JP3440130B2 - Electrode for electrochemical and sensor using the electrode - Google Patents

Electrode for electrochemical and sensor using the electrode

Info

Publication number
JP3440130B2
JP3440130B2 JP09365594A JP9365594A JP3440130B2 JP 3440130 B2 JP3440130 B2 JP 3440130B2 JP 09365594 A JP09365594 A JP 09365594A JP 9365594 A JP9365594 A JP 9365594A JP 3440130 B2 JP3440130 B2 JP 3440130B2
Authority
JP
Japan
Prior art keywords
electrode
reaction
phenosafranine
electrochemical
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09365594A
Other languages
Japanese (ja)
Other versions
JPH07280769A (en
Inventor
武男 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP09365594A priority Critical patent/JP3440130B2/en
Publication of JPH07280769A publication Critical patent/JPH07280769A/en
Application granted granted Critical
Publication of JP3440130B2 publication Critical patent/JP3440130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、卑な電位から生体内反
応を触媒できる電気化学用電極及び該電極を使用するセ
ンサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical electrode capable of catalyzing an in-vivo reaction from a base potential and a sensor using the electrode.

【0002】[0002]

【従来技術とその問題点】生命活動を円滑に機能させる
ために酵素は不可欠な物質である。最近では酵素の特異
的な作用に注目したバイオセンサーや発酵プロセスの開
発が盛んに行われている〔鈴木周一編:バイオセンサ
ー、講談社(1984),A.P.F.Turner, I.Karube and G.
S.Wilson(Eds.): Biosensors-Fundamentals and Applic
ations; Oxford University Press (1987)]。酸化還元
酵素の1種であるデヒドロゲナーゼ(脱水素酵素)は、
生体内の代謝過程で有機化合物の酸化を行う酵素である
が、このとき補酵素であるニコチンアミドアデニンジヌ
クレオチド(NAD+ )及びニコチンアミドアデニンジ
ヌクレオチドリン酸(NADP+ )が還元されることに
よって反応が進行することが知られている。従って代謝
によって生成した還元型のニコチンアミドアデニンジヌ
クレオチド(NADH)及びニコチンアミドアデニンジ
ヌクレオチドリン酸(NADPH)を検出することによ
り酵素反応の定量化が可能となる。
Prior art and its problems: Enzymes are indispensable substances for smooth functioning of life activities. Recently, biosensors and fermentation processes focusing on the specific action of enzymes have been actively developed [Shuichi Suzuki, Biosensor, Kodansha (1984), APFTurner, I.Karube and G.
S. Wilson (Eds.): Biosensors-Fundamentals and Applic
ations; Oxford University Press (1987)]. Dehydrogenase, a type of oxidoreductase, is
It is an enzyme that oxidizes organic compounds during metabolic processes in the living body. At this time, the coenzymes nicotinamide adenine dinucleotide (NAD + ) and nicotinamide adenine dinucleotide phosphate (NADP + ) are reduced It is known that the reaction proceeds. Therefore, the enzymatic reaction can be quantified by detecting reduced nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) produced by metabolism.

【0003】生体内ではNADH及びNADPHはフラ
ビン酵素、チトクロム系を経て再酸化されリサイクルさ
れるが、工業的にはより簡易的かつ迅速に測定する必要
があり、電気化学センサーはこれを可能にする手法とし
て注目されている。反応式は下記の式及びにより表
され、ここでSH2 及びSはそれぞれ基質の還元体及び
酸化体であり、式は酵素により又式は電極により進
行する。 SH2 + NAD+ (又はNADP+ ) → S +
NADH(又はNADPH)+H+ NADH(又はNADPH) → NAD+ (又はNA
DP+ ) + H++ 2e-
In the body, NADH and NADPH are reoxidized and recycled via the flavin enzyme and cytochrome system, but industrially, it is necessary to measure easily and rapidly, and an electrochemical sensor makes this possible. It is attracting attention as a method. The reaction formula is represented by the following formulas and, where SH 2 and S are the reduced form and oxidized form of the substrate, respectively, and the formula proceeds with an enzyme and the formula proceeds with an electrode. SH 2 + NAD + (or NADP + ) → S +
NADH (or NADPH) + H + NADH (or NADPH) → NAD + (or NA
DP +) + H + + 2e -

【0004】しかしながらNADH及びNADPHの酸
化反応に対して可逆的に応答しうる電極は未だ開発され
ていない。例えば該電極としてカーボン電極を用いると
前記酸化反応は1V以上の過電圧が必要となり、酸素発
生などの副反応との区別ができなくなるためカーボン電
極を前記酸化反応の検出用として使用することはできな
い。又白金電極は共存する有機化合物を吸着するため前
記NADH等の定量に使用できない。またこれらの未修
飾電極では高い過電圧のために、より容易に酸化される
共存する生体物質(尿酸、アスコルビン酸、ドーパミン
など)の酸化反応とNADHやNADPHとの区別がで
きない。
However, an electrode capable of reversibly responding to the oxidation reaction of NADH and NADPH has not yet been developed. For example, when a carbon electrode is used as the electrode, the oxidation reaction requires an overvoltage of 1 V or more, and cannot be distinguished from a side reaction such as oxygen generation, so the carbon electrode cannot be used for detecting the oxidation reaction. Further, the platinum electrode adsorbs coexisting organic compounds and cannot be used for quantitative determination of the NADH and the like. Further, in these unmodified electrodes, due to the high overvoltage, it is impossible to distinguish between NADH and NADPH and the oxidation reaction of coexisting biological substances (uric acid, ascorbic acid, dopamine, etc.) that are more easily oxidized.

【0005】一方最近になって単分子、高分子化合物を
担持させた修飾電極が従来の無機的電極表面では得られ
ない優れた特性を有することが報告されている(L. Gor
don,B. Persson, P.D. Hale, L.I. Bogulavsky, H.I. K
aran, H.S. Lee, T.A. Skotheim, H.L. Lan and Y. Oka
moto, Am. Chem. Soc. Symp. Ser., 487, 56 (1992))
。しかしながら単分子修飾電極では検出電流が小さく
感度が悪いため、現在では高分子修飾電極の応用が鋭意
検討されている。ポリチオニン修飾電極を用いて式の
反応を行い、カーボン電極に比して0.4 V以上もの過電
圧低下を達成できたことが報告されている(T. Ohsaka,
K. Tanaka, and K. Tokuda, J. Chem. Soc.Chem. Comm
un., 222 (1993)) 。
On the other hand, it has recently been reported that a modified electrode carrying a monomolecular or polymer compound has excellent properties which cannot be obtained by a conventional inorganic electrode surface (L. Gor
don, B. Persson, PD Hale, LI Bogulavsky, HI K
aran, HS Lee, TA Skotheim, HL Lan and Y. Oka
moto, Am. Chem. Soc. Symp. Ser., 487, 56 (1992))
. However, since the detection current is small and the sensitivity is poor in the single molecule modified electrode, application of the polymer modified electrode is now under intense study. It has been reported that the reaction of the formula was carried out using a polythionine modified electrode, and an overvoltage drop of 0.4 V or more as compared with a carbon electrode could be achieved (T. Ohsaka,
K. Tanaka, and K. Tokuda, J. Chem. Soc. Chem. Comm
un., 222 (1993)).

【0006】GortonらはN−メチルフェナンジニウムサ
ルフェイトを用いて作製した修飾電極上で0.55Vの過電
圧低下を達成できたと報告している(A. Torstensson a
nd L. Gorton, J. Electroanal. Chem., 130, 199 (198
1)) 。またAlberyらはフェナジウム環を有する化合物が
優れた触媒活性を示すことを見出している(W.J. Alber
y, P.N. Bartlett and A.E.G. Cass, Phil. Trans, R.
Soc. Lond.B, 316, 107 (1987)) 。更にPersson とGort
onはヘテロ環芳香族構造の化合物が式に対して優れた
触媒活性を示すことを見出しているが、電気化学センサ
ーとしての報告はない(B. Persson and L. Gorton, J.
Electroanal. Chem., 292, 115 (1990)) 。
Gorton et al. Reported that an overvoltage reduction of 0.55 V could be achieved on a modified electrode prepared by using N-methylphenandinium sulfate (A. Torstensson a.
nd L. Gorton, J. Electroanal. Chem., 130 , 199 (198
1)). In addition, Albery et al. Have found that compounds having a phenadium ring show excellent catalytic activity (WJ Alber
y, PN Bartlett and AEG Cass, Phil. Trans, R.
Soc. Lond. B, 316, 107 (1987)). Further Persson and Gort
On has found that compounds with a heterocyclic aromatic structure show excellent catalytic activity for the formula, but there is no report as an electrochemical sensor (B. Persson and L. Gorton, J.
Electroanal. Chem., 292 , 115 (1990)).

【0007】[0007]

【発明の目的】このように従来技術では、十分な感度で
酵素反応の定量を行い得る電極及び該電極を使用する電
気化学センサーは存在していない。その原因が主として
電極触媒に起因していることは明らかであり、本発明者
は鋭意検討の結果、特にNADH及びNADPHの酸化
に対して非常に活性の高い電極触媒を担持した電極を開
発し、かつこれを用いた電気化学センサーを見出したも
のであり、本発明は該電極及び該電極を使用する電気化
学センサーを提供することを目的とする。
OBJECT OF THE INVENTION Thus, in the prior art, there is no electrode capable of quantifying an enzyme reaction with sufficient sensitivity and an electrochemical sensor using the electrode. It is clear that the cause is mainly due to the electrocatalyst, and as a result of diligent studies, the present inventor developed an electrode carrying an electrocatalyst having a very high activity, particularly against the oxidation of NADH and NADPH, Further, the present invention has found an electrochemical sensor using the same, and an object of the present invention is to provide the electrode and an electrochemical sensor using the electrode.

【0008】[0008]

【問題点を解決するための手段】本発明は、フェノサフ
ラニン及び/又はその誘導体をポリマーとして導電性基
体上に担持した電気化学用電極及び該電極あるいはフ
ェノサフラニン及び/又はその誘導体をモノマーとして
導電性基体上に担持した電気化学用電極を利用する電気
化学センサーである。
The present invention, in order to solve the problems] is phenosafranine and / or loaded with electrochemical electrode on a conductive substrate and a derivative thereof as port Rimmer, and the electrode or off
Enosafranine and / or its derivatives as monomers
It is an electrochemical sensor that uses an electrochemical electrode supported on a conductive substrate .

【0009】以下本発明を詳細に説明する。前述の通
り、本発明者は水素移行反応を主とする酵素反応つまり
生体内反応を卑な電位で定量的に検出できる電極触媒を
各種検討した結果、本発明に到達したものである。本発
明では(化1)に示すフェノサフラニン及び/又はその
誘導体を触媒物質として使用し、式中Rは水素又は低級
アルキルである。このフェノサフラニンやその誘導体
リマーの状態でつまり(化2)に示す物質として導電
性基体上に担持す(n=2〜100 )。
The present invention will be described in detail below. As described above, the present inventors have arrived at the present invention as a result of various studies on an electrode catalyst capable of quantitatively detecting an enzymatic reaction mainly including a hydrogen transfer reaction, that is, an in-vivo reaction at a base potential. In the present invention, phenosafranine shown in Chemical formula 1 and / or its derivative is used as a catalyst substance, and R is hydrogen or lower alkyl. This phenosafranine and its derivatives
We carried on a conductive substrate as a substance shown in clogging (Formula 2) in the state of port Rimmer (n = 2 to 100).

【0010】[0010]

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【0011】(化1)や(化2)で示したフェノサフラ
ニンやその誘導体を担持した電極は従来使用されている
カーボン電極等と比較してかなり卑な電位から例えば前
述の式で示した生体内で生成するNADH及びNAD
PHの酸化反応(水素移行反応)を進行せることがで
き、このときに発生する微少電流を検出すると、貴な電
位でのみ生ずる他の反応で発生する電流と識別すること
ができる。これにより前記微少電流量を測定することに
より生体内反応で生成したNADHやNADPHを定量
することができる。
The electrode carrying the phenosafranine or its derivative shown in (Chemical formula 1) or (Chemical formula 2) has a considerably base potential as compared with a conventionally used carbon electrode or the like, and the raw material represented by the above-mentioned formula, for example. NADH and NAD produced in the body
The PH oxidation reaction (hydrogen transfer reaction) can proceed, and when a minute current generated at this time is detected, it can be distinguished from a current generated by another reaction that occurs only at a noble potential. As a result, by measuring the minute current amount, NADH and NADPH generated in the in-vivo reaction can be quantified.

【0012】本発明の電極により卑な電位から電流検出
ができる理由は明確ではないが、前記電極表面が導電性
の三次元構造であり、表面に到達したNADHやNAD
PH等を取り込むべき親和性の優れた立体配置の反応場
を形成しているからと推測できる。本発明の電極の基体
としては、白金や金等の金属又は金属酸化物あるいはカ
ーボン等の導電性物質を使用する。この導電性金属表面
に前記フェノサフラニン及び/又はその誘導体を担持す
るが、該フェノサフラニンのポリマーの粉末をバインダ
ーを使用して前記基体上に担持しても、前記基体をフェ
ノサフラニンを溶解した電解浴中に浸漬し該フェノサフ
ラニンを電解重合して前記基体表面にポリマーとして担
持してもよい。重合したフェノサフラニンは溶媒に対す
る溶解性が低く耐性にも優れているため、ポリマーとし
て特に電解重合により担持して安定な電極触媒とするこ
とが望ましい。
Although the reason why the electrode of the present invention can detect a current from a base potential is not clear, the electrode surface has a conductive three-dimensional structure, and NADH or NAD reaching the surface is obtained.
It can be inferred from the fact that it forms a reaction field having a configuration with an excellent affinity for incorporating PH and the like. As the substrate of the electrode of the present invention, a metal such as platinum or gold, a metal oxide, or a conductive substance such as carbon is used. Carrying said phenosafranine and / or a derivative thereof to the conductive metal surface, even if the powder port Rimmer of the phenosafranine using a binder supported on the substrate, and the substrate was dissolved phenosafranine The phenosafranine may be immersed in an electrolytic bath to electropolymerize the phenosafranine, and then supported as a polymer on the surface of the substrate. Since the polymerized phenosafranine has low solubility in a solvent and excellent resistance, it is desirable that the polymerized phenosafranine is supported by electrolytic polymerization to provide a stable electrode catalyst.

【0013】フェノサフラニンの担持量は特に限定され
ないが、電位走査の回数や電解重合時の溶媒に応じて導
電性基体表面に10-11 〜10-7モル/cm2 の範囲で担持
させることが好ましく、担持量はフェノサフラニン濃度
や温度を調節することにより適宜設定できる。本発明の
電極、あるいはフェノサフラニン及び/又はその誘導体
をモノマーとして導電性基体上に担持した電気化学用電
はこのように生体内反応とは逆方向の反応を可逆的に
進行させることができるため、発生する電流の測定手段
を装着することにより生体内反応を検出し定量するセン
サーとして使用することができ、従来技術では不可能で
あった生体内反応系センサーを実現でき、特にフローイ
ンジェクション型のセンサーとすると応答性及び感度が
上昇する。又本発明のセンサーは発酵の進行状況の検出
用等として生体内反応以外のセンサーにも適用できる。
The amount of phenosafranine supported is not particularly limited, but it may be supported on the surface of the conductive substrate in the range of 10 -11 to 10 -7 mol / cm 2 depending on the number of potential scans and the solvent during electrolytic polymerization. Preferably, the supported amount can be appropriately set by adjusting the phenosafranine concentration and temperature. The electrode of the present invention , or phenosafranine and / or its derivative
Electrode for electrochemical supported on a conductive substrate as a monomer
Since the pole can reversibly proceed in the opposite direction to the in-vivo reaction, it can be used as a sensor for detecting and quantifying the in-vivo reaction by attaching a means for measuring the generated electric current. It is possible to realize an in-vivo reaction system sensor which is impossible with the conventional technique, and particularly when a flow injection type sensor is used, responsiveness and sensitivity are increased. The sensor of the present invention can also be applied to sensors other than in-vivo reaction, such as for detecting the progress of fermentation.

【0014】[0014]

【実施例】次に本発明に係わる電気化学用電極及び該電
極を使用するセンサーの実施例を記載するが、該実施例
は本発明を限定するものではない。
EXAMPLES Examples of electrochemical electrodes and sensors using the electrodes according to the present invention will be described below, but the examples do not limit the present invention.

【実施例1】フェノサフラニン(和光純薬工業株式会社
製)を1mM溶解した0.1 Mの過塩素酸水溶液を図1の
セル1に満たした。導電性基体である直径2mmで先端
のみを露出させたユニオン・カーバイド社のBPG(ba
sal-plane pyrolytic graphite) カーボンを作用極2と
して、更に対極3として大面積の白金板を又参照極4と
して銀−塩化銀極をそれぞれ用い、これらを前記セル中
の過塩素酸水溶液5中に浸漬した。次に作用極を参照極
に対し−0.65Vから1.25Vの間で電位走査を繰り返すこ
とによりフェノサフラニンが作用極上で電解重合し、該
作用極上に赤紫色の皮膜を生成させた。該電極を沸騰水
中で洗浄してフェノサフラニンモノマーを除去した。こ
の作用極上のフェノサフラニンの担持量は1.1 ×10-8
ル/cm2 であった。
Example 1 Cell 1 in FIG. 1 was filled with 0.1 M perchloric acid aqueous solution in which 1 mM phenosafranine (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved. Union Carbide's BPG (ba
sal-plane pyrolytic graphite) Carbon is used as a working electrode 2, a large-area platinum plate is used as a counter electrode 3, and a silver-silver chloride electrode is used as a reference electrode 4, and these are placed in an aqueous solution of perchloric acid 5 in the cell. Soaked. Next, by repeating the potential scanning of the working electrode from −0.65 V to 1.25 V with respect to the reference electrode, phenosafranine was electrolytically polymerized on the working electrode to form a reddish purple film on the working electrode. The electrode was washed in boiling water to remove the phenosafranine monomer. The amount of phenosafranine supported on this working electrode was 1.1 × 10 -8 mol / cm 2 .

【0015】この高分子修飾電極をそのまま作用極とし
て使用し、前記過塩素酸水溶液の代わりにNADHを0.
5 mM含むpH7の水溶液(リン酸緩衝液)を図1のセ
ルに満たし、電位を走査した際の結果を図2中にaで示
した。−0.2 V付近からNADHの酸化波が観察され
た。なお図中bはNADHを含まないpH7のリン酸緩
衝液を使用した電位走査の結果である。
This polymer-modified electrode is used as it is as a working electrode, and NADH is used in place of the above-mentioned aqueous solution of perchloric acid.
The cell of FIG. 1 was filled with an aqueous solution (phosphate buffer solution) containing 5 mM of pH 7 and the potential was scanned. The results are shown by a in FIG. An oxidation wave of NADH was observed from around -0.2V. In the figure, b is the result of potential scanning using a pH 7 phosphate buffer solution containing no NADH.

【0016】[0016]

【比較例1】実施例1のBPGカーボン電極をそのまま
作用極として実施例1のセル中に浸漬して電位を走査し
た。その結果を図2中にcで示した。この比較例では実
施例1より1V以上貴な電位で初めて酸化電流が観察さ
れ、実施例1の電極が高い活性つまり低電位での検出能
を有することが分かる。
Comparative Example 1 The BPG carbon electrode of Example 1 was directly used as a working electrode and immersed in the cell of Example 1 to scan the potential. The result is shown by c in FIG. In this comparative example, the oxidation current was observed only at a potential no less than 1 V than in Example 1, and it is understood that the electrode of Example 1 has high activity, that is, detectability at low potential.

【0017】[0017]

【実施例2】BPGカーボンの代わりにグラッシーカー
ボンを使用したこと以外は実施例1と同様にして作製し
た電極をフロー型のセルに組み込み、フロー速度を1ミ
リリットル/分としてpH7の水溶液(リン酸緩衝液)
を流した。微量のNADH20マイクロリットルを注入し
たところ、−0.5 Vでは応答電流は得られなかったもの
の、−0.4 Vより貴な電位に保持したところ図3に示す
電流ピークが検出された〔aは−0.50V、bは−0.40
V、cは−0.35V、dは−0.30V(vs.Ag/AgCl)]。式
の標準酸化還元電位は−0.515 Vでありほぼ準可逆的反
応が進行していることが分かる。
[Example 2] An electrode prepared in the same manner as in Example 1 except that glassy carbon was used instead of BPG carbon was incorporated into a flow-type cell, and the flow rate was set to 1 ml / min, and an aqueous solution of pH 7 (phosphoric acid was used). Buffer)
Shed. When 20 microliters of a small amount of NADH was injected, no response current was obtained at -0.5 V, but the current peak shown in Fig. 3 was detected when the potential was kept at a potential nobler than -0.4 V [a: -0.50 V]. , B is -0.40
V and c are -0.35V, d is -0.30V (vs. Ag / AgCl)]. The standard redox potential of the formula is -0.515 V, which shows that the quasi-reversible reaction is proceeding.

【0018】[0018]

【実施例3】メチルフェノサフラニン(R=CH3 )を
使用して実施例1と同様にして高分子修飾電極を製造し
かつ−0.3 Vで電流ピークが検出された。
EXAMPLE 3 Methyl phenol safranin (R = CH 3) current peaks in the manufacturing life-and-death -0.3 V the polymer modified electrode in the same manner as in Example 1 using has been detected.

【0019】[0019]

【発明の効果】本発明は、フェノサフラニン及び/又は
その誘導体を導電性基体上に担持した電気化学用電極で
ある。フェノサフラニンやその誘導体を触媒物質とする
電極は生体内反応の逆反応を卑な電位でほぼ可逆的に進
行させることができる。更に前記フェノサフラニン及び
/又はその誘導体を重合状態で担持すると、溶解性及び
耐久性が向上し電極特性を著しく改良でき、安定な固体
電極として提供できる。
INDUSTRIAL APPLICABILITY The present invention is an electrochemical electrode in which phenosafranine and / or its derivative is supported on a conductive substrate. An electrode using phenosafranine or a derivative thereof as a catalyst substance can cause a reverse reaction of an in-vivo reaction to proceed reversibly at a base potential. Furthermore, when the phenosafranine and / or its derivative is supported in a polymerized state, the solubility and durability are improved, the electrode characteristics can be remarkably improved, and a stable solid electrode can be provided.

【0020】更に前述の生体内反応の逆反応を可逆的に
進行させることができるため、前記電極をセンサーとし
て使用すると、貴な電位で進行する他の各種反応に影響
されることなく、従って不要な物質を生成することなく
前記生体内反応の生成物を選択的に出発物質に転化し、
この際に生ずる電流を検出することにより前記生体内反
応の生成物を定量できる。これにより従来技術では不可
能であった簡便かつ迅速に特定物質を検出できる生体内
反応用センサーを提供できる。
Further, since the reverse reaction of the above-mentioned in-vivo reaction can be reversibly progressed, when the electrode is used as a sensor, it is not affected by other various reactions which proceed at a noble potential, and therefore unnecessary. Selectively transforming the products of the in-vivo reaction into starting materials without producing
The product of the in-vivo reaction can be quantified by detecting the current generated at this time. As a result, it is possible to provide a sensor for in-vivo reaction capable of detecting a specific substance simply and quickly, which was impossible with the conventional technology.

【0021】該センサーは生体内の代謝過程での主要な
補酵素である還元型NADH及びNADPHを酸化する
際の電流検出に最も良好に適用でき、該電流により生体
内反応に伴うNAD+ 及びNADP+ の還元反応の進行
状況を把握することにより前記生体内反応自体を定量化
することができる。又本発明のセンサーは生体内反応用
としてだけでなく、発酵工業におけるセンサー等の他の
用途においても使用することができる。
The sensor can be best applied to current detection when oxidizing reduced NADH and NADPH, which are major coenzymes in the metabolic process in the living body, and the electric current causes NAD + and NADP accompanying the in-vivo reaction. The in- vivo reaction itself can be quantified by grasping the progress of the reduction reaction of + . Further, the sensor of the present invention can be used not only for in-vivo reaction but also for other applications such as a sensor in the fermentation industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の電解重合及び電位走査に使用するセ
ルの概略断面図。
FIG. 1 is a schematic cross-sectional view of a cell used for electrolytic polymerization and potential scanning of Example 1.

【図2】実施例1及び比較例1における電位走査の結果
を示すグラフ。
2 is a graph showing the results of potential scanning in Example 1 and Comparative Example 1. FIG.

【図3】実施例2における電流ピークを示す図。FIG. 3 is a diagram showing current peaks in Example 2.

【符号の説明】[Explanation of symbols]

1・・・セル 2・・・作用極 3・・・対極 4・・
・参照極 5・・・過塩素酸水溶液
1 ... Cell 2 ... Working electrode 3 ... Counter electrode 4 ...
・ Reference electrode 5: Perchloric acid aqueous solution

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−237562(JP,A) 特開 昭63−237563(JP,A) 特開 平7−167824(JP,A) 特開 昭59−24243(JP,A) 特開 昭58−105055(JP,A) 特開 昭57−69668(JP,A) 特開 昭57−98853(JP,A) BENOY B BHOWMIK,S HARMILA ROY & K K ROHATGI−MUKHERJEE, Photoelectrochemic al Cell with Pheno safranin Coated El ectrode,Indian Jou rnal of Chemistry, 1986年 8月,Vol.25A No. 8,714−718 (58)調査した分野(Int.Cl.7,DB名) G01N 27/327 G01N 27/333 C25B 11/06 G01N 27/416 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 63-237562 (JP, A) JP 63-237563 (JP, A) JP 7-167824 (JP, A) JP 59- 24243 (JP, A) JP 58-105055 (JP, A) JP 57-69668 (JP, A) JP 57-98853 (JP, A) BENOY B BHOWMIK, S HARMILA ROY & K K ROHATGI -MUKHERJEE, Photoelectrochemical cell With Pheno safranin Coated Electrode, Indian Journal of Chemistry, August 1986, Vol. 25A No. 8,714-718 (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/327 G01N 27/333 C25B 11/06 G01N 27/416 JISC file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フェノサフラニン及び/又はその誘導体
のポリマーを導電性基体上に担持した電気化学用電極。
1. An electrochemical electrode in which a polymer of phenosafranine and / or its derivative is supported on a conductive substrate.
【請求項2】 フェノサフラニン及び/又はその誘導体
をモノマー又はポリマーとして導電性基体上に担持した
電気化学用電極を使用する電気化学センサー。
2. An electrochemical sensor using an electrochemical electrode in which phenosafranine and / or a derivative thereof is supported as a monomer or polymer on a conductive substrate.
【請求項3】 還元型ニコチンアミドアデニンジヌクレ
オチド及び/又は還元型ニコチンアミドアデニンジヌク
レオチドリン酸の電気化学的検出用である請求項に記
載の電気化学センサー。
3. The electrochemical sensor according to claim 2 , which is for electrochemical detection of reduced nicotinamide adenine dinucleotide and / or reduced nicotinamide adenine dinucleotide phosphate.
JP09365594A 1994-04-06 1994-04-06 Electrode for electrochemical and sensor using the electrode Expired - Fee Related JP3440130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09365594A JP3440130B2 (en) 1994-04-06 1994-04-06 Electrode for electrochemical and sensor using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09365594A JP3440130B2 (en) 1994-04-06 1994-04-06 Electrode for electrochemical and sensor using the electrode

Publications (2)

Publication Number Publication Date
JPH07280769A JPH07280769A (en) 1995-10-27
JP3440130B2 true JP3440130B2 (en) 2003-08-25

Family

ID=14088405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09365594A Expired - Fee Related JP3440130B2 (en) 1994-04-06 1994-04-06 Electrode for electrochemical and sensor using the electrode

Country Status (1)

Country Link
JP (1) JP3440130B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BENOY B BHOWMIK,SHARMILA ROY & K K ROHATGI−MUKHERJEE,Photoelectrochemical Cell with Phenosafranin Coated Electrode,Indian Journal of Chemistry,1986年 8月,Vol.25A No.8,714−718

Also Published As

Publication number Publication date
JPH07280769A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
Gründig et al. Mediator-modified electrodes for electrocatalytic oxidation of NADH
Bartlett et al. Strategies for the development of amperometric enzyme electrodes
Liu et al. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode
Scheller et al. Second generation biosensors
US5264092A (en) Redox polymer modified electrode for the electrochemical regeneration of coenzyme
Koopal et al. Glucose sensor utilizing polypyrrole incorporated in tract-etch membranes as the mediator
JP5947901B2 (en) Redox reagent composition for electrochemical biosensor and biosensor including the same
EP0667397A1 (en) Mediators suitable for the electrochemical regeneration of NADH, NADPH or analogs thereof
Sun et al. Enzyme-based bilayer conducting polymer electrodes consisting of polymetallophthalocyanines and polypyrrole-glucose oxidase thin films
Saleh et al. Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell
Wang et al. Screen-printed amperometric biosensors for glucose and alcohols based on ruthenium-dispersed carbon inks
KR102360124B1 (en) Biosignal measuring-electrochemical biosensor comprising carbon nanotube and method for preparing the same
US20170191105A1 (en) Enzyme electrode
Schuhmann et al. Electrocatalytic properties of polypyrrole in amperometric electrodes
Lei et al. Immobilization of enzymes on the nano‐Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose
Jin et al. Construction and characterization of a multi-layer enzyme electrode: Covalent binding of quinoprotein glucose dehydrogenase onto gold electrodes
Iwuoha et al. Amperometric l‐lactate biosensors: 1. Lactic acid sensing electrode containing lactate oxidase in a composite poly‐l‐lysine matrix
Yoon et al. Electrochemical characteristics of a carbon-based thick-film L-lactate biosensor using L-lactate dehydrogenase
Li et al. Investigation of Oxygen‐and Hydrogen Peroxide‐Reduction on Platinum Particles Dispersed on Poly (o‐phenylenediamine) Film Modified Glassy Carbon Electrodes
Tzang et al. Voltammetric biosensors for the determination of formate and glucose-6-phosphate based on the measurement of dehydrogenase-generated NADH and NADPH
Silber et al. Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) at thick-film gold electrodes
Shin et al. Electrochemical characterization of polypyrrole/glucose oxidase biosensor: Part II. Optimal preparation conditions for the biosensor
Arai et al. Pyruvate sensor based on pyruvate oxidase immobilized in a poly (mercapto-p-benzoquinone) film
Pandey et al. An amperometric enzyme electrode for lactate based on graphite paste modified with tetracyanoquinodimethane
Mizutani et al. Carbon paste electrode incorporated with cobalt (II) octaethoxyphthalocyanine for the amperometric detection of hydrogen peroxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees