JP3444037B2 - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JP3444037B2
JP3444037B2 JP20951095A JP20951095A JP3444037B2 JP 3444037 B2 JP3444037 B2 JP 3444037B2 JP 20951095 A JP20951095 A JP 20951095A JP 20951095 A JP20951095 A JP 20951095A JP 3444037 B2 JP3444037 B2 JP 3444037B2
Authority
JP
Japan
Prior art keywords
layer
recording
dielectric
recording medium
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20951095A
Other languages
Japanese (ja)
Other versions
JPH0963117A (en
Inventor
晴男 国友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20951095A priority Critical patent/JP3444037B2/en
Publication of JPH0963117A publication Critical patent/JPH0963117A/en
Application granted granted Critical
Publication of JP3444037B2 publication Critical patent/JP3444037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は相転移型光記録層を
有する光学的情報記録用媒体に存する。詳しくは、レー
ザー光などの照射により、高速かつ高密度に情報を記
録、消去、再生可能な相転移型光記録層を有する光学的
情報記録用媒体に関するものである。 【0002】 【従来の技術】近年、情報量の拡大、記録・再生の高密
度・高速化の要求に応える記録媒体として、レーザー光
線を利用した光ディスクが開発されている。光ディスク
には、一度だけ記録が可能な追記型と、記録・消去が何
度でも可能な書き換え型がある。 【0003】書き換え型光ディスクとしては、光磁気効
果を利用した光磁気記録媒体や、可逆的な結晶状態の変
化を利用した相変化媒体があげられる。相変化媒体は、
外部磁界を必要とせず、レーザー光のパワーを変調する
だけで、記録・消去が可能である。さらに、消去と再記
録を単一ビームで同時に行う1ビームオーバーライトが
可能であるという利点を有する。 【0004】1ビームオーバーライト可能な相変化記録
方式では、記録膜を非晶質化させることによって記録ビ
ットを形成し、結晶化させることによって消去を行う場
合が一般的である。このような相変化記録方式に用いら
れる記録層材料としてはカルコゲン系合金薄膜を用いる
ことが多い。例えば、Ge−Te系、Ge−TeーSb
系、In−Sb−Te系、Ge−Sn−Te系合金薄膜
等があげられる。 【0005】なお、書き換え型とほとんど同じ材料・層
構成により、追記型の相変化媒体も実現できる。この場
合、可逆性が無いという点でより長期にわたって情報を
記録・保存でき、原理的にはほぼ半永久的な保存が可能
である。追記型として相変化媒体を用いた場合、孔あけ
型と異なりビット周辺にリムと呼ばれる盛り上がりが生
じないため信号品質に優れ、また、記録層上部に空隙が
不要なためエアーサンドイッチ構造にする必要がないと
いう利点がある。 【0006】一般に、書き換え型の相変化記録媒体で
は、相異なる結晶状態を実現するために、2つの異なる
レーザー光パワーを用いる。この方式を、非晶質ビット
と結晶化された消去・初期状態で記録・消去を行う場合
を例にとって説明する。結晶化は記録層の結晶化温度よ
り十分高く、融点よりは低い温度まで記録層を加熱する
ことによってなされる。 【0007】この場合、冷却速度は結晶化が十分なされ
る程度に遅くなるよう、記録層を誘電体層ではさんだ
り、ビームの移動方向に長い楕円形ビームを用いたりす
る。一方、非晶質化は記録層を融点より高い温度まで加
熱し、急冷することによって行う。この場合、上記誘電
体層は十分な冷却速度(過冷却速度)を得るための放熱
層としての機能も有する。 【0008】さらに、上述のような、加熱・冷却過程に
おける記録層の溶融・体積変化に伴う変形や、プラスチ
ック基板への熱的ダメージを防いだり、湿気による記録
層の劣化を防止するためにも、上記誘電体層からなる保
護層は重要である。保護層材料の材質は、レーザー光に
対して光学的に透明であること、融点・軟化点・分解温
度が高いこと、形成が容易であること、適度な熱伝導性
を有するなどの観点から選定される。 【0009】十分な耐熱性及び機械的強度を有する保護
層としては、まず、金属の酸化物や窒化物等の誘電体薄
膜があげられる。これらの誘電体薄膜とプラスチック基
板とは熱膨張率や弾性的性質が大きく異なるため、記録
・消去を繰り返すうちに、基板からはがれてピンホール
やクラックを生じる原因となる。 【0010】また、プラスチック基板は、湿度によって
反りを生じやすいが、これによっても保護膜のはがれが
生じることがある。一方、新規な誘電体保護層として、
ZnSを主成分とし、SiO2やY23等を混入させた
ものが提案されている。これらの複合化合物保護膜は純
粋な酸化物あるいは窒化物誘電体膜に比べ、記録層とし
てよく使われるGeTeSb等のカルコゲナイド系合金
薄膜に対する密着性に優れている。このため繰り返しオ
ーバーライトに対する耐久性に加え、加速試験における
膜剥離が少なく相変化媒体の信頼性をいっそう向上させ
ている。 【0011】 【発明が解決しようとする課題】しかしながら、複合化
合物は単に混合すれば良い特性を発揮するというわけで
はない。組成範囲、複合膜の物性によっては、個々の純
粋化合物を用いる場合よりもかえって信頼性を低下させ
る場合もある。 【0012】従来、カルコゲナイド系元素を含む化合物
である、ZnS,ZnSe等に酸化物、窒化物、弗化
物、炭化物等を混合させた保護膜については数多くの提
案がされているが、一部において最適な組成範囲を記載
するのみであり、その組成の混合物を用いても、必ずし
も元の純粋な化合物単体からなる保護層よりすぐれた特
性が得られなかった。 【0013】これは、上記複合物の物性がそれを構成す
る化合物とは大きく異なるため、製造法その他による物
性変化が予測不可能であったためである。例えば、上記
複合化合物からなる保護層を形成するにあたりスパッタ
法が広く用いられているが、複合物ターゲットを用いる
場合と、個々の化合物ターゲットを用いて同時スパッタ
する場合とでは当然得られる複合化合物保護膜の物性は
異なってくる。 【0014】また、同一製造法でも、スパッタ時の圧力
等により、物性が変化するのは周知の事実である。こう
した、保護膜物性のばらつきの存在するなかで、いかに
相変化媒体に適した保護膜を見い出すかが課題であっ
た。 【0015】 【課題を解決するための手段】本発明の光学的情報記録
用媒体は、基板上に少なくとも相転移型光記録層、誘電
体層を備えた光学的情報記録用媒体において、該誘電体
層が、実質的にLaB 6 からなることを特徴とする光学
的情報記録用媒体に存する。 【0016】 【発明の実施の形態】本発明による光学的記録用媒体の
構成について述べる。本発明の光学的記録用媒体は、基
板上に少なくとも相転移型光記録層、誘電体層を備えて
いる。通常は、基板/誘電体層/記録層/誘電体層/反
射層の構成を有する。 【0017】基板にはポリカーボネート、アクリル、ポ
リオレフィンなどの透明樹脂、あるいはガラスを用いる
ことができる。基板表面には上記特性を満たす誘電体層
が、通常は、10から500nmの厚さに設けられる。
誘電体層の厚みが10nm未満であると、基板や記録膜
の変形防止効果が不十分であり、保護層としての役目を
なさない傾向がある。 【0018】500nmを超えると誘電体層自体の内部
応力や基板との弾性特性の差が顕著になって、クラック
が発生しやすくなる。誘電体層は少なくともランタン
(La)及びホウ素(B)を含有する。特にLaB6
吸収係数、消衰係数が大きな波長依存性を有するため、
光の干渉効果を利用して多層膜の厚み構成を設計する時
に、その吸収、反射率の制御に有効なものである。 【0019】本発明は上記二元素に限定されない。La
及びホウ素を主成分とすれば、他の誘電体が混合されて
いても良い。他の誘電体としてはSiO2,Y23、Z
rO2,BaO,B23,Ta25、NdF3,ZnS,
Si34,SiC等が挙げられる。誘電体に他の誘電体
を混入する場合、1000℃以上の耐熱性を有し、光学
的に透明であることが好ましい。 【0020】上記誘電体層は、この誘電体を構成する複
数の元素で構成された複合スパッタリングターゲットを
用いて設けることが好ましい。これは上記物質からなる
誘電体層を形成するにあたり、通常スパッタ法が広く用
いられているが、複合ターゲットを用いる方が、個々の
単体ターゲットを用いて同時スパッタするのと比べて、
得られる化合物保護膜の構成元素の均一性が勝っている
ために保護膜としての特性も優れたものとなるためであ
る。 【0021】上記誘電体層は膜密度が理論密度の80%
以上であることが好ましい。ここで、膜の理論密度は下
記式で示され、各構成化合物のバルク状態での密度にそ
の構成化合物のモル含有率を乗じたものの積算値であ
る。 理論密度=Σ{(構成化合物バルク状態の密度)×(構
成化合物モル含有率)} 混合物誘電体層の密度をこのようにすることで、繰り返
し記録及び経時変化に対する耐久性を著しく向上させる
ことができる。 【0022】膜密度をコントロールするにはスパッタリ
ング時の真空度を調節することにより行いうる、膜密度
を高くするには真空度を低く(アルゴンガス圧を低く)
するのが良く、通常は真空度を1Pa以下、好ましくは
0.8〜0.1Pa程度とするのが良い。またスパッタ
放電において通常好ましく用いられているArガスに微
量の酸素あるいはまた窒素ガスを混合しても構わない。 【0023】本発明の媒体の記録層は相変化型の記録層
であり、その厚みは10nmから100nmの範囲が好
ましい。記録層の厚みが10nmより薄いと十分なコン
トラストが得られにくい。また結晶化速度が遅くなる傾
向があり、短時間での記録消去が困難になる。一方10
0nmを越すとやはり光学的なコントラストが得にくく
なり、また、クラックが生じやすくなるので好ましくな
い。 【0024】なお、記録層及び誘電体層の厚みは多層構
成に伴う干渉効果も考慮して、レーザー光の吸収効率が
良く、記録信号の振幅すなわち記録状態と未記録状態の
コントラストが大きくなるように選ばれる。記録層とし
てはGeSbTeやInSbTeといった3元化合物が
オーバーライト可能な材料として選ばれる。 【0025】これらの3元化合物に0.1〜10原子%
のSn、In、Pb、As、Se、Si、Bi、Au、
Ti、Cu、Ag、Pt、Pd、Co、Ni等のうちか
ら、一種またはそれ以上の元素を添加して結晶化速度、
光学定数、耐酸化性を改善することも有効である。保護
層の上に光学的反射層と熱変形防止のためのハードコー
ト層を設けてあるが、光学的反射層は反射率の大きい物
質が好ましく、Au、Ag、Cu、Al等が用いられ
る。 【0026】この反射層は、記録層が吸収した熱エネル
ギーの拡散を促進する効果があるため、熱伝導度制御等
のためTa、Ti、Cr、Mo、Mg、V、Nb、Zr
等を小量加えても良い。記録層、誘電体層、反射層はス
パッタリング法などによって形成される。記録膜用ター
ゲット、保護膜用ターゲット、必要な場合には反射層材
料用ターゲットを同一真空チャンバー内に設置したイン
ライン装置で膜形成を行うことが各層間の酸化や汚染を
防ぐ点で望ましい。また、生産性の面からもすぐれてい
る。 【0027】 【実施例】以下実施例をもって本発明を詳細に説明する
が、本発明はその要旨を越えない限り以下の実施例に限
定されるものではない。 実施例1 誘電体層材料としてLaB6粉末をホットプレス法にて
得た焼結体ターゲットを用いて、ポリカーボネート樹脂
基板上に誘電体層/記録層/誘電体層/反射層を設け4
層構造の記録媒体を作成した。各層の厚みは、下部誘電
体層180nm、記録層30nm、上部誘電体層30n
m、反射層100nmとした。 【0028】記録層の組成はGe22.2Sb22.2Te55.6
である。反射層はAl−Ta合金を用いた。誘電体層は
Arガス圧力0.7Pa、酸素ガス圧力15mPaで高
周波(13.56MHz)スパッタリングにより成膜し
た。膜密度は4.1g/ccであり理論密度の87%で
あった。記録層及び反射層はArガス圧力0.7Paで
直流スパッタリングにより成膜した。さらに厚み約4μ
mの紫外線硬化樹脂を設けた。 【0029】このディスクをArイオンレーザーを用い
て初期化すなわち記録層の結晶化処理を行ったのち、以
下の条件でディスクの動特性を評価した。10m/sの
線速度で回転させながら4MHz、デューティー50%
のパルス光を用い記録パワー16.5mW、ベースパワ
ー9mWで繰り返しオーバーライトを行い、所定の回数
に達する度にC/N比、消去比の測定を行った。結果は
図1に示すよう繰り返し千回で繰り返し1回目と比較し
てC/Nの低下は約2dBであり、また消去比は繰り返
し1万回においても1回目と同等であった。 【0030】比較例1 実施例において誘電体層材料としてZnSとTiO2
粉体をmol比で80対20としたこと以外は同様にし
てディスクを作成し、同様な動特性評価を行った。結果
は図2に示した。図2のグラフから明らかなように繰り
返し2千回で繰り返し1回目と比較してC/Nの低下は
約12dBであり、また消去比は繰り返し2千回におい
て1回目と比較して約15dB低下した。 【0031】 【発明の効果】本発明の光学的記録用媒体を用いること
により多数回の繰り返し記録・消去が行えこの種の繰り
返し記録・消去可能な媒体の実用化に多いに有効であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium having a phase change type optical recording layer. More specifically, the present invention relates to an optical information recording medium having a phase transition type optical recording layer capable of recording, erasing, and reproducing information at high speed and high density by irradiation with laser light or the like. 2. Description of the Related Art In recent years, an optical disk using a laser beam has been developed as a recording medium that meets the demand for an increase in the amount of information and a high density and high speed of recording and reproduction. Optical discs include a write-once type, which allows recording only once, and a rewritable type, which allows recording / erasing any number of times. Examples of the rewritable optical disk include a magneto-optical recording medium utilizing a magneto-optical effect and a phase change medium utilizing a reversible change in crystalline state. The phase change medium is
Recording and erasing are possible only by modulating the power of the laser beam without the need for an external magnetic field. Furthermore, there is an advantage that one-beam overwriting in which erasing and re-recording are performed simultaneously with a single beam is possible. In the phase change recording method capable of one-beam overwriting, it is general that a recording bit is formed by amorphizing a recording film, and erasing is performed by crystallization. As a recording layer material used in such a phase change recording method, a chalcogen-based alloy thin film is often used. For example, Ge-Te system, Ge-Te-Sb
System, In-Sb-Te system, Ge-Sn-Te system alloy thin film and the like. [0005] A write-once type phase change medium can be realized with almost the same material and layer structure as the rewritable type. In this case, information can be recorded and stored for a longer period because there is no reversibility, and almost semi-permanent storage is possible in principle. When a phase-change medium is used as a write-once type, unlike a perforated type, there is no ridge called a rim around the bit, so that the signal quality is excellent. There is no advantage. Generally, in a rewritable phase change recording medium, two different laser beam powers are used to realize different crystal states. This method will be described by taking as an example a case where recording / erasing is performed in an erased / initial state where an amorphous bit has been crystallized. The crystallization is performed by heating the recording layer to a temperature sufficiently higher than the crystallization temperature of the recording layer and lower than the melting point. In this case, the recording layer is sandwiched between dielectric layers, or an elliptical beam long in the beam moving direction is used so that the cooling rate becomes slow enough to sufficiently crystallize. On the other hand, the amorphization is performed by heating the recording layer to a temperature higher than the melting point and rapidly cooling the recording layer. In this case, the dielectric layer also has a function as a heat radiation layer for obtaining a sufficient cooling rate (supercooling rate). [0008] Further, in order to prevent the recording layer from being deformed due to melting and volume change in the heating / cooling process as described above, to prevent thermal damage to the plastic substrate, and to prevent deterioration of the recording layer due to moisture. The protective layer made of the dielectric layer is important. The material of the protective layer material is selected from the viewpoints of being optically transparent to laser light, high melting point, softening point, high decomposition temperature, easy formation, and moderate thermal conductivity. Is done. The protective layer having sufficient heat resistance and mechanical strength includes a dielectric thin film such as a metal oxide or nitride. Since the dielectric thin film and the plastic substrate have significantly different coefficients of thermal expansion and elastic properties, they repeatedly separate from the substrate and cause pinholes and cracks during recording and erasing. [0010] Further, the plastic substrate is liable to be warped due to humidity, but this may also cause peeling of the protective film. On the other hand, as a new dielectric protection layer,
There has been proposed a material containing ZnS as a main component and mixed with SiO 2 , Y 2 O 3 and the like. These composite compound protective films have better adhesion to chalcogenide-based alloy thin films such as GeTeSb, which are often used as recording layers, than pure oxide or nitride dielectric films. Therefore, in addition to durability against repeated overwriting, film peeling in an accelerated test is small, and the reliability of the phase change medium is further improved. [0011] However, composite compounds do not necessarily exhibit good properties simply by mixing. Depending on the composition range and the physical properties of the composite film, the reliability may be reduced rather than the case where individual pure compounds are used. Conventionally, many proposals have been made for protective films in which oxides, nitrides, fluorides, carbides and the like are mixed with ZnS, ZnSe, etc., which are compounds containing chalcogenide elements, but some of them have been proposed. Only the optimum composition range is described, and even if a mixture of the composition is used, characteristics superior to those of the original protective layer composed of a pure compound alone cannot be obtained. [0013] This is because the physical properties of the above-mentioned composite material are significantly different from those of the compound constituting the composite material, so that a change in physical properties due to the production method or the like cannot be predicted. For example, a sputtering method is widely used in forming a protective layer made of the above-described composite compound. However, when a composite target is used and when a simultaneous sputtering is performed using individual compound targets, a composite compound protection is naturally obtained. The physical properties of the film differ. It is a well-known fact that even in the same manufacturing method, the physical properties change due to the pressure during sputtering and the like. In the presence of such variations in physical properties of the protective film, it has been a problem how to find a protective film suitable for a phase change medium. [0015] Means for Solving the Problems An optical information recording medium of the present invention, at least the phase transition type optical recording layer on a substrate, the optical information recording medium having a dielectric layer, dielectric body
Optics layers, characterized in that it consists essentially LaB 6
Information recording medium . DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of an optical recording medium according to the present invention will be described. The optical recording medium of the present invention has at least a phase-change optical recording layer and a dielectric layer on a substrate. Usually, it has a configuration of substrate / dielectric layer / recording layer / dielectric layer / reflection layer. The substrate can be made of a transparent resin such as polycarbonate, acrylic, or polyolefin, or glass. A dielectric layer satisfying the above characteristics is provided on the substrate surface, usually in a thickness of 10 to 500 nm.
If the thickness of the dielectric layer is less than 10 nm, the effect of preventing deformation of the substrate or the recording film is insufficient, and the dielectric layer tends not to serve as a protective layer. If the thickness exceeds 500 nm, the internal stress of the dielectric layer itself and the difference in elastic properties between the dielectric layer and the substrate become remarkable, and cracks are easily generated. The dielectric layer contains at least lanthanum (La) and boron (B). In particular, since LaB 6 has a large wavelength dependence of the absorption coefficient and the extinction coefficient,
This is effective in controlling the absorption and the reflectance when designing the thickness configuration of the multilayer film using the light interference effect. The present invention is not limited to the above two elements. La
If the main component is boron and boron, another dielectric may be mixed. Other dielectrics include SiO 2 , Y 2 O 3 , Z
rO 2 , BaO, B 2 O 3 , Ta 2 O 5 , NdF 3 , ZnS,
Si 3 N 4 , SiC and the like can be mentioned. When another dielectric is mixed with the dielectric, it is preferable that the dielectric has a heat resistance of 1000 ° C. or higher and is optically transparent. Preferably, the dielectric layer is provided by using a composite sputtering target composed of a plurality of elements constituting the dielectric. This is generally the case in which a sputtering method is widely used to form a dielectric layer made of the above-mentioned substances.However, using a composite target, compared to simultaneous sputtering using individual single targets,
This is because the uniformity of the constituent elements of the obtained compound protective film is superior, and the characteristics as the protective film are also excellent. The dielectric layer has a film density of 80% of the theoretical density.
It is preferable that it is above. Here, the theoretical density of the film is represented by the following formula, and is an integrated value obtained by multiplying the density of each constituent compound in a bulk state by the molar content of the constituent compound. Theoretical density = {(density of constituent compound bulk state) × (molar content of constituent compound)} By setting the density of the mixture dielectric layer in this way, the durability against repeated recording and aging can be significantly improved. it can. The film density can be controlled by adjusting the degree of vacuum during sputtering. To increase the film density, the degree of vacuum is reduced (the argon gas pressure is reduced).
The degree of vacuum is usually 1 Pa or less, preferably about 0.8 to 0.1 Pa. Further, a small amount of oxygen or nitrogen gas may be mixed with Ar gas which is usually preferably used in sputter discharge. The recording layer of the medium of the present invention is a phase change type recording layer, and its thickness is preferably in the range of 10 nm to 100 nm. If the thickness of the recording layer is less than 10 nm, it is difficult to obtain a sufficient contrast. In addition, the crystallization speed tends to be slow, and it is difficult to erase data in a short time. On the other hand 10
If it exceeds 0 nm, optical contrast is still difficult to be obtained, and cracks are likely to occur. The thicknesses of the recording layer and the dielectric layer are adjusted so that the laser beam absorption efficiency is high and the amplitude of the recording signal, that is, the contrast between the recorded state and the unrecorded state is increased in consideration of the interference effect associated with the multilayer structure. Is chosen. For the recording layer, a ternary compound such as GeSbTe or InSbTe is selected as a material capable of overwriting. These ternary compounds are added in an amount of 0.1 to 10 atomic%.
Of Sn, In, Pb, As, Se, Si, Bi, Au,
One or more elements are added from among Ti, Cu, Ag, Pt, Pd, Co, Ni and the like, and the crystallization rate is increased.
It is also effective to improve the optical constant and oxidation resistance. An optical reflection layer and a hard coat layer for preventing thermal deformation are provided on the protective layer. The optical reflection layer is preferably made of a substance having a high reflectance, and Au, Ag, Cu, Al, or the like is used. This reflective layer has the effect of promoting the diffusion of the thermal energy absorbed by the recording layer, so that Ta, Ti, Cr, Mo, Mg, V, Nb, Zr
May be added in small amounts. The recording layer, the dielectric layer, and the reflection layer are formed by a sputtering method or the like. It is desirable to form a film using an in-line apparatus in which a target for a recording film, a target for a protective film, and if necessary, a target for a reflective layer material are installed in the same vacuum chamber, from the viewpoint of preventing oxidation and contamination between layers. It is also excellent in productivity. The present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. Example 1 A dielectric layer / recording layer / dielectric layer / reflective layer was formed on a polycarbonate resin substrate using a sintered target obtained by hot pressing LaB 6 powder as a dielectric layer material.
A recording medium having a layer structure was prepared. The thickness of each layer is as follows: lower dielectric layer 180 nm, recording layer 30 nm, upper dielectric layer 30 n
m, and the reflective layer was 100 nm. The composition of the recording layer is Ge 22.2 Sb 22.2 Te 55.6
It is. The reflection layer used an Al-Ta alloy. The dielectric layer was formed by high frequency (13.56 MHz) sputtering at an Ar gas pressure of 0.7 Pa and an oxygen gas pressure of 15 mPa. The film density was 4.1 g / cc, which was 87% of the theoretical density. The recording layer and the reflective layer were formed by DC sputtering at an Ar gas pressure of 0.7 Pa. About 4μ thick
m of an ultraviolet curable resin. After the disk was initialized using an Ar ion laser, ie, the recording layer was crystallized, the dynamic characteristics of the disk were evaluated under the following conditions. 4MHz, 50% duty while rotating at a linear speed of 10m / s
Overwriting was repeatedly performed at a recording power of 16.5 mW and a base power of 9 mW, and the C / N ratio and the erasing ratio were measured each time a predetermined number of times was reached. As shown in FIG. 1, the C / N was reduced by about 2 dB in the 1,000 repetitions compared to the first repetition, and the erasing ratio was equivalent to the first repetition even in 10,000 repetitions. Comparative Example 1 A disk was prepared in the same manner as in the example except that the molar ratio of ZnS and TiO 2 was 80:20 as the dielectric layer material, and the same dynamic characteristics were evaluated. The results are shown in FIG. As is clear from the graph of FIG. 2, the reduction in C / N is about 12 dB after 2,000 repetitions compared to the first repetition, and the erasing ratio is about 15 dB lower than the first repetition after 2,000 repetitions. did. By using the optical recording medium of the present invention, recording and erasing can be performed a number of times repeatedly, and this type of medium which can be repeatedly recorded and erased is very effective for practical use.

【図面の簡単な説明】 【図1】 実施例におけるC/Nと消去比のグラフ 【図2】 比較例におけるC/Nと消去比のグラフ 【符号の説明】 1 C/N比 2 消去比[Brief description of the drawings] FIG. 1 is a graph of C / N and an erasing ratio in an example. FIG. 2 is a graph of C / N and erase ratio in a comparative example. [Explanation of symbols] 1 C / N ratio 2 Elimination ratio

Claims (1)

(57)【特許請求の範囲】 【請求項1】基板上に少なくとも相転移型光記録層、誘
電体層を備えた光学的情報記録用媒体において、該誘電
体層が、実質的にLaB 6 からなることを特徴とする光
学的情報記録用媒体。
(57) Patent Claims 1, wherein at least the phase transition type optical recording layer on a substrate, the optical information recording medium having a dielectric layer, dielectric
Light body layer, characterized in that consists essentially of LaB 6
For recording scientific information.
JP20951095A 1995-08-17 1995-08-17 Optical information recording medium Expired - Fee Related JP3444037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20951095A JP3444037B2 (en) 1995-08-17 1995-08-17 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20951095A JP3444037B2 (en) 1995-08-17 1995-08-17 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPH0963117A JPH0963117A (en) 1997-03-07
JP3444037B2 true JP3444037B2 (en) 2003-09-08

Family

ID=16573997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20951095A Expired - Fee Related JP3444037B2 (en) 1995-08-17 1995-08-17 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP3444037B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258923B2 (en) 2003-10-31 2007-08-21 General Electric Company Multilayered articles and method of manufacture thereof
US7399571B2 (en) 2005-05-06 2008-07-15 General Electric Company Multilayered articles and method of manufacture thereof

Also Published As

Publication number Publication date
JPH0963117A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
US5498507A (en) Optical recording media
US6242157B1 (en) Optical recording medium and method for making
US20010033991A1 (en) Optical recording medium and use of such optical recording medium
US6040066A (en) Rewritable optical information medium
US5604003A (en) Optical information carrier
EP1132904A2 (en) Information recording medium and method of manufacturing the same
US5876822A (en) Reversible optical information medium
JP2001322357A (en) Information recording medium and its manufacturing method
EP0951717B1 (en) REWRITABLE OPTICAL INFORMATION MEDIUM OF A Ge-Sb-Te ALLOY
EP1038294A2 (en) Rewritable optical information medium
JP3444037B2 (en) Optical information recording medium
JP3379256B2 (en) Optical information recording medium
JP3692776B2 (en) Optical information recording medium and method for manufacturing the same
JP3246244B2 (en) Optical information recording medium
JP3601168B2 (en) Optical information recording medium
JP2850713B2 (en) Optical information recording medium
JP3365457B2 (en) Optical information recording medium
JP3246350B2 (en) Optical information recording medium
JP3365465B2 (en) Optical information recording medium
JPH09282713A (en) Optical information recording medium
US5202881A (en) Information storage medium
JP2967949B2 (en) Optical information recording medium
JPH08287516A (en) Optical information recording medium
JPH11232698A (en) Medium for optical information recording and manufacture thereof
JP3869493B2 (en) Optical information recording medium and manufacturing method thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees