JP3448192B2 - Measuring method of calorific value of soda recovery boiler fuel black liquor - Google Patents
Measuring method of calorific value of soda recovery boiler fuel black liquorInfo
- Publication number
- JP3448192B2 JP3448192B2 JP24343297A JP24343297A JP3448192B2 JP 3448192 B2 JP3448192 B2 JP 3448192B2 JP 24343297 A JP24343297 A JP 24343297A JP 24343297 A JP24343297 A JP 24343297A JP 3448192 B2 JP3448192 B2 JP 3448192B2
- Authority
- JP
- Japan
- Prior art keywords
- black liquor
- calorific value
- toc
- carbon
- recovery boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はソーダ回収ボイラの
燃料である噴射黒液の発熱量測定方法に係り、特に前記
噴射黒液の発熱量を自動的に測定する方法に関する。
【0002】
【従来の技術】ソーダ回収ボイラの燃料である黒液の発
熱量は固形分濃度の変動や、固形分中の有機物と無機物
の比率によって大きく変動する。しかし、従来は黒液の
発熱量を自動的に測定する方法が無かったため、黒液噴
射量を一定にしておいても黒液性状の変化によって蒸気
発生量や蒸気温度、圧力が変動し、このため発電量が変
動したり等という不具合があった。
【0003】そこで本発明者等は、ボイラ燃料等に使用
する黒液の発熱量自動測定方法において、ソーダ回収ボ
イラの燃料である噴射黒液の一定量を5分〜24時間
毎、望ましくは5〜60分毎に自動的に分取し、所定量
の水で希釈した後TOC(全有機炭素:Total Organic
Carbon)濃度を測定し、噴射黒液の希釈率とTOC測定
値から噴射黒液中のTOC濃度を算出し、あらかじめ作
成しておいた黒液発熱量と黒液中TOC濃度の関係から
噴射黒液の発熱量を自動的に推算することを特徴とする
黒液の発熱量自動測定方法を先に提案した。(特願平9
−19793号、非公知)
【0004】
【発明が解決しようとする課題】しかし前記先願技術で
はTOC測定が黒液中の全炭素(TC)量と無機炭素
(IC)量を求め、TCからICを差し引いて全有機炭
素(TOC)量を算出するものであることから、黒液中
の無機炭素(IC)量が多いと、TOC測定の精度が低
下し、従ってその測定値から推算される黒液発熱量の精
度も低下することが判った。
【0005】本発明は上記先願技術の黒液発熱量自動測
定法の不具合点を改善し、黒液の発熱量変化をより精度
良く計測することによって、上記不具合点を解消し、蒸
気発生量や蒸気圧力、蒸気温度の変動を極力抑え、回収
ボイラの運転状態を最適に保つための黒液の発熱量測定
方法を提供しようとするものである。
【0006】
【課題を解決するための手段】本発明に至った経過を順
を追って説明する。従来のTOC測定方法は、先ず黒液
中の無機炭素(IC)量を求める為に、試料を塩酸酸性
にして試料中の無機炭素(IC)量を二酸化炭素ガスと
して取り出し、その量を非分散型赤外線分光光度(ND
IR)量で測定する事によって無機炭素(IC)量を求
める。次に黒液中の全炭素(TC)量を求める為に、試
料を高温下で燃焼させて試料中の全炭素(TC)量を二
酸化炭素ガスとして取り出し、その量を同じく非分散型
赤外線分光光度(NDIR)量で測定する事によって全
炭素(TC)量を求める。そして前記全炭素(TC)量
と無機炭素(IC)量の差から有機炭素(TOC)量を
求めている。
【0007】従って、TOC測定に当たって予め試料中
の無機炭素(IC)を除去してやることによって、ブラ
ンク値を低く抑えることが可能となり、TOC測定値の
精度を向上させることが可能となる。そして前記従来の
TOC測定方法では、前記のようにIC測定には塩酸が
使用されることから、予め行う試料のpH調整にも塩酸
溶液を使用するのが一般的である。
【0008】しかし、噴射黒液のpHを調整して予め無
機炭素を除去するのに塩酸溶液を使用すると、pH調整
後の黒液を希黒液タンクに回収した場合、塩素イオンが
黒液とともに回収ボイラに持ち込まれることになり、炉
内での灰付着トラブルの原因となる。そこで本発明者等
はこのような灰付着トラブルを防止できる酸性溶液とし
て硫酸溶液を使用することにした。しかし、硫酸溶液で
pH7以下の酸性として過剰の硫酸が存在するとTC測
定あるいはIC測定において試料からSO2 ガスが発生
して、TC測定値、IC測定値に誤差を与えることにな
る。
【0009】そこで本発明者等はさらに検討を加えた結
果、噴射黒液のpHを略7〜9に調整することによって
無機炭素の90%以上が除去出来、これにより無機炭素
(IC)によるブランク値を小さくすることが可能とな
る。而も過剰な硫酸が存在しないために全炭素(TC)
測定時にSO2ガスが発生して該TC測定値に誤差を与
えることもない。又硫酸の方が塩酸よりも揮発性が低い
ことからIC測定時に塩酸で試料を酸性としてもSO2
ガスが発生することはなく、従ってIC測定値にも誤差
を与えることはない。
【0010】以上のように、ソーダ回収ボイラの燃料で
ある噴射黒液の一部を連続的に分取し、希硫酸溶液でp
H7〜9に調整して黒液中に含まれる無機炭素としての
炭酸イオンのほとんどを炭酸ガスとして除去する事によ
ってTOCを測定する際のIC量を低下させることがで
き、pH調整後の噴射黒液の一定量を5分〜24時間
毎、望ましくは5〜60分毎に自動的に分取し、水で所
定倍率に希釈してTOC濃度を測定する際の測定値の精
度を高くすることが可能となる。また、TOC分析に使
用しないpH調整後の噴射黒液は希黒液タンクに回収
し、再利用することによって蒸解薬品のロスも最小限に
抑えることが可能となる。
【0011】請求項1記載の発明はかかる点を特徴と
し、ソーダ回収ボイラの燃料である噴射黒液の一部を分
取し、希硫酸溶液で略pH7〜9に調整して黒液中に含
まれる無機炭素としての炭酸イオンのほとんどを炭酸ガ
スとして除去した後、該pH調整された黒液を所定時間
間隔毎に分取し、所定量の水で希釈した後希釈TOC
(全有機炭素:Total Organic Carbon)濃度を測定する
と共に、これらの測定データに基づいて噴射黒液中のT
OC濃度を算出し、あらかじめ作成しておいた黒液発熱
量と噴射黒液TOC濃度の関係から該噴射黒液の発熱量
を推算するとともに、必要に応じてTOC分析に使用し
なかった前記pH調整された黒液を希黒液タンク側に戻
すことを特徴とする。
【0012】以下本発明を詳細に説明する。ソーダ回収
ボイラの燃料である噴射黒液の発熱量はその有機物含有
量に左右される。従って、噴射黒液中の有機物量を測定
すればその発熱量を推定することが可能になる。しか
し、前記したようにこの有機物量を自動的に測定する技
術は前記先願技術以外になかった。そこで本発明者らは
この有機物量に代わる指標として排水の汚染度を表す指
標であるTOC(全有機炭素:Total Organic Carbon)
に着目し、黒液中のTOC濃度と発熱量の関係を調査し
た。
【0013】そして前記調査結果に基づいてソーダ回収
ボイラの燃料である噴射黒液を分取し所定量の水で希釈
した後TOC(全有機炭素:Total Organic Carbon)濃
度を測定する前記先願技術を開発したが、噴射黒液を水
で希釈しただけでそのままTOC測定を行ったものでは
図2に示すようにIC濃度が高く、発熱量実測値とTO
Cからの発熱量推算値との間に若干の誤差があることが
判った。
【0014】そこで、試料としての噴射黒液を水で希釈
するだけではなく、前記水で希釈する前に、予め硫酸溶
液で略pH7〜9に調整した後TOC測定を行った本発
明の結果を図3に示しているが、図2に比して非常に良
い相関を示すことが確認できた。即ち前記先願技術に基
づく図2では黒液発熱量の実測値と推算値の誤差は2.
0〜4.4%(平均3.3%)であるが、本発明に基づ
く図3では0.5〜1.8%(平均1.4%)と誤差が
大幅に低減している。
【0015】従って本発明はこれらの結果を基に、ソー
ダ回収ボイラの燃料である噴射黒液の一部を連続的に分
取し、希硫酸溶液でpH7〜9に調整して黒液中に含ま
れる無機炭素としての炭酸イオンのほとんどを炭酸ガス
として除去した後、一定量を5分〜24時間、望ましく
は5〜60分毎に自動的に分取し、所定量の水で希釈し
た後TOC(全有機炭素:Total Organic Carbon)濃度
を測定し、希硫酸溶液の添加量と噴射黒液の希釈率及び
TOC測定値から噴射黒液中のTOC濃度を算出し、あ
らかじめ作成しておいた黒液発熱量と黒液中TOC濃度
の関係から噴射黒液の発熱量を自動的に精度良く推算す
ることが可能となると共に、TOC分析に使用しなかっ
た希硫酸溶液にてpH調整後の黒液は希黒液タンクに戻
すことによって蒸解薬品のロスを最小限に抑えることが
可能となった。
【0016】
【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部材の種類、濃度、材質、形
状、その相対的配置等は特に特定的な記載がないかぎり
は、この発明の範囲をそれに限定する趣旨ではなく、単
なる説明例にすぎない。図1に本発明をソーダ回収ボイ
ラに本発明を適用した例を示す。噴射黒液は濃黒液タン
ク1から黒液噴射ポンプ2によって噴射黒液流量計3を
介して回収ボイラ4内に噴射され燃焼される。この噴射
黒液の一部は噴射黒液流量計3の手前で分岐して分岐黒
液流量計5を介して系外に取り出す。分岐した黒液はp
H調整槽9に入り、希硫酸溶液タンク6から希硫酸溶液
ポンプ7によって希硫酸溶液流量計8を介して取り出し
た希硫酸溶液によってpH計10を用いて、pH7〜9
の範囲になるように調整する。pH調整後の黒液は炭酸
ガス除去槽11で攪拌、或いは窒素ガス等の不活性ガス
バブリングする等の方法により無機炭素のほとんどを炭
酸ガスとして除去した後、通常は不図示の希黒液タンク
へ戻しておく。
【0017】そして所定時間毎にタイマー制御バルブ1
2を介して炭酸ガス除去槽11で炭酸ガス除去後の黒液
を分取して分取希黒液希釈槽13に所定量を取込む。こ
の分取黒液は分取黒液希釈槽13内で希釈水タンク14
から希釈水ポンプ15によって希釈水流量計16を介し
て送られてきた希釈水で所定倍率まで希釈された後、T
OC測定装置17へ送られ、前記した測定方法により希
釈黒液中の全炭素(TC)濃度と無機炭素(IC)濃度
が測定され、これらの測定値から希釈黒液中の全有機炭
素(TOC)濃度が求められる。
【0018】そしてこの測定装置17よりのTOC濃度
測定値データと分岐黒液流量計5よりの分岐黒液流量デ
ータ、希硫酸溶液流量計8よりのpH調整用希硫酸溶液
量、タイマー制御バルブ12よりのpH調整黒液の分取
量、希釈水流量計16よりの希釈水量の夫々のデータを
発熱量計算制御計18に取込み、該制御計18内で噴射
黒液中のTOC濃度が計算され、更に、発熱量計算制御
計18内部の不図示のメモリ若しくはマップにあらかじ
め求めておいたTOC濃度と発熱量との関係式若しくは
マップグラフから、噴射黒液の発熱量を求める。前記発
熱量との関係式若しくはマップグラフは実験によりあら
かじめ求めておく事が出来る。
【0019】そして本実施形態では、この発熱量データ
を元に前記制御計18より制御信号を黒液噴射ポンプ2
の駆動制御回路(不図示)に出力し、回収ボイラ4での
蒸気発生量が一定となるように黒液噴射ポンプ2の回転
数を制御するようにしている。なお、分取黒液の希釈率
は測定に用いるTOC濃度計の計測レンジによって決ま
り、例えば計測レンジ0〜1000mg/lのものであ
れば希釈率は400〜1000倍程度が適当と考えられ
る。
【0020】尚、本実施形態による黒液の発熱量推算結
果と、同じ黒液を採取して発熱量を実測した結果を比較
したものを図4に示す。即ち本実施形態に基づく図4で
は黒液発熱量の実測値と推算値の誤差は0.6〜1.7
%(平均1.3%)と、本発明に基づく図3と同様に図
2の先願技術に比較して誤差が大幅に低減しており、又
図3及び図4から本発明による黒液発熱量測定結果は発
熱量の実測値と良く一致していることが判る。
【0021】
【発明の効果】以上記載のごとく本発明のソーダ回収ボ
イラ燃料黒液の発熱量測定方法によれば、ソーダ回収ボ
イラの燃料である噴射黒液の発熱量を定期的にオンライ
ンで精度良く測定することが可能となり、この結果、こ
の発熱量データを使ってソーダ回収ボイラからの蒸気発
生量やその温度、圧力を安定させるようにコントロール
することが可能となる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a calorific value of an injection black liquor, which is a fuel for a soda recovery boiler, and more particularly to a method for automatically measuring a calorific value of the injection black liquor. Related to the method of measuring. [0002] The calorific value of black liquor, which is the fuel of a soda recovery boiler, greatly varies depending on the fluctuation of the solid concentration and the ratio of organic and inorganic substances in the solid. However, in the past, there was no method for automatically measuring the heat value of black liquor, so even if the black liquor injection amount was kept constant, the amount of steam generated, the steam temperature, and the pressure fluctuated due to changes in black liquor properties. Therefore, there was a problem that the power generation amount fluctuated. [0003] Therefore, in the method of automatically measuring the calorific value of black liquor used for boiler fuel or the like, the present inventors measured a certain amount of the injected black liquor, which is the fuel of the soda recovery boiler, every 5 minutes to 24 hours, preferably 5 minutes. It is automatically collected every 60 minutes, diluted with a predetermined amount of water, and then subjected to TOC (Total Organic Carbon: Total Organic Carbon).
Carbon) concentration is measured, the TOC concentration in the black liquor is calculated from the dilution ratio of the black liquor and the TOC measurement value, and the black liquor is calculated from the relationship between the calorific value of the black liquor and the TOC concentration in the black liquor prepared in advance. A method for automatically measuring the calorific value of black liquor, characterized by automatically estimating the calorific value of the liquor, was proposed earlier. (Japanese Patent Application No. 9
However, according to the prior art, the TOC measurement determines the total carbon (TC) amount and the inorganic carbon (IC) amount in the black liquor, Since the total organic carbon (TOC) amount is calculated by subtracting the IC, if the amount of inorganic carbon (IC) in the black liquor is large, the accuracy of the TOC measurement is reduced, and therefore it is estimated from the measured value. It was found that the accuracy of the calorific value of black liquor also decreased. The present invention solves the disadvantages of the method for automatically measuring the calorific value of black liquor of the prior application, and eliminates the disadvantages by measuring the change in the calorific value of black liquor with higher accuracy. It is an object of the present invention to provide a method for measuring the calorific value of black liquor in order to minimize fluctuations in steam and steam pressure and temperature and to keep the operating state of the recovery boiler optimal. [0006] The process leading to the present invention will be described step by step. In the conventional TOC measurement method, first, to determine the amount of inorganic carbon (IC) in black liquor, the sample is acidified with hydrochloric acid, the amount of inorganic carbon (IC) in the sample is taken out as carbon dioxide gas, and the amount is non-dispersed. Type infrared spectrophotometer (ND
The amount of inorganic carbon (IC) is determined by measuring the amount of (IR). Next, in order to determine the total carbon (TC) amount in the black liquor, the sample was burned at a high temperature to take out the total carbon (TC) amount in the sample as carbon dioxide gas, and the amount was similarly measured by non-dispersive infrared spectroscopy. The total carbon (TC) amount is determined by measuring the luminous intensity (NDIR) amount. Then, the organic carbon (TOC) amount is determined from the difference between the total carbon (TC) amount and the inorganic carbon (IC) amount. [0007] Therefore, by removing inorganic carbon (IC) in the sample in advance in the TOC measurement, the blank value can be suppressed low, and the accuracy of the TOC measurement value can be improved. In the conventional TOC measurement method, since hydrochloric acid is used for IC measurement as described above, a hydrochloric acid solution is generally used for pH adjustment of a sample to be performed in advance. However, when a hydrochloric acid solution is used to adjust the pH of the jet black liquor to remove inorganic carbon in advance, when the black liquor after the pH adjustment is collected in a dilute black liquor tank, chlorine ions are removed together with the black liquor. It will be brought into the recovery boiler, causing ash adhesion trouble in the furnace. Therefore, the present inventors decided to use a sulfuric acid solution as an acidic solution capable of preventing such ash adhesion trouble. However, if an excessive amount of sulfuric acid is present as an acid having a pH of 7 or less in a sulfuric acid solution, SO 2 gas is generated from the sample in the TC measurement or the IC measurement, causing an error in the TC measurement value and the IC measurement value. The present inventors have further studied and found that 90% or more of the inorganic carbon can be removed by adjusting the pH of the jet black liquor to approximately 7 to 9, whereby the blank made of inorganic carbon (IC) can be removed. The value can be reduced. Total carbon (TC) because there is no excess sulfuric acid
There is no generation of SO 2 gas at the time of measurement and an error in the TC measurement value. The even SO 2 acidified samples with hydrochloric acid at IC measured from the lower <br/> be volatile than hydrochloric who sulfate
No gas is evolved and therefore no error in the IC measurements. As described above, a part of the injection black liquor, which is the fuel of the soda recovery boiler, is continuously fractionated and p
By adjusting to H7 to 9 and removing most of the carbonate ions as inorganic carbon contained in the black liquor as carbon dioxide gas, the IC amount at the time of measuring the TOC can be reduced. A certain amount of the liquid is automatically collected every 5 to 24 hours, preferably every 5 to 60 minutes, and diluted with water at a predetermined magnification to increase the accuracy of the measured value when measuring the TOC concentration. Becomes possible. In addition, the black liquor after pH adjustment which is not used for the TOC analysis is collected in a dilute black liquor tank, and can be reused to minimize the loss of cooking chemicals. [0011] The invention according to claim 1 is characterized in that it is characterized in that a part of the injected black liquor, which is the fuel of the soda recovery boiler, is fractionated and adjusted to approximately pH 7 to 9 with a dilute sulfuric acid solution, and is added to the black liquor. After removing most of carbonate ions as inorganic carbon contained as carbon dioxide gas, the pH-adjusted black liquor is separated at predetermined time intervals, diluted with a predetermined amount of water, and then diluted with TOC.
(Total Organic Carbon) concentration, and based on these measured data, the T
The OC concentration is calculated, the calorific value of the black liquor is estimated from the relationship between the black liquor calorific value and the black liquor TOC concentration prepared in advance, and if necessary, the pH not used in the TOC analysis is calculated. The adjusted black liquor is returned to the diluted black liquor tank. Hereinafter, the present invention will be described in detail. The calorific value of the injected black liquor, which is the fuel of the soda recovery boiler, depends on its organic matter content. Therefore, if the amount of organic matter in the jet black liquor is measured, the calorific value can be estimated. However, as described above, there was no technique for automatically measuring the amount of the organic substance other than the above-mentioned prior art. Therefore, the present inventors have proposed TOC (Total Organic Carbon), which is an index representing the degree of pollution of wastewater, as an index replacing this organic matter amount.
The relationship between the TOC concentration in the black liquor and the calorific value was investigated. According to the prior art, the injection black liquor, which is the fuel of the soda recovery boiler, is fractionated based on the result of the investigation, diluted with a predetermined amount of water, and then the TOC (total organic carbon) concentration is measured. However, when the TOC measurement was performed as it was just by diluting the jet black liquor with water, the IC concentration was high as shown in FIG.
It was found that there was a slight error between the calorific value estimation value from C and the estimated value. Therefore, the results of the present invention were not only obtained by diluting the jet black liquor as a sample with water, but also before adjusting the pH to approximately 7 to 9 with a sulfuric acid solution before diluting with water, and performing TOC measurement. As shown in FIG. 3, it was confirmed that the correlation was very good as compared with FIG. That is, in FIG. 2 based on the prior application, the error between the measured value and the estimated value of the calorific value of black liquor is 2.
It is 0 to 4.4% (3.3% on average), but in FIG. 3 based on the present invention, the error is significantly reduced to 0.5 to 1.8% (1.4% on average). Therefore, based on these results, the present invention continuously collects a part of the injected black liquor, which is the fuel of the soda recovery boiler, and adjusts the pH to 7 to 9 with a dilute sulfuric acid solution to form the black liquor. After removing most of the carbonate ions as inorganic carbon contained as carbon dioxide, a predetermined amount is automatically collected every 5 minutes to 24 hours, preferably every 5 to 60 minutes, and diluted with a predetermined amount of water. The TOC (Total Organic Carbon) concentration was measured, and the TOC concentration in the jetted black liquor was calculated in advance from the amount of the diluted sulfuric acid solution added, the dilution ratio of the jetted black liquor, and the TOC measurement value. The calorific value of the jet black liquor can be automatically and accurately estimated from the relationship between the calorific value of the black liquor and the TOC concentration in the black liquor, and the pH after the pH adjustment with a dilute sulfuric acid solution not used in the TOC analysis. Black liquor is cooked by returning it to the dilute black liquor tank. It has become possible to minimize the loss. Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, the types, concentrations, materials, shapes, relative arrangements and the like of the constituent members described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely described. It is only an example. FIG. 1 shows an example in which the present invention is applied to a soda recovery boiler. The injected black liquor is injected from the dark black liquor tank 1 by the black liquor injection pump 2 via the injected black liquor flow meter 3 into the recovery boiler 4 and burned. A part of the jetted black liquor branches off before the jetted black liquor flow meter 3 and is taken out of the system via the branched black liquor flow meter 5. The branched black liquor is p
After entering the H adjusting tank 9, the pH of the diluted sulfuric acid solution is removed from the diluted sulfuric acid solution tank 6 by the diluted sulfuric acid solution pump 7 via the diluted sulfuric acid solution flow meter 8 using the pH meter 10 to adjust the pH to 7 to 9.
Adjust so that it is within the range. The black liquor after the pH adjustment is removed in a carbon dioxide gas removal tank 11 by removing most of the inorganic carbon as carbon dioxide gas by a method such as stirring or bubbling an inert gas such as nitrogen gas. Return to. The timer control valve 1 is provided at predetermined time intervals.
The black liquor from which the carbon dioxide gas has been removed in the carbon dioxide gas removal tank 11 is fractionated through 2 and a predetermined amount is taken into the fractionated diluted black liquor dilution tank 13. This preparative black liquor is supplied to a dilution water tank 14 in a preparative black liquor dilution tank 13.
Is diluted by a dilution water pump 15 through a dilution water flow meter 16 with a dilution water to a predetermined magnification.
It is sent to the OC measuring device 17 and the total carbon (TC) concentration and the inorganic carbon (IC) concentration in the diluted black liquor are measured by the measuring method described above. From these measured values, the total organic carbon (TOC) in the diluted black liquor is measured. ) The concentration is required. The measured TOC concentration data from the measuring device 17, the branched black liquor flow data from the branched black liquor flow meter 5, the dilute sulfuric acid solution amount for pH adjustment from the dilute sulfuric acid solution flow meter 8, and the timer control valve 12 The respective data of the amount of the pH-adjusted black liquor and the amount of the diluting water from the diluting water flow meter 16 are taken into the calorific value calculation controller 18, and the TOC concentration in the jet black liquor is calculated in the controller 18. Further, the calorific value of the injected black liquor is obtained from a relational expression between the TOC concentration and the calorific value or a map graph previously obtained in a memory or a map (not shown) inside the calorific value calculation controller 18. The relational expression or the map graph with the calorific value can be obtained in advance by an experiment. In the present embodiment, the control signal is sent from the controller 18 based on the calorific value data.
Of the black liquor injection pump 2 so that the amount of steam generated in the recovery boiler 4 is constant. The dilution ratio of the preparative black liquor is determined by the measurement range of the TOC densitometer used for the measurement. For example, if the measurement range is 0 to 1000 mg / l, the dilution ratio is considered to be about 400 to 1000 times. FIG. 4 shows a comparison between the result of estimating the calorific value of the black liquor according to the present embodiment and the result of actually measuring the calorific value of the same black liquor. That is, in FIG. 4 based on the present embodiment, the error between the measured value and the estimated value of the calorific value of the black liquor is 0.6 to 1.7.
% (Average 1.3%), as in FIG. 3 based on the present invention, the error is greatly reduced as compared with the prior application of FIG. 2, and FIGS. It can be seen that the calorific value measurement results agree well with the measured calorific value. As described above, according to the method for measuring the calorific value of the soda recovery boiler fuel black liquor according to the present invention, the calorific value of the injection black liquor, which is the fuel of the soda recovery boiler, is regularly and accurately measured online. The measurement can be performed well, and as a result, it is possible to control the amount of steam generated from the soda recovery boiler and its temperature and pressure using this calorific value data so as to be stable.
【図面の簡単な説明】
【図1】本発明の実施形態にかかる装置の一例を示した
フローシート図である。
【図2】予備pH調整をしない先願技術の場合のTOC
濃度と発熱量の関係を示す表図である。
【図3】予備pH調整をした本発明の場合のTOC濃度
と発熱量の関係を示す図2に対応する表図である。
【図4】予備pH調整をした図1の実施形態の場合のT
OC濃度と発熱量の関係を示す図2に対応する表図であ
る。
【符号の説明】
1 濃黒液タンク
2 黒液噴射ポンプ
3 噴射黒液流量計
4 回収ボイラ
5 分岐黒液流量計
6 希硫酸溶液タンク
7 希硫酸溶液ポンプ
8 希硫酸溶液流量計
9 pH調整槽
10 pH計
11 炭酸ガス除去槽
12 黒液分取用タイマー制御バルブ
13 分取黒液希釈槽
14 希釈水タンク
15 希釈水ポンプ
16 希釈水流計
17 TOC測定装置
18 発熱量計算制御計BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow sheet diagram showing an example of an apparatus according to an embodiment of the present invention. FIG. 2 TOC in case of prior art without pre-pH adjustment
It is a table | surface figure which shows the relationship between density | concentration and heat value. FIG. 3 is a table corresponding to FIG. 2 and showing the relationship between the TOC concentration and the calorific value in the case of the present invention after preliminary pH adjustment. FIG. 4 shows T for the embodiment of FIG. 1 with preliminary pH adjustment.
FIG. 3 is a table corresponding to FIG. 2 and showing a relationship between an OC concentration and a calorific value. [Description of Signs] 1 Dark Black Liquid Tank 2 Black Liquid Injection Pump 3 Injection Black Liquid Flow Meter 4 Recovery Boiler 5 Branch Black Liquid Flow Meter 6 Dilute Sulfuric Acid Solution Tank 7 Dilute Sulfuric Acid Solution Pump 8 Dilute Sulfuric Acid Solution Flow Meter 9 pH Adjustment Tank Reference Signs List 10 pH meter 11 Carbon dioxide gas removal tank 12 Timer control valve for black liquor fractionation 13 Preparative black liquor dilution tank 14 Dilution water tank 15 Dilution water pump 16 Dilution water flow meter 17 TOC measuring device 18 Calorific value calculation controller
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/22 G01N 25/20 G01N 31/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01N 33/22 G01N 25/20 G01N 31/00
Claims (1)
の一部を分取し、希硫酸溶液で略pH7〜9に調整して
黒液中に含まれる無機炭素としての炭酸イオンのほとん
どを炭酸ガスとして除去した後、該pH調整された黒液
を所定時間間隔毎に分取し、所定量の水で希釈した後希
釈TOC(全有機炭素:Total Organic Carbon)濃度を
測定すると共に、これらの測定データに基づいて噴射黒
液中のTOC濃度を算出し、あらかじめ作成しておいた
黒液発熱量と噴射黒液TOC濃度の関係から該噴射黒液
の発熱量を推算するとともに、必要に応じてTOC分析
に使用しなかった前記pH調整された黒液を希黒液タン
ク側に戻すことを特徴とするソーダ回収ボイラ燃料黒液
の発熱量測定方法。(57) [Claim 1] A part of the injected black liquor, which is the fuel of the soda recovery boiler, is fractionated, adjusted to approximately pH 7 to 9 with a dilute sulfuric acid solution, and included in the black liquor. After removing most of the carbonate ions as inorganic carbon as carbon dioxide, the pH-adjusted black liquor is separated at predetermined time intervals, diluted with a predetermined amount of water, and then diluted with TOC (total organic carbon: Total Organic Carbon). Carbon) concentration and the TOC concentration in the injected black liquor is calculated based on the measured data, and the TOC concentration of the injected black liquor is calculated based on the relationship between the calorific value of the black liquor and the TOC concentration of the injected black liquor prepared in advance. A method for measuring the calorific value of a soda recovery boiler fuel black liquor, comprising estimating a calorific value and, if necessary, returning the pH-adjusted black liquor not used in the TOC analysis to the diluted black liquor tank side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24343297A JP3448192B2 (en) | 1997-08-25 | 1997-08-25 | Measuring method of calorific value of soda recovery boiler fuel black liquor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24343297A JP3448192B2 (en) | 1997-08-25 | 1997-08-25 | Measuring method of calorific value of soda recovery boiler fuel black liquor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1164327A JPH1164327A (en) | 1999-03-05 |
JP3448192B2 true JP3448192B2 (en) | 2003-09-16 |
Family
ID=17103792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24343297A Expired - Fee Related JP3448192B2 (en) | 1997-08-25 | 1997-08-25 | Measuring method of calorific value of soda recovery boiler fuel black liquor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3448192B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101229577B1 (en) * | 2012-07-16 | 2013-02-05 | (주) 휴마스 | The method for analysis of total organic carbon and apparatus |
CN109406566B (en) * | 2018-07-27 | 2021-02-09 | 西安交通大学 | Nano fluid impact jet flow heat exchange characteristic and erosion wear performance experimental device |
JP7266297B2 (en) * | 2019-09-19 | 2023-04-28 | 株式会社アナテック・ヤナコ | Liquid metering device and water quality measuring device |
-
1997
- 1997-08-25 JP JP24343297A patent/JP3448192B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1164327A (en) | 1999-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lahav et al. | Titration methodologies for monitoring of anaerobic digestion in developing countries—a review | |
Aßmann et al. | Spectrophotometric high-precision seawater pH determination for use in underway measuring systems | |
Willis | The determination of metals in blood serum by atomic absorption spectroscopy—II: Magnesium | |
US5006311A (en) | Monitoring performance of a treating agent added to a body of water | |
Praplan et al. | Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign | |
US10788416B2 (en) | Multiple wavelength light source for colorimetric measurement | |
CN105764856A (en) | Control method and control program for water treatment facility and water treatment system | |
JP3448192B2 (en) | Measuring method of calorific value of soda recovery boiler fuel black liquor | |
Tapp et al. | Apparatus for continuous-flow underway spectrophotometric measurement of surface water pH | |
CN112014344B (en) | Online sewage monitoring method | |
EP1546689B1 (en) | Method of calibrating the zero point of an apparatus used to determine a quantity of silica using a colorimetric method | |
KR20230149437A (en) | Carbon dioxide quantification system and carbon dioxide quantification method using flow monitoring and total organic carbon analyzer equipped with this | |
CN115266835A (en) | Wastewater salinity measurement method based on multiple compensations of conductivity measurement | |
Marcos et al. | Intrinsic molecular fluorescence of lactate dehydrogenase: An analytical alternative for enzymic determination of pyruvate | |
JP2528111B2 (en) | Ozone concentration measuring method and device | |
Grigg | Determination of phosphate in soil extracts by automatic colorimetric analysis | |
JPH10206415A (en) | Method for automatically measuring amount of heat generated of black liquid used for boiler fuel and method for driving and controlling boiler utilizing the measuring method | |
Wünscher et al. | Monitoring of Ammonia in biogas | |
Zuev et al. | Rapid determination of the chemical oxygen demand in water with the use of high-temperature solid-electrolyte cells | |
Xu et al. | Temperature-corrected spectroscopic evaluation method for gas concentration monitoring | |
SE506150C2 (en) | Method and apparatus for quantitative electrochemical measurements in-situ in high temperature water | |
US20040067453A1 (en) | System and method for recycling developer solution containing tetra-methyl-ammonia hydroxide (TMAH) | |
JP2003014632A (en) | Gas pressure correction method for gas concentration monitor due to ultraviolet absorption or the like and correction system therefor | |
JP4674417B2 (en) | SO3 densitometer | |
Reddy et al. | Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030603 |
|
LAPS | Cancellation because of no payment of annual fees |