JP3443682B2 - Overload detection device - Google Patents

Overload detection device

Info

Publication number
JP3443682B2
JP3443682B2 JP12843598A JP12843598A JP3443682B2 JP 3443682 B2 JP3443682 B2 JP 3443682B2 JP 12843598 A JP12843598 A JP 12843598A JP 12843598 A JP12843598 A JP 12843598A JP 3443682 B2 JP3443682 B2 JP 3443682B2
Authority
JP
Japan
Prior art keywords
load
drive
overload
shaft
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12843598A
Other languages
Japanese (ja)
Other versions
JPH11325103A (en
Inventor
義典 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP12843598A priority Critical patent/JP3443682B2/en
Publication of JPH11325103A publication Critical patent/JPH11325103A/en
Application granted granted Critical
Publication of JP3443682B2 publication Critical patent/JP3443682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Description

【発明の詳細な説明】 【0001】本発明は、過負荷検出装置に関し、さらに
詳しくは、回転速度の高低に左右されずに迅速に過負荷
を検出することが出来る過負荷検出装置に関する。 【0002】 【従来の技術】図5は、従来の過負荷検出装置の一例の
説明図である。この過負荷検出装置500は、駆動側動
力伝達軸Smの回転を負荷側動力伝達軸Sdへと伝達す
るカップリング5と、駆動側動力伝達軸Smに取り付け
られた検出用メタル片6と、そのメタル片6が近接して
きたときにパルスを出力する近接センサ1と、負荷側動
力伝達軸Sdに取り付けられた検出用メタル片7と、そ
のメタル片7が近接してきたときにパルスを出力する近
接センサ2と、シーケンサ53とを具備している。前記
シーケンサ53は、前記近接センサ1が出力するパルス
を計数する駆動側カウンタ3aと、前記近接センサ2が
出力するパルスを計数する負荷側カウンタ3bと、前記
駆動側カウンタ3aの計数値が一定の判定間隔パルス数
に達する毎に前記駆動側カウンタ3aの計数値と前記負
荷側カウンタ3bの計数値とを比較して両者の計数値の
差が所定の許容値より大きいか否かを判定し「大きい」
と判定したときに過負荷検出とし「大きくない」と判定
したときに前記駆動側カウンタ3aおよび前記負荷側カ
ウンタ3bをリセットする過負荷判定処理53cとを具
備している。 【0003】過負荷でないときは、駆動側動力伝達軸S
mと負荷側動力伝達軸Sdとが同期して回転するため、
駆動側カウンタ3aと負荷側カウンタ3bの計数値の差
が所定の許容値より小さく保たれる。ところが、過負荷
になると、シアピン4が切断されるため、駆動側動力伝
達軸Smが回転しても負荷側動力伝達軸Sdは回転しな
くなり、駆動側カウンタ3aと負荷側カウンタ3bの計
数値の差が所定の許容値より大きくなる。よって、過負
荷を検出できる。 【0004】 【発明が解決しようとする課題】上記従来の過負荷検出
装置500では、駆動側カウンタ3aの計数値が一定の
判定間隔パルス数に達する毎に、駆動側カウンタ3aの
計数値と負荷側カウンタ3bの計数値とを比較して過負
荷か否かを判定している。しかし、駆動側カウンタ3a
が計数するパルス(すなわち近接センサ1が出力するパ
ルス)の周期は、駆動側動力伝達軸Smが高速回転する
ときは短くなり、駆動側動力伝達軸Smが低速回転する
ときは長くなるため、駆動側カウンタ3aの計数値が一
定の判定間隔パルス数に達する毎に上記判定を行うと、
駆動側動力伝達軸Smが高速回転するときは比較的短い
最大遅れ時間で過負荷を検出できるが、駆動側動力伝達
軸Smが低速回転するときは比較的長い最大遅れ時間と
なり、過負荷を検出できるまでの最大遅れ時間が駆動側
動力伝達軸Smの回転速度に左右されてしまう問題点が
ある。そこで、本発明の目的は、回転速度の高低に左右
されずに迅速に過負荷を検出することが出来る過負荷検
出装置を提供することにある。 【0005】 【課題を解決するための手段】 【0006】第の観点では、本発明は、過負荷になる
と切断されるシアピン(4)により結合され駆動側軸
(Sm)の回転を負荷側軸(Sd)へと伝達するカップ
リング(5)と、駆動側軸(Sm)の回転速度を表すパ
ルス数を計数する駆動側軸回転パルス計数手段(1,
6,3a)と、負荷側軸(Sd)の回転速度を表すパル
ス数を計数する負荷側軸回転パルス計数手段(2,7,
3b)と、前記駆動側軸(Sm)の回転速度に応じた判
定間隔パルス数を設定するための判定間隔パルス数設定
手段(3d)と、前記駆動側軸(Sm)の回転速度を表
すパルス数を前記判定間隔パルス数だけ計数する毎に当
該駆動側軸(Sm)の回転速度を表すパルス数と前記負
荷側軸(Sd)の回転速度を表すパルス数の差が所定の
許容値より大きいか否かを判定し大きいと判定したとき
に過負荷検出とする過負荷判定手段(3c)とを具備し
たことを特徴とする過負荷検出装置(100)を提供す
る。上記第の観点による過負荷検出装置(100)で
は、駆動側軸の回転速度に応じた判定間隔パルス数を設
定するため、駆動側軸が高速回転するときは判定間隔パ
ルス数を比較的大きく設定し、駆動側軸が低速回転する
ときは判定間隔パルス数を比較的小さく設定することと
すれば、過負荷を検出できるまでの最大遅れ時間を一定
にすることが可能になる。すなわち、回転速度の高低に
左右されずに迅速に過負荷を検出することが出来る。 【0007】 【発明の実施の形態】以下、図を参照して本発明の実施
の形態を説明する。なお、これにより本発明が限定され
るものではない。◆図1は、本発明の一実施形態の過負
荷検出装置を示す説明図である。この過負荷検出装置1
00は、駆動側動力伝達軸Smの回転を負荷側動力伝達
軸Sdへと伝達するカップリング5と、駆動側動力伝達
軸Smに取り付けられた検出用メタル片6と、そのメタ
ル片6が近接してきたときにパルスを出力する近接セン
サ1と、負荷側動力伝達軸Sdに取り付けられた検出用
メタル片7と、そのメタル片7が近接してきたときにパ
ルスを出力する近接センサ2と、シーケンサ3と、入力
装置10とを具備している。前記シーケンサ3は、前記
近接センサ1が出力するパルスを計数する駆動側カウン
タ3aと、前記近接センサ2が出力するパルスを計数す
る負荷側カウンタ3bと、前記駆動側カウンタ3aの計
数値が判定間隔パルス数Tに達する毎に前記駆動側カウ
ンタ3aの計数値と前記負荷側カウンタ3bの計数値と
を比較して両者の計数値の差が所定の許容値より大きい
か否かを判定し「大きい」と判定したときに過負荷検出
とし「大きくない」と判定したときに前記駆動側カウン
タ3aおよび前記負荷側カウンタ3bをリセットする過
負荷判定処理3cと、前記駆動側動力伝達軸Smの回転
速度Nに応じた判定間隔パルス数Tを設定する判定間隔
パルス数設定処理3dとを具備している。 【0008】図2は、前記カップリング5を前記負荷側
動力伝達軸Sdから見た説明図である。 【0009】図3は、前記判定間隔パルス数設定処理3
dのフロー図である。ステップS1では、近接センサ1
の出力パルスの間隔τ[s]を測定する。この出力パル
ス間隔τは、駆動側動力伝搬軸Smの回転速度を表す。
ステップS2では、出力パルスの間隔τ[s]と所望の
判定間隔時間t[s]から判定間隔パルス数T[パル
ス]を算出する。 T=t/τ 例えば、所望の判定間隔時間tを0.5[s]とすると
き、τ=0.25[s](回転速度60[rpm])な
らT=2[パルス]となり、τ=0.05[s](回転
速度300[rpm])ならT=10[パルス]とな
り、τ=0.025[s](回転速度600[rp
m])ならT=20[パルス]となり、τ=0.012
5[s](回転速度1200[rpm])ならT=40
[パルス]となる。そして、処理を終了する。 【0010】図4は、前記過負荷判定処理3cのフロー
図である。ステップD1では、駆動側カウンタ3aと負
荷側カウンタ3bとをリセットする。ステップD2で
は、駆動側カウンタ3aが判定間隔パルス数Tに達する
のを待つ。ステップD3では、駆動側カウンタ3aの計
数値Tと負荷側カウンタ3bの計数値Xの差(T−X)
が所望の許容値mより大きいか否かをチェックし、「大
きい」ならステップD4へ進み、「大きくない」なら前
記ステップD1に戻る。なお、検出用メタル片6,7の
位置の不一致などに起因する近接センサ1,2の出力パ
ルスのタイミングのズレによる誤検出を防止するため、
“2”以上に設定するのが好ましい。ステップD4で
は、過負荷検出信号を出力する。そして、処理を終了す
る。 【0011】以上の過負荷検出装置100では、過負荷
でないときは、駆動側動力伝達軸Smと負荷側動力伝達
軸Sdとが同期して回転するため、駆動側カウンタ3a
と負荷側カウンタ3bの計数値の差が許容値mより小さ
く保たれる。ところが、過負荷になると、シアピン4が
切断されるため、駆動側動力伝達軸Smが回転しても負
荷側動力伝達軸Sdは回転しなくなり、駆動側カウンタ
3aと負荷側カウンタ3bの計数値の差が許容値mより
大きくなる。よって、過負荷を検出できる。そして、過
負荷を検出できるまでの最大遅れ時間は、前記判定間隔
時間tに一致し、一定になる。すなわち、回転速度の高
低に左右されずに迅速に過負荷を検出することが出来
る。 【0012】なお、判定間隔パルス数Tを操作者が入力
装置10から入力し設定するようにしてもよい。この場
合、前記判定間隔パルス数設定処理3dを省略してもよ
い。 【0013】 【発明の効果】本発明の過負荷検出装置によれば、過負
すなわちシアピンの切断を検出できるまでの最大遅れ
時間は、前記判定間隔時間tに一致し、一定になる。従
って、回転速度の高低に左右されずに、迅速に過負荷を
検出することが出来るようになる。このため、ギヤポン
プ装置などのように回転速度が低い場合でも、速やかに
過負荷を検出できるようになる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to an overload detection DeSo location, more particularly, overload detection DeSo can detect quickly overloaded irrespective of the level of the rotational speed About the installation. 2. Description of the Related Art FIG. 5 is an explanatory view of an example of a conventional overload detecting device. The overload detection device 500 includes a coupling 5 that transmits the rotation of the drive-side power transmission shaft Sm to the load-side power transmission shaft Sd, a detection metal piece 6 attached to the drive-side power transmission shaft Sm, Proximity sensor 1 that outputs a pulse when metal piece 6 approaches, metal piece 7 for detection attached to load-side power transmission shaft Sd, proximity sensor that outputs a pulse when metal piece 7 approaches. It has a sensor 2 and a sequencer 53. The sequencer 53 includes a drive-side counter 3a that counts pulses output by the proximity sensor 1, a load-side counter 3b that counts pulses output by the proximity sensor 2, and a constant value of the drive-side counter 3a. Each time the number of pulses reaches the determination interval, the count value of the drive-side counter 3a and the count value of the load-side counter 3b are compared to determine whether the difference between the count values is greater than a predetermined allowable value. large"
And an overload determination process 53c for resetting the drive-side counter 3a and the load-side counter 3b when it is determined to be "not too large" when the determination is made. When there is no overload, the driving power transmission shaft S
m and the load side power transmission shaft Sd rotate synchronously,
The difference between the count values of the drive side counter 3a and the load side counter 3b is kept smaller than a predetermined allowable value. However, when the overload occurs, the shear pin 4 is cut off, so that the load-side power transmission shaft Sd does not rotate even if the drive-side power transmission shaft Sm rotates, and the count values of the drive-side counter 3a and the load-side counter 3b are counted. The difference is greater than a predetermined tolerance. Therefore, overload can be detected. In the conventional overload detecting device 500, every time the count value of the drive-side counter 3a reaches a certain number of determination interval pulses, the count value of the drive-side counter 3a and the load It is determined whether an overload has occurred by comparing the count value of the side counter 3b. However, the driving side counter 3a
(I.e., the pulse output by the proximity sensor 1) becomes shorter when the driving power transmission shaft Sm rotates at a high speed, and becomes longer when the driving power transmission shaft Sm rotates at a low speed. When the above determination is made every time the count value of the side counter 3a reaches a certain determination interval pulse number,
When the drive-side power transmission shaft Sm rotates at high speed, overload can be detected with a relatively short maximum delay time, but when the drive-side power transmission shaft Sm rotates at low speed, a relatively long maximum delay time is detected, and overload is detected. There is a problem in that the maximum delay time until it is possible depends on the rotation speed of the drive-side power transmission shaft Sm. Therefore, an object of the present invention is to provide an overload detection capable of quickly detecting an overload without being affected by the rotational speed.
It is to provide a DeSo location. [0006] In a first aspect , the present invention provides an overload.
A coupling (5) that is coupled by a shear pin (4) that is cut off and transmits the rotation of the drive-side shaft (Sm) to the load-side shaft (Sd), and the number of pulses representing the rotation speed of the drive-side shaft (Sm) Driving side shaft rotation pulse counting means (1,
6, 3a) and load-side shaft rotation pulse counting means (2, 7,...) For counting the number of pulses representing the rotation speed of the load-side shaft (Sd).
3b), determination interval pulse number setting means (3d) for setting the number of determination interval pulses according to the rotation speed of the drive side shaft (Sm), and a pulse representing the rotation speed of the drive side shaft (Sm) Every time the number of pulses is counted by the number of the determination interval pulses, the difference between the pulse number representing the rotation speed of the drive side shaft (Sm) and the pulse number representing the rotation speed of the load side shaft (Sd) is larger than a predetermined allowable value. And an overload determining means (3c) for detecting an overload when it is determined that the load is large. Said the first aspect overload detection device according to (100), setting the number of decision interval pulses corresponding to the rotational speed of the drive-side shaft
When the drive-side shaft rotates at high speed, the judgment interval
Set the number of screws to be relatively large, and drive side shaft rotates at low speed
In some cases, set the number of decision interval pulses relatively small.
The maximum delay time before overload can be detected
It becomes possible to. In other words, the rotation speed
An overload can be quickly detected without being affected . An embodiment of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to this. FIG. 1 is an explanatory diagram showing an overload detection device according to one embodiment of the present invention. This overload detection device 1
00 is a coupling 5 that transmits the rotation of the drive-side power transmission shaft Sm to the load-side power transmission shaft Sd, a detection metal piece 6 attached to the drive-side power transmission shaft Sm, and the metal piece 6 A proximity sensor 1 that outputs a pulse when it comes, a detection metal piece 7 attached to the load-side power transmission shaft Sd, a proximity sensor 2 that outputs a pulse when the metal piece 7 comes close, and a sequencer 3 and an input device 10. The sequencer 3 includes a drive-side counter 3a that counts pulses output by the proximity sensor 1, a load-side counter 3b that counts pulses output by the proximity sensor 2, and a determination interval between counts of the drive-side counter 3a. Each time the pulse number T is reached, the count value of the drive-side counter 3a and the count value of the load-side counter 3b are compared to determine whether or not the difference between the count values is greater than a predetermined allowable value. Overload detection processing 3c for resetting the drive-side counter 3a and the load-side counter 3b when it is determined that the load is not large, and the rotational speed of the drive-side power transmission shaft Sm. A determination interval pulse number setting process 3d for setting the determination interval pulse number T according to N. FIG. 2 is an explanatory view of the coupling 5 as viewed from the load-side power transmission shaft Sd. FIG. 3 shows a process 3 for setting the number of pulses of the judgment interval.
It is a flowchart of d. In step S1, the proximity sensor 1
Is measured for the output pulse interval τ [s]. This output pulse interval τ indicates the rotation speed of the drive-side power transmission shaft Sm.
In step S2, the number of determination interval pulses T [pulse] is calculated from the output pulse interval τ [s] and the desired determination interval time t [s]. T = t / τ For example, when the desired determination interval time t is 0.5 [s], if τ = 0.25 [s] (rotational speed 60 [rpm]), T = 2 [pulse], and τ = 0.05 [s] (rotational speed 300 [rpm]), T = 10 [pulses], and τ = 0.025 [s] (rotational speed 600 [rpm]
m]), T = 20 [pulses], and τ = 0.012
T = 40 for 5 [s] (rotation speed 1200 [rpm])
[Pulse]. Then, the process ends. FIG. 4 is a flowchart of the overload judging process 3c. In step D1, the drive-side counter 3a and the load-side counter 3b are reset. In step D2, the control waits until the drive-side counter 3a reaches the number T of determination interval pulses. In step D3, the difference (T−X) between the count value T of the drive side counter 3a and the count value X of the load side counter 3b.
Is larger than or equal to a desired allowable value m. If “large”, the process proceeds to step D4. If “large”, the process returns to step D1. In order to prevent erroneous detection due to a shift in the timing of the output pulses of the proximity sensors 1 and 2 due to a mismatch between the positions of the detection metal pieces 6 and 7, etc.
It is preferable to set “2” or more. In step D4, an overload detection signal is output. Then, the process ends. In the above-described overload detecting device 100, when there is no overload, the drive side power transmission shaft Sm and the load side power transmission shaft Sd rotate synchronously, so that the drive side counter 3a
And the count value of the load-side counter 3b is kept smaller than the allowable value m. However, when the overload occurs, the shear pin 4 is cut off, so that the load-side power transmission shaft Sd does not rotate even if the drive-side power transmission shaft Sm rotates, and the count values of the drive-side counter 3a and the load-side counter 3b are counted. The difference becomes larger than the allowable value m. Therefore, overload can be detected. Then, the maximum delay time until the overload can be detected coincides with the determination interval time t and becomes constant. That is, the overload can be quickly detected without being affected by the rotation speed. Note that the number T of determination interval pulses may be set by an operator by inputting from the input device 10. In this case, the determination interval pulse number setting process 3d may be omitted. According to the overload detection DeSo location of the present invention, the maximum delay time to detect the disconnection of the overload i.e. shear pin is consistent with the determination interval time t, it becomes constant. Therefore, the overload can be quickly detected regardless of the rotational speed. For this reason, even when the rotational speed is low, such as in a gear pump device, an overload can be quickly detected.

【図面の簡単な説明】 【図1】本発明の一実施形態にかかる過負荷検出装置の
説明図である。 【図2】図1の過負荷検出装置のカップリングを負荷側
動力伝達軸から見た説明図である。 【図3】図1の過負荷検出装置が実行する判定間隔パル
ス数設定処理のフロー図である。 【図4】図1の過負荷検出装置が実行する過負荷判定処
理のフロー図である。 【図5】従来の過負荷検出装置の一例の説明図である。 【符号の説明】 1,2 近接センサ 3 シーケンサ 3a 駆動側カウンタ 3b 負荷側カウンタ 3c 過負荷判定処理 3d 判定間隔パルス数設定処理 4 シアピン 5 カップリング 6,7 検出用メタル片 10 入力装置 Sm 駆動側動力伝搬軸 Sd 負荷側動力伝搬軸
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of an overload detection device according to one embodiment of the present invention. FIG. 2 is an explanatory view of the coupling of the overload detection device of FIG. 1 as viewed from a load-side power transmission shaft. FIG. 3 is a flowchart of a determination interval pulse number setting process executed by the overload detection device in FIG. 1; FIG. 4 is a flowchart of an overload determination process performed by the overload detection device of FIG. 1; FIG. 5 is an explanatory diagram of an example of a conventional overload detection device. [Description of Signs] 1, 2 Proximity sensor 3 Sequencer 3a Drive-side counter 3b Load-side counter 3c Overload determination process 3d Determination interval pulse number setting process 4 Shear pin 5 Coupling 6, 7 Metal piece for detection 10 Input device Sm Drive side Power propagation axis Sd Load-side power propagation axis

Claims (1)

(57)【特許請求の範囲】 【請求項1】 過負荷になると切断されるシアピン
(4)により結合され駆動側軸(Sm)の回転を負荷側
軸(Sd)へと伝達するカップリング(5)と、駆動側
軸(Sm)の回転速度を表すパルス数を計数する駆動側
軸回転パルス計数手段(1,6,3a)と、負荷側軸
(Sd)の回転速度を表すパルス数を計数する負荷側軸
回転パルス計数手段(2,7,3b)と、前記駆動側軸
(Sm)の回転速度に応じた判定間隔パルス数を設定す
るための判定間隔パルス数設定手段(3d)と、前記駆
動側軸(Sm)の回転速度を表すパルス数を前記判定間
隔パルス数だけ計数する毎に当該駆動側軸(Sm)の回
転速度を表すパルス数と前記負荷側軸(Sd)の回転速
度を表すパルス数の差が所定の許容値より大きいか否か
を判定し大きいと判定したときに過負荷検出とする過負
荷判定手段(3c)とを具備したことを特徴とする過負
荷検出装置(100)
(57) [Claims] [Claim 1] Shear pin cut when overloaded
The rotation of the drive side shaft (Sm) connected by (4)
Coupling (5) transmitting to shaft (Sd), drive side
The drive side that counts the number of pulses representing the rotation speed of the shaft (Sm)
Shaft rotation pulse counting means (1, 6, 3a) and load side shaft
Load-side axis for counting the number of pulses representing the rotation speed of (Sd)
Rotation pulse counting means (2, 7, 3b) and the driving side shaft
Set the number of determination interval pulses according to the rotation speed of (Sm)
Determination interval pulse number setting means (3d) for determining
The number of pulses representing the rotation speed of the moving side shaft (Sm) is determined between the determinations.
Each time the number of pulses is counted, the rotation of the drive side shaft (Sm)
Number of pulses representing rotation speed and rotation speed of the load side shaft (Sd)
Whether the difference in the number of pulses representing the degree is greater than a predetermined tolerance
Overload is detected when it is determined that the load is large.
A load determining means (3c).
Load detecting device (100) .
JP12843598A 1998-05-12 1998-05-12 Overload detection device Expired - Fee Related JP3443682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12843598A JP3443682B2 (en) 1998-05-12 1998-05-12 Overload detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12843598A JP3443682B2 (en) 1998-05-12 1998-05-12 Overload detection device

Publications (2)

Publication Number Publication Date
JPH11325103A JPH11325103A (en) 1999-11-26
JP3443682B2 true JP3443682B2 (en) 2003-09-08

Family

ID=14984682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12843598A Expired - Fee Related JP3443682B2 (en) 1998-05-12 1998-05-12 Overload detection device

Country Status (1)

Country Link
JP (1) JP3443682B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969628B2 (en) * 2001-03-19 2007-09-05 富士通株式会社 Translation support apparatus, method, and translation support program
US6911799B2 (en) * 2003-04-25 2005-06-28 Illinois Tool Works, Inc. Strapping machine weld motor control system
CN111359746B (en) * 2020-03-30 2021-10-22 安徽健怡堂中药饮片有限公司 High-efficient type reducing mechanism convenient to be used for small-size chinese medicine factory

Also Published As

Publication number Publication date
JPH11325103A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
EP1366346B1 (en) Method and apparatus for monitoring a transmission part
US5113949A (en) Tightening control apparatus for a torque wrench
JP2006322934A (en) Test method of torsional vibration attenuator
JP2563914B2 (en) Rotation speed transmitter-How to monitor signals
JP3443682B2 (en) Overload detection device
WO1999054697A3 (en) Device for detecting torque acting upon a shaft
EP1490737B1 (en) Device, system and method for compensating for isolation and cable delays in an ssi encoder interface circuit
US20150145460A1 (en) Motor controller having abnormality detection function of power transmission unit between motor and main shaft
JP2006220497A (en) Apparatus and method of measuring cogging torque
CN108394772B (en) Elevator balance coefficient detection method and system
US5081873A (en) Method of inspecting constant-velocity joint
JP2000146773A (en) Overload detecting apparatus
US5185563A (en) Error detecting unit for a rotational detector
JPH03194431A (en) Torque measuring apparatus
JP2004037246A (en) Bit error detection of encoder sensing position data and presuming method
JP7468901B2 (en) How to detect rotation of a rotary encoder
JP2981668B2 (en) Reversible motion velocity measuring device
JP2626113B2 (en) Sewing machine controller
KR0156440B1 (en) Rotation error detecting device
KR100596141B1 (en) Dynamometer system
JPS63117231A (en) Torque detector of shaft coupling
JP2749963B2 (en) Ultrasonic pulse type object detector
JP2000320383A (en) Hunting detection device for governor
JP2778300B2 (en) Ultrasonic distance measuring device
KR940003548Y1 (en) Crack diagnosing apparatus of a body of rotation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees