JP3437667B2 - White conductive powder and conductive resin composition using the same - Google Patents

White conductive powder and conductive resin composition using the same

Info

Publication number
JP3437667B2
JP3437667B2 JP03400795A JP3400795A JP3437667B2 JP 3437667 B2 JP3437667 B2 JP 3437667B2 JP 03400795 A JP03400795 A JP 03400795A JP 3400795 A JP3400795 A JP 3400795A JP 3437667 B2 JP3437667 B2 JP 3437667B2
Authority
JP
Japan
Prior art keywords
powder
conductive
conductive powder
white
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03400795A
Other languages
Japanese (ja)
Other versions
JPH08231883A (en
Inventor
昭洋 好本
茂 長岡
直美 岡崎
孝 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP03400795A priority Critical patent/JP3437667B2/en
Publication of JPH08231883A publication Critical patent/JPH08231883A/en
Application granted granted Critical
Publication of JP3437667B2 publication Critical patent/JP3437667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた導電性能を有する
とともに、経時安定性に優れた白色導電性粉末に関し、
主として帯電防止用の塗料・繊維・樹脂・ゴム・フィル
ムなどで用いられる。また、電子写真用のトナーの帯電
調整剤ならびに感光ドラムの抵抗調整剤などや、画像記
録材料、静電記録紙、電極材料などにも適用される白色
導電性粉末を提供する。
FIELD OF THE INVENTION The present invention relates to a white conductive powder having excellent conductive properties and excellent stability over time,
Mainly used in antistatic paints, fibers, resins, rubbers, films, etc. Also provided are white electroconductive powders which are applied to charge control agents for toners for electrophotography, resistance control agents for photosensitive drums, image recording materials, electrostatic recording papers, electrode materials and the like.

【0002】[0002]

【従来の技術】現在知られている導電性粉末は、アンチ
モンを含有した酸化スズ粉末のように均一構造からなる
単一粒子型、また、選択された無機粉末を基体粉末と
し、その粉末表面に導電層を被覆したいわゆる導電層被
覆型とに分けられる。特に後者の導電層被覆型の導電性
粉末は単一粒子型に比べて、基体粉末の選択により、比
重の軽量化による添加量の低減化、板状形・針状形粒子
の形状を利用した導電性能の効率化が図れ、また基体粉
末の屈折率、粒子サイズを生かし透明フィルム用導電性
粉末として、また高隠蔽力を有した導電性塗料用として
などに利用できる等の特徴がある。近年、その使用量は
増加しており、新用途への展開も期待されているもので
あり、導電層被覆型の中でも、高導電性能が要求される
分野では、アンチモンを含有した酸化スズ系のものが主
流である。
2. Description of the Related Art Currently known conductive powder is a single particle type having a uniform structure such as tin oxide powder containing antimony, and selected inorganic powder is used as a base powder and the powder surface is It is classified into a so-called conductive layer coating type in which a conductive layer is coated. In particular, the latter conductive layer-covered conductive powder used a base powder selection to reduce the addition amount by reducing the specific gravity, and used the shape of plate-shaped or needle-shaped particles, compared to the single particle type. It has the features that the efficiency of the conductive performance can be improved, and that it can be used as a conductive powder for transparent films by utilizing the refractive index and particle size of the base powder, and for a conductive coating having a high hiding power. In recent years, the amount of its use has been increasing, and it is expected to expand to new applications. Among the conductive layer coating types, in the field where high conductivity performance is required, the tin oxide type tin oxide containing antimony is used. Things are the mainstream.

【0003】しかしながら、アンチモンの毒性問題が特
にヨーロッパ等で注目されている事より、アンチモンを
含有しないアンチモンレスタイプの開発も必要となって
きた。このため、酸化スズを含む酸化インジウムを被覆
した導電性粉末が考えられ、特開昭61−14161
8、特開昭60−253112ならびに特開平5−26
2526などが開示されたが、これらは、基体粉末への
導電層の被覆が均一でないため、導電性能が満足される
ものではなく、また導電性能の経時安定性の点において
も十分ではなかった。
However, since the problem of toxicity of antimony has been particularly noticed in Europe and the like, it has become necessary to develop an antimony-less type that does not contain antimony. Therefore, a conductive powder coated with indium oxide containing tin oxide is considered, and is disclosed in JP-A-61-14161.
8, JP-A-60-253112 and JP-A-5-26
No. 2526 and the like were disclosed, but these did not satisfy the conductive performance because the coating of the conductive powder on the base powder was not uniform, and were not sufficient in terms of stability of the conductive performance with time.

【0004】そのため、特開平6−338213では、
導電層が基体粉末に均一被覆されているものを開示し、
導電性能が満足するものが得られたが、経時安定性の点
ではまだ不十分であった。
Therefore, in Japanese Patent Laid-Open No. 6-338213,
Disclosed is that the conductive layer is uniformly coated on the substrate powder,
Although the conductive performance was satisfactory, it was still insufficient in terms of stability over time.

【0005】次に、カップリング剤を表面処理する先行
事例は数多くあるが、被処理体をインジウム−スズ系の
導電層被覆型の導電性粉末としたものはなく、又、本発
明の特徴であるインジウムの性質に基づく導電性能の経
時劣化を改善したものはなかった。
Next, although there are many precedent cases in which a coupling agent is surface-treated, there is no one in which an indium-tin-based conductive layer-covering type conductive powder is used as the object to be treated, and it is a feature of the present invention. None have improved the deterioration of the conductive performance over time due to the properties of certain indium.

【0006】[0006]

【発明が解決しようとする課題】本発明はインジウム−
スズ系導電層被覆型の導電性粉末において、初期粉体比
抵抗が100Ω・cm以下、好ましくは50Ω・cm以下
である優れた導電性能を有するとともに、実用材料とし
て重要となる経時安定性、即ち、50℃下での経時上昇
が1カ月当たり10Ω・cm以下、好ましくは5Ω・cm
以下であり、かつ、経時後も粉体比抵抗が100Ω・c
m以下を維持した、導電性能に優れた白色導電性粉末を
提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is based on indium
The tin-based conductive layer-covered conductive powder has excellent conductivity with an initial powder specific resistance of 100 Ω · cm or less, preferably 50 Ω · cm or less, and has stability over time that is important as a practical material, that is, , 10 Ω · cm or less per month at 50 ° C., preferably 5 Ω · cm
And the powder resistivity is 100 Ω · c even after aging.
It is intended to provide a white electroconductive powder having an excellent electroconductivity while maintaining m or less.

【0007】工業的に導電性粉末を使用する立場からす
ると、使用用途に応じた導電性能を有しているのはもち
ろんのこと、経時劣化の少ないものが望まれると考えら
れる。特にインジウム−スズ系の導電性粉末では、導電
性能に優れる反面、インジウム特有の性質として、大気
中での経時変化は免れないものがあり、それを改善する
ことが課題であった。
From the standpoint of industrially using the conductive powder, it is considered that it is desired that the powder has not only the conductive performance according to the intended use but also the deterioration with time. In particular, indium-tin-based conductive powders have excellent conductive performance, but on the other hand, there are some properties peculiar to indium that are inevitable over time, and it has been a problem to improve them.

【0008】[0008]

【課題を解決するための手段】本発明者らは、白色無機
顔料を基体粉末とし、その表面にインジウム−スズ系の
導電層を被覆した導電層被覆型の導電性粉末において、
優れた導電性能を維持し、かつ経時安定性の優れた粉末
を開発するため鋭意研究を重ねた結果、本発明を完成さ
せたものである。
Means for Solving the Problems The inventors of the present invention have prepared a conductive layer coating type conductive powder comprising a white inorganic pigment as a base powder, the surface of which is coated with an indium-tin based conductive layer.
The present invention has been completed as a result of intensive studies to develop a powder having excellent electric conductivity and excellent stability over time.

【0009】すなわち本発明は、白色無機顔料を基体粉
末とし、その表面にインジウム−スズ系の導電層を被覆
した導電層被覆型粉末に、カップリング剤を表面処理す
ることを特徴とする白色導電性粉末を提供するものであ
る。
That is, the present invention is characterized in that a white inorganic pigment is used as a base powder, and the surface of the powder is coated with a conductive layer of an indium-tin type conductive layer, and the powder is subjected to a surface treatment with a coupling agent. To provide a powdery powder.

【0010】本発明にかかる白色導電性粉末は、インジ
ウム−スズ系導電層被覆型の導電性粉末に対して、シラ
ン系、チタネート系、ジルコネート系、アルミネート
系、およびジルコアルミネート系より選ばれたカップリ
ング剤を被処理体のインジウム−スズ系導電層被覆型の
導電性粉末の比表面積1m2/gあたり0.03〜0.4
重量%好ましくは0.05〜0.35重量%をヘンシェ
ルミキサ−などの混合機により被覆処理することにより
得られるが、処理量が0.03重量%以下であると経時
安定性を改善する効果はなく、また、処理量が0.4重
量%以上であればコスト的に無駄であるとともに、むし
ろカップリング処理層が絶縁層となって導電性が悪くな
ってくるので好ましくない。又、ヘンシェルミキサ−で
被覆処理する際には、該装置を60〜80℃に保温した
方がより均一に被覆できる。
The white conductive powder according to the present invention is selected from silane-based, titanate-based, zirconate-based, aluminate-based, and zirco-aluminate-based, with respect to the indium-tin-based conductive layer-coated conductive powder. The specific surface area of the indium-tin conductive layer coating type conductive powder of the object to be treated is 0.03 to 0.4 per 1 m 2 / g.
The weight%, preferably 0.05 to 0.35% by weight, can be obtained by coating with a mixer such as a Henschel mixer. When the amount treated is 0.03% by weight or less, the effect of improving stability over time is obtained. In addition, if the treatment amount is 0.4% by weight or more, it is wasteful in terms of cost, and rather, the coupling treatment layer becomes an insulating layer and the conductivity is deteriorated, which is not preferable. Further, when coating with a Henschel mixer, it is preferable to keep the temperature of the apparatus at 60 to 80 ° C. for more uniform coating.

【0011】被処理体であるインジウム−スズ系の導電
層被覆型の導電性粉末は、導電層自身の導電性能が十分
であることに加え、導電層が基体粉末に均一に被覆され
ていることが重要であり、均一被覆されていない場合、
被覆されていない基体粉末表面が電導パスを遮断するた
め、低抵抗な導電性粉末は得られない。その良好なる導
電性能を有するためのインジウム及びスズの被覆量は、
基体の無機顔料に対して、In23として5〜200重
量%、好ましくは8〜150重量%、SnO2として5
〜240重量%、好ましくは8〜173重量%である。
The indium-tin-based conductive layer coating type conductive powder which is the object to be processed has a sufficient conductive property of the conductive layer itself, and the conductive layer is uniformly coated on the base powder. Is important and not evenly coated,
Since the surface of the uncoated base powder blocks the conduction path, a low resistance conductive powder cannot be obtained. The coating amount of indium and tin for having the good conductive performance is
Relative to the substrate of the inorganic pigment, 5 to 200 wt% as an In 2 O 3, preferably 8-150% by weight, as SnO 2 5
˜240 wt%, preferably 8-173 wt%.

【0012】また、白色導電性粉末の基体となる白色無
機顔料は市販の二酸化チタン、酸化アルミニウム、二酸
化ケイ素、酸化亜鉛、硫酸バリウム、酸化ジルコニウ
ム、チタン酸アルカリ金属あるいは白雲母であれば、い
ずれでも使用できる。二酸化チタンを例にとりより詳細
に説明すると、粒子の大きさには制限がなく、また球
状、針状などどの様な形状のものでも、更には結晶形と
して、アナターゼ型、ルチル型及び非晶質のものも使用
することができる。なお、本発明は白色を重視したが、
酸化鉄など種々の有色顔料にも応用できる。
The white inorganic pigment as the base of the white conductive powder is any commercially available titanium dioxide, aluminum oxide, silicon dioxide, zinc oxide, barium sulfate, zirconium oxide, alkali metal titanate or muscovite. Can be used. Explaining in more detail using titanium dioxide as an example, there is no limitation on the size of particles, and any shape such as spherical or needle-like, and further as a crystalline form, anatase type, rutile type and amorphous The thing of can also be used. Although the present invention emphasizes white color,
It can also be applied to various colored pigments such as iron oxide.

【0013】本発明における製造方法の詳細な説明を引
き続き行う。
The detailed description of the manufacturing method of the present invention will be continued.

【0014】導電層被覆型の導電性粉末では、基体粉末
への導電層の被着状態が不良である場合は、常温下と言
えども粉体比抵抗が上昇し、例えば、数日で初期値に対
して2〜3倍となる場合もある。これは、被着していな
いで遊離している酸化スズ含有の酸化インジウム超微粒
子によるものと考えられる。しかしながら、最良なる被
覆状態のものでも、酸化スズ含有の酸化インジウム半導
体の導電機構上、常温下でも若干の比抵抗上昇があり、
加熱もしくは加湿された環境下ではもはや粉体比抵抗の
上昇は免れない。工業的に、実際に使用される環境等を
想定すると、高温下においても本来の導電性能が損なわ
れることがないものが必要とされると考え、経時変化が
起こらないものとするための研究を重ねた。
In the case of a conductive layer-covering type conductive powder, when the conductive layer is poorly adhered to the base powder, the powder specific resistance increases even at room temperature, and the initial value is, for example, a few days. It may be 2 to 3 times. It is considered that this is due to the indium oxide ultrafine particles containing tin oxide, which are free without being deposited. However, even in the best coating state, due to the conductive mechanism of the tin oxide-containing indium oxide semiconductor, there is a slight increase in the specific resistance even at room temperature.
Under a heated or humidified environment, the specific resistance of powder is unavoidably increased. Industrially, assuming the environment in which it is actually used, we believe that a material that does not impair the original conductive performance at high temperatures is required, and we have conducted research to ensure that it does not change over time. Overlaid.

【0015】その対策として、基本的には、酸素、水と
の接触を遮断すればよいので、導電性粉末表面に何らか
の表面処理をする方法が考えられるが、導電性能の特徴
を維持するためには、単に表面処理するだけでは、電導
パスを遮断する絶縁層を形成させるようになるので好ま
しくない。
As a countermeasure, basically, it is sufficient to block the contact with oxygen and water, so that a method of surface-treating the surface of the conductive powder can be considered, but in order to maintain the characteristics of the conductive performance. Is not preferable because the surface treatment will form an insulating layer that blocks the conduction path.

【0016】本発明者らは、種々の方法について研究を
重ねた結果、インジウム−スズ系の導電層被覆型の導電
性粉末に対して、適当量のシラン系、チタネート系、ジ
ルコネート系、アルミネート系、およびジルコアルミネ
ート系のカップリング剤により処理することにより、経
時安定性に優れるのはもちろんのこと、予期せぬことで
あったが、基本的には絶縁物であるこれらのカップリン
グ剤を処理することにより粉体比抵抗が低下し、導電性
が良好となることを見いだした。さらには、カップリン
グ剤処理による粉体比抵抗値の低下効果は、すでに経時
によって導電性能が劣化しているものに対しても有効
で、経時劣化した導電性粉末に適当量のカップリング剤
を処理することでも、経時前のレベルにまで回復させる
効果があることがわかった。
As a result of repeated research on various methods, the present inventors have found that an appropriate amount of silane-based, titanate-based, zirconate-based, or aluminate-based conductive powder coated with an indium-tin-based conductive layer is used. It was unexpected, not to mention that it was unexpectedly excellent in stability over time by treating with a coupling agent of a zircoaluminate type and a coupling agent of a zircoaluminate type. It was found that the treatment of No. 1 reduces the powder specific resistance and improves the conductivity. Furthermore, the effect of lowering the powder specific resistance value by the treatment of the coupling agent is effective even for those whose conductivity performance has already deteriorated over time, and an appropriate amount of coupling agent is added to the conductive powder that has deteriorated over time. It was found that the treatment also had an effect of recovering the level before the passage of time.

【0017】次に、本発明における改善効果を具体的に
列挙する。
Next, the improving effects of the present invention will be specifically listed.

【0018】まず被処理体であるインジウム−スズ系の
導電層被覆型の導電性粉末についてであるが、50℃に
て1カ月放置した場合の粉体比抵抗の変化を見ると、初
期値100Ω・cm以下の優れた導電性を有するもので
も、経時後は数百〜数千Ω・cmまでになり、また50
Ω・cm以下の高導電性能領域の導電性粉末でも、経時
後は100Ω・cm以上となり、もはや高導電性を付与
する材料ではなくなる場合がある。これに対して、炭素
数が30以下、好ましくは炭素数21以下、さらに好ま
しくは炭素数2〜13であるシラン系カップリング剤を
インジウム−スズ系の導電層被覆型の導電性粉末に対し
て、その比表面積1m2/g当たり0.03〜0.4重量
%、好ましくは0.05〜0.35重量%処理すること
により処理する前に比べて、粉体比抵抗が1桁下がるも
のがあり、しかも50℃保存下においても粉体比抵抗の
上昇は10Ω・cm以下に抑えられ、高温下に置かれた
場合でも、高導電性能の維持が可能となった。また、被
覆処理するカップリング剤の中でも、シラン系の場合、
飽和型のものより炭素、炭素間に二重結合を有するビニ
ル基、メタクリロ基あるいは環酸素基を有するエポキシ
基が分子内に存在するカップリング剤が効果的であり、
さらにはメルカプト基を有するものにも優れた効果が認
められる傾向にあった。チタネート系においては、特に
官能基中にP、N或いはSのいずれかを含むものが効果
的であった。なお、用途によっては、これらのカップリ
ング剤の2種以上を併用して用いることもできる。
First, regarding the indium-tin-based conductive layer coating type conductive powder which is the object to be processed, the initial value of 100Ω is observed when the change in the powder specific resistance when left at 50 ° C. for one month is observed.・ Even if it has excellent conductivity of less than or equal to cm, it will be several hundred to several thousand Ω · cm after the passage of time.
Even a conductive powder having a high conductivity performance region of Ω · cm or less may become 100 Ω · cm or more after aging and may no longer be a material that imparts high conductivity. On the other hand, a silane coupling agent having 30 or less carbon atoms, preferably 21 or less carbon atoms, and more preferably 2 to 13 carbon atoms is added to the indium-tin conductive layer coating type conductive powder. , The specific surface area of which is 0.03 to 0.4% by weight, preferably 0.05 to 0.35% by weight per 1 m 2 / g, so that the powder specific resistance is reduced by one digit as compared with that before the treatment. In addition, the increase in powder resistivity was suppressed to 10 Ω · cm or less even when stored at 50 ° C., and high conductivity performance could be maintained even when placed at high temperature. Also, among the coupling agents to be coated, in the case of a silane-based,
Coupling agent in which carbon, a vinyl group having a double bond between carbons, a methacrylo group or an epoxy group having a ring oxygen group is present in the molecule is more effective than a saturated type,
Further, the one having a mercapto group also tended to show an excellent effect. In the titanate system, those containing P, N or S in the functional group were particularly effective. Two or more of these coupling agents can be used in combination depending on the application.

【0019】以下に実施例を挙げて本発明をさらに詳細
に説明する。以下の実施例は単に例示のために記すもの
であり、発明の範囲が、これらによって制限されるもの
ではない。
The present invention will be described in more detail with reference to examples. The following examples are provided for illustration only and the scope of the invention is not limited thereby.

【0020】[0020]

【白色導電性粉末の製造例1】ルチル型二酸化チタン
(チタン工業製KR−310、比表面積7m2/g)を基
体粉末として用い、この基体粉末200gを純水中に分
散させ、2リットルの水懸濁液とし、70℃に加温保持
した。塩化第二スズ(SnCl4・5H2O)23.2g
を2N塩酸200ミリリットルに溶解させたスズ酸液と
12重量%アンモニア水溶液とを懸濁液のpHが6〜7
に保持するように約90分かけて並行添加した。引き続
き別途用意した塩化インジウム(InCl3)73.4
gおよび塩化第二スズ(SnCl4・5H2O)10.8
gを2N塩酸900ミリリットルに溶解させたインジウ
ム−スズ酸液と12重量%アンモニア水溶液とを懸濁液
のpHを6〜7に保持するように約2時間かけて並行添
加した。次いで懸濁液を濾過、洗浄し、120℃で10
時間乾燥させた。この乾燥物を窒素ガス気流中(2リッ
トル/分)、550℃にて1時間の加熱処理を行い、比
表面積が9.5m2/gであるインジウム−スズ系導電層
被覆型の導電性粉末(導電性粉末A)を得た。
[Production Example 1 of white conductive powder] Rutile titanium dioxide (KR-310 manufactured by Titanium Industry Co., Ltd., specific surface area 7 m 2 / g) was used as a base powder, and 200 g of this base powder was dispersed in pure water to obtain 2 liters. It was made into a water suspension and kept warm at 70 ° C. Stannic chloride (SnCl 4 · 5H 2 O) 23.2g
Was dissolved in 200 ml of 2N hydrochloric acid and a 12 wt% aqueous ammonia solution was added to the suspension so that the pH of the suspension was 6 to 7.
Was added in parallel for about 90 minutes so as to maintain the temperature at 1. Subsequently, separately prepared indium chloride (InCl 3 ) 73.4
g and stannic chloride (SnCl 4 .5H 2 O) 10.8
An indium-stannic acid solution having g dissolved in 900 ml of 2N hydrochloric acid and a 12 wt% aqueous ammonia solution were added in parallel over about 2 hours so as to maintain the pH of the suspension at 6 to 7. The suspension is then filtered, washed and washed at 120 ° C for 10
Allowed to dry for hours. This dried product was subjected to a heat treatment at 550 ° C. for 1 hour in a nitrogen gas stream (2 liters / minute), and an indium-tin-based conductive layer-coated conductive powder having a specific surface area of 9.5 m 2 / g. (Conductive powder A) was obtained.

【0021】[0021]

【白色導電性粉末の製造例2】基体粉末を酸化アルミニ
ウム(比表面積6.8m2/g)とする以外は、製造例1
と同様にして行い、比表面積が11.8m2/gであるイ
ンジウム−スズ系導電層被覆型の導電性粉末(導電性粉
末B)を得た。
[Production Example 2 of white conductive powder] Production Example 1 except that the base powder is aluminum oxide (specific surface area 6.8 m 2 / g)
In the same manner as in (1) above, an indium-tin-based conductive layer-covered conductive powder (conductive powder B) having a specific surface area of 11.8 m 2 / g was obtained.

【0022】[0022]

【白色導電性粉末の製造例3】基体粉末をアナターゼ型
超微粒子二酸化チタン(比表面積40m2/g)とし、ス
ズ酸液を塩化第二スズ(SnCl4・5H2O)53.1
gを2N塩酸400ミリリットルに溶解させたもの、ま
た、インジウム−スズ酸液を塩化インジウム(InCl
3)212.8gおよび塩化第二スズ(SnCl4・5H2
O)31.3gを2N塩酸1330ミリリットルに溶解
させたものとする以外は、製造例1と同様にして行い、
比表面積が48.3m2/gであるインジウム−スズ系導
電層被覆型の導電性粉末(導電性粉末C)を得た。
[Production Example 3 of white conductive powder] Anatase type ultrafine particle titanium dioxide (specific surface area 40 m 2 / g) was used as the base powder, and stannic acid solution was stannic chloride (SnCl 4 .5H 2 O) 53.1.
g dissolved in 400 ml of 2N hydrochloric acid, and indium-stannic acid solution added to indium chloride (InCl
3 ) 212.8 g and stannic chloride (SnCl 4 .5H 2
O) was performed in the same manner as in Production Example 1 except that 31.3 g was dissolved in 1330 ml of 2N hydrochloric acid,
An indium-tin conductive layer coating type conductive powder (conductive powder C) having a specific surface area of 48.3 m 2 / g was obtained.

【0023】[0023]

【実施例1】製造例1の導電性粉末A2000gを、6
0〜80℃に加温したヘンシェルミキサーに入れ、低速
撹拌しながらカップリング剤であるγ−グリシドキシプ
ロピルトリエトキシシラン70gを約15分かけて添加
した。添加終了後は高速で10分間撹拌し、100℃に
て加熱処理を行い、白色導電性粉末を得た。
Example 1 2000 g of the conductive powder A of Production Example 1 was mixed with
The mixture was placed in a Henschel mixer heated to 0 to 80 ° C., and 70 g of γ-glycidoxypropyltriethoxysilane as a coupling agent was added over about 15 minutes while stirring at a low speed. After the addition was completed, the mixture was stirred at a high speed for 10 minutes and heat-treated at 100 ° C. to obtain a white conductive powder.

【0024】[0024]

【実施例2】実施例1において、カップリング剤をビニ
ルトリエトキシシラン 40gとする以外は、同様にし
て行い、白色導電性粉末を得た。
Example 2 A white conductive powder was obtained in the same manner as in Example 1, except that 40 g of vinyltriethoxysilane was used as the coupling agent.

【0025】[0025]

【実施例3】実施例1において、カップリング剤をn−
プロパノール 40gとイソプロピルトリドデシルベン
ゼンスルホニルチタネート 20gとを混合したものと
する以外は、同様にして行い、白色導電性粉末を得た。
Example 3 In Example 1, the coupling agent was n-
White conductive powder was obtained in the same manner except that 40 g of propanol and 20 g of isopropyltridodecylbenzenesulfonyl titanate were mixed.

【0026】[0026]

【実施例4】実施例1において、被処理体を製造例2の
導電性粉末Bとし、カップリング剤をγ−メルカプトプ
ロピルトリメトキシシラン 40gとする以外は、同様
にして行い、白色導電性粉末を得た。
Example 4 A white conductive powder was prepared in the same manner as in Example 1, except that the object to be treated was the conductive powder B of Production Example 2 and the coupling agent was γ-mercaptopropyltrimethoxysilane 40 g. Got

【0027】[0027]

【実施例5】実施例4において、カップリング剤をγ−
メタクリロキシプロピルトリメトキシシラン60gとす
る以外は同様にして行い、白色導電性粉末を得た。
Example 5 In Example 4, the coupling agent was γ-
A white conductive powder was obtained in the same manner except that 60 g of methacryloxypropyltrimethoxysilane was used.

【0028】[0028]

【実施例6】実施例4において、カップリング剤をγ−
アミノプロピルトリエトキシシラン10gとする以外は
同様にして行い、白色導電性粉末を得た。
Example 6 In Example 4, the coupling agent was γ-
A white conductive powder was obtained in the same manner except that 10 g of aminopropyltriethoxysilane was used.

【0029】[0029]

【実施例7】実施例4において、カップリング剤をn−
ヘキサン40gとイソプロピルトリイソステアロイルチ
タネート20gとを混合したものとする以外は同様にし
て行い、白色導電性粉末を得た。
Example 7 In Example 4, the coupling agent was n-
A white conductive powder was obtained in the same manner except that 40 g of hexane and 20 g of isopropyltriisostearoyl titanate were mixed.

【0030】[0030]

【実施例8】実施例1において、被処理体を製造例3の
導電性粉末Cとし、カップリング剤をビニルトリエトキ
シシラン300gとする以外は同様にして行い、白色導
電性粉末を得た。
Example 8 A white conductive powder was obtained in the same manner as in Example 1, except that the object to be treated was the conductive powder C of Production Example 3 and the coupling agent was 300 g of vinyltriethoxysilane.

【0031】[0031]

【比較例1】製造例2のカップリング剤処理していない
導電性粉末B。
[Comparative Example 1] A conductive powder B which has not been treated with the coupling agent of Production Example 2.

【0032】[0032]

【比較例2】実施例6においてカップリング剤の量を3
gとする以外は同様にして行い、白色導電性粉末を得
た。
Comparative Example 2 In Example 6, the amount of coupling agent was 3
A white conductive powder was obtained in the same manner except that the amount was g.

【0033】[0033]

【比較例3】実施例6においてカップリング剤の量を1
40gとする以外は同様にして行い、白色導電性粉末を
得た。
Comparative Example 3 In Example 6, the amount of coupling agent was 1
A white conductive powder was obtained in the same manner except that the amount was 40 g.

【0034】以上、実施例1〜8及び比較例1〜3で得
られた試料の測定結果を表−1に示す。また実施例なら
びに比較例で述べる測定値は、下記の要領で測定した値
である。
The measurement results of the samples obtained in Examples 1 to 8 and Comparative Examples 1 to 3 are shown in Table 1. The measured values described in Examples and Comparative Examples are the values measured in the following manner.

【0035】(1) 粉体比抵抗の評価 試料粉末を280Kg/cm2 で圧縮成形後、横河ヒュ
ーレットパッカード社製のユニバーサルブリッジを用い
て電気抵抗値を測定し、比抵抗に換算した。
(1) Evaluation of Powder Resistivity A sample powder was compression-molded at 280 Kg / cm 2 , and its electric resistance value was measured using a universal bridge manufactured by Yokogawa Hewlett-Packard Company and converted into a specific resistance.

【0036】(2) 経時変化 試料粉末を50℃オーブンに入れ、1カ月経過後の粉体
比抵抗を測定した。経時後の粉体比抵抗値から経時前の
粉体比抵抗値を引いた値を経時変化値として表した。
(2) Change with time The sample powder was put in an oven at 50 ° C. and the specific resistance of the powder was measured after one month. The value obtained by subtracting the powder specific resistance value before the aging from the powder specific resistance value after the lapse of time was expressed as the change value with time.

【0037】[0037]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C09C 3/08 C09C 3/08 H01B 1/00 H01B 1/00 (72)発明者 原田 孝 山口県宇部市大字小串1978番地の25 チ タン工業株式会社内 (56)参考文献 特開 平1−261469(JP,A) 特開 昭63−215704(JP,A) 特開 平6−338213(JP,A) 特開 平7−14430(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09C 3/12 C08K 9/02 C08K 9/04 C08L 101/00 C09C 3/06 C09C 3/08 H01B 1/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C09C 3/08 C09C 3/08 H01B 1/00 H01B 1/00 (72) Inventor Takashi Harada At 1978 Kogushi, Ube City, Yamaguchi Prefecture 25 Within Titan Kogyo Co., Ltd. (56) Reference JP-A-1-261469 (JP, A) JP-A-63-215704 (JP, A) JP-A-6-338213 (JP, A) JP-A-7- 14430 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C09C 3/12 C08K 9/02 C08K 9/04 C08L 101/00 C09C 3/06 C09C 3/08 H01B 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基体粒子上にインジウム−スズ系の導電
層が被覆され、更にその上にカップリング剤の層が形成
されており、前記カップリング剤の層は該粒子の比表面
積1m2/gあたり0.03〜0.4重量%含まれてい
ることを特徴とする、優れた導電性能と改良された経時
安定性を有する白色導電性粉末。
1. A substrate particle is coated with an indium-tin-based conductive layer, and a coupling agent layer is further formed thereon, and the coupling agent layer has a specific surface area of 1 m 2 / m 2 . 0.03 to 0.4% by weight per gram of white conductive powder having excellent conductive performance and improved stability over time.
【請求項2】 該カップリング剤は、シラン系、チタネ
−ト系、ジルコネ−ト系、アルミネ−ト系及びジルコア
ルミネ−ト系からなる群から選択された1種以上のもの
であることを特徴とする請求項1に記載の白色導電性粉
末。
2. The coupling agent is one or more selected from the group consisting of a silane type, a titanate type, a zirconate type, an aluminate type and a zircoaluminate type. The white conductive powder according to claim 1.
【請求項3】 請求項1又は2に記載の白色導電性粉末
を樹脂分に配合してなる導電性樹脂組成物。
3. A conductive resin composition obtained by blending the white conductive powder according to claim 1 or 2 with a resin component.
JP03400795A 1995-02-22 1995-02-22 White conductive powder and conductive resin composition using the same Expired - Lifetime JP3437667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03400795A JP3437667B2 (en) 1995-02-22 1995-02-22 White conductive powder and conductive resin composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03400795A JP3437667B2 (en) 1995-02-22 1995-02-22 White conductive powder and conductive resin composition using the same

Publications (2)

Publication Number Publication Date
JPH08231883A JPH08231883A (en) 1996-09-10
JP3437667B2 true JP3437667B2 (en) 2003-08-18

Family

ID=12402382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03400795A Expired - Lifetime JP3437667B2 (en) 1995-02-22 1995-02-22 White conductive powder and conductive resin composition using the same

Country Status (1)

Country Link
JP (1) JP3437667B2 (en)

Also Published As

Publication number Publication date
JPH08231883A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
JP2959928B2 (en) White conductive resin composition
AU675000B2 (en) Dendrite or asteroidal titanium dioxide micro-particles and process for producing the same
JP4712288B2 (en) White conductive powder and its application
JP3357107B2 (en) White conductive titanium dioxide powder and method for producing the same
JP5400307B2 (en) White conductive powder and its use
JP2959927B2 (en) White conductive powder and method for producing the same
JP3422832B2 (en) Dendritic or starfish-shaped fine titanium dioxide and method for producing the same
JP4778139B2 (en) White conductive powder and its application
JP2001026423A (en) Production of ultra-fine particle of rutile-type titanium dioxide
JP5400306B2 (en) White conductive powder and its use
JP4904575B2 (en) Surface-modified transparent conductive tin oxide fine powder, production method thereof and dispersion thereof
JPH07138021A (en) Dendritic or stelliform titanium dioxide fine particle and its production
JP3437667B2 (en) White conductive powder and conductive resin composition using the same
JP2002146230A (en) Method for preparing conductive pigment
JPH06279618A (en) Rodlike fine particulate electrically conductive titanium oxide and production thereof
JPH09249820A (en) White electroconductive powder and its production
CN1132885C (en) Process for preparing conducting light colour flaky pigment
JP5051566B2 (en) Transparent conductive fine powder, method for producing the same, dispersion, and paint
JPH08507036A (en) Method for producing conductive powder
JP3609159B2 (en) Acicular conductive antimony-containing tin oxide fine powder and method for producing the same
JP3875282B2 (en) Conductive thin plate barium sulfate filler and method for producing the same
JPH08259838A (en) Nonelectroconductive carbonaceous powder and its production
US5501907A (en) Fibrous electrically conductive filler
JPH0292824A (en) Acicular low oxidized titanium and production thereof
JP3421148B2 (en) White conductive powder and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term