JP3437699B2 - Charging device - Google Patents

Charging device

Info

Publication number
JP3437699B2
JP3437699B2 JP00003696A JP3696A JP3437699B2 JP 3437699 B2 JP3437699 B2 JP 3437699B2 JP 00003696 A JP00003696 A JP 00003696A JP 3696 A JP3696 A JP 3696A JP 3437699 B2 JP3437699 B2 JP 3437699B2
Authority
JP
Japan
Prior art keywords
voltage
reference potential
terminal
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00003696A
Other languages
Japanese (ja)
Other versions
JPH09185221A (en
Inventor
橋 恒 秀 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP00003696A priority Critical patent/JP3437699B2/en
Publication of JPH09185221A publication Critical patent/JPH09185221A/en
Application granted granted Critical
Publication of JP3437699B2 publication Critical patent/JP3437699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧により帯電
を行う帯電装置に関し、特に、これに限定する意図では
ないが、複写機,プリンタなど電子写真方式の画像形成
装置において感光体を荷電する帯電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for charging with a high voltage, and in particular, although not intending to be limited to this, charging a photoreceptor in an electrophotographic image forming apparatus such as a copying machine or a printer. The present invention relates to a charging device.

【0002】[0002]

【従来の技術】例えばこの種の画像形成装置には、感光
体に静電潜像を形成するために、露光に先立って感光体
を均一に荷電する帯電装置、および、感光体に形成した
顕像(トナ−像)を記録紙に転写する帯電装置が備わっ
ている。所要の潜像電位を形成するためにまた、所要の
転写特性を実現するために、これらの帯電装置の出力電
流値が制御される。例えば特開昭60−257772号
公報には、帯電装置の出力電流値を目標値に制御(定電
流制御)し、出力電流値が異常値になるときには、帯電
装置の出力電圧を所定値以下に定電圧制御する、アナロ
グ方式の電子写真用高圧電源が開示されている。また、
特開昭61−236363号公報には、定電流出力から
定電圧出力に切り替えられるようにした、複写機用高圧
電源が開示されている。
2. Description of the Related Art For example, in this type of image forming apparatus, in order to form an electrostatic latent image on a photoconductor, a charging device for uniformly charging the photoconductor prior to exposure and a developing device formed on the photoconductor. A charging device for transferring an image (toner image) onto a recording paper is provided. The output current values of these charging devices are controlled in order to form the required latent image potential and to realize the required transfer characteristics. For example, in Japanese Patent Application Laid-Open No. 60-257772, the output current value of the charging device is controlled to a target value (constant current control), and when the output current value becomes an abnormal value, the output voltage of the charging device is set to a predetermined value or less. An analog type high-voltage power supply for electrophotography, which is controlled by a constant voltage, is disclosed. Also,
Japanese Unexamined Patent Publication No. 61-236363 discloses a high-voltage power source for a copying machine, which can switch from a constant current output to a constant voltage output.

【0003】[0003]

【発明が解決しようとする課題】前記特開昭60−25
7772号公報の高圧電源は、定電流出力をえるための
電源であり、出力電圧検出回路は、負荷異常時の過電圧
を検出するための回路であり、高精度の定電圧出力を得
ることはできない。前記特開昭61−236363号公
報の高圧電源では、電圧検出回路の後段に設けられた、
電流検出回路による電圧検出回路の誤差を、電流検出回
路をスイッチで短絡することにより無くし高精度な定電
圧出力が得られる様にしているが、スイッチを切り替え
る必要があり、電圧を高精度で検出しながら定電流から
定電圧に切り替えることはできなかった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The high-voltage power supply disclosed in Japanese Patent No. 7772 is a power supply for obtaining a constant current output, and the output voltage detection circuit is a circuit for detecting an overvoltage when a load is abnormal, and cannot obtain a highly accurate constant voltage output. . In the high-voltage power supply disclosed in Japanese Patent Laid-Open No. 61-236363, the voltage detection circuit is provided after the
The error of the voltage detection circuit due to the current detection circuit is eliminated by short-circuiting the current detection circuit with a switch so that a highly accurate constant voltage output can be obtained, but it is necessary to switch the switch and detect the voltage with high accuracy. However, it was not possible to switch from constant current to constant voltage.

【0004】本発明は、定電流制御と定電圧制御を切換
えて行なう帯電装置の、定電流制御および定電圧制御の
精度を高くすることを第1の目的とし、この切換えに参
照する、荷電手段と被帯電部材との間の負荷抵抗を正確
に検出することを第2の目的とする。
A first object of the present invention is to improve the accuracy of constant current control and constant voltage control of a charging device that switches between constant current control and constant voltage control. The second object is to accurately detect the load resistance between the charged member and the member to be charged.

【0005】[0005]

【課題を解決するための手段】(1)本発明の第1態様
帯電装置は、出力電圧調整手段(Q)を含む高圧発生回
路(Q,TR,D1〜D3,C1,C2),この回路が発生する高圧(V23)
を出力するための高圧端子(T),基準電位端子(GND),前
記高圧に比例する電圧(V13)を発生する電圧検出用素子
(R4,R5),該素子の基準電位側端(,FBR,IT)と前記基準
電位端子(GND)の間に介挿されこの間の電流値(Iopc)に
比例する電圧(V3)を発生する電流検出用素子(R6)、を含
む高圧電源(HV3);基準電位(GND)に接続された導電体上
の被帯電部材(OPC)に接触し又は離れて対向する、前記
高圧端子(T)に電気的に接続された荷電部材(TB)および
これから被帯電部材(OPC)以外に流れる電流を高圧電源
(HV3)の前記基準電位側端(,FBR,IT)に帰還するための
手段(TR1,TR2)を含む荷電手段(TTU);および、定電流制
御のときは前記電流検出用素子(R6)が発生する電圧(V3)
が目標値に合致するようにまた、定電圧制御のときは
該電圧(V3)を前記電圧検出用素子(R4,R5)の基準電位(GN
D)から見た電圧(V1=V13+V3)から差し引いた電圧(V13)
目標値に合致するように前記出力電圧調整手段(Q)
を制御するコントロ−ラ(CNT);を備える。なお、理解
を容易にするためにカッコ内には、図面に示し後述する
実施例の対応要素又は対応事項の記号を、参考までに付
記した。 (2)本発明の第2態様の帯電装置は、出力電圧調整手
段(Q)を含む高圧発生回路(Q,TR,D1〜D3,C1,C2),この回
路が発生する高圧(V23)を出力するための高圧端子(T),
基準電位端子(GND),前記高圧に比例する電圧(V13)を発
生する電圧検出用素子(R4,R5),該素子の基準電位側端
(,FBR,IT)と前記基準電位端子(GND)の間に介挿されこ
の間の電流値(Iopc)に比例する電圧(V3)を発生する電
流検出用素子(R6)、を含む高圧電源(HV3);基準電位(GN
D)に接続された導電体上の被帯電部材(OPC)に接触し又
は離れて対向する、前記高圧端子(T)に電気的に接続さ
れた荷電部材(TB)およびこれから被帯電部材(OPC)以外
に流れる電流を高圧電源(HV3)の前記基準電位側端(,F
BR,IT)に帰還するための手段(TR1,TR2)を含む荷電手段
(TTU);および、電流検出用素子(R6)が発生する電圧(V
3)、および、これを電圧検出用素子(R4,R5)が発生する
電圧(VT)から差し引いた電圧(V13)、に基づいて荷電部
材(TB)から被帯電部材(OPC)を介して基準電位(GND)まで
の抵抗値(R2)を演算し、該抵抗値(R2)が設定値未満のと
きは電流検出用素子(R6)が発生する電圧(V3)が目標値に
合致するように出力電圧調整手段(Q)を制御し、設定値
以上のときは前記差し引いた電圧(V13)が目標値に合致
するように出力電圧調整手段(Q)を制御するコントロ−
ラ(CNT);を備える。
(1) First embodiment of the present invention
The charging device is a high voltage generating circuit (Q, TR, D1 to D3, C1, C2) including output voltage adjusting means (Q), and a high voltage (V23) generated by this circuit.
High voltage terminal (T) for outputting the voltage, reference potential terminal (GND), voltage detection element that generates a voltage (V13) proportional to the high voltage
(R4, R5), which is inserted between the reference potential side end (, FBR, IT) of the element and the reference potential terminal (GND), and generates a voltage (V3) proportional to the current value (Iopc) in between. High-voltage power supply (HV3) including a current detection element (R6); the high-voltage terminal (T) that contacts with or separates from a charged member (OPC) on a conductor connected to a reference potential (GND) The high-voltage power supply supplies the current that flows except the charged member (TB) and the charged member (OPC) electrically connected to the
(HV3) charging means (TTU) including means (TR1, TR2) for feeding back to the reference potential side end (, FBR, IT); and constant current control
In case of control, the voltage (V3) generated by the current detection element (R6)
So that it matches the target value, and during constant voltage control
The voltage (V3) is applied to the reference potential (GN) of the voltage detecting elements (R4, R5).
Voltage (V13) subtracted from voltage (V1 = V13 + V3) seen from D)
So it matches the target value, the output voltage adjusting means (Q)
A controller (CNT) for controlling the. For ease of understanding, in parentheses, symbols of corresponding elements or corresponding matters in the embodiments shown in the drawings and described later are added for reference. (2) The charging device according to the second aspect of the present invention is an output voltage adjusting device.
High-voltage generation circuit (Q, TR, D1 to D3, C1, C2) including stages (Q), this time
High voltage terminal (T) for outputting the high voltage (V23) generated by the path,
Generates a voltage (V13) proportional to the high voltage, which is the reference potential terminal (GND).
Live voltage detection element (R4, R5), reference potential side end of the element
(, FBR, IT) and the reference potential terminal (GND).
The voltage (V3) that is proportional to the current value (Iopc) between
High-voltage power supply (HV3) including current detection element (R6); reference potential (GN
D) contact the charged member (OPC) on the conductor connected to
Are separated from each other and electrically connected to the high-voltage terminal (T).
Other than the charged member (TB) and the member to be charged (OPC)
The current flowing in the high voltage power supply (HV3)
Charging means including means (TR1, TR2) for returning to (BR, IT)
(TTU); and the voltage generated by the current detection element (R6) (V
3), and the voltage (V13) obtained by subtracting this from the voltage (VT) generated by the voltage detection element (R4, R5), based on the charged member (TB) through the charged member (OPC) Calculate the resistance value (R2) up to the potential (GND), and if the resistance value (R2) is less than the set value, make sure that the voltage (V3) generated by the current detection element (R6) matches the target value. controlling the output voltage adjusting means (Q), when the set value or more for controlling the output voltage adjusting means (Q) so that the subtracted voltage (V13) matches a target value control -
La (CNT); Ru equipped with.

【0006】上記第1態様および第2態様によれば、荷
電手段(TTU)から被帯電部材(OPC)以外に流れる電流(R1
の電流)を高圧電源(HV3)の基準電位側端(,FBR,IT)に
帰還しているので、電流検出用素子(R6)が発生する電圧
(V3)は正確に、荷電部材(TB)/被帯電部材(OPC)間を流れ
る電流(Iopc)を表わす。したがって、コントロ−ラ(CN
T)の、該電圧(V3)を目標値に合致させる定電流制御が正
確なものとなる。すなわち被帯電部材(OPC)に流れる電
流(Iopc)が正確に制御される。
According to the first and second aspects , the current (R1) flowing from the charging means (TTU) to other than the member to be charged (OPC).
Current) is fed back to the reference potential side end (, FBR, IT) of the high voltage power supply (HV3), the voltage generated by the current detection element (R6)
(V3) accurately represents the current (Iopc) flowing between the charging member (TB) / charged member (OPC). Therefore, the controller (CN
The constant current control of T) for matching the voltage (V3) with the target value becomes accurate. That is, the current (Iopc) flowing through the member to be charged (OPC) is accurately controlled.

【0007】また、該電圧(V3)を電圧検出用素子(R4,R
5)の基準電位(GND)から見た電圧(V1=V13+V3)から差し
引いた電圧(V13)は、出力電流(Iopc)による電圧検出誤
差(V13)を含まないので、出力電圧(V23;V13)の検出が正
確であり、コントロ−ラ(CNT)の、出力電圧(V13)を目標
値に合致させる定電圧制御が正確なものとなる。すなわ
ち高圧電源(HV3)の出力電圧(V23)が正確に制御される。
更には、常時同時に荷電部材(TB)/被帯電部材(OPC)間電
流(Iopc;V3)と荷電部材(TB)印加電圧(V23;V13)を正確に
検出できるので、それらに従がって荷電部材(TB)および
被帯電部材(OPC)の組合せである負荷の抵抗値(R2)が正
確に求まり、この抵抗値(R2)に基づいて定電流制御と定
電圧制御を切換えることができ、制御モ−ドの選択が負
荷に正確に整合したものとなる。
Further, the voltage (V3) is converted into a voltage detecting element (R4, R
The voltage (V13) subtracted from the voltage (V1 = V13 + V3) seen from the reference potential (GND) in 5) does not include the voltage detection error (V13) due to the output current (Iopc), so the output voltage (V23; V13) Is accurate, and the constant voltage control for matching the output voltage (V13) of the controller (CNT) with the target value is accurate. That is, the output voltage (V23) of the high voltage power supply (HV3) is accurately controlled.
Furthermore, the current (Iopc; V3) between the charging member (TB) / charged member (OPC) and the charging member (TB) applied voltage (V23; V13) can be detected accurately at the same time, so follow them. The resistance value (R2) of the load, which is a combination of the charging member (TB) and the charged member (OPC), is accurately determined, and constant current control and constant voltage control can be switched based on this resistance value (R2). The choice of control mode is precisely matched to the load.

【0008】[0008]

【発明の実施の形態】(3)コントロ−ラ(CNT)は、抵
抗値(R2)が設定値より小さい場合、該抵抗値(R2)の変化
が設定値以上のときは、差し引いた電圧(V13)が目標値
に合致するように出力電圧調整手段(Q)を制御する。 (4)高圧電源(HV3)は、直流電圧を高電圧に変換する
出力電圧が可変の昇圧手段(Q,TR,D1〜D3,C1,C2),昇圧
手段の高圧端()と基準電位端()の間に接続された抵
抗分圧回路(R4,R5),基準電位端()と高圧電源の基準
電位端子(GND)の間に直列に接続された電流検出用抵抗
器(R6)、を備え;コントロ−ラ(CNT)は、抵抗分圧回路
(R4,R5)の分圧電圧(VT)から電流検出用抵抗器(R6)の電
圧降下分(V3)を差し引く、演算増幅器(IC2)と複数の抵
抗器(R11〜R14)でなる差動増幅回路を含み、前記複数の
抵抗器(R11〜R14)は、抵抗分圧回路の抵抗値より大きい
値の抵抗値を有し、それぞれが、演算増幅器(IC2)の非
反転入力()と基準電位との間(R14)、非反転入力()
と抵抗分圧回路の分圧端()との間(R13)、反転入力
()と電流検出用抵抗器(R6)の電圧検出端()との間(R
11)、および反転入力()と演算増幅器(IC2)の出力()
との間(R12)に接続されている。 (5)荷電手段は、高圧電源(HV3)の基準電位側端(,F
BR)に接続された金属ローラ(TR1,TR2),これに巻装され
た転写ベルト(TB)、および、高圧端子(T)に電気的に接
続され、転写ベルト(TB)と被帯電部材(OPC)との当接部
において転写ベルト(TB)に給電するロ−ラ電極(ER)、を
含む転写搬送ユニット(TTU)である。 (6)荷電手段は、高圧電源の高圧端子(T)に電気的に
接続された放電ワイヤ、およびこれを囲み基準電位側端
(,FBR)に接続された金属ケース、を含むコロナ放電器
である。 (7)荷電手段は、被帯電部材(OPC)に接触し又は離れ
て対向する、高圧電源の高圧端子(T)に電気的に接続さ
れた導電性ローラ、および、導電性ローラに接触し、基
準電位側端(,FBR)に接続された補助電極、を含む帯電
ロ−ラである。
BEST MODE FOR CARRYING OUT THE INVENTION (3) When the resistance value (R2) is smaller than the set value, the controller (CNT) detects the voltage (subtracted voltage) when the resistance value (R2) changes more than the set value. The output voltage adjusting means (Q) is controlled so that V13) matches the target value. (4) The high-voltage power supply (HV3) consists of a booster (Q, TR, D1 to D3, C1, C2) that converts the DC voltage to a high voltage and has a variable output voltage, a high-voltage end () of the booster, and a reference potential end. A resistor voltage divider circuit (R4, R5) connected between (), a current detection resistor (R6) connected in series between the reference potential terminal () and the reference potential terminal (GND) of the high voltage power supply, The controller (CNT) is a resistor divider circuit.
A differential consisting of an operational amplifier (IC2) and multiple resistors (R11 to R14) that subtracts the voltage drop (V3) of the current detection resistor (R6) from the divided voltage (VT) of (R4, R5). An amplifier circuit is included, and the plurality of resistors (R11 to R14) have a resistance value larger than the resistance value of the resistance voltage divider circuit, and each has a non-inverting input () of the operational amplifier (IC2) and a reference value. Between potential (R14), non-inverting input ()
Between the voltage divider end of the resistor voltage divider () (R13), inverting input
Between () and the voltage detection end () of the current detection resistor (R6) (R
11), and inverting input () and operational amplifier (IC2) output ()
It is connected to (R12). (5) The charging means is the end (, F) of the high potential power supply (HV3) on the reference potential side.
(BR) connected to the metal rollers (TR1, TR2), the transfer belt (TB) wound around this, and the high voltage terminal (T), and electrically connected to the transfer belt (TB) and the member to be charged ( The transfer transport unit (TTU) includes a roller electrode (ER) that supplies power to the transfer belt (TB) at the contact portion with the OPC). (6) The charging means is a discharge wire electrically connected to the high-voltage terminal (T) of the high-voltage power supply, and a reference potential side end surrounding the discharge wire.
A corona discharger including a metal case connected to (, FBR). (7) The charging means is in contact with the member to be charged (OPC) or facing away from it, and is in contact with the conductive roller electrically connected to the high-voltage terminal (T) of the high-voltage power source, and the conductive roller. It is a charging roller including an auxiliary electrode connected to a reference potential side end (, FBR).

【0009】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0010】[0010]

【実施例】図1に本発明の一実施例を示す。この実施例
は、電子写真装置の一部分であり、被帯電部材である感
光体OPCは、導電体ドラム表面に形成されており、導
電体ドラムおよびそれを回転自在に支持する金属構造体
を介して接地(GND,機器ア−ス)されている。この
接地電位が基準電位である。導電体ドラムが定速回転駆
動されることにより感光体OPCは、グリッドGを備え
たコロナ放電器Cの直下を移動し、コロナ放電器Cで均
一な電位に帯電される。帯電面には画像光Lが投射さ
れ、これにより静電潜像が形成される。この静電潜像
は、現像器Bで現像されて顕像となる。顕像の移動に同
期して転写搬送ユニットTTUの転写ベルトTBに記録
紙が送り込まれベルトTBに密着する。転写ベルトTB
は、感光体OPCの移動速度(周速度)と同一の線速度
で回転する。転写ベルトTBに対向する位置に到来した
顕像は、転写電極ERで記録紙に転写される。
FIG. 1 shows an embodiment of the present invention. This embodiment is a part of an electrophotographic apparatus, and a photosensitive member OPC, which is a member to be charged, is formed on the surface of a conductor drum, and a conductor drum and a metal structure that rotatably supports the conductor drum are used. It is grounded (GND, equipment ground). This ground potential is the reference potential. When the conductor drum is driven to rotate at a constant speed, the photosensitive member OPC moves directly below the corona discharger C having the grid G, and is charged to a uniform potential by the corona discharger C. Image light L is projected on the charging surface, and an electrostatic latent image is formed thereby. This electrostatic latent image is developed by the developing device B and becomes a visible image. The recording paper is fed to the transfer belt TB of the transfer / transport unit TTU in close contact with the belt TB in synchronization with the movement of the visible image. Transfer belt TB
Rotates at the same linear velocity as the moving velocity (peripheral velocity) of the photoconductor OPC. The visible image that has arrived at a position facing the transfer belt TB is transferred onto the recording paper by the transfer electrode ER.

【0011】チャ−ジャ用高圧ユニットHV1がコロナ
放電器Cに帯電電圧を与え、現像バイアス用高圧ユニッ
トHV2が現像器Bに現像バイアス電圧を与え、転写電
極用高圧ユニットHV3が転写電極ERに転写電圧を与
える。高圧ユニットHV1〜HV3のそれぞれは、直流
電源PSUからDC24Vが供給される昇圧用トラン
ス,スイッチ素子,出力整流平滑回路および出力検出回
路を備える高圧電回路であり、それらの出力電圧および
電流をコントロ−ラCNTが制御する。コントロ−ラC
NTのPC,PG,PBおよびPTは、それぞれのスイ
ッチ素子を駆動するパルス信号の出力端であり、このパ
ルス信号のデュ−ティにより、高圧ユニットHV1〜H
V3の出力電圧が定まる。IC,VC,VB,IT,V
Tは、高圧ユニットHV1〜HV3内の電圧,電流検出
回路の検出信号の入力端である。検出信号はコントロ−
ラCNT内のA/D変換器でデジタルデ−タに変換され
てコントロ−ラCNT内に読込まれる。コントロ−ラC
NTは、A/D変換された値(デジタルデ−タが表わす
値:フィ−ドバック値)を、画像サイズおよび記録濃度
調整値に対応して定められる目標値(定電流制御モ−ド
の場合には電流目標値、定電圧制御モ−ドの場合にも電
圧目標値、ただし、高圧ユニットHV2に関しては、定
電圧モ−ドの電圧目標値のみ)と比較して、フィ−ドバ
ック値が目標値に一致するように、出力端PC,PBお
よびPTから高圧ユニットHV1,HV2およびHV3
に与えるパルス信号の幅(PWMパルスのデュ−ティ)
を決定する。すなわちコントロ−ラCNTは、デジタル
制御方式で、高圧ユニットHV1,HV2およびHV3
の出力を制御する。このデジタル制御方式は、特公平7-
10178号公報に詳細に説明されているものである。な
お、このデジタル制御方式に代えて、例えば汎用のスイ
ッチング制御ICを用いたアナログ制御方式を採用して
もよい。
The charger high-voltage unit HV1 applies a charging voltage to the corona discharger C, the developing bias high-voltage unit HV2 applies a developing bias voltage to the developer B, and the transfer electrode high-voltage unit HV3 transfers it to the transfer electrode ER. Give voltage. Each of the high-voltage units HV1 to HV3 is a high-piezoelectric circuit including a step-up transformer supplied with DC24V from the DC power supply PSU, a switch element, an output rectifying / smoothing circuit, and an output detecting circuit. La CNT controls. Controller C
PCs, PGs, PBs and PTs of NT are output terminals of pulse signals for driving the respective switch elements, and the duty of the pulse signals causes the high voltage units HV1 to HV1 to
The output voltage of V3 is determined. IC, VC, VB, IT, V
T is an input terminal of detection signals of the voltage and current detection circuits in the high voltage units HV1 to HV3. The detection signal is control
It is converted into digital data by an A / D converter in the LaCNT and read into the controller CNT. Controller C
NT is an A / D converted value (value represented by digital data: feedback value), which is a target value (corresponding to constant current control mode) determined in correspondence with the image size and the recording density adjustment value. The target value is the current target value, and the target voltage value in the case of the constant voltage control mode. However, for the high-voltage unit HV2, only the target voltage value of the constant voltage mode) From the output terminals PC, PB and PT to the high voltage units HV1, HV2 and HV3 so as to match the values.
Width of pulse signal given to PWM (duty of PWM pulse)
To decide. That is, the controller CNT is a digital control system and uses high voltage units HV1, HV2 and HV3.
Control the output of. This digital control system is
This is described in detail in Japanese Patent No. 10178. Instead of this digital control method, for example, an analog control method using a general-purpose switching control IC may be adopted.

【0012】転写搬送ユニットTTUは、一対のローラ
TR1,TR2に張架された誘電体ベルトTB、およ
び、感光体OPCの転写位置に当接するよう配置された
補助ローラである転写電極ERを含み、転写電極ERは
高圧ユニットHV3から高電圧が供給される。誘電体ベ
ルトTBは、転写電極ERから電荷が注入され、紙を吸
着する。転写電極ERに印加された高電圧は、誘電体ベ
ルトTBを介して、感光体OPCと張架用ローラTR
1,TR2に流れる。感光体OPC上の顕像を紙に最適
に転写するには、所定の電流が転写電極ERから感光体
OPCに流れるように制御する必要がある。この所定の
電流は、紙のサイズや環境条件等で最適値が変動する。
張架用ローラTR1,TR2は、電子写真装置のGND
から絶縁され、転写電極ERから感光体OPCを経由し
て流れる電流とは別に高圧ユニットHV3に帰還(FB
R)される。誘電体ベルトTBは、微視的にみるとベル
ト上の位置によって、全体的には経時的あるいは環境
で、転写特性が少々又は大きく変動する。誘電体ベルト
TBの転写特性は、高圧ユニットHV3の出力する電
圧,電流から判断でき、その結果に応じて、例えば、誘
電体ベルトTBの抵抗値が所定の値より高い、あるいは
短時間での抵抗値変動が大きいときには、高圧ユニット
HV3の出力を定電流制御から定電圧制御に切り替える
ことにより、安定した転写が可能となる。
The transfer / transport unit TTU includes a dielectric belt TB stretched between a pair of rollers TR1 and TR2, and a transfer electrode ER which is an auxiliary roller arranged so as to come into contact with the transfer position of the photosensitive member OPC. The transfer electrode ER is supplied with a high voltage from the high voltage unit HV3. The electric charge is injected from the transfer electrode ER to the dielectric belt TB and adsorbs the paper. The high voltage applied to the transfer electrode ER is applied to the photoconductor OPC and the stretching roller TR via the dielectric belt TB.
1, flows to TR2. In order to optimally transfer the visible image on the photoconductor OPC to the paper, it is necessary to control so that a predetermined current flows from the transfer electrode ER to the photoconductor OPC. The optimum value of this predetermined current varies depending on the size of the paper, environmental conditions, and the like.
The stretching rollers TR1 and TR2 are the GND of the electrophotographic apparatus.
Is insulated from the transfer electrode ER and fed back to the high voltage unit HV3 separately from the current flowing through the photoconductor OPC from the transfer electrode ER (FB
R). Microscopically, the transfer characteristic of the dielectric belt TB varies slightly or largely depending on the position on the belt as a whole or with time. The transfer characteristic of the dielectric belt TB can be determined from the voltage and current output from the high voltage unit HV3, and according to the result, for example, the resistance value of the dielectric belt TB is higher than a predetermined value or the resistance in a short time. When the value fluctuation is large, stable transfer can be performed by switching the output of the high voltage unit HV3 from constant current control to constant voltage control.

【0013】図2に、高圧ユニットHV3の電気回路構
成を示す。トランスTRの一次側は、FET Qを介し
て直流電源PSUの24VとCOM(機器ア−ス)に接
続されている。FET Qのスイッチング(オン/オ
フ)の繰返しにより2次側に発生する交流は、ダイオー
ドD2,D3とコンデンサC1,C2の組合せである倍
電圧整流回路により、直流高圧に変換される。この直流
高圧は、出力保護抵抗R3を介して負荷である転写搬送
ユニットTTUに供給される。転写搬送ユニットTTU
において補助ローラである転写電極ERから感光体OP
Cに流れる電流成分の負荷抵抗R2は、高圧ユニットH
V3のGND端子から、高圧ユニットHV3の電流検出
用抵抗R6を介して整流平滑回路(D2,D3,C1,
C2)に帰還される。転写電極ERから誘電体ベルトT
Bを介して張架ローラTR1,TR2に流れる電流成分
の負荷抵抗R1は、高圧ユニットHV3のFBR端子か
ら電流検出用抵抗R6を経ずに整流平滑回路(D2,D
3,C1,C2)に帰還される。因って、高圧ユニット
HV3から感光体OPCに流れる電流だけが、電流検出
用抵抗R6に流れる。
FIG. 2 shows an electric circuit configuration of the high voltage unit HV3. The primary side of the transformer TR is connected to the 24V of the DC power supply PSU and the COM (device ground) via the FET Q. The alternating current generated on the secondary side by repeating the switching (ON / OFF) of the FET Q is converted into high DC voltage by the voltage doubler rectifying circuit which is a combination of the diodes D2 and D3 and the capacitors C1 and C2. This DC high voltage is supplied to the transfer transport unit TTU, which is a load, via the output protection resistor R3. Transfer transport unit TTU
From the transfer electrode ER which is an auxiliary roller to the photoconductor OP
The load resistance R2 of the current component flowing in C is the high voltage unit H
From the GND terminal of V3 via the current detection resistor R6 of the high voltage unit HV3, the rectifying / smoothing circuit (D2, D3, C1,
Returned to C2). Transfer electrode ER to dielectric belt T
The load resistance R1 of the current component flowing through the tension rollers TR1 and TR2 via B is rectified and smoothed from the FBR terminal of the high voltage unit HV3 without passing through the current detection resistance R6.
3, C1, C2). Therefore, only the current flowing from the high-voltage unit HV3 to the photoconductor OPC flows to the current detection resistor R6.

【0014】整流平滑回路(D2,D3,C1,C2)
の出力端,間には、抵抗R4と抵抗R5との直列回
路が接続され、これらの抵抗R4,R5で分圧された低
電圧が、コントロ−ラCNTの電圧検出信号入力端VT
に加わる。抵抗R4,R5は、高圧ユニットHV3のダ
ミー抵抗としての機能も持つ。
Rectifying and smoothing circuit (D2, D3, C1, C2)
A series circuit of a resistor R4 and a resistor R5 is connected between the output terminals of the resistors R4 and R5, and the low voltage divided by the resistors R4 and R5 is applied to the voltage detection signal input terminal VT of the controller CNT.
Join in. The resistors R4 and R5 also have a function as dummy resistors of the high voltage unit HV3.

【0015】コントロ−ラCNTは、高圧ユニットHV
3(転写搬送ユニットTTU)宛ての演算増幅器IC
1,IC2、および、他の高圧ユニットにも共通のマイ
クロコンピュータIC3、高圧ユニットHV3宛てのN
OR素子IC2を含む。演算増幅器IC1,IC2に
は、±12V電圧が供給される。
The controller CNT is a high voltage unit HV.
Operational amplifier IC destined for 3 (transfer transport unit TTU)
1, IC2, and N for the microcomputer IC3 and the high voltage unit HV3 which are also common to the other high voltage units.
It includes an OR element IC2. A voltage of ± 12 V is supplied to the operational amplifiers IC1 and IC2.

【0016】電流検出用抵抗R6を接続した電流検出信
号端子ITは、負極性の電圧であるから、演算増幅器I
C1で極性反転してから、マイクロコンピュータIC3
のA/D変換入力端AN0に印加される。演算増幅器I
C1の非反転入力はGNDに、反転入力は抵抗R9を介
して高圧ユニットHV3のIT端子に、また演算増幅器
IC1の反転入力と出力は抵抗R10で接続され
る。これらの抵抗R9,R10の抵抗値は同一とする。
ここで、高圧ユニットHV3の出力電流値をIopc、整
流回路(D2,D3,C1,C2)の出力電圧をV2
3、演算増幅器IC1の出力端の電圧をV9とする
と、 Iopc=V9/R6 である。負荷抵抗R2とV23の値が変化する時、演算
増幅器IC1の出力電圧V9は図3に示すように変化す
る。
Since the current detection signal terminal IT to which the current detection resistor R6 is connected has a negative voltage, the operational amplifier I
After reversing the polarity at C1, microcomputer IC3
Is applied to the A / D conversion input terminal AN0. Operational amplifier I
The non-inverting input of C1 is connected to GND, the inverting input is connected to the IT terminal of the high-voltage unit HV3 via the resistor R9, and the inverting input and output of the operational amplifier IC1 are connected to the resistor R10. The resistance values of these resistors R9 and R10 are the same.
Here, the output current value of the high-voltage unit HV3 is Iopc, and the output voltage of the rectifier circuit (D2, D3, C1, C2) is V2.
3. If the voltage of the output terminal of the operational amplifier IC1 is V9, then Iopc = V9 / R6. When the values of the load resistors R2 and V23 change, the output voltage V9 of the operational amplifier IC1 changes as shown in FIG.

【0017】整流回路(D2,D3,C1,C2)の出
力電圧を分圧した電圧(抵抗R5とR5との接続点
の、機器ア−スGNDに対する電圧)をV1とすると、
負荷抵抗R2とV23の値が変化する時、V1は図4に
示すように変化する。つまり整流回路の出力電圧V23
が同じでも、負荷抵抗R2が変わると、つまり出力電流
Iopcが変わると、接続点の電圧V1が変動すること
がわかる。
When the voltage obtained by dividing the output voltage of the rectifier circuit (D2, D3, C1, C2) (the voltage at the connection point of the resistors R5 and R5 with respect to the equipment ground) is V1,
When the values of the load resistance R2 and V23 change, V1 changes as shown in FIG. That is, the output voltage V23 of the rectifier circuit
It can be seen that the voltage V1 at the connection point also fluctuates when the load resistance R2 changes, that is, when the output current Iopc changes even if the same.

【0018】高圧ユニットHV3の、抵抗R4とR5と
の接続点の、機器ア−スGNDに対する電圧V1は、
コントロ−ラCNTの検出電圧入力端子VTに加わる。
該電圧は、コントロ−ラCNTにおいては、端子VTか
ら抵抗R13を介して演算増幅器IC2の非反転入力
に印加され、非反転入力は同時に抵抗R14を介して
GNDに接続される。高圧ユニットHV3の、抵抗R5
とR6との接続点の、GNDに対する電圧V3は、端
子ITおよび抵抗R11を介して、演算増幅器IC2の
反転入力に印加され、該反転入力とIC2の出力
は抵抗R12で接続される。これによって演算増幅器I
C2の出力端には、GNDから見たの電圧V1から
GNDから見たの電圧V3を引いた電圧V7が得ら
れ、これは,間の電圧(電位差)V13となる: V13=V1−V3 =V23×R5/(R4+R5) 抵抗R6による電圧降下V3は数Vであり、整流回路の
数KVの高圧出力電圧V23から見ると無視できるの
で、V23=出力電圧である。
The voltage V1 at the connection point between the resistors R4 and R5 of the high voltage unit HV3 with respect to the equipment ground GND is
It is added to the detection voltage input terminal VT of the controller CNT.
In the controller CNT, the voltage is applied from the terminal VT to the non-inverting input of the operational amplifier IC2 via the resistor R13, and the non-inverting input is simultaneously connected to the GND via the resistor R14. Resistance R5 of high voltage unit HV3
The voltage V3 with respect to the GND at the connection point of R6 and R6 is applied to the inverting input of the operational amplifier IC2 via the terminal IT and the resistor R11, and the inverting input and the output of IC2 are connected by the resistor R12. As a result, the operational amplifier I
At the output end of C2, a voltage V7 is obtained by subtracting the voltage V3 seen from GND from the voltage V1 seen from GND, which is a voltage (potential difference) V13 between: V13 = V1-V3 = V23 × R5 / (R4 + R5) The voltage drop V3 due to the resistor R6 is several V, which can be ignored when viewed from the high voltage output voltage V23 of several KV of the rectifier circuit, so V23 = output voltage.

【0019】図5に、負荷抵抗R2とV23を変化させ
た時の、演算増幅器IC2の出力電圧V7の変化を示
す。これより負荷抵抗R2が変わっても、つまり出力電
流Iopcが変化しても、高圧ユニットHV3の出力電圧
V23の検出電圧V7は、実質上変化しない。
FIG. 5 shows changes in the output voltage V7 of the operational amplifier IC2 when the load resistances R2 and V23 are changed. As a result, even if the load resistance R2 changes, that is, the output current Iopc changes, the detection voltage V7 of the output voltage V23 of the high voltage unit HV3 does not substantially change.

【0020】演算増幅器IC2の出力(電圧V7)
は、マイクロコンピュータIC3のA/D変換入力AN
1に印加される。マイクロコンピュータIC3は、それ
自身が算出し保持する目標値に、A/D変換して読込ん
だ電圧V7が一致するように、高圧ユニットHV3のF
ET Qを駆動するパルス信号のオン幅(通電デュ−テ
ィ)を演算して、出力ポ−トT0に出す。マイクロコン
ピュータIC3の出力ポートP0には、高圧ユニットH
V3が高圧出力を出すか否かを定める出力オン/オフ制
御信号を出力する。マイクロコンピュータIC3の出力
ポ−トP0とT0の信号のNANDを取った信号が、ナ
ンドゲ−トIC4からコントロ−ラCNTの出力端PT
を通して、高圧ユニットHV3のFET Qに与えられ
る。すなわち出力端PTの信号は、FET Qのゲート
信号となる。
Output of operational amplifier IC2 (voltage V7)
Is an A / D conversion input AN of the microcomputer IC3
1 is applied. The microcomputer IC3 controls the F of the high-voltage unit HV3 so that the voltage V7 read by A / D conversion matches the target value calculated and held by itself.
The ON width (energization duty) of the pulse signal for driving the ET Q is calculated and output to the output port T0. The high-voltage unit H is connected to the output port P0 of the microcomputer IC3.
An output on / off control signal that determines whether V3 outputs a high voltage output is output. A signal obtained by NANDing the output ports P0 and T0 of the microcomputer IC3 is output from the NAND gate IC4 to the output terminal PT of the controller CNT.
Through the FET Q of the high voltage unit HV3. That is, the signal at the output end PT becomes the gate signal of the FET Q.

【0021】高圧ユニットHV3の、FET Qのゲ−
トに接続された抵抗R7,抵抗R8はFET Qのゲー
ト抵抗、FET Qに並列接続されたダイオードD1は
FETQの保護用である。
The FET Q gate of the high voltage unit HV3
A resistor R7 and a resistor R8 connected to the FET Q are gate resistances of the FET Q, and a diode D1 connected in parallel to the FET Q is for protecting the FET Q.

【0022】マイクロコンピュータIC3のA/D変換
入力(V9,V7)の値は、感光体OPCに流れる電流
Iopcと、感光体OPCに印加される電圧V23を正確
に示すので、これらから感光体OPCへの負荷抵抗R2
を正確に演算して、その結果に応じて、高圧ユニットH
V3の出力目標値を設定することができる。マイクロコ
ンピュ−タIC3は、記録すべき画像サイズおよび濃度
調整値が与えられた時(転写プロセス前に与えられる)
に、それらに対応する電流目標値,電圧目標値,負荷抵
抗基準値および負荷抵抗変化基準値を算出してレジスタ
(目標値テ−ブル)に設定し、転写期間の間、感光体O
PCに流れる電流Iopc(V9)と、印加電圧V23
(V7)を繰返し読込んで負荷抵抗R2の値を算出し、
この値を目標値テ−ブルの負荷抵抗基準値と比較して、
該基準値より小さいときは「定電流制御モ−ド」を、大
きいときには「定電圧モ−ド」を設定し、また、基準値
より小さい間は、負荷抵抗R2の変化率(ベルトTBの
単位移動量当りの変化量)を算出してこれを目標値テ−
ブルの負荷抵抗変化基準値と比較し、該変化率が基準値
以上のときには、「定電圧モ−ド」を設定する。なお、
転写期間の先頭では「定電流モ−ド」を設定する。そし
て設定したモ−ドの、出力制御を行なう。
The values of the A / D conversion inputs (V9, V7) of the microcomputer IC3 accurately indicate the current Iopc flowing through the photoconductor OPC and the voltage V23 applied to the photoconductor OPC. Load resistance R2
Is calculated accurately and the high voltage unit H is
The output target value of V3 can be set. The micro computer IC3 is provided with the image size to be recorded and the density adjustment value (given before the transfer process).
Then, the target current value, target voltage value, load resistance reference value and load resistance change reference value corresponding to them are calculated and set in a register (target value table).
Current Iopc (V9) flowing through PC and applied voltage V23
(V7) is read repeatedly to calculate the value of the load resistance R2,
Compare this value with the load resistance reference value of the target value table,
When it is smaller than the reference value, the "constant current control mode" is set, and when it is larger, the "constant voltage mode" is set, and when it is smaller than the reference value, the rate of change of the load resistance R2 (unit of belt TB). Change amount per movement amount) and calculate this as the target value
If the rate of change is equal to or greater than the reference value, the "constant voltage mode" is set. In addition,
The "constant current mode" is set at the beginning of the transfer period. Then, the output control of the set mode is performed.

【0023】すなわち、「定電流モ−ド」を設定してい
るときには、感光体OPCに流れる電流Iopc(V9)
が目標値テ−ブルの電流目標値に合致するように、出力
ポ−トPOに出力するPWMパルスのデュ−ティを調整
する。「定電圧モ−ド」を設定しているときには、印加
電圧V23(V7)が目標値テ−ブルの電圧目標値に合
致するように、出力ポ−トPOに出力するPWMパルス
のデュ−ティを調整する。
That is, when the "constant current mode" is set, the current Iopc (V9) flowing through the photoconductor OPC is set.
Adjusts the duty of the PWM pulse to be output to the output port PO so that the current value matches the current target value of the target value table. When the "constant voltage mode" is set, the duty of the PWM pulse output to the output port PO is set so that the applied voltage V23 (V7) matches the voltage target value of the target value table. Adjust.

【0024】上述の高圧ユニットHV3と同様な電源回
路が、高圧ユニットHV1にも、コロナ放電器Cに高圧
を与えるために含まれており、コロナ放電器Cの放電ワ
イヤが高圧ユニットHV1の高圧端子(T)に電気的に
接続され、放電ワイヤを囲む金属ケ−スが、基準電位側
端(,FBR)に接続されている。コントロ−ラCN
Tに、図2に示すIC1,IC2およびIC4を含む入
出力回路要素と同様なものが、コロナ放電器C宛てに含
まれており、マイクロコンピュ−タIC3に接続されて
いる。コロナ放電器Cへの出力電圧はコントロ−ラCN
Tの端子VCからコントロ−ラCNTに読込まれ、コロ
ナ放電器Cにより感光体OPCに流される電流(チャ−
ジ電流)はコントロ−ラCNTの端子ICからコントロ
−ラCNTに読み込まれる。マイクロコンピュ−タIC
3は、上述の、高圧ユニットHV3に対する出力制御と
同様にして、高圧ユニットHV1の、コロナ放電器Cに
高電圧を印加する電源回路に対しても、コントロ−ラC
NTの出力端子PCを通してPWMパルスを与えて、コ
ロナ放電器Cの印加電圧およびチャ−ジ電流の制御を行
なう。
A power supply circuit similar to the above-mentioned high voltage unit HV3 is also included in the high voltage unit HV1 in order to apply a high voltage to the corona discharger C, and the discharge wire of the corona discharger C is the high voltage terminal of the high voltage unit HV1. A metal case electrically connected to (T) and surrounding the discharge wire is connected to the reference potential side end (, FBR). Controller CN
In T, the same input / output circuit elements including IC1, IC2 and IC4 shown in FIG. 2 are included for the corona discharger C and are connected to the microcomputer IC3. The output voltage to the corona discharger C is controller CN
A current (chart) that is read from the terminal VC of T to the controller CNT and is flown to the photoconductor OPC by the corona discharger C.
Current) is read from the terminal IC of the controller CNT into the controller CNT. Micro computer IC
Similarly to the above-described output control for the high voltage unit HV3, the controller 3 also controls the power supply circuit for applying a high voltage to the corona discharger C of the high voltage unit HV1 by the controller C.
A PWM pulse is applied through the output terminal PC of NT to control the applied voltage and the charge current of the corona discharger C.

【0025】なお、転写搬送ユニットTTUを転写用コ
ロナ放電器に置き換えた第2実施例では、転写用コロナ
放電器の放電ワイヤを高圧ユニット(HV3)の高圧出
力端子(T)に接続し、放電ワイヤを取り囲む金属ケー
スを高圧ユニット(HV3)の基準電位側端(,FB
R)に接続する。この場合、高圧ユニットの出力電圧,
電流値は転写搬送ユニットTTUの場合と異なるが、高
圧ユニットおよびコントロ−ラCNTの機能は、上述の
第1実施例と実質上同一であるので、詳細な説明は省略
する。
In the second embodiment in which the transfer transport unit TTU is replaced with a transfer corona discharger, the discharge wire of the transfer corona discharger is connected to the high voltage output terminal (T) of the high voltage unit (HV3) to discharge. Connect the metal case surrounding the wire to the end of the high-voltage unit (HV3) on the reference potential side (, FB
R). In this case, the output voltage of the high voltage unit,
Although the current value is different from that of the transfer / transport unit TTU, the functions of the high-voltage unit and the controller CNT are substantially the same as those of the above-described first embodiment, and therefore detailed description thereof will be omitted.

【0026】同様に、転写搬送ユニットTTUを転写用
帯電ロ−ラに置き換えた第3実施例では、帯電ロ−ラを
高圧ユニット(HV3)の高圧出力端子(T)に接続
し、帯電ロ−ラに接触して設けられた補助電極を高圧ユ
ニット(HV3)の基準電位側端(,FBR)に接続
する。この第3実施例も、高圧ユニットの出力電圧,電
流値は転写搬送ユニットTTUの場合と異なるが、高圧
ユニットおよびコントロ−ラCNTの機能は、上述の第
1実施例と実質上同一であるので、詳細な説明は省略す
る。
Similarly, in the third embodiment in which the transfer transport unit TTU is replaced with a transfer charging roller, the charging roller is connected to the high voltage output terminal (T) of the high voltage unit (HV3), and the charging roller is connected. The auxiliary electrode provided in contact with the battery is connected to the reference potential side end (, FBR) of the high voltage unit (HV3). Also in this third embodiment, the output voltage and current value of the high-voltage unit are different from those of the transfer transport unit TTU, but the functions of the high-voltage unit and the controller CNT are substantially the same as those of the first embodiment described above. , Detailed description is omitted.

【0027】なお、以上においては主に、転写用の態様
で本発明の帯電装置の実施例を説明したが、静電潜像を
形成するために露光に先立って感光体OPCを荷電する
帯電装置に、上述の各実施例を同様に適用できる。
In the above, the embodiment of the charging device of the present invention has been mainly described in the transfer mode, but the charging device that charges the photoconductor OPC prior to exposure to form an electrostatic latent image. The above embodiments can be similarly applied to the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の概要を示すブロック図で
あり、電子写真方式の画像形成装置の、静電潜像を形成
するために露光に先立って感光体OPCを荷電する帯電
装置,静電潜像を現像する現像器に現像バイアスを与え
る電源および感光体OPC上に形成された顕像を記録紙
に転写する転写搬送ユニットを示す。
FIG. 1 is a block diagram showing an outline of an embodiment of the present invention, which is a charging device of an electrophotographic image forming apparatus for charging a photoreceptor OPC prior to exposure in order to form an electrostatic latent image, 1 shows a power supply that applies a developing bias to a developing device that develops an electrostatic latent image, and a transfer conveyance unit that transfers a visible image formed on a photoconductor OPC to a recording sheet.

【図2】 図1に示す高圧ユニットHV3の構成とコン
トロ−ラCNTの一部分の構成を示す電気回路図であ
る。
FIG. 2 is an electric circuit diagram showing a configuration of a high voltage unit HV3 shown in FIG. 1 and a configuration of a part of a controller CNT.

【図3】 図2に示す負荷抵抗R2の値および高圧ユニ
ットHV3の出力電圧V23の値と、演算増幅器IC1
の出力電圧V9の関係を示すグラフである。
FIG. 3 shows the value of the load resistance R2 and the output voltage V23 of the high voltage unit HV3 shown in FIG. 2, and the operational amplifier IC1.
5 is a graph showing the relationship of the output voltage V9 of FIG.

【図4】 図2に示す負荷抵抗R2の値および高圧ユニ
ットHV3の出力電圧V23の値と、分圧端の電圧V
1の関係を示すグラフである。
FIG. 4 shows the value of the load resistance R2 and the output voltage V23 of the high voltage unit HV3 shown in FIG. 2, and the voltage V at the voltage dividing end.
It is a graph which shows the relationship of 1.

【図5】 図2に示す高圧ユニットHV3の出力電圧V
23の値と、演算増幅器IC2の出力電圧V7の関係を
示すグラフである。
5 is an output voltage V of the high voltage unit HV3 shown in FIG.
23 is a graph showing the relationship between the value of 23 and the output voltage V7 of the operational amplifier IC2.

【符号の説明】[Explanation of symbols]

OPC:感光体 GND:機器ア−ス C:コロナ放電器 G:グリッド L:画像光 B:現像器 TTU:転写搬送ユニット TB:転写ベルト ER:転写電極 HV1〜3:高圧ユニット PSU:直流電源 TR:昇圧用トランス Q:スイッチ素子 D2,D3,C1,C2:
整流平滑回路 CNT:コントロ−ラ
OPC: Photoconductor GND: Device ground C: Corona discharger G: Grid L: Image light B: Developing device TTU: Transfer transport unit TB: Transfer belt ER: Transfer electrodes HV1 to 3: High voltage unit PSU: DC power supply TR : Step-up transformer Q: Switch elements D2, D3, C1, C2:
Rectifying / smoothing circuit CNT: controller

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】出力電圧調整手段を含む高圧発生回路,こ
の回路が発生する高圧を出力するための高圧端子および
基準電位端子,前記高圧に比例する電圧を発生する電圧
検出用素子,該素子の基準電位側端と前記基準電位端子
の間に介挿されこの間の電流値に比例する電圧を発生す
る電流検出用素子、を含む高圧電源; 基準電位に接続された導電体上の被帯電部材に接触し又
は離れて対向する、前記高圧端子に電気的に接続された
荷電部材およびこれから被帯電部材以外に流れる電流を
高圧電源の前記基準電位側端に帰還するための手段を含
む荷電手段;および、定電流制御のときは 前記電流検出用素子が発生する電圧
が目標値に合致するようにまた、定電圧制御のときは
該電圧を前記電圧検出用素子の基準電位から見た電圧か
ら差し引いた電圧目標値に合致するように前記出力
電圧調整手段を制御するコントロ−ラ;を備える帯電装
置。
1. A high voltage generating circuit including output voltage adjusting means, a high voltage terminal and a reference potential terminal for outputting the high voltage generated by the circuit, a voltage detecting element for generating a voltage proportional to the high voltage, and a device for detecting the voltage. A high-voltage power supply including a current detection element that is interposed between a reference potential side end and the reference potential terminal and that generates a voltage proportional to the current value between these ends; to a charged member on a conductor connected to the reference potential Charging means including a charging member electrically connected to the high-voltage terminal and facing each other in contact with or away from the high-voltage terminal, and means for returning a current flowing from other than the charged member to the reference potential side end of the high-voltage power source; and , The voltage generated by the current detection element during constant current control
So that it matches the target value, and during constant voltage control
As the voltage obtained by subtracting from the voltage seen the voltage from the reference potential of the voltage detecting element matches the target value, control for controlling the output voltage regulating means - la; charging device comprising a.
【請求項2】出力電圧調整手段を含む高圧発生回路,こ
の回路が発生する高圧を出力するための高圧端子および
基準電位端子,前記高圧に比例する電圧を発生する電圧
検出用素子,該素子の基準電位側端と前記基準電位端子
の間に介挿されこの間の電流値に比例する電圧を発生す
る電流検出用素子、を含む高圧電源; 基準電位に接続された導電体上の被帯電部材に接触し又
は離れて対向する、前記高圧端子に電気的に接続された
荷電部材およびこれから被帯電部材以外に流れる電流を
高圧電源の前記基準電位側端に帰還するための手段を含
む荷電手段;および、 前記電流検出用素子が発生する電圧、および、これを前
記電圧検出用素子が発生する電圧から差し引いた電圧、
に基づいて荷電部材から被帯電部材を介して基準電位ま
での抵抗値を演算し、該抵抗値が設定値未満のときは前
記電流検出用素子が発生する電圧が目標値に合致するよ
うに前記出力電圧調整手段を制御し、設定値以上のとき
は前記差し引いた電圧が目標値に合致するように前記出
力電圧調整手段を制御するコントローラ;を備える帯電
装置。
2. A high voltage generating circuit including output voltage adjusting means,
High voltage terminal for outputting the high voltage generated by the circuit
Reference potential terminal, voltage that generates a voltage proportional to the high voltage
Detection element, reference potential side end of the element and the reference potential terminal
Is inserted between the two and generates a voltage proportional to the current value
A high-voltage power supply including a current detection element, which contacts a charged member on a conductor connected to a reference potential,
Facing away from each other, electrically connected to said high voltage terminal
The electric current flowing to other than the charged member and the member to be charged
A means for returning to the reference potential side end of the high voltage power supply is included.
Charging means; and a voltage generated by the current detection element, and a voltage obtained by subtracting the voltage from the voltage generated by the voltage detection element,
Based on the above, the resistance value from the charging member to the reference potential via the charged member is calculated, and when the resistance value is less than the set value, the voltage generated by the current detecting element matches the target value. A charging device, comprising : a controller that controls the output voltage adjusting means, and controls the output voltage adjusting means so that the subtracted voltage matches a target value when the output voltage adjusting means is equal to or more than a set value.
【請求項3】コントロ−ラは、前記抵抗値が設定値より
小さい場合、該抵抗値の変化が設定値以上のときは、差
し引いた電圧が目標値に合致するように前記出力電圧調
整手段を制御する、請求項2記載の帯電装置。
3. The controller controls the output voltage adjusting means so that the subtracted voltage matches a target value when the resistance value is smaller than a set value and the change in the resistance value is equal to or larger than the set value. The charging device according to claim 2, which is controlled.
【請求項4】高圧電源は、直流電圧を高電圧に変換する
出力電圧が可変の昇圧手段,昇圧手段の高圧端と基準電
位端の間に接続された抵抗分圧回路,前記基準電位端と
高圧電源の基準電位端子の間に直列に接続された電流検
出用抵抗器、を備え; コントロ−ラは、抵抗分圧回路の分圧電圧から電流検出
用抵抗器の電圧降下分を差し引く、演算増幅器と複数の
抵抗器でなる差動増幅回路を含み、前記複数の抵抗器
は、抵抗分圧回路の抵抗値より大きい値の抵抗値を有
し、それぞれが、演算増幅器の非反転入力と基準電位と
の間、非反転入力と抵抗分圧回路の分圧端との間、反転
入力と電流検出用抵抗器の電圧検出端との間、および反
転入力と演算増幅器の出力の間に接続された;請求項
1,請求項2又は請求項3記載の帯電装置。
4. The high-voltage power supply includes a boosting means for converting a DC voltage into a high voltage, which has a variable output voltage, a resistance voltage dividing circuit connected between a high-voltage end of the boosting means and a reference potential end, and the reference potential end. The current detection resistor connected in series between the reference potential terminals of the high voltage power supply; the controller subtracts the voltage drop of the current detection resistor from the divided voltage of the resistance voltage divider circuit An amplifier and a differential amplifier circuit including a plurality of resistors, wherein the plurality of resistors have a resistance value larger than a resistance value of the resistance voltage dividing circuit, each of which has a non-inverting input of the operational amplifier and a reference. Connected to the potential, between the non-inverting input and the voltage divider end of the resistor divider, between the inverting input and the voltage detector end of the current detecting resistor, and between the inverting input and the output of the operational amplifier. The charging device according to claim 1, claim 2 or claim 3.
【請求項5】荷電手段は、高圧電源の前記基準電位側端
に接続された金属ローラ,これに巻装された転写ベル
ト、および、前記高圧端子に電気的に接続され、転写ベ
ルトと被帯電部材との当接部において転写ベルトに給電
するロ−ラ電極、を含む転写搬送ユニットである、請求
項1,請求項2又は請求項3記載の帯電装置。
5. The charging means is a metal roller connected to the reference potential side end of a high-voltage power supply, a transfer belt wound around the metal roller, and electrically connected to the high-voltage terminal, and is electrically connected to the transfer belt. The charging device according to claim 1, wherein the charging device is a transfer conveyance unit including a roller electrode that supplies power to the transfer belt at a contact portion with a member.
【請求項6】荷電手段は、高圧電源の前記高圧端子に電
気的に接続された放電ワイヤ、およびこれを囲み前記基
準電位側端に接続された金属ケース、を含むコロナ放電
器である;請求項1,請求項2又は請求項3記載の帯電
装置。
6. A corona discharger including a discharge wire electrically connected to the high-voltage terminal of a high-voltage power supply, and a metal case surrounding the discharge wire and connected to the reference potential side end. The charging device according to claim 1, claim 2 or claim 3.
【請求項7】 荷電手段は、被帯電部材に接触し又は離
れて対向する、高圧電源の前記高圧端子に電気的に接続
された導電性ローラ、および、導電性ローラに接触し、
前記基準電位側端に接続された補助電極、を含む帯電ロ
−ラである;請求項1,請求項2又は請求項3記載の帯
電装置。
7. The charging means is in contact with the member to be charged or is opposed to the member to be separated therefrom, and is electrically connected to the conductive roller electrically connected to the high-voltage terminal of the high-voltage power source, and is in contact with the conductive roller.
A charging roller including an auxiliary electrode connected to the end on the side of the reference potential; The belt according to claim 1, claim 2 or claim 3.
Electrical equipment.
JP00003696A 1996-01-04 1996-01-04 Charging device Expired - Fee Related JP3437699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00003696A JP3437699B2 (en) 1996-01-04 1996-01-04 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00003696A JP3437699B2 (en) 1996-01-04 1996-01-04 Charging device

Publications (2)

Publication Number Publication Date
JPH09185221A JPH09185221A (en) 1997-07-15
JP3437699B2 true JP3437699B2 (en) 2003-08-18

Family

ID=11463114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00003696A Expired - Fee Related JP3437699B2 (en) 1996-01-04 1996-01-04 Charging device

Country Status (1)

Country Link
JP (1) JP3437699B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022214A (en) * 2013-07-22 2015-02-02 ブラザー工業株式会社 Image forming device

Also Published As

Publication number Publication date
JPH09185221A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
CA1132179A (en) Lead edge transfer switching
US5187536A (en) Image forming apparatus
EP2423757B1 (en) Image forming apparatus and method for controlling charger
GB2108719A (en) Image formation apparatus
JP3437699B2 (en) Charging device
US7227735B2 (en) Current regulated, voltage limited, AC power supply with DC offset for corona chargers
EP0448026B1 (en) Power supply.
JP2978236B2 (en) Transfer corona discharge control device
US6831818B2 (en) Current regulated voltage limited high voltage power supply for corona charger
JPH05281821A (en) Method and device for shortening electrostatic level convergence time in operation of three-level image forming device
US5204730A (en) Transfer, detac polarity switching
JPS59201075A (en) Charged potential control device of photosensitive body
JP3777972B2 (en) Power supply
JPH10127051A (en) Piezoelectric transformer dc power supply
JP7114428B2 (en) Power supply and image forming apparatus
JPH09218567A (en) High voltage power unit for image forming device
JPS6159460A (en) High voltage power source for electrostatic charging
JPS6035760A (en) Control device for electrostatically charged potential of photosensitive body
JPH0739352Y2 (en) High voltage power supply for copier
JPH05150613A (en) Corona discharge device
JP4639437B2 (en) High voltage power supply
JP2000066486A (en) Image forming device
JPH0519594A (en) Electrophotographic device
JP2004222351A (en) High-voltage power supply unit
JPH0566652A (en) Corona discharging device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees