きなリッチスパイクを
与える必要があるが、この場合、燃費が悪化し、また、
HC,COの排出量を増大せさてしまうという問題が生
じる。触媒の酸素ストレージ能力は、触媒に担持される
主にセリアCeの量によって変化するが、従来、単位体
積当たりのセリア担持量は各触媒で略同等であって、要
求浄化性能に基づく触媒容量の設定によって各触媒のセ
リア担持量が決定されることになっており、上記のNO
x脱離時に同時に脱離される酸素の影響を考慮した設定
にはなっていなかった。
Here, the inside of the catalyst is enriched at an early stage so that N
In order to improve the Ox purification rate, it is necessary to give a large rich spike, but in this case, the fuel consumption deteriorates and
The problem arises that the amount of HC and CO emissions is increased. The oxygen storage capacity of the catalyst mainly changes depending on the amount of ceria Ce supported on the catalyst, but conventionally, the supported amount of ceria per unit volume is approximately the same for each catalyst, and the catalyst capacity based on the required purification performance is The amount of ceria supported on each catalyst is determined by the setting, and the above NO
x It was not set in consideration of the effect of oxygen that is simultaneously desorbed during desorption.

【0007】本発明は上記実情に鑑みなされたものであ
り、少なくともNOx吸収触媒とその下流に配置される
三元触媒とを備えてなる排気浄化装置において、空燃比
がリーンからストイキ又はリッチに切り換わってNOx
が脱離されるときのNOxの処理能力を向上させること
を目的とする。
The present invention has been made in view of the above circumstances, and in an exhaust emission control device including at least a NOx absorption catalyst and a three-way catalyst arranged downstream thereof, the air-fuel ratio is switched from lean to stoichiometric or rich. NOx instead
The purpose is to improve the processing capacity of NOx when desorbed.

【0008】[0008]

【課題を解決するための手段】そのため請求項1記載の
発明は、排気空燃比がリーンであるときに排気中のNO
xを吸収し、排気空燃比が理論空燃比又はリッチである
ときに前記吸収したNOxを放出して還元処理するNO
x吸収触媒と、該NOx吸収触媒の下流側に配置された
三元触媒とを少なくとも備えてなる内燃機関の排気浄化
装置において、前記三元触媒が担持する酸素ストレージ
能力に寄与する成分の量に対して、前記三元触媒よりも
上流側の触媒が担持する前記成分の総量を略1.2 倍以下
に設定したことを特徴とする。
Therefore, according to the invention described in claim 1, NO in exhaust gas when the exhaust air-fuel ratio is lean.
NO that absorbs x and releases the absorbed NOx when the exhaust air-fuel ratio is stoichiometric or rich
In an exhaust gas purification apparatus for an internal combustion engine, which comprises at least an x-absorbing catalyst and a three-way catalyst arranged on the downstream side of the NOx absorbing catalyst, the amount of components contributing to the oxygen storage capacity carried by the three-way catalyst is On the other hand, the total amount of the components carried by the catalyst on the upstream side of the three-way catalyst is set to about 1.2 times or less.

【0009】かかる構成によると、NOx吸収触媒の上
流側に触媒が配置されない場合には、該NOx吸収触媒
が担持する酸素ストレージ能力に寄与する成分の量が、
NOx吸収触媒の下流側に配置される三元触媒が担持し
ている量の略1.2 倍以下になるように設定され、また、
NOx吸収触媒の上流側に触媒が配置される場合には、
該NOx吸収触媒における担持量とNOx吸収触媒の上
流側に配置された触媒における担持量との総量が、NO
x吸収触媒の下流側に配置される三元触媒が担持してい
る量の略1.2 倍以下になるように設定される。
According to this structure, when the catalyst is not arranged upstream of the NOx absorption catalyst, the amount of the component that contributes to the oxygen storage capacity of the NOx absorption catalyst is
It is set to be approximately 1.2 times or less than the amount carried by the three-way catalyst arranged on the downstream side of the NOx absorption catalyst.
When the catalyst is arranged upstream of the NOx absorption catalyst,
The total amount of the carried amount of the NOx absorption catalyst and the carried amount of the catalyst arranged on the upstream side of the NOx absorption catalyst is NO.
The amount is set to be about 1.2 times or less than the amount supported by the three-way catalyst arranged on the downstream side of the x absorption catalyst.

【0010】一方、請求項2記載の発明は、排気空燃比
がリーンであるときに排気中のNOxを吸収し、排気空
燃比が理論空燃比又はリッチであるときに前記吸収した
NOxを放出して還元処理するNOx吸収触媒と、該N
Ox吸収触媒の下流側に配置された三元触媒とを少なく
とも備えてなる内燃機関の排気浄化装置において、前記
三元触媒が有する酸素ストレージ能力よりも、前記三元
触媒よりも上流側の触媒が有する酸素ストレージ能力を
低く設定したことを特徴とする。
On the other hand, the invention according to claim 2 absorbs NOx in the exhaust gas when the exhaust air-fuel ratio is lean, and releases the absorbed NOx when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or rich. NOx absorption catalyst for reduction treatment by
In an exhaust gas purification apparatus for an internal combustion engine, which comprises at least a three-way catalyst arranged on the downstream side of an Ox absorption catalyst, a catalyst on the upstream side of the three-way catalyst is higher than the oxygen storage capacity of the three-way catalyst. It is characterized by having a low oxygen storage capacity.

【0011】かかる構成によると、NOx吸収触媒の上
流側に触媒が配置されない場合には、該NOx吸収触媒
が担持する酸素ストレージ能力が、NOx吸収触媒の下
流側に配置される三元触媒よりも低く設定され、また、
NOx吸収触媒の上流側に触媒が配置される場合には、
該NOx吸収触媒及びNOx吸収触媒の上流側に配置さ
れた触媒における酸素ストレージ能力の総和が、NOx
吸収触媒の下流側に配置される三元触媒よりも低く設定
される。
According to this structure, when the catalyst is not arranged upstream of the NOx absorption catalyst, the oxygen storage capacity of the NOx absorption catalyst is higher than that of the three-way catalyst arranged downstream of the NOx absorption catalyst. Set low, also
When the catalyst is arranged upstream of the NOx absorption catalyst,
The sum of the oxygen storage capacities of the NOx absorption catalyst and the catalyst arranged upstream of the NOx absorption catalyst is NOx.
It is set lower than the three-way catalyst arranged on the downstream side of the absorption catalyst.

【0012】請求項3記載の発明では、前記請求項2記
載の構成において、前記三元触媒が担持する酸素ストレ
ージ能力に寄与する成分の量に対して、前記三元触媒よ
りも上流側の触媒が担持する前記成分の総量を略0.6 倍
以下に設定する構成とした。かかる構成によると、前記
三元触媒が有する酸素ストレージ能力よりも前記三元触
媒よりも上流側の触媒が有する酸素ストレージ能力を低
くする設定を、酸素ストレージ能力に寄与する成分量の
比率で規定するものであって、かつ、特に好ましい範囲
を略0.6 倍以下として特定する。
According to a third aspect of the present invention, in the structure of the second aspect, the catalyst on the upstream side of the three-way catalyst with respect to the amount of the component that contributes to the oxygen storage capacity carried by the three-way catalyst. The total amount of the above-mentioned components carried by is set to about 0.6 times or less. According to this configuration, the setting for lowering the oxygen storage capacity of the catalyst on the upstream side of the three-way catalyst relative to the oxygen storage capacity of the three-way catalyst is defined by the ratio of the component amounts that contribute to the oxygen storage capacity. And a particularly preferable range is specified as approximately 0.6 times or less.

【0013】請求項4記載の発明では、請求項1又は3
において、前記三元触媒が担持する酸素ストレージ能力
に寄与する成分の量に対して、前記三元触媒よりも上流
側の触媒が担持する前記成分の総量を略0.2 倍以上に設
定する構成とした。かかる構成によると、酸素ストレー
ジ能力に寄与する成分量の比率の最大値を規制する構成
において最小比率を略0.2 倍以上として、NOx吸収触
媒及び該NOx吸収触媒の上流側の触媒における酸素ス
トレージ能力の最低必要レベルの規定する。
According to the invention of claim 4, claim 1 or 3
In the above configuration, the total amount of the components carried by the catalyst on the upstream side of the three-way catalyst is set to approximately 0.2 times or more the amount of the component contributing to the oxygen storage capacity carried by the three-way catalyst. . According to such a configuration, in the configuration that regulates the maximum value of the ratio of the component amount that contributes to the oxygen storage capacity, the minimum ratio is set to approximately 0.2 times or more, and the oxygen storage capacity of the NOx absorption catalyst and the catalyst upstream of the NOx absorption catalyst is Specify the minimum required level.

【0014】請求項5記載の発明では、前記酸素ストレ
ージ能力に寄与する成分としてセリアCeの量を設定す
る構成とした。かかる構成によると、NOx吸収触媒及
び該NOx吸収触媒の上流側の触媒が担持するセリアC
eの量が、NOx吸収触媒の下流側の三元触媒が担持す
るセリアCeの量を基準として規制されることになる。
According to the fifth aspect of the invention, the amount of ceria Ce is set as a component that contributes to the oxygen storage capacity. According to this configuration, the ceria C carried by the NOx absorption catalyst and the catalyst upstream of the NOx absorption catalyst is carried out.
The amount of e is regulated on the basis of the amount of ceria Ce carried by the three-way catalyst on the downstream side of the NOx absorption catalyst.

【0015】請求項6記載の発明では、前記NOx吸収
触媒の上流側にも三元触媒が配置される構成とした。か
かる構成によると、上流側から三元触媒,NOx吸収触
媒,三元触媒の順で触媒が配置され、下流側の三元触媒
を基準として、上流側の三元触媒及びNOx吸収触媒に
おける酸素ストレージ能力(酸素ストレージ能力に寄与
する成分(セリア)の量)が制限される。
According to the sixth aspect of the invention, the three-way catalyst is arranged upstream of the NOx absorption catalyst. With this configuration, the catalysts are arranged in this order from the upstream side to the three-way catalyst, the NOx absorption catalyst, and the three-way catalyst, and the oxygen storage in the upstream side three-way catalyst and the NOx absorption catalyst is based on the downstream side three-way catalyst. Capacity (the amount of components (ceria) that contribute to oxygen storage capacity) is limited.

【0016】請求項7記載の発明では、前記NOx吸収
触媒が、前記三元触媒よりもバリウムBaを多く含むこ
とで、バリウムBaをNOx吸収剤としてNOxの吸収
を行う構成とした。かかる構成によると、NOx吸収触
媒と下流側の三元触媒とが共にバリウムBaを担持する
構成であっても、NOx吸収触媒の方がNOx吸収を目
的としてより多くのバリウムBaを担持することで通常
の三元触媒とは区別されることになり、かかる区別に基
づいて各触媒の酸素ストレージ能力(酸素ストレージ能
力に寄与する成分(セリア)の量)が決定される。
In a seventh aspect of the present invention, the NOx absorption catalyst contains more barium Ba than the three-way catalyst, so that the barium Ba is used as a NOx absorbent to absorb NOx. According to this structure, even if the NOx absorption catalyst and the downstream three-way catalyst both carry barium Ba, the NOx absorption catalyst carries more barium Ba for the purpose of NOx absorption. The catalyst is distinguished from a normal three-way catalyst, and the oxygen storage capacity (the amount of the component (ceria) that contributes to the oxygen storage capacity) of each catalyst is determined based on this distinction.

【0017】[0017]

【発明の効果】請求項1記載の発明によると、リーン燃
焼状態からストイキ或いはリッチに切り換えられたとき
に、NOx吸収触媒及び該NOx吸収触媒の上流側に配
置される触媒から脱離される酸素の量を必要充分に制限
でき、NOx吸収触媒及び下流側の三元触媒を早期にリ
ッチ化させて、NOx還元処理を効率良く行わせること
ができるという効果がある。
According to the first aspect of the present invention, when the lean combustion state is switched to stoichiometric or rich, the amount of oxygen desorbed from the NOx absorption catalyst and the catalyst arranged upstream of the NOx absorption catalyst is increased. There is an effect that the amount can be limited to a necessary and sufficient amount, and the NOx absorption catalyst and the downstream three-way catalyst can be enriched at an early stage to efficiently perform the NOx reduction process.

【0018】請求項2記載の発明によると、NOx吸収
触媒の下流側の三元触媒における酸素ストレージ能力よ
りも、上流側のNOx還元触媒を含む触媒における酸素
ストレージ能力を低くすることで、リーン燃焼状態から
ストイキ或いはリッチに切り換えられてNOxが脱離さ
れるときに、同時に脱離される酸素の量を確実に制限で
き、以て、NOxの還元処理を効率的に行わせることが
できるという効果がある。
According to the second aspect of the present invention, lean combustion is achieved by lowering the oxygen storage capacity of the catalyst including the NOx reduction catalyst on the upstream side of the oxygen storage capacity of the three-way catalyst on the downstream side of the NOx absorption catalyst. When NOx is desorbed by switching from the state to stoichiometric or rich, the amount of oxygen desorbed at the same time can be surely limited, so that the reduction process of NOx can be efficiently performed. .

【0019】請求項3記載の発明によると、リーン燃焼
状態からストイキ或いはリッチに切り換えられたとき
に、NOx吸収触媒及び該NOx吸収触媒の上流側に配
置される触媒から脱離される酸素の量を最も効果的に減
少させて、NOx還元処理を最も効率良く行わせること
ができるという効果がある。請求項4記載の発明による
と、NOxの脱離時に同時に脱離される酸素の量を制限
しつつ、通常のストイキ時における排気浄化性能を確保
できるという効果がある。
According to the third aspect of the present invention, the amount of oxygen desorbed from the NOx absorption catalyst and the catalyst arranged upstream of the NOx absorption catalyst when the lean combustion state is switched to stoichiometric or rich. There is an effect that the NOx reduction treatment can be performed most efficiently by reducing the NOx reduction most effectively. According to the invention described in claim 4, there is an effect that the exhaust gas purification performance during normal stoichiometry can be secured while limiting the amount of oxygen desorbed at the same time when NOx is desorbed.

【0020】請求項5記載の発明によると、触媒に担持
されるセリアの量を調整することで、NOx還元処理を
効率良く行わせることができる酸素ストレージ能力の設
定が行えるという効果がある。請求項6記載の発明によ
ると、NOx還元触媒の上流側にも三元触媒を備えるこ
とで、始動時における排気浄化の促進を図りつつ、NO
x吸収触媒に吸収されたNOxの還元処理を効率良く行
わせることができるという効果がある。
According to the fifth aspect of the present invention, by adjusting the amount of ceria supported on the catalyst, it is possible to set the oxygen storage capacity for efficiently performing the NOx reduction process. According to the sixth aspect of the present invention, the three-way catalyst is also provided on the upstream side of the NOx reduction catalyst, so that the exhaust purification at the start can be promoted and the NO
There is an effect that the reduction process of the NOx absorbed by the x absorption catalyst can be efficiently performed.

【0021】請求項7記載の発明によると、バリウムを
通常の三元触媒よりも多く含むことで、前記バリウムを
NOx吸収剤として用いてリーン燃焼時にNOxを吸収
するNOx吸収触媒を備える構成において、前記NOx
吸収触媒に吸収されたNOxの還元処理を効率良く行わ
せることができるという効果がある。
According to the seventh aspect of the present invention, by including more barium than a normal three-way catalyst, the barium is used as a NOx absorbent, and a NOx absorption catalyst that absorbs NOx during lean combustion is provided. The NOx
There is an effect that the reduction process of NOx absorbed by the absorption catalyst can be efficiently performed.

【0022】[0022]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図1は、実施の形態における内燃機関のシステム
構成を示す図であり、機関1には、スロットル弁2で計
量された空気が吸引され、燃料噴射弁3から噴射される
燃料と前記吸入空気とが混合して混合気が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a diagram showing a system configuration of an internal combustion engine in an embodiment, in which the engine 1 sucks air measured by a throttle valve 2 and injects fuel injected from a fuel injection valve 3 and the intake air. Are mixed to form an air-fuel mixture.

【0023】前記燃料噴射弁3は、吸気ポート部分に燃
料を噴射するものであっても良いし、また、燃焼室内に
直接燃料を噴射するものであっても良い。前記混合気
は、点火栓4による火花点火によって着火燃焼し、燃焼
排気は、排気通路5に介装された三元触媒(ライトオフ
触媒)6,NOx吸収触媒7,三元触媒8で浄化されて
大気中に排出される。
The fuel injection valve 3 may be one that injects fuel into the intake port portion or one that directly injects fuel into the combustion chamber. The air-fuel mixture is ignited and burned by spark ignition by the spark plug 4, and the combustion exhaust gas is purified by a three-way catalyst (light-off catalyst) 6, a NOx absorption catalyst 7, and a three-way catalyst 8 which are provided in the exhaust passage 5. Are released into the atmosphere.

【0024】前記三元触媒6,8は共にストイキ(理論
空燃比)雰囲気においてNOx,CO,HCを同時に浄
化する触媒であり、三元触媒6は始動時の排気浄化を目
的として排気マニホールドの直下に配置され、三元触媒
8は、NOx吸収触媒7と共に車両の床下部分に配置さ
れる。前記NOx吸収触媒7は、排気空燃比がリーンで
あるときに排気中のNOxを吸収し、排気空燃比が理論
空燃比又はリッチであるときに前記吸収したNOxを放
出して三元触媒層で還元処理する触媒(NOx吸収還元
型三元触媒)である。
The three-way catalysts 6 and 8 are both catalysts that simultaneously purify NOx, CO, and HC in a stoichiometric (theoretical air-fuel ratio) atmosphere, and the three-way catalyst 6 is directly below the exhaust manifold for the purpose of purifying exhaust gas at the time of starting. The three-way catalyst 8 is arranged in the underfloor portion of the vehicle together with the NOx absorption catalyst 7. The NOx absorption catalyst 7 absorbs NOx in the exhaust gas when the exhaust air-fuel ratio is lean, and releases the absorbed NOx when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or rich to form a three-way catalyst layer. It is a catalyst (NOx absorption reduction type three-way catalyst) for reduction treatment.

【0025】前記NOx吸収触媒7及び三元触媒6,8
は、全てバリウムBaを担持するが、NOx吸収触媒7
は、バリウムBaをNOx吸収剤として用いるべく、三
元触媒8に担持されているバリウムBaの量に対して単
位体積当たり略2倍のバリウムBaを担持するものであ
り、前記バリウムBaの担持量によってNOx吸収触媒
と通常の三元触媒とに区別される。但し、NOx吸収剤
をバリウムBaに限定するものではない。
The NOx absorption catalyst 7 and the three-way catalyst 6, 8
All carry barium Ba, but the NOx absorption catalyst 7
In order to use barium Ba as a NOx absorbent, the amount of barium Ba supported on the three-way catalyst 8 is about twice as much as the amount of barium Ba supported on the three-way catalyst 8. The NOx absorption catalyst is distinguished from an ordinary three-way catalyst by. However, the NOx absorbent is not limited to barium Ba.

【0026】前記燃料噴射弁3による噴射時期・噴射
量、及び、点火栓4による点火時期等を制御するコント
ロールユニット9はマイクロコンピュータを含んで構成
され、各種センサからの検出信号に基づく演算処理によ
って、前記燃料噴射弁3に対して燃料噴射信号(噴射パ
ルス信号)を出力し、点火栓4(パワートランジスタ)
に対しては点火信号を出力する。
The control unit 9 for controlling the injection timing / injection amount by the fuel injection valve 3 and the ignition timing by the spark plug 4 is constituted by including a microcomputer and is operated by arithmetic processing based on detection signals from various sensors. , A fuel injection signal (injection pulse signal) is output to the fuel injection valve 3, and a spark plug 4 (power transistor)
An ignition signal is output to.

【0027】前記燃料噴射信号の演算においては、運転
条件に応じて目標空燃比を決定し、該目標空燃比の混合
気が形成されるように燃料噴射量(噴射パルス幅)が演
算されるが、前記目標空燃比として理論空燃比(ストイ
キ)及びリッチ空燃比の他、リーン空燃比が設定される
構成となっている。尚、本願において、リッチ・リーン
はいずれも理論空燃比を基準とするものとする。
In the calculation of the fuel injection signal, the target air-fuel ratio is determined according to the operating condition, and the fuel injection amount (injection pulse width) is calculated so that the air-fuel mixture having the target air-fuel ratio is formed. As the target air-fuel ratio, a lean air-fuel ratio is set in addition to the stoichiometric air-fuel ratio (stoichiometric ratio) and the rich air-fuel ratio. In the present application, both rich and lean are based on the theoretical air-fuel ratio.

【0028】前記各種センサとしては、機関1の吸入空
気流量を検出するエアフローメータ10、前記スロットル
弁2の開度を検出するスロットルセンサ11などが設けら
れる他、コントロールユニット9には図示しないクラン
ク角センサからの回転信号等が入力される。前記NOx
吸収触媒7は、リーン燃焼時においてNOxを吸収し、
目標空燃比が理論空燃比(ストイキ)又はリッチに切り
換えられると、それまでに吸収していたNOxを脱離
し、該脱離されたNOxは、NOx吸収触媒7の三元触
媒層及び下流側の三元触媒8で還元処理される。
As the various sensors, an air flow meter 10 for detecting the intake air flow rate of the engine 1, a throttle sensor 11 for detecting the opening of the throttle valve 2 and the like are provided, and the control unit 9 has a crank angle (not shown). A rotation signal or the like from the sensor is input. The NOx
The absorption catalyst 7 absorbs NOx during lean combustion,
When the target air-fuel ratio is switched to the stoichiometric air-fuel ratio (stoichiometric) or rich, NOx absorbed up to that time is desorbed, and the desorbed NOx is removed from the three-way catalyst layer and the downstream side of the NOx absorption catalyst 7. Reduction treatment is performed by the three-way catalyst 8.

【0029】ここで、リーン燃焼状態が継続すると、N
Ox吸収触媒7に対するNOxの吸収量が限界に達して
NOxをそれ以上に吸収できなくなり、機関1から排出
されたNOxがそのまま排出されるようになってしまう
ので、負荷,回転,空燃比などからNOxの吸収量を推
定し、限界に達しているものと推定されるときには強制
的に空燃比を一時的に理論空燃比又はリッチに制御する
ようになっている。
Here, if the lean combustion state continues, N
Since the amount of NOx absorbed by the Ox absorption catalyst 7 reaches the limit, NOx cannot be absorbed any more, and NOx discharged from the engine 1 is discharged as it is. Therefore, from the load, rotation, air-fuel ratio, etc. The amount of NOx absorbed is estimated, and when it is estimated that the limit has been reached, the air-fuel ratio is forcibly controlled temporarily to the stoichiometric air-fuel ratio or rich.

【0030】ところで、前記NOx吸収触媒7及び三元
触媒6,8は、いずれも酸素ストレージ能力に寄与する
成分としてセリアCeを担持し、リーン燃焼時には多く
の酸素を蓄積する。但し、酸素ストレージ能力に寄与す
る成分としてセリアCeを担持する構成に限定するもの
ではない。そして、空燃比がリーンから理論空燃比(ス
トイキ)又はリッチに切り換えられると、前記蓄積して
いた酸素が脱離することになり、NOx吸収触媒7及び
三元触媒8内で脱離した酸素の存在、及び、三元触媒6
及びNOx吸収触媒7から脱離して下流に流れる酸素の
存在によって、前記脱離されたNOxを還元処理するN
Ox吸収触媒7及び三元触媒8の雰囲気がなかなかリッ
チ化せず、NOxを効率良く還元処理できない。
The NOx absorption catalyst 7 and the three-way catalysts 6 and 8 each carry ceria Ce as a component that contributes to the oxygen storage capacity, and accumulate a large amount of oxygen during lean combustion. However, it is not limited to the configuration in which ceria Ce is supported as a component that contributes to the oxygen storage capacity. When the air-fuel ratio is switched from lean to the theoretical air-fuel ratio (stoichiometric) or rich, the accumulated oxygen is desorbed, and the oxygen desorbed in the NOx absorption catalyst 7 and the three-way catalyst 8 is removed. Existence and three-way catalyst 6
And N that reduces the desorbed NOx due to the presence of oxygen desorbed from the NOx absorption catalyst 7 and flowing downstream.
The atmosphere of the Ox absorption catalyst 7 and the three-way catalyst 8 does not easily become rich, and NOx cannot be reduced efficiently.

【0031】そこで、本実施の形態では、各触媒6〜8
の酸素ストレージ能力に寄与する成分であるセリアCe
の単位体積当たりの量を以下のようにして設定してあ
る。従来のセリアCeの単位体積当たりの量は各触媒6
〜8共に略同程度であり、各触媒6〜8におけるセリア
の量は触媒容量によって決定されており、三元触媒6の
セリア量AとNOx吸収触媒7のセリア量Bとの合計
は、三元触媒8のセリアの量Cの略2.4 倍になってい
た。
Therefore, in this embodiment, each of the catalysts 6 to 8 is
Ceria, a component that contributes to the oxygen storage capacity of
The amount per unit volume of is set as follows. The amount of conventional ceria Ce per unit volume is 6
8 to 8 are substantially the same, the amount of ceria in each of the catalysts 6 to 8 is determined by the catalyst capacity, and the sum of the ceria amount A of the three-way catalyst 6 and the ceria amount B of the NOx absorption catalyst 7 is three. The amount C of ceria in the original catalyst 8 was about 2.4 times.

【0032】上記設定に対し、三元触媒8のセリア量C
をそのままとした状態で、三元触媒6及びNOx吸収触
媒7におけるセリアの総量A+Bを減少させていき、三
元触媒8のセリア量Cに対する三元触媒6及びNOx吸
収触媒7におけるセリア総量A+Bの割合((A+B)
/C)を減少させていくと、図2に示すように、リーン
燃焼からストイキ(又はリッチ)に切り換えられたとき
のNOx排出量が減少することが実験的に確認された。
With respect to the above setting, the ceria amount C of the three-way catalyst 8
The total amount A + B of ceria in the three-way catalyst 6 and the NOx absorption catalyst 7 is reduced while keeping the above condition as it is. Ratio ((A + B)
It has been experimentally confirmed that the NOx emission amount at the time of switching from lean combustion to stoichiometric (or rich) decreases as / C) is decreased, as shown in FIG.

【0033】尚、セリア量A+Bの減少は、単位体積当
たりのセリア量を減少させることで実現させる。これ
は、セリア量A+Bの減少によって、三元触媒6及びN
Ox吸収触媒7における酸素ストレージ能力が低下し、
リーン燃焼からストイキ(又はリッチ)に切り換えられ
ても、脱離する酸素量が少ないため、NOx吸収触媒7
及び三元触媒8内の雰囲気が比較的早くリッチ化して還
元雰囲気となり、NOxの還元が効率良く行われるため
である。
The reduction of the amount of ceria A + B is realized by reducing the amount of ceria per unit volume. This is because the three-way catalyst 6 and the N
The oxygen storage capacity of the Ox absorption catalyst 7 decreases,
Even if the lean combustion is switched to stoichiometric (or rich), the amount of oxygen desorbed is small, so the NOx absorption catalyst 7
Also, the atmosphere in the three-way catalyst 8 becomes rich relatively quickly and becomes a reducing atmosphere, so that NOx can be reduced efficiently.

【0034】リーン燃焼からストイキ(又はリッチ)に
切り換えられたときのNOx排出量は、上記割合(A+
B)/Cが小さいほど減少するが(図2参照)、図3に
示すように、セリア量A+Bを減少させ過ぎると、通常
のストイキ燃焼状態におけるNOx浄化率が低下してN
Ox排出量を増大させてしまうことになり、前記ストイ
キでのNOx排出量を許容値内に抑制するためには、前
記割合の(A+B)/Cの下限を、略0.2 とする必要が
ある。
The NOx emission amount when switching from lean combustion to stoichiometric (or rich) is the above ratio (A +
B) / C decreases as B / C decreases (see FIG. 2), but as shown in FIG. 3, if the ceria amount A + B is decreased too much, the NOx purification rate in the normal stoichiometric combustion state decreases and N
Since the Ox emission amount is increased, and in order to suppress the NOx emission amount in the stoichiometric range within the allowable value, the lower limit of (A + B) / C of the ratio needs to be approximately 0.2.

【0035】一方、図4に示すように、所定の走行モー
ド時(例えば10−15モード時)において、リーン→スト
イキ切り換え時に排出されるNOx量と、ストイキ状態
で排出されるNOx量とを含むNOx排出量の総量は、
前記割合(A+B)/Cを従来の略2.4 から略1.2 まで
減少させれば必要充分に低減されることなり(例えば従
来量に対して半減)、略0.2 〜1.2 倍の範囲内に前記割
合(A+B)/Cを設定すれば、通常のストイキ燃焼時
のNOx排出量を増大させることなく、トータルでのN
Ox排出量を効果的に低減できる。
On the other hand, as shown in FIG. 4, in a predetermined traveling mode (for example, in the 10-15 mode), the amount of NOx discharged during lean-to-stoichi switching and the amount of NOx discharged in the stoichiometric state are included. The total amount of NOx emissions is
If the ratio (A + B) / C is reduced from the conventional value of about 2.4 to about 1.2, it will be reduced sufficiently (for example, half the amount of the conventional amount), and the ratio (A / B) / C will be within the range of about 0.2 to 1.2 times. By setting A + B) / C, the total Nx is increased without increasing the NOx emission amount during normal stoichiometric combustion.
Ox emissions can be effectively reduced.

【0036】前記割合(A+B)/Cを略1.2 から更に
減少させていくと、図2に示すように、略0.6 まではN
Ox脱離時のNOx排出量の低下が進むが、略0.6 以下
にしてもそれ以上にNOx量は低下しないので、最も効
率良くNOxを浄化できるのは、前記割合(A+B)/
Cを略0.2 〜0.6 の範囲内に設定した場合である。上記
のように、前記割合(A+B)/Cを略0.2 〜0.6 の範
囲内に設定した場合には、三元触媒8の酸素ストレージ
能力よりも、三元触媒6及びNOx吸収触媒8における
酸素ストレージ能力の総和を低くしたことになる。
When the ratio (A + B) / C is further reduced from about 1.2, as shown in FIG.
Although the amount of NOx discharged at the time of desorption of Ox decreases, the amount of NOx does not decrease further even if it is about 0.6 or less. Therefore, the most efficient NOx purification can be achieved by the ratio (A + B) /
This is the case where C is set within the range of approximately 0.2 to 0.6. As described above, when the ratio (A + B) / C is set within the range of approximately 0.2 to 0.6, the oxygen storage capacity of the three-way catalyst 6 and the NOx absorption catalyst 8 is higher than the oxygen storage capacity of the three-way catalyst 8. This means that the total sum of abilities has been lowered.

【0037】尚、上記実施の形態では、NOx吸収触媒
7の上流側に三元触媒6を備える構成としたが、三元触
媒6を備えない構成であっても良く、この場合に、B/
Cの割合が略0.2 〜1.2 の範囲内、好ましくは、略0.2
〜0.6 の範囲内になるように、NOx吸収触媒7におけ
る単位体積当たりのセリア量を調整すれば良い。
In the above embodiment, the three-way catalyst 6 is provided on the upstream side of the NOx absorption catalyst 7, but the three-way catalyst 6 may not be provided. In this case, B /
The ratio of C is within the range of about 0.2 to 1.2, preferably about 0.2.
The amount of ceria per unit volume in the NOx absorption catalyst 7 may be adjusted so that it falls within the range of to 0.6.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態の内燃機関を示すシステム構成図。FIG. 1 is a system configuration diagram showing an internal combustion engine of an embodiment.

【図2】リーン→ストイキ切り換え時のNOx排出量と
セリア量の比率との相関を示す線図。
FIG. 2 is a diagram showing a correlation between a NOx emission amount and a ceria amount ratio when switching from lean to stoichiometric.

【図3】ストイキ燃焼時のNOx排出量とセリア量の比
率との相関を示す線図。
FIG. 3 is a diagram showing a correlation between a NOx emission amount and a ceria amount ratio during stoichiometric combustion.

【図4】所定の走行モード時におけるNOx排出量とセ
リア量の比率との相関を示す線図。
FIG. 4 is a diagram showing a correlation between a NOx emission amount and a ceria amount ratio in a predetermined traveling mode.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 スロットル弁 3 燃料噴射弁 4 点火栓 5 排気通路 6 三元触媒 7 NOx吸収触媒 8 三元触媒 9 コントロールユニット 10 エアフローメータ 11 スロットルセンサ 1 Internal combustion engine 2 Throttle valve 3 Fuel injection valve 4 Spark plug 5 exhaust passage 6 three-way catalyst 7 NOx absorption catalyst 8 three-way catalyst 9 Control unit 10 Air flow meter 11 Throttle sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01N 3/24 F01N 3/24 E B01D 53/36 101B 104A (56)参考文献 特開 平8−270440(JP,A) 特開 平8−319822(JP,A) 特開 平8−57315(JP,A) 実開 平4−34425(JP,U) 国際公開93/08383(WO,A1) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/28 B01D 53/94 B01J 23/04 B01J 23/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI F01N 3/24 F01N 3/24 E B01D 53/36 101B 104A (56) Reference JP-A-8-270440 (JP, A) Kaihei 8-319822 (JP, A) JP-A 8-57315 (JP, A) Actual Kaihei 4-34425 (JP, U) International Publication 93/08383 (WO, A1) (58) Fields investigated (Int .Cl. 7 , DB name) F01N 3/08-3/28 B01D 53/94 B01J 23/04 B01J 23/10

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排気空燃比がリーンであるときに排気中の
NOxを吸収し、排気空燃比が理論空燃比又はリッチで
あるときに前記吸収したNOxを放出して還元処理する
NOx吸収触媒と、該NOx吸収触媒の下流側に配置さ
れた三元触媒とを少なくとも備えてなる内燃機関の排気
浄化装置において、 前記三元触媒が担持する酸素ストレージ能力に寄与する
成分の量に対して、前記三元触媒よりも上流側の触媒が
担持する前記成分の総量を略1.2 倍以下に設定したこと
を特徴とする内燃機関の排気浄化装置。
1. A NOx absorption catalyst that absorbs NOx in the exhaust gas when the exhaust air-fuel ratio is lean, and releases the absorbed NOx when the exhaust air-fuel ratio is the theoretical air-fuel ratio or is rich. In an exhaust gas purification device for an internal combustion engine, which comprises at least a three-way catalyst arranged on the downstream side of the NOx absorption catalyst, the amount of a component contributing to the oxygen storage capacity carried by the three-way catalyst is An exhaust emission control device for an internal combustion engine, wherein the total amount of the components carried by the catalyst upstream of the three-way catalyst is set to approximately 1.2 times or less.
【請求項2】排気空燃比がリーンであるときに排気中の
NOxを吸収し、排気空燃比が理論空燃比又はリッチで
あるときに前記吸収したNOxを放出して還元処理する
NOx吸収触媒と、該NOx吸収触媒の下流側に配置さ
れた三元触媒とを少なくとも備えてなる内燃機関の排気
浄化装置において、 前記三元触媒が有する酸素ストレージ能力よりも、前記
三元触媒よりも上流側の触媒が有する酸素ストレージ能
力を低く設定したことを特徴とする内燃機関の排気浄化
装置。
2. A NOx absorption catalyst that absorbs NOx in the exhaust when the exhaust air-fuel ratio is lean, and releases the absorbed NOx when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or is rich. In an exhaust gas purification device for an internal combustion engine, which comprises at least a three-way catalyst arranged on the downstream side of the NOx absorption catalyst, the oxygen storage capacity of the three-way catalyst is more upstream than the three-way catalyst. An exhaust emission control device for an internal combustion engine, characterized in that the oxygen storage capacity of the catalyst is set low.
【請求項3】前記三元触媒が担持する酸素ストレージ能
力に寄与する成分の量に対して、前記三元触媒よりも上
流側の触媒が担持する前記成分の総量を略0.6 倍以下に
設定したことを特徴とする請求項2記載の内燃機関の排
気浄化装置。
3. The total amount of the components carried by the catalyst upstream of the three-way catalyst is set to about 0.6 times or less the amount of the components contributing to the oxygen storage capacity carried by the three-way catalyst. The exhaust gas purification device for an internal combustion engine according to claim 2, wherein
【請求項4】前記三元触媒が担持する酸素ストレージ能
力に寄与する成分の量に対して、前記三元触媒よりも上
流側の触媒が担持する前記成分の総量を略0.2 倍以上に
設定したことを特徴とする請求項1又は3に記載の内燃
機関の排気浄化装置。
4. The total amount of the components carried by the catalyst on the upstream side of the three-way catalyst is set to approximately 0.2 times or more the amount of the components contributing to the oxygen storage capacity carried by the three-way catalyst. An exhaust emission control device for an internal combustion engine according to claim 1 or 3, characterized in that.
【請求項5】前記酸素ストレージ能力に寄与する成分と
してセリアCeの量を設定することを特徴とする請求項
1,3又は4に記載の内燃機関の排気浄化装置。
5. The exhaust gas purification device for an internal combustion engine according to claim 1, 3 or 4, wherein the amount of ceria Ce is set as a component that contributes to the oxygen storage capacity.
【請求項6】前記NOx吸収触媒の上流側にも三元触媒
が配置されることを特徴とする請求項1〜5のいずれか
1つに記載の内燃機関の排気浄化装置。
6. The exhaust gas purification device for an internal combustion engine according to claim 1, wherein a three-way catalyst is also arranged on the upstream side of the NOx absorption catalyst.
【請求項7】前記NOx吸収触媒が、前記三元触媒より
もバリウムBaを多く含むことで、バリウムBaをNO
x吸収剤としてNOxの吸収を行うことを特徴とする請
求項請求項1〜6のいずれか1つに記載の内燃機関の排
気浄化装置。
7. The NOx absorption catalyst contains more barium Ba than the three-way catalyst, so that the barium Ba is NO.
The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 6, wherein NOx is absorbed as the x absorbent.
JP15403597A 1997-06-11 1997-06-11 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3449174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15403597A JP3449174B2 (en) 1997-06-11 1997-06-11 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15403597A JP3449174B2 (en) 1997-06-11 1997-06-11 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH112114A JPH112114A (en) 1999-01-06
JP3449174B2 true JP3449174B2 (en) 2003-09-22

Family

ID=15575496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15403597A Expired - Lifetime JP3449174B2 (en) 1997-06-11 1997-06-11 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3449174B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3370957B2 (en) 1998-09-18 2003-01-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2001276622A (en) * 2000-03-31 2001-10-09 Isuzu Motors Ltd Catalyst for storaging and reducing nitrogen oxide
DE102004036478B4 (en) 2003-07-30 2007-07-19 Mitsubishi Jidosha Kogyo K.K. Exhaust emission removing catalyst device
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials

Also Published As

Publication number Publication date
JPH112114A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
EP0915244B1 (en) Exhaust gas purifying apparatus of internal combustion engine
JP3733834B2 (en) Exhaust gas purification device for internal combustion engine
JP2001214734A (en) Exhaust emission control device for internal combustion engine
JP3805098B2 (en) Engine exhaust gas purification control device
JPH10317946A (en) Exhaust emission control device
KR20020033815A (en) Exhaust emission control device of internal combustion engine
JP3449174B2 (en) Exhaust gas purification device for internal combustion engine
JP3850999B2 (en) Internal combustion engine
JPH0610725A (en) Exhaust emission control device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP3624747B2 (en) Exhaust gas purification device for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP2002180885A (en) Exhaust emission control device for internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP3414323B2 (en) Exhaust gas purification device for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JP3591343B2 (en) Exhaust gas purification device for internal combustion engine
JP4019867B2 (en) Exhaust gas purification device for internal combustion engine
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP3358485B2 (en) Exhaust purification system for lean burn internal combustion engine
JPH07103021A (en) Exhaust emission control device for vehicle
JP3329282B2 (en) Exhaust gas purification device for internal combustion engine
JP4254484B2 (en) Exhaust gas purification device for internal combustion engine
JP4379099B2 (en) Exhaust gas purification device for internal combustion engine
JP4019891B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 11

EXPY Cancellation because of completion of term