JP3442629B2 - Probe for optical near-field excited spin-polarized scanning tunneling microscope - Google Patents

Probe for optical near-field excited spin-polarized scanning tunneling microscope

Info

Publication number
JP3442629B2
JP3442629B2 JP30842197A JP30842197A JP3442629B2 JP 3442629 B2 JP3442629 B2 JP 3442629B2 JP 30842197 A JP30842197 A JP 30842197A JP 30842197 A JP30842197 A JP 30842197A JP 3442629 B2 JP3442629 B2 JP 3442629B2
Authority
JP
Japan
Prior art keywords
probe
polarization
optical near
field
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30842197A
Other languages
Japanese (ja)
Other versions
JPH11142417A (en
Inventor
幸一 武笠
裕和 堀
和夫 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP30842197A priority Critical patent/JP3442629B2/en
Publication of JPH11142417A publication Critical patent/JPH11142417A/en
Application granted granted Critical
Publication of JP3442629B2 publication Critical patent/JP3442629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スピン偏極走査型
トンネル顕微鏡(スピン偏極STM)に使用されるスピ
ン偏極プローブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spin polarization probe used in a spin polarization scanning tunneling microscope (spin polarization STM).

【0002】[0002]

【従来の技術】最近、微小半導体スピン偏極STMプロ
ーブチップは高分解能を実現できることから盛んに利用
されるようになってきている。
2. Description of the Related Art Recently, a fine semiconductor spin-polarized STM probe chip has been widely used because it can realize high resolution.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高分解
能を実現できる微小半導体スピン偏極STMプローブチ
ップは、通常の平板半導体試料などをスピン偏極するよ
うな伝搬光励起の方法では、光ポンピングを効率よく行
うことが困難であった。本発明は、上記問題点を除去
し、光近接場の偏極を利用した励起によって、光ポンピ
ングによる高効率のスピン偏極ができる光近接場励起ス
ピン偏極走査型トンネル顕微鏡プローブを提供すること
を目的とする。
However, the fine semiconductor spin-polarized STM probe chip capable of realizing high resolution is effective for efficient optical pumping by a method of propagating optical excitation that spin-polarizes an ordinary flat plate semiconductor sample. It was difficult to do. The present invention eliminates the above-mentioned problems, and provides an optical near-field excitation spin polarization scanning tunneling microscope probe capable of highly efficient spin polarization by optical pumping by excitation using polarization of the optical near field. With the goal.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕光近接場励起スピン偏極走査型トンネル顕微鏡用
プローブにおいて、二つの直交するエバネッセント波を
重ね合わせて、単一偏極(円偏光)をもつ光近接場を1
/4波長程度の幅の縞状に発生させる励起手段と、対称
軸が光近接場の偏極軸に合わせて作り付けられた円錐形
半導体探針とを備え、前記励起手段により光ポンピング
による高効率の電子スピン偏極を可能にするようにした
ものである。
In order to achieve the above object, the present invention provides [1] a probe for an optical near-field excited spin polarized scanning tunneling microscope, in which two orthogonal evanescent waves are superposed, 1 optical near field with single polarization (circular polarization)
A high-efficiency optical pumping is provided by the pumping means, which is provided with a pumping means for generating stripes having a width of about / 4 wavelength, and a conical semiconductor probe whose symmetry axis is built to match the polarization axis of the optical near field. The electron spin polarization of is made possible.

【0005】〔2〕上記〔1〕記載の光近接場励起スピ
ン偏極走査型トンネル顕微鏡用プローブにおいて、1台
のレーザー源から出射した励起光の一方を位相変調する
位相変調素子を設け、前記円錐形半導体探針を励起する
光近接場の偏極を変調し、電子スピン偏極を変調するよ
うにしたものである。一般に、光近接場の性質から、エ
バネッセント波の偏極方向は関係する系の回転対称性に
よって決まり、平板状導波路に対しては光の伝播方向に
垂直方向となる。本発明では、二つの直交するエバネッ
セント波を重ね合わせることで、図2に示すように、単
一偏極(円偏光)をもつ光近接場を1/4波長程度の幅
の縞状に発生させ、半導体探針を励起する。円錐形半導
体探針は、その対称軸が光近接場の偏極軸に合わせて作
り付けられており、光ポンピングによる高効率のスピン
偏極ができる。
[2] The optical near-field excitation spin polarization scanning tunneling microscope probe described in [1] above is provided with a phase modulation element for phase modulating one of the excitation lights emitted from one laser source, and The polarization of the optical near field that excites the conical semiconductor probe is modulated, and the electron spin polarization is modulated. In general, due to the property of the optical near field, the polarization direction of the evanescent wave is determined by the rotational symmetry of the related system, and is perpendicular to the light propagation direction for the flat waveguide. In the present invention, by superimposing two orthogonal evanescent waves, an optical near field having a single polarization (circular polarization) is generated in a striped pattern having a width of about 1/4 wavelength as shown in FIG. , Excite the semiconductor probe. The conical semiconductor probe has its symmetry axis built in alignment with the polarization axis of the optical near-field, and can achieve highly efficient spin polarization by optical pumping.

【0006】更に、1台のレーザーから出射した励起光
の一方を位相変調することで、探針を励起する光近接場
の偏極を変調することにより、電子スピン偏極を変調す
ることが、高速、かつ容易に行えるため、トンネル電流
の位相敏感検出などの方法を併用しスピン偏極STM計
測の感度を大幅に向上させることができる。
Further, one of the excitation lights emitted from one laser is phase-modulated to modulate the polarization of the optical near field that excites the probe, thereby modulating the electron spin polarization. Since it can be performed at high speed and easily, the sensitivity of spin polarized STM measurement can be significantly improved by using a method such as phase sensitive detection of tunnel current.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳細に説明する。図1は本発明の実施例
を示す光近接場励起スピン偏極走査型トンネル顕微鏡用
プローブの要部模式断面図である。一般に、光近接場の
性質から、エバネッセント波の偏極方向は関係する系の
回転対称性によって決まり、平板状導波路に対しては光
の伝播方向に垂直方向となる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic sectional view of an essential part of a probe for optical near-field excitation spin polarization scanning tunneling microscope showing an embodiment of the present invention. In general, due to the property of the optical near field, the polarization direction of the evanescent wave is determined by the rotational symmetry of the related system, and is perpendicular to the light propagation direction for the flat waveguide.

【0008】この図に示すように、化合物半導体である
GaAs等の微小半導体探針をもつスピン偏極STM用
プローブを、光ポンピングの方法でスピン偏極させるた
め、半導体基板1上に円錐状に加工した円錐状半導体探
針2を設け、その円錐状半導体探針2の対称軸方向を法
線方向とする薄膜光導波路3を設ける。そこで、単一の
レーザー源(図示なし)から出射し、ビームスプリッタ
ー等により二つに分けられた直線偏光のレーザー光を、
入射方向を鏡やプリズム等の光学素子を用いて調整し、
それぞれ独立なプリズムカプラー5等を通して、互いに
入射面が直交するTE偏光(s偏光)4で薄膜光導波路
3に入射し、薄膜光導波路3表面に全反射で生ずるエバ
ネッセント波6を発生させる。
As shown in this figure, a spin-polarized STM probe having a fine semiconductor probe such as GaAs, which is a compound semiconductor, is spin-polarized on the semiconductor substrate 1 in order to spin-polarize the probe by optical pumping. A processed conical semiconductor probe 2 is provided, and a thin film optical waveguide 3 whose normal direction is the symmetric axis direction of the conical semiconductor probe 2 is provided. Therefore, a linearly polarized laser beam emitted from a single laser source (not shown) and split into two by a beam splitter,
Adjust the incident direction using optical elements such as mirrors and prisms,
Through the respective independent prism couplers 5 and the like, TE polarized light (s-polarized light) 4 having incidence planes orthogonal to each other is incident on the thin film optical waveguide 3, and an evanescent wave 6 generated by total reflection is generated on the surface of the thin film optical waveguide 3.

【0009】また、レーザー光の周波数は、微小半導体
探針の励起光とするために、その探針先端での電子状態
間遷移周波数に同調し、電子系のスピン軌道相互作用と
放射減衰を利用した光ポンピングにより、電子スピン偏
極を行う。このとき表面に並行して伝搬する二つの直交
エバネッセント波6の位相を調節し、その合成波によっ
て、円錐状半導体探針2部分に、その対称軸方向に単一
偏極(円偏光)した光近接場を発生させることにより、
円錐状半導体探針2の光ポンピングがなされ、円錐状半
導体探針2の電子スピンが高い効率で偏極される。
Further, the frequency of the laser light is tuned to the transition frequency between electronic states at the tip of the probe in order to use it as the excitation light of the micro semiconductor probe, and the spin-orbit interaction and radiative decay of the electron system are used. Electron spin polarization is performed by the optical pumping performed. At this time, the phase of the two orthogonal evanescent waves 6 propagating in parallel to the surface is adjusted, and by the combined wave, the light which is single polarized (circularly polarized) in the conical semiconductor probe 2 portion in the symmetry axis direction. By generating a near field,
The conical semiconductor probe 2 is optically pumped, and the electron spin of the conical semiconductor probe 2 is polarized with high efficiency.

【0010】更に、入射光の位相を電気光学的素子によ
り変調することにより、円錐状半導体探針2先端の電子
スピン偏極の高速制御及び変調が可能となる。図2は本
発明の実施例を示す光近接場励起スピン偏極走査型トン
ネル顕微鏡用プローブの模式平面図である。本発明で
は、二つの直交するエバネッセント波を重ね合わせるこ
とにより、図2に示すように、単一偏極(円偏光)をも
つ光近接場を1/4波長程度の幅の縞状に発生させ、円
錐形半導体探針2を励起する。円錐形半導体探針2はそ
の対称軸が光近接場の偏極軸に合わせて作り付けられて
おり、光ポンピングによる高効率のスピン偏極ができ
る。
Further, by modulating the phase of the incident light with an electro-optical element, it is possible to control and modulate the electron spin polarization at the tip of the conical semiconductor probe 2 at high speed. FIG. 2 is a schematic plan view of an optical near-field excitation spin polarization scanning tunneling microscope probe showing an embodiment of the present invention. In the present invention, two orthogonal evanescent waves are superposed to generate an optical near field having a single polarization (circular polarization) in a striped pattern having a width of about 1/4 wavelength, as shown in FIG. , The conical semiconductor probe 2 is excited. The symmetry axis of the conical semiconductor probe 2 is made so as to match the polarization axis of the optical near field, and spin polarization can be performed with high efficiency by optical pumping.

【0011】更に、1台のレーザー源(図示なし)から
出射し二つに分けられた励起光の一方を、光路長差を発
生させる光学素子配置、あるいは電気光学的位相変調器
11等を用いて、1/2波長程度の等価的光路長差の範
囲で位相変調し、縞状に発生する偏極の空間的位置をず
らし(図2参照)、円錐形半導体探針2を励起する光近
接場の偏極を変調することにより、電子スピン偏極を変
調することが、高速、かつ、容易に行えるため、トンネ
ル電流の位相敏感検出などの方法を併用し、スピン偏極
STM計測の感度を大幅に向上させることができる。
Further, an optical element arrangement or an electro-optical phase modulator 11 for generating an optical path length difference of one of the two excitation lights emitted from one laser source (not shown) is used. Then, phase modulation is performed within a range of an equivalent optical path length difference of about 1/2 wavelength, and the spatial position of polarization generated in stripes is shifted (see FIG. 2), and optical proximity that excites the conical semiconductor probe 2 is obtained. Since the electron spin polarization can be modulated at high speed and easily by modulating the polarization of the field, a method such as phase sensitive detection of tunnel current is also used to improve the sensitivity of spin polarization STM measurement. It can be greatly improved.

【0012】このように、本発明によれば、スピン偏極
STM用の走査探針として使用できる、光ポンピングス
ピン偏極微小半導体プローブを実現することができる。
同時に偏極変調を可能にすることにより、スピン偏極S
TM測定の感度向上を図ることができる。なお、本発明
は上記実施例に限定されるものではなく、本発明の趣旨
に基づいて種々の変形が可能であり、これらを本発明の
範囲から排除するものではない。
As described above, according to the present invention, it is possible to realize an optically pumped spin polarized micro semiconductor probe which can be used as a scanning probe for spin polarized STM.
At the same time, by enabling polarization modulation, the spin polarization S
The sensitivity of TM measurement can be improved. The present invention is not limited to the above-mentioned embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0013】[0013]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (1)請求項1記載の発明によれば、光近接場の偏極を
利用した励起によって、光ポンピングによる高効率のス
ピン偏極ができる。
As described in detail above, according to the present invention, the following effects can be achieved. (1) According to the first aspect of the present invention, excitation utilizing the polarization of the optical near field enables highly efficient spin polarization by optical pumping.

【0014】(2)請求項2記載の発明によれば、偏極
変調を可能にすることにより、スピン偏極STM測定の
感度向上を図ることができる。
(2) According to the second aspect of the invention, it is possible to improve the sensitivity of the spin polarization STM measurement by enabling polarization modulation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す光近接場励起スピン偏極
走査型トンネル顕微鏡用プローブの要部模式断面図であ
る。
FIG. 1 is a schematic sectional view of an essential part of an optical near-field excited spin polarization scanning tunneling microscope probe showing an embodiment of the present invention.

【図2】本発明の実施例を示す光近接場励起スピン偏極
走査型トンネル顕微鏡用プローブの模式平面図である。
FIG. 2 is a schematic plan view of a probe for optical near-field excitation spin polarized scanning tunneling microscope showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 円錐状半導体探針 3 薄膜光導波路 4 TE偏光(s偏光) 5 プリズムカプラー 6 エバネッセント波 11 位相変調素子 1 Semiconductor substrate 2 Conical semiconductor probe 3 Thin film optical waveguide 4 TE polarized light (s polarized light) 5 prism coupler 6 evanescent waves 11 Phase modulator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−145724(JP,A) 特開 平9−280810(JP,A) 特開 平9−43324(JP,A) 特開 昭62−139240(JP,A) 特開 平9−54101(JP,A) 特開 平5−180756(JP,A) 特開 平5−10819(JP,A) 特開 平8−262253(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 13/10 - 13/24 G12B 21/00 - 21/24 JICSTファイル(JOIS)─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-9-145724 (JP, A) JP-A-9-280810 (JP, A) JP-A-9-43324 (JP, A) JP-A-62- 139240 (JP, A) JP 9-54101 (JP, A) JP 5-180756 (JP, A) JP 5-10819 (JP, A) JP 8-262253 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 13/10-13/24 G12B 21/00-21/24 JISST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光近接場励起スピン偏極走査型トンネル
顕微鏡用プローブにおいて、(a)二つの直交するエバ
ネッセント波を重ね合わせて、単一偏極をもつ光近接場
を1/4波長程度の幅の縞状に発生させる励起手段と、
(b)対称軸が光近接場の偏極軸に合わせて作り付けら
れた円錐形半導体探針とを備え、(c)前記励起手段に
より光ポンピングによる高効率の電子スピン偏極を可能
にしてなる光近接場励起スピン偏極走査型トンネル顕微
鏡用プローブ。
1. A probe for a spin-polarized scanning tunneling microscope excited by an optical near-field, wherein (a) two orthogonal evanescent waves are superposed to generate an optical near-field having a single polarization of about 1/4 wavelength. Excitation means for generating stripes of width,
(B) a conical semiconductor probe whose symmetry axis is made to match the polarization axis of the optical near field, and (c) the excitation means enables highly efficient electron spin polarization by optical pumping. Optical near-field excitation spin-polarized scanning tunneling microscope probe.
【請求項2】 請求項1記載の光近接場励起スピン偏極
走査型トンネル顕微鏡用プローブにおいて、1台のレー
ザー源から出射した励起光の一方を位相変調する位相変
調素子を設け、前記円錐形半導体探針を励起する光近接
場の偏極を変調し、電子スピン偏極を変調することを特
徴とする光近接場励起スピン偏極走査型トンネル顕微鏡
用プローブ。
2. The optical near-field excitation spin polarization scanning tunneling microscope probe according to claim 1, further comprising a phase modulation element for phase-modulating one of the excitation light emitted from one laser source, A probe for an optical near-field excited spin polarization scanning tunneling microscope, which modulates the polarization of an optical near field that excites a semiconductor probe to modulate the electron spin polarization.
JP30842197A 1997-11-11 1997-11-11 Probe for optical near-field excited spin-polarized scanning tunneling microscope Expired - Fee Related JP3442629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30842197A JP3442629B2 (en) 1997-11-11 1997-11-11 Probe for optical near-field excited spin-polarized scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30842197A JP3442629B2 (en) 1997-11-11 1997-11-11 Probe for optical near-field excited spin-polarized scanning tunneling microscope

Publications (2)

Publication Number Publication Date
JPH11142417A JPH11142417A (en) 1999-05-28
JP3442629B2 true JP3442629B2 (en) 2003-09-02

Family

ID=17980861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30842197A Expired - Fee Related JP3442629B2 (en) 1997-11-11 1997-11-11 Probe for optical near-field excited spin-polarized scanning tunneling microscope

Country Status (1)

Country Link
JP (1) JP3442629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399841B2 (en) * 1998-06-25 2003-04-21 科学技術振興事業団 Probe with optical waveguide and method of manufacturing the same

Also Published As

Publication number Publication date
JPH11142417A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JPH02129616A (en) Light modulation apparatus and method
US4516073A (en) Magnetometer probe using a thin-film magnetic material as a magneto-optic sensor
US7190462B2 (en) Fiber optic gyroscope having optical integrated circuit, depolarizer and fiber optic coil
JP7152802B2 (en) Optical comb generator
WO1995002192A1 (en) Electric field sensor
CA1322599C (en) Floating type magneto-optic disk reading head system having external semiconductor laser resonator operating at orthogonal two mode oscillations
JPS6290618A (en) Light modulator
EP0502196B1 (en) Optical interference angular velocity meter
US5974074A (en) Laser system for optical free
JP3442629B2 (en) Probe for optical near-field excited spin-polarized scanning tunneling microscope
JP3537058B2 (en) Multiplexed optical frequency comb generator
JP2000338154A (en) Reflection type light modulator and electric field measuring device
US5436884A (en) Optical data reading apparatus and an optical data reading method
JPH06331314A (en) Method and apparatus for measuring displacement
JP3399351B2 (en) Optical signal processing device and optical signal processing method
JPH09127562A (en) Optical device
US6646783B1 (en) Light modulation device and filter device
JP3063131B2 (en) Integrated optical interferometer
JP3582441B2 (en) Optical modulator and optical modulation method
CN114370928B (en) Linear type Sagnac interference type optical fiber vibration sensor
JPH1164358A (en) Seed light injecting method in injection seeding
JP2866276B2 (en) Optical rotation angular velocity sensor
JP2510944B2 (en) Monolithic ring laser and ring laser gyro using the same
JPS60144715A (en) Optical frequency modulator
EP0520813A2 (en) Magneto-optical recording and reproducing apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030610

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees