JP3443180B2 - Image reading device - Google Patents

Image reading device

Info

Publication number
JP3443180B2
JP3443180B2 JP22059894A JP22059894A JP3443180B2 JP 3443180 B2 JP3443180 B2 JP 3443180B2 JP 22059894 A JP22059894 A JP 22059894A JP 22059894 A JP22059894 A JP 22059894A JP 3443180 B2 JP3443180 B2 JP 3443180B2
Authority
JP
Japan
Prior art keywords
fluorescent tube
time
light
turned
light amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22059894A
Other languages
Japanese (ja)
Other versions
JPH0887075A (en
Inventor
茂文 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22059894A priority Critical patent/JP3443180B2/en
Publication of JPH0887075A publication Critical patent/JPH0887075A/en
Application granted granted Critical
Publication of JP3443180B2 publication Critical patent/JP3443180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Sources And Details Of Projection-Printing Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は複写装置などの画像読取
装置に関し,より詳細には,光源として複数の蛍光管を
有する画像読取装置に関する。 【0002】 【従来の技術】従来の画像読取装置として,例えば,反
射原稿に使用する蛍光管と,透過原稿に使用する蛍光管
とを備えた複写装置がある。このような装置において,
蛍光管を使用する場合,蛍光管の特性により,蛍光管が
冷えているときは,発光する光量が不足するので,使用
時に蛍光管を温めて保温する必要がある。 【0003】図5は,従来の画像読取装置における保温
シーケンスを示し,換言すれば,反射原稿に使用する第
1の蛍光管および透過原稿に使用する第2の蛍光管の点
灯と消灯のタイミングを示したものである。第1の蛍光
管の点灯する時間は,第1の蛍光管の光量を所定のセン
サで検知して,第1の蛍光管の温度が上昇するように点
灯時間を制御する。また,第2の蛍光管を点灯する時間
は,第1の蛍光管を消灯した状態で,第1の蛍光管を点
灯した時間と同じ時間とする。 【0004】電源投入直後は,第1の蛍光管と第2の蛍
光管は温度を上げるために時間を要するので,あらかじ
めウォームアップタイムを装置に設けて第1,第2の蛍
光管を温め,第1,第2の蛍光管が温まった状態でウォ
ームアップを完了し,ユーザが使用する際,すぐに使用
可能としている。 【0005】また,第1の蛍光管と第2の蛍光管の点灯
時間は同じ時間に設定しており,図示の如く,第1の蛍
光管か点灯中は第2の蛍光管を消灯し,また,第2の蛍
光管の点灯中は第1の蛍光管を消灯するように,第1,
第2の蛍光管に電圧を印加する電源を1つとすること
で,構成を簡素化して,価格の低減を図っている。 【0006】 【発明が解決しようとする課題】しかしながら,従来の
画像読取装置の保温シーケンスによれば,電源投入直
後,第1の蛍光管を点灯して消灯したとき,第2の蛍光
管を第1の蛍光管が点灯した時間と同じ時間点灯するよ
うにしているため,第2の蛍光管を点灯している間に第
1の蛍光管は消灯しており,消灯中の蛍光管が冷えるこ
とになり,消灯中の蛍光管の光量が減少してしまうとい
う問題点があった。換言すれば,光量の時間的ムラがか
なり大きくなるという問題点があった。 【0007】また,光量の時間的ムラがかなり大きくな
るということは,ウォームアップタイムが長時間になっ
てしまい,ユーザにとっては扱いにくい装置となってし
まうという問題点があった。 【0008】また,何れかの蛍光管を必ず点灯させてい
るので,両方の蛍光管が温まっているときや,高室温内
での使用時には,無駄な保温をしていることになり,換
言すれば,電圧を印加する電源電力の無駄な消費や,蛍
光管の寿命が短くなるという問題点があった。 【0009】本発明は上記に鑑みてなされたものであっ
て,それぞれの蛍光管の内,少なくともどちらかの蛍光
管が温まっている時,保温シーケンスを変更し,光量の
時間的ムラを少なくすることを目的とする。 【0010】また,本発明は上記に鑑みてなされたもの
であって,電源投入直後のウォームアップタイムの時間
を短縮することを目的とする。 【0011】 【課題を解決するための手段】上述の目的を達成するた
めに,請求項1に係る画像読取装置は,2つの蛍光管
と,前記2つの蛍光管の光量を検知する光量センサー
と,前記光量センサーが検出する前記蛍光管の点灯によ
る光量上昇率と,検出された前記光量上昇率と所定の光
量上昇基準値とを比較して,前記2つの蛍光管が消灯状
態から所定光量に達するまでの第1の時間で交互に点灯
と消灯とを繰り返す第1の保温シーケンス,および,前
記第1の時間点灯された前記蛍光管が前記所定の光量に
到達後から消灯して所定の低下光量だけ低下するまでの
第2の時間と前記第1の時間とのうち長い時間を消灯時
間として選択し,前記2つの蛍光管が前記第1の時間の
点灯と前記消灯時間の消灯とを,片方ずつ交互に繰り返
す第2の保温シーケンスの中から1を選択して,選択さ
れた保温シーケンスに基づいて前記2つの蛍光管の点灯
および消灯の制御を行う制御手段と,を備えたものであ
る。 【0012】 【0013】 【0014】 【作用】本発明の画像読取装置(請求項1)は前記蛍光
管の光量を検知する光量センサーを備え,前記制御手段
は,前記光量センサーが検出する前記蛍光管の点灯によ
る光量上昇率と,検出された前記光量上昇率と所定の光
量上昇基準値とを比較して,前記2つの蛍光管が消灯状
態から所定光量に達するまでの第1の時間で交互に点灯
と消灯とを繰り返す第1の保温シーケンス,および,前
記第1の時間点灯された前記蛍光管が前記所定の光量に
到達後から消灯して所定の低下光量だけ低下するまでの
第2の時間と前記第1の時間とのうち長い時間を消灯時
間として選択し,前記2つの蛍光管が前記第1の時間の
点灯と前記消灯時間の消灯とを,片方ずつ交互に繰り返
す第2の保温シーケンスの中から1を選択して,選択さ
れた保温シーケンスに基づいて前記2つの蛍光管の点灯
および消灯の制御を行うので,蛍光管が温まっていると
き,保温シーケンスを変更する。 【0015】 【0016】 【0017】 【実施例】以下,本発明の画像読取装置について,〔実
施例1〕,〔実施例2〕の順で図面を参照して詳細に説
明する。 【0018】〔実施例1〕図1は,実施例1の画像読取
装置の概略ブロック図を示し,反射原稿に使用する蛍光
管101と,透過原稿に使用する蛍光管102と,蛍光
管101の光量を検知する光量センサ103と,光量セ
ンサ103で検知した光量に基づいて,蛍光管101,
102の点灯制御を行う制御部104とから構成され
る。なお,制御部104は,蛍光管101,102を昇
温するための保温シーケンスおよび蛍光管101,10
2を保温するための保温シーケンスの少なくとも2種類
の保温シーケンスを有している。 【0019】図2は,蛍光管101および蛍光管102
の点灯と消灯のタイミングと,光量センサ103で検知
した蛍光管101の光量を示す。ここで,図2を参照し
て,制御部103の保温シーケンスについて説明する。 【0020】蛍光管101が点灯してから消灯するまで
の時間をΔt1 とし,蛍光管101がΔt1 時間に光量
が上昇した光量をΔVとし,また,蛍光管101が消灯
してから次の点灯開始するまでの時間をΔt2 とする。
光量は,光量センサを使用して計る。Δt2 の時間は,
蛍光管101が消灯している時に,光量ΔVがあらかじ
め設定した光量までに下がるタイミングに基づいて決定
される。なお,実施例1では光量を計るのに,光量セン
サを使用してしるが,蛍光管の温度を測定して,測定し
た温度から蛍光管の光量を計ることで代用しても良いこ
とは勿論である。 【0021】蛍光管101がΔt1 で点灯した後,蛍光
管102の点灯時間は,蛍光管101が点灯した時間で
あるΔt1 であり,また,そのとき蛍光管101は,Δ
2の時間消灯している。ここで,蛍光管101の消灯
時間は, Δt1 ≧Δt2 の場合,Δt1 時間 Δt1 <Δt2 の場合,Δt2 時間 となる。 【0022】ここで,図3を参照に,実施例1の保温シ
ーケンスを説明する。図3は,保温シーケンスを示す。
蛍光管101は点灯し(S301),光量センサにて蛍
光管101の光量を測定し,測定した光量があらかじめ
設定した光量に達した(OK)か否かを判断し(S30
2),光量がOKでない場合には,繰り返し蛍光管10
1の光量測定を行ない,光量がOKの場合には,蛍光管
101の消灯を行なう(S303)。 【0023】蛍光管101の消灯により,Δt1 および
ΔVを求められ,求めたたΔt1 およびΔVに基づいて
Δt2 を決定する(S304)。蛍光管102の点灯を
開始し(S305),Δt1 時間経過後(S306),
蛍光管102を消灯する(S307)。ここで,Δt1
とステップS304にて決定したΔt2 を比較し(S3
08),Δt1 ≧Δt2 の場合には,ステップS301
に行き蛍光管101の点灯を行い,Δt1 <Δt2 の場
合には,蛍光管101の消灯時間がΔt2 時間を経過し
てから(S309),ステップS301に行き蛍光管1
01の点灯を行う。 【0024】前述したように実施例1によれば,Δt2
時間がΔt1 時間より長くなる時,蛍光管101の点灯
は,蛍光管102が消灯になっても行なわず,すなわ
ち,Δt2 −Δt1 の時間差が,蛍光管101と蛍光管
102が共に消灯している時間となり,ムダな保温をな
くして,消費電力の低減ができることになる。 【0025】また,Δt2 時間は,蛍光管101の光量
が安定している程長くなり,すなわち,Δt2 −Δt1
の時間差が長くなるので,安定すればする程,さらに消
費電力の低減ができる。 【0026】〔実施例2〕実施例2の基本的な構成は,
実施例1と同様のため,ここでは実施例1と異なる部分
のみを説明する。また,実施例2では,画像読取装置の
電源投入直後の保温シーケンスを説明する。 【0027】図4は,電源投入から昇温するための保温
シーケンスと,保温するための保温シーケンスの切り換
えを示す。また,図4において,昇温するための保温シ
ーケンスは蛍光管101と蛍光管102との点灯時間の
配分比を1:1としたものである。 【0028】電源投入直後の保温シーケンスは,蛍光管
101,102を交互にあらかじめ設定した間隔(実施
例2では30秒間隔)で点灯および消灯させるものであ
る。ここで,光量センサは,蛍光管101,102の点
灯および消灯を繰り返している時に,蛍光管101が点
灯する時から消灯する時の光量の上昇率の値(以下,計
測値と記載する)を計る。次に,計測値とあらかじめ設
定されている上昇率の値(以下,基準値と記載する)と
を比較し,計測値が小さい場合,他の保温シーケンスに
切り換える。なお,基準値は,蛍光管が発する光量が一
定になるように設定するのが良く,そのため,あらかじ
め蛍光管の評価を行って基準値を決めることが望まし
い。 【0029】また,図示の如く,蛍光管101および蛍
光管102が温まった後は,蛍光管101,102の両
方共消灯している時間であるΔt4 は,時間Δt3 に比
べて長い。 【0030】また,実施例2では光量センサを使用した
が,光量センサを用いないで,あらかじめ蛍光管が発す
る光量が一定になる時間を調べ,該時間に基づいて,電
源投入直後から時間がきたら他の保温シーケンスに切り
換えるようにしても良い。 【0031】電源投入の直前は蛍光管101,102の
温度は低く,発する光量も不安定であるため,実施例2
によれば,温度上昇および光量の安定化を図れるように
点灯時間をあらかじめ設定しておき,また,蛍光管の発
する光量が安定した時点で,他の保温シーケンスに切り
換えるようにしている。したがって,光量の時間的ムラ
がなくなると共に,ウォームアップタイムが短縮され,
消費電力が低減でき,また,蛍光管の寿命を延ばすこと
ができる。 【0032】 【発明の効果】以上説明したように,本発明の画像読取
装置(請求項1)によれば,蛍光管の光量を検知する少
なくも1つ以上の光量センサを有し,光量センサの検
する光量の上昇率に基づき,2つの保温シーケンスか
ら1つを選択して蛍光管の点灯と消灯を制御することに
よって,蛍光管の温度が温まっているときも,最適な保
温シーケンスとすることができるため,最適な保温シー
ケンスに変更し,光量の時間的ムラを少なくすることが
できる。 【0033】 【0034】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image reading apparatus such as a copying apparatus, and more particularly, to an image reading apparatus having a plurality of fluorescent tubes as a light source. 2. Description of the Related Art As a conventional image reading apparatus, for example, there is a copying apparatus provided with a fluorescent tube used for a reflective original and a fluorescent tube used for a transparent original. In such a device,
When a fluorescent tube is used, when the fluorescent tube is cold, the amount of emitted light is insufficient when the fluorescent tube is cold. Therefore, it is necessary to warm the fluorescent tube and keep it warm during use. FIG. 5 shows a warming sequence in a conventional image reading apparatus. In other words, the turning on and off timings of a first fluorescent tube used for a reflective original and a second fluorescent tube used for a transparent original are described. It is shown. The lighting time of the first fluorescent tube is controlled by detecting the amount of light of the first fluorescent tube with a predetermined sensor and increasing the temperature of the first fluorescent tube. The time for turning on the second fluorescent tube is the same as the time for turning on the first fluorescent tube with the first fluorescent tube turned off. Immediately after the power is turned on, the first fluorescent tube and the second fluorescent tube require time to raise the temperature. Therefore, a warm-up time is provided in advance in the apparatus to warm the first and second fluorescent tubes. The warm-up is completed in a state where the first and second fluorescent tubes are warmed, and the user can use the tube immediately when using it. [0005] The lighting time of the first fluorescent tube and the second fluorescent tube is set to the same time. As shown in the figure, while the first fluorescent tube is being lit, the second fluorescent tube is turned off. The first and second fluorescent lamps are turned off while the second fluorescent tube is turned on.
By using only one power supply for applying a voltage to the second fluorescent tube, the configuration is simplified and the cost is reduced. However, according to the heat retention sequence of the conventional image reading apparatus, when the first fluorescent tube is turned on and off immediately after the power is turned on, the second fluorescent tube is turned off. The first fluorescent tube is turned off while the second fluorescent tube is turned on because the first fluorescent tube is turned on for the same time as the time when the first fluorescent tube is turned on. As a result, there is a problem that the light quantity of the fluorescent tube when the light is turned off decreases. In other words, there is a problem that the temporal unevenness of the light amount becomes considerably large. [0007] Further, if the temporal unevenness of the light quantity becomes considerably large, there is a problem that the warm-up time becomes long and the device becomes difficult to handle for the user. Also, since one of the fluorescent tubes is always turned on, when both the fluorescent tubes are warm or when used in a high room temperature, the temperature is wasted and the temperature is wasted. For example, there is a problem that power supply power for applying a voltage is wasted and the life of the fluorescent tube is shortened. The present invention has been made in view of the above, and when at least one of the fluorescent tubes is warm, the heat retention sequence is changed to reduce temporal unevenness in the amount of light. The purpose is to: The present invention has been made in view of the above, and has as its object to reduce the warm-up time immediately after power-on. According to another aspect of the present invention, there is provided an image reading apparatus comprising: two fluorescent tubes; a light amount sensor for detecting light amounts of the two fluorescent tubes; , The lighting of the fluorescent tube detected by the light quantity sensor
The rate of increase in the amount of light,
The two fluorescent tubes are turned off by comparing the
Lights alternately in the first time from the state to the predetermined light amount
1st heat retention sequence which repeats and turns off and before
The fluorescent tube illuminated for the first time is set to the predetermined light amount.
After the light arrives, it goes off until it drops by a predetermined amount.
When turning off a long time out of the second time and the first time
Between the two fluorescent tubes during the first time period.
Illumination and extinguishing during the extinguishing time are alternately repeated one by one
Select 1 from the second heat retention sequence and select
Control means for controlling the turning on and off of the two fluorescent tubes based on the determined heat retention sequence . [0012] [0013] [0014] [action] The image reading apparatus of the present invention (Claim 1) is provided with a light amount sensor for detecting the light quantity of the fluorescent tube, the control means, the fluorescence which said light quantity sensor detects By lighting the tube
The rate of increase in the amount of light,
The two fluorescent tubes are turned off by comparing the
Lights alternately in the first time from the state to the predetermined light amount
1st heat retention sequence which repeats and turns off and before
The fluorescent tube illuminated for the first time is set to the predetermined light amount.
After the light arrives, it goes off until it drops by a predetermined amount.
When turning off a long time out of the second time and the first time
Between the two fluorescent tubes during the first time period.
Illumination and extinguishing during the extinguishing time are alternately repeated one by one
Select 1 from the second heat retention sequence and select
Lighting of the two fluorescent tubes based on the selected heat retention sequence
Since the control for turning off the lamp and the control for turning off the lamp are performed , the heat retention sequence is changed when the fluorescent tube is heated. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an image reading apparatus according to the present invention will be described in detail in the order of Embodiment 1 and Embodiment 2 with reference to the drawings. FIG. 1 is a schematic block diagram of an image reading apparatus according to a first embodiment. A fluorescent tube 101 used for a reflective original, a fluorescent tube 102 used for a transparent original, and a fluorescent tube 101 are shown. A light amount sensor 103 for detecting the light amount, and a fluorescent tube 101 based on the light amount detected by the light amount sensor 103.
And a control unit 104 for controlling the lighting of 102. Note that the control unit 104 performs a heat retention sequence for raising the temperature of the fluorescent tubes 101 and 102 and the fluorescent tubes 101 and 10.
2 has at least two types of heat retention sequences of the heat retention sequence. FIG. 2 shows a fluorescent tube 101 and a fluorescent tube 102.
And the timing of turning on and off the light, and the light amount of the fluorescent tube 101 detected by the light amount sensor 103. Here, with reference to FIG. 2, a warming sequence of the control unit 103 will be described. The time to the fluorescent tube 101 is turned off after the lighting as Delta] t 1, the amount of light fluorescent tube 101 is the light amount is increased to Delta] t 1 hour and [Delta] V, also follows from the fluorescent tube 101 is turned off The time until the start of lighting is defined as Δt 2 .
The light intensity is measured using a light intensity sensor. The time of Δt 2 is
When the fluorescent tube 101 is turned off, the light amount ΔV is determined based on the timing at which the light amount ΔV falls to a predetermined light amount. Although the light amount sensor is used to measure the light amount in the first embodiment, it may be substituted by measuring the temperature of the fluorescent tube and measuring the light amount of the fluorescent tube from the measured temperature. Of course. [0021] After the fluorescent tube 101 is lit by Delta] t 1, the lighting time of the fluorescent tube 102 is Delta] t 1 is the time the fluorescent tube 101 is lit, and then the fluorescent tube 101, delta
of have time off t 2. Here, the extinguishing time of the fluorescent tube 101, when the Δt 1 ≧ Δt 2, the case of Delta] t 1 hour Δt 1 <Δt 2, a Delta] t 2 hours. Here, the heat retention sequence of the first embodiment will be described with reference to FIG. FIG. 3 shows a heat retention sequence.
The fluorescent tube 101 is turned on (S301), the light amount of the fluorescent tube 101 is measured by the light amount sensor, and it is determined whether or not the measured light amount has reached a preset light amount (OK) (S30).
2) If the light quantity is not OK, repeat the fluorescent tube 10
The light amount measurement of step 1 is performed, and when the light amount is OK, the fluorescent tube 101 is turned off (S303). When the fluorescent tube 101 is turned off, Δt 1 and ΔV are obtained, and Δt 2 is determined based on the obtained Δt 1 and ΔV (S304). Lighting of the fluorescent tube 102 is started (S305), and after elapse of Δt 1 hour (S306),
The fluorescent tube 102 is turned off (S307). Here, Δt 1
And Δt 2 determined in step S304 (S3
08), if Δt 1 ≧ Δt 2 , step S301
To turn on the fluorescent tube 101, and when Δt 1 <Δt 2 , after turning off the fluorescent tube 101 for Δt 2 hours (S309), the process proceeds to step S301 and proceeds to step S301.
01 is turned on. As described above, according to the first embodiment, Δt 2
When the time is longer than the time Δt 1 , the fluorescent tube 101 is not turned on even when the fluorescent tube 102 is turned off, that is, the time difference Δt 2 −Δt 1 causes the fluorescent tube 101 and the fluorescent tube 102 to be turned off. This means that unnecessary heat retention is eliminated and power consumption can be reduced. The time Δt 2 becomes longer as the light amount of the fluorescent tube 101 becomes more stable, ie, Δt 2 −Δt 1
Since the time difference becomes longer, the more the power becomes stable, the more the power consumption can be reduced. Embodiment 2 The basic configuration of Embodiment 2 is as follows.
Since the second embodiment is the same as the first embodiment, only portions different from the first embodiment will be described here. In a second embodiment, a warming sequence immediately after the power of the image reading apparatus is turned on will be described. FIG. 4 shows a switching between a warming sequence for increasing the temperature after the power is turned on and a warming sequence for maintaining the temperature. In FIG. 4, the heat retention sequence for increasing the temperature is such that the lighting time distribution ratio of the fluorescent tubes 101 and 102 is 1: 1. In the heat retention sequence immediately after the power is turned on, the fluorescent tubes 101 and 102 are alternately turned on and off at a preset interval (30 second interval in the second embodiment). Here, the light amount sensor calculates a value of a rate of increase in light amount (hereinafter, referred to as a measured value) when the fluorescent tubes 101 are turned on and off when the fluorescent tubes 101 and 102 are repeatedly turned on and off. measure. Next, the measured value is compared with a value of a preset rise rate (hereinafter, referred to as a reference value), and when the measured value is small, switching to another heat retention sequence is performed. It is preferable that the reference value is set so that the amount of light emitted from the fluorescent tube is constant. Therefore, it is preferable to determine the reference value by evaluating the fluorescent tube in advance. As shown in the figure, after the fluorescent tube 101 and the fluorescent tube 102 are warmed, Δt 4 , which is the time during which both the fluorescent tubes 101 and 102 are turned off, is longer than the time Δt 3 . Although the light amount sensor is used in the second embodiment, the time when the light amount emitted from the fluorescent tube is constant is checked in advance without using the light amount sensor. You may switch to another heat retention sequence. The temperature of the fluorescent tubes 101 and 102 is low immediately before the power is turned on, and the emitted light amount is unstable.
According to the method, the lighting time is set in advance so as to stabilize the temperature rise and the light quantity, and when the light quantity emitted from the fluorescent tube is stabilized, switching to another heat retention sequence is performed. Therefore, the temporal unevenness of the light amount is eliminated, and the warm-up time is shortened.
The power consumption can be reduced, and the life of the fluorescent tube can be extended. [0032] As described above, according to the present invention, the image reading apparatus according to (Claim 1), one or more light amount sensors also small <br/> without detecting the light intensity of the fluorescent tube of the present invention With two heat retention sequences based on the rate of increase in light intensity detected by the light intensity sensor .
By selecting one of these and controlling the turning on and off of the fluorescent tube, the optimal heat retention sequence can be achieved even when the temperature of the fluorescent tube is warm. Can be reduced in time. [0034]

【図面の簡単な説明】 【図1】実施例1の画像読取装置の概略ブロック図であ
る。 【図2】実施例1の保温シーケンスを示す説明図であ
る。 【図3】実施例1の保温シーケンスを示すフローチャー
ト図である。 【図4】実施例2の電源投入直後の保温シーケンスを示
す説明図である。 【図5】従来の保温シーケンスを示す説明図である。 【符号の説明】 101,102 蛍光管 103 光量センサ 104 制御部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic block diagram of an image reading apparatus according to a first embodiment. FIG. 2 is an explanatory diagram illustrating a heat retention sequence according to the first embodiment. FIG. 3 is a flowchart illustrating a heat retention sequence according to the first embodiment. FIG. 4 is an explanatory diagram showing a heat retention sequence immediately after power-on according to a second embodiment. FIG. 5 is an explanatory diagram showing a conventional heat retention sequence. [Description of Signs] 101, 102 Fluorescent tube 103 Light intensity sensor 104 Control unit

Claims (1)

(57)【特許請求の範囲】 【請求項1】 2つの蛍光管と, 前記2つの蛍光管の光量を検知する光量センサーと,前記光量センサーが検出する前記蛍光管の点灯による光
量上昇率と,検出された前記光量上昇率と所定の光量上
昇基準値とを比較して, 前記2つの蛍光管が消灯状態から所定光量に達するまで
の第1の時間で交互に点灯と消灯とを繰り返す第1の保
温シーケンス,および,前記第1の時間点灯された前記
蛍光管が前記所定の光量に到達後から消灯して所定の低
下光量だけ低下するまでの第2の時間と前記第1の時間
とのうち長い時間を消灯時間として選択し,前記2つの
蛍光管が前記第1の時間の点灯と前記消灯時間の消灯と
を,片方ずつ交互に繰り返す第2 の保温シーケンスの中
から1を選択して,選択された保温シーケンスに基づい
前記2つの蛍光管の点灯および消灯の制御を行う制御
手段と, を備えた ことを特徴とする画像読取装置。
(57) Claims 1. Two fluorescent tubes, a light amount sensor for detecting a light amount of the two fluorescent tubes, and a light by lighting of the fluorescent tube detected by the light amount sensor.
The rate of increase in the amount, the detected rate of increase in the amount of light and the predetermined amount of light.
The two fluorescent tubes are turned off to reach a predetermined amount of light by comparing with the rising reference value.
In the first maintenance mode, which alternately turns on and off at the first time
A temperature sequence, and said first time lit
After the fluorescent tube reaches the predetermined light amount, it is turned off and a predetermined low
The second time and the first time until the lower light amount is reduced
And the longer time is selected as the turn-off time.
The fluorescent tube is turned on for the first time and turned off for the turn-off time.
Is selected from among the second heat retention sequences that are alternately repeated one by one , based on the selected heat retention sequence.
Control for controlling the turning on and off of the two fluorescent tubes Te
Image reading apparatus characterized by comprising: a means.
JP22059894A 1994-09-14 1994-09-14 Image reading device Expired - Fee Related JP3443180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22059894A JP3443180B2 (en) 1994-09-14 1994-09-14 Image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22059894A JP3443180B2 (en) 1994-09-14 1994-09-14 Image reading device

Publications (2)

Publication Number Publication Date
JPH0887075A JPH0887075A (en) 1996-04-02
JP3443180B2 true JP3443180B2 (en) 2003-09-02

Family

ID=16753495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22059894A Expired - Fee Related JP3443180B2 (en) 1994-09-14 1994-09-14 Image reading device

Country Status (1)

Country Link
JP (1) JP3443180B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334206B1 (en) 2007-06-27 2013-11-29 삼성전자주식회사 Image scanning apparatus and method thereof

Also Published As

Publication number Publication date
JPH0887075A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
EP0295491A1 (en) Apparatus for and method of stabilizing the quantity of light of fluorescent lamp
JP3443180B2 (en) Image reading device
US7084581B2 (en) Device and method for controlling a gas discharge lamp, and lighting system with gas discharge lamp and control device
JP2005108541A (en) Illumination control system
JPS61140933A (en) Method for controlling lamp for illumination of original
JPS60171030A (en) Eyesight inspector
JP2004265703A (en) Lighting system
JPH05289058A (en) Liquid crystal display device
JP3242551B2 (en) Lighting equipment
JP3313822B2 (en) Document reader using fluorescent light
NL1013143C1 (en) Fluorescent Lamp assembly with built-in light intensity measuring system to ensure constant light output despite aging of tube, temperature variations, etc.
JP2567127Y2 (en) Temperature control device for cold cathode tubes
JP2603645B2 (en) Light intensity control circuit for fluorescent light for document surface illumination
KR19990046642A (en) fluorescent light on/off method &amp;intensity of radiation control method
JPH03132152A (en) Original reader
JPH01250938A (en) Image forming device
JP2002520794A (en) Driving method of LCD display device and LCD display device
JPH11104016A (en) Electric water heater
JPS61275735A (en) Controller for image forming device or the like
JPH10302968A (en) Luminaire
JPH058900U (en) Light control device for cold cathode tubes
JP2002203688A (en) Illumination control device
JPH11161101A (en) Image forming device
JPH1167467A (en) Lighting system
JPH07135083A (en) Fluorescent lamp device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees