JP3435854B2 - Universal joint - Google Patents

Universal joint

Info

Publication number
JP3435854B2
JP3435854B2 JP27799194A JP27799194A JP3435854B2 JP 3435854 B2 JP3435854 B2 JP 3435854B2 JP 27799194 A JP27799194 A JP 27799194A JP 27799194 A JP27799194 A JP 27799194A JP 3435854 B2 JP3435854 B2 JP 3435854B2
Authority
JP
Japan
Prior art keywords
pins
cross
compression
shaft
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27799194A
Other languages
Japanese (ja)
Other versions
JPH08135674A (en
Inventor
博 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP27799194A priority Critical patent/JP3435854B2/en
Publication of JPH08135674A publication Critical patent/JPH08135674A/en
Application granted granted Critical
Publication of JP3435854B2 publication Critical patent/JP3435854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/40Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another with intermediate member provided with two pairs of outwardly-directed trunnions on intersecting axes
    • F16D3/41Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another with intermediate member provided with two pairs of outwardly-directed trunnions on intersecting axes with ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/385Bearing cup; Bearing construction; Bearing seal; Mounting of bearing on the intermediate member

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明に係る自在継手は、例え
ば自動車のステアリング装置に組み込み、ハンドル軸の
動きをステアリングギヤに伝達する為に利用する。 【0002】 【従来の技術】自動車のステアリング装置に使用する自
在継手として従来から、カルダン継手と呼ばれる十字軸
継手が、広く知られている。例えば実開平5−3652
号公報には、図10に示す様なステアリング装置に組み
込む、図11に示す様な自在継手が記載されている。ス
テアリング装置は図10に示す様に、ステアリングホイ
ール1の動きを、ステアリングシャフト2、中間シャフ
ト3を介してステアリングギヤ4に伝達し、このステア
リングギヤ4によって車輪を操舵する様に構成してい
る。上記ステアリングシャフト2とステアリングギヤ4
の入力シャフト5とは、互いに同一直線上に設けられな
いのが通常である。この為、上記両シャフト2、5の間
に中間シャフト3を設け、この中間シャフト3の両端部
とステアリングシャフト2及び入力シャフト5の端部と
を、本発明の対象となる自在継手6、6を介して結合し
ている。 【0003】これら各自在継手6、6の構造に就いて、
上記図11に図12を加えて説明する。尚、図11に示
した構造は、振動の伝達を防止する、所謂防振継手であ
るが、本発明の対象となる自在継手は、必ずしも防振構
造を具備する必要はない。従って、以下の説明は防振構
造を省略して、この自在継手6に就いて説明する。この
自在継手6は、十分な剛性を有する金属材によりそれぞ
れが二又状に形成された1対のヨーク7a、7bと、合
金鋼等の硬質金属により造られた十字軸8とから構成さ
れる。上記各ヨーク7a、7bの両端部には、互いに同
心の円孔9、9を形成している。そして各円孔9、9
に、やはり軸受鋼等の硬質金属により有底円筒状に造ら
れた軸受カップ10、10を、互いの開口を対向させた
状態で内嵌固定している。又、上記十字軸8は、1対の
柱部の中間部同士を互いに直交させた如き形状を有し、
それぞれが円柱状である、4個所の軸部11、11を有
する。この4個所の軸部11、11は、上記各軸受カッ
プ10、10内に挿入されている。そして、これら各軸
受カップ10、10の内周面と上記各軸部11、11の
外周面との間に、ニードル軸受等のラジアル軸受12、
12を設け、上記十字軸8に対して上記各ヨーク7a、
7bが、軽い力で揺動する様にしている。この様に構成
する為、これら両ヨーク7a、7bの中心軸同士が一致
しない状態でも、これら両ヨーク7a、7bの間で回転
力の伝達を、殆ど伝達ロスを生じる事なく行なえる。 【0004】自在継手6の基本構成は上述の通りである
が、この様な自在継手6に於いては、上記十字軸8の基
部13と上記各軸受カップ10、10の開口部との間
に、それぞれシールリング14、14を設けている。そ
して、これら各シールリング14、14により、上記各
ラジアル軸受12、12の設置部分に泥水等が進入する
のを防止し、自在継手6の耐久性の確保を図っている。
更に、上記4個所の軸部11、11中心部にはそれぞれ
有底の挿入孔15、15を、これら各軸部11、11の
端面に開口する状態で、上記各軸部11、11の軸方向
に亙って形成している。そして、これら各挿入孔15、
15の内側には、例えば実公昭64−2982号公報に
詳しく記載されている様に、合成樹脂製のピン16、1
6を挿入している。 【0005】これら各ピン16、16は従来、図13又
は図14に示す様な形状に造られていた。即ち、円柱状
の小径部17の軸方向両端部にフランジ状の大径部1
8、18を形成し、これら各大径部18、18の外端面
を、円錐台状の突出面19、19としている。図13に
示した例は、上記小径部17の軸方向両端から上記各大
径部18、18の基端部に亙ってリブ20、20を形成
したもの、図14に示した例は、この様なリブ20、2
0を省略したものである。何れにしても、上記自在継手
6の組立時にこれら各ピン16、16は、各挿入孔1
5、15に挿入されて、一端をこれら各挿入孔15、1
5の奥端に突き当てられ、他端を上記各軸受カップ1
0、10の底面に突き当てられる。 【0006】この様なピン16、16は、上記各軸受カ
ップ10、10と上記各軸部11、11との間で突っ張
る事により、これら各軸受カップ10、10の開口端部
と前記基部13との距離が縮まり過ぎる事を防止する。
これは、前記各シーリング14、14が過度に圧縮され
たり、反対に圧縮量が低下し過ぎる事を防止する為であ
る。即ち、自在継手6の使用時に前記十字軸8と上記各
軸受カップ10、10との間にはスラスト荷重が加わ
る。この為、何ら対策を施さないと、スラスト荷重作用
側(アンカ側)のシールリング14が過度に圧縮されて
耐久性が損なわれ、反対側(反アンカ側)のシールリン
グ14の圧縮量が低下し過ぎて、このシールリング14
によるシール性が損なわれる為である。上記各ピン1
6、16は、この様なスラスト荷重を支承する事で、上
記各シールリング14、14の圧縮量を適性範囲に保持
する役目を有する。 【0007】この様な役目を果たす上記各ピン16、1
6の装着作業を行なうには、先ず、これら各ピン16、
16を、軸方向反対位置に存在する上記各挿入孔15、
15に挿入する。この際、図13に示したピン16を使
用する場合には、前記各リブ20、20の外周端縁部を
塑性変形させつつ、各ピン16、16を上記各挿入孔1
5、15内に、これら各挿入孔15、15の奥端にまで
圧入する。圧入後はこれら各ピン16、16が各挿入孔
15、15から不用意に脱落する事はない。リブ20、
20を持たない、図14に示したピン16を使用する際
には、上記各挿入孔15、15にピン16、16を挿入
した後、次述する様に軸受カップ10、10を装着する
前の間、ピン16、16の脱落を防止すべく、これら各
ピン16、16を抑え付けておく。 【0008】この様にして、各挿入孔15、15内にピ
ン16、16を挿入した状態で、前記各軸部11、11
を当該ヨーク7a(7b)の円孔9、9内に位置させ
る。そして、上記各軸受カップ10、10を上記円孔
9、9内に、外端開口側から圧入し、更にこれら各軸受
カップ10、10を上記各軸部11、11に向け、互い
に近付ける方向に押圧する。勿論、この押圧作業に先立
って上記各軸部11、11の基端部には、前記シールリ
ング14、14を外嵌しておく。又、押圧作業の際に
は、上記各軸受カップ10、10の内側に、前記ラジア
ル軸受12、12をセットしておく。更に、上記各軸受
カップ10、10の開口端部は、予め直径方向内方に絞
っておく。 【0009】上記押圧作業により、軸方向反対側の軸受
カップ10、10が上記各円孔9、9内の所定位置に内
嵌固定されると同時に上記各ピン16、16が、軸方向
に圧縮される。即ち、上記各ピン16、16の小径部1
7、17が、上記各軸受カップ10、10の底面と上記
各挿入孔15、15の奥面との間で強く挟持される事
で、図12に示す様にビヤ樽状に変形する。この状態で
上記各ピン16、16は、上記各軸受カップ10、10
の底面と上記各挿入孔15、15の奥面との間で突っ張
り、前記スラスト荷重に拘らず、これら各軸受カップ1
0、10が軸方向に変位する事を防止する。この結果、
上記各シールリング14、14の圧縮量が適正に保たれ
る。上記各軸受カップ10、10の底面と上記各突出面
19、19との接触面積は小さい為、これら各底面と突
出面19、19との接触部分での摩擦損失は小さくて済
む。 【0010】尚、従来はこれらピン16、16を構成す
る合成樹脂として、ポリアセタール樹脂を使用してい
た。ポリアセタール樹脂製のピン16、16に圧縮荷重
を加えた場合に於ける、圧縮荷重と圧縮量との関係は、
図15に鎖線aで示す様に、滑らかなものとなる。言い
換えれば、圧縮荷重の僅かな差が圧縮量に大きく影響す
る事はない。従って、前記押圧作業に伴って、軸方向反
対位置に存在する1対のピン16、16の圧縮量に大き
な差が生じる事はない。即ち、これら各ピン16、16
の圧縮特性は、製造上避けられない誤差(寸法誤差、材
料の品質誤差)により、多少異なる事がある。圧縮荷重
と圧縮量との関係が、上記鎖線aに示す様に滑らかであ
れば、上記1対のピン16、16の圧縮量に大きな差が
生じる事はなく、軸方向反対位置に存在する1対のシー
ルリング14、14の圧縮量に大きな差が生じる事もな
い。 【0011】 【発明が解決しようとする課題】ところが、上述の様に
構成され作用する従来の自在継手の場合には、ピン1
6、16を構成する合成樹脂の材質に起因して、次に述
べる様な解決すべき点がある。即ち、これらピン16、
16を構成する合成樹脂として、従来使用されていたポ
リアセタール樹脂は耐熱性が必ずしも十分でないのに対
して、ステアリング装置を構成する自在継手6は、高温
のエンジンルーム内に設けられる。特に、近年に於ける
エンジン出力の向上や補機類の増大によるエンジンルー
ム内の空間減少等により、エンジンルーム内の温度が高
くなる傾向にある。しかも、ステアリング装置用の自在
継手は、しばしば排気管に隣接して配置される為、相当
の高温に曝らされる事も考慮しなければならない。ポリ
アセタール樹脂製のピン16、16の場合、高温に曝ら
されると軟化して変形し、その結果、各ピン16、16
の端部と軸受カップ10、10の底面との間に隙間が生
じる可能性がある。そして、隙間が生じた場合には、自
在継手6部分でがたつきを生じ、ステアリングホイール
1(図10)を操作する運転者に不快感を与える等、好
ましくない現象が発生する。 【0012】上記各ピン16、16を構成する合成樹脂
として、優れた耐熱性を有するポリフェニレンサルファ
イド系のもの(以下『PPS』とする。)を使用すれ
ば、上述の様な問題を解決できるが、代わりに、PPS
の特性に起因して、次に述べる様な問題が発生する。即
ち、PPS製のピンに圧縮荷重を加えた場合に於ける、
圧縮荷重と圧縮量との関係は、図15に破線bで示す様
になる。この破線bから明らかな通り、PPSの材料特
性として降伏点が明瞭に現れる。この結果として、圧縮
荷重及び圧縮量が一定値を越えると急に、圧縮荷重の変
化量が小さい(少ない)にも拘らず圧縮量が大きく(多
く)なる。上記降伏点が使用範囲から外れた部分に存在
すれば、特に問題とはならないが、ステアリング装置用
等として一般的に使用される自在継手6に組み込むピン
16、16をPPSにより構成すると、この降伏点が使
用範囲内に表われる。 【0013】この様に使用範囲内に降伏点が表われる
と、軸方向反対側に設けられる1対のピン16、16の
うち、一方のピン16の圧縮量が他方のピン16の圧縮
量に比較して、大きく異なり易い。即ち、製造上避けれ
ない誤差に起因して、軸受カップ10、10を円孔9、
9内に押し込む押し込み作業時に、一方(例えば図12
の上方)のピン16の小径部17が降伏点に達する以前
に、他方(例えば図12の下方)のピン16の小径部1
7が降伏点に達する場合がある。この様な場合には、他
方のピン16の小径部17が降伏点に達した以後も続行
される押し込み作業に伴って、上記一方のピン16の圧
縮量に比べて上記他方のピン16の圧縮量が多くなる。
上記1対のピン16、16の小径部17、17の降伏点
が極く近ければ良いが、離れていた場合には、これら1
対のピン16、16の圧縮量が、図12に示す様に、大
きく異なってしまう。この結果、上記他方のピン16に
対応するシールリング14の圧縮量が多く(過大にな
り)、上記一方のピン16に対応するシールリング14
の圧縮量が少なくなる(不足する)。 【0014】この様なピン16、16の圧縮量の偏りに
基づくシールリング14、14の圧縮量のばらつきは、
当該シールリング14の耐久性不足(圧縮量が過大であ
る場合)やシール性能の悪化(圧縮量が不足する場合)
を招く。この為従来は、軸受カップ10、10の組み付
けを完了した自在継手6のシールリング14、14の圧
縮量を、全数検査し、不良品を廃棄していた。この為、
歩留悪化により、自在継手6の製作費を高くしていた。 【0015】上記各ピン16、16の圧縮特性のばらつ
きに拘らず、軸方向反対側に設けられたピン16、16
の圧縮量がばらつかない様にする為には、十字軸8を固
定した状態で上記軸受カップ10、10の押し込み作業
を行なう事が考えられる。即ち、十字軸8を構成する4
本の軸部11、11のうち、押し込み作業を行なわない
(例えば図12の水平方向に配置された)2本の軸部1
1、11を支持固定し、上記押し込み作業を行なう。こ
の様にして押し込み作業を行なえば、上記圧縮量のばら
つきを防止できるが、十字軸8を固定する作業が必要に
なり、自在継手6の製造工程が複雑化して、やはり自在
継手6の製作費を高くしてしまう。本発明の自在継手
は、この様な事情に鑑みて発明したものである。 【0016】 【課題を解決する為の手段】本発明の自在継手は、前述
した従来の自在継手と同様に、それぞれが二又状に形成
された1対のヨークと、各ヨークの両端部に互いに同心
に形成された円孔と、互いの開口を対向させた状態で上
記各円孔の内側に内嵌固定された、有底円筒状の軸受カ
ップと、それぞれが円柱状に形成された4個所の軸部を
有し、各軸部を上記各軸受カップ内に挿入された十字軸
と、上記各軸受カップの内周面と上記各軸部の外周面と
の間に設けられたラジアル軸受と、上記十字軸の基部と
上記各軸受カップの開口部との間に設けられたシールリ
ングと、上記各軸部の端面に開口する状態で上記十字軸
の内側に、軸方向に亙って形成された有底の挿入孔と、
各挿入孔に挿入されてそれぞれの一端をこの挿入孔の奥
端に突き当てられ、それぞれの他端を上記各軸受カップ
の底面に突き当てられた合成樹脂製のピンとを備えてい
る。 【0017】特に、本発明の自在継手に於いては、これ
ら各ピンを構成する合成樹脂はPPSである。且つ、上
記各ピンは、軸方向両端部に形成された、上記各挿入孔
に挿入自在な大断面積部と、両大断面積部同士の間に軸
方向に亙って互いに直列に設けられた、小断面積部及び
中断面積部とを備えている。 【0018】 【作用】上述の様に構成される本発明の自在継手が、同
一直線上に存在しない1対のシャフト同士の間で回転力
を伝達する作用、並びに各ピンが挿入孔の奥端と軸受カ
ップの内面との間で突っ張る事により、シールリングの
圧縮量を適性範囲に規制する作用は、前述した従来の自
在継手と同様である。 【0019】特に、本発明の自在継手の場合には、上記
各ピンの圧縮荷重と圧縮量との関係を滑らかにできる。
即ち、これら各ピンに圧縮荷重が加わると、先ず小断面
積部が変形し、次いで中断面積部が変形する。中断面積
部が変形し始める時点で、上記1対のピンは何れも、或
る程度圧縮されている。中断面積部の変形が開始される
以前に、変形し易い小断面積部でPPSの降伏点を通過
するが、小断面積部が十分に圧縮された後に、上記1対
のピンの中断面積部は、更に圧縮荷重を加えられる事で
圧縮され始める。言い換えれば、小断面積部の降伏後、
中断面積部の降伏が引き続いて発生する。この結果、ピ
ン全体としての見掛け上の特性は、降伏点が存在しない
様な、滑らかな特性となり、上記1対のピンの中断面積
部の圧縮量に大きな差を生じる事がなくなる。 【0020】この結果、優れた耐熱性を有するPPSを
使用するにも拘らず、ポリアセタール樹脂を使用した場
合と同様に、軸方向反対位置に存在する1対のシールリ
ングの圧縮量を、何れも適性範囲内に納める事ができ
る。 【0021】 【実施例】図1〜4は本発明の第一実施例を示してい
る。尚、本発明の特徴は、ピン16a、16aとしてP
PSを使用し、しかも十字軸8の軸方向反対位置に設け
た1対のシールリング14、14の圧縮量を何れも適性
範囲に納めるべく、上記各ピン16a、16aの形状を
工夫した点にある。その他の部分の構造及び作用は、前
述した従来構造と同じである為、同等部分には同一符号
を付して重複する説明を省略若しくは簡略化し、以下、
本発明の特徴部分を中心に説明する。尚、図1に示した
自在継手6は防振構造を備えていないが、前記図11に
示す様に防振構造を持たせる事は自由である。 【0022】PPS製のピン16a、16aの軸方向
(図1〜3の上下方向)両端部には、円柱形の大断面積
部21、21を形成している。この大断面積部21、2
1の外径は、十字軸8を構成する4本の軸部11、11
の端面中央部に開口した挿入孔15、15の内径と同じ
か、この内径よりも僅かに小さくしている。従ってこれ
ら各大断面積部21、21は、上記各挿入孔15、15
に挿入自在である。又、上記各ピン16a、16aの軸
方向中央部には、やはり円柱状の小断面積部22を形成
している。そして、この小断面積部22の軸方向両端と
上記各大断面積部21、21との間に、それぞれ中断面
積部23、23を設けている。 【0023】この様な形状を有する上記各ピン16a、
16aは、それぞれ各軸部11、11に形成した挿入孔
15、15に挿入し、これら各挿入孔15、15の奥端
と各軸受カップ10、10の底面との間で突っ張らせて
いる。図示の実施例の場合には、上記各中断面積部2
3、23から上記各大断面積部21、21に亙ってリブ
20、20を形成している。従って、上記各挿入孔1
5、15内に挿入した上記各ピン16a、16aが、上
記各軸受カップ10、10の装着前に、不用意に脱落す
る事はない。 【0024】上述の様なピン16a、16を含んで構成
される本発明の自在継手の場合には、これら各ピン16
a、16aの圧縮荷重と圧縮量との関係を滑らかにでき
て、軸方向反対側に設けられた1対のピン16a、16
aの圧縮量をほぼ均等にできる。即ち、ヨーク7aに形
成した1対の円孔9、9内への上記各軸受カップ10、
10の押し込み作業に伴って、上記各ピン16a、16
aに圧縮荷重が加わると、先ず上記小断面積部22が圧
縮変形する。そして、この小断面積部22が或る程度圧
縮変形し切った状態で、上記各中断面積部23、23が
圧縮変形を開始する。尚、小断面積部22が圧縮変形し
ている間に、上記中断面積部23、23も僅かに圧縮変
形するが、小断面積部22の変形量に比べれば遥かに少
ない。 【0025】従って、上記各中断面積部23、23が実
質的に圧縮変形し始める時点では、上記1対のピン16
a、16aは何れも、上記小断面積部22の圧縮変形に
より、或る程度圧縮されている。尚、この様に上記各中
断面積部23、23の変形が開始される以前に、上記小
断面積部22でPPSの降伏点を通過する。尚、上記各
中断面積部23、23の圧縮変形が開始される段階で、
上記各ピン16a、16a全体としての圧縮量は未だ使
用範囲に達しない。 【0026】言い換えれば、上記各中断面積部23、2
3が実質的に圧縮変形を開始する時点で上記小断面積部
22は、殆ど圧縮変形し切っている。従って、上記1対
のピン16a、16aの小断面積部22の降伏点に差が
あっても、1対の軸受カップ10、10の押し込み完了
時点で、この差がピン16a、16a全体の圧縮量に影
響を及ぼす事は殆どない。 【0027】上記小断面積部22が圧縮され切った後
に、上記1対のピン16a、16aの各中断面積部2
3、23は、上記1対の軸受カップ10、10の押し込
み作業続行に伴って更に圧縮荷重を加えられる事で、実
質的に圧縮され始める。そして、これら1対のピン16
a、16aは、それぞれの小断面積部22に加えて各中
断面積部23、23が圧縮される事で、それぞれ全体と
して所定量ずつ圧縮される。即ち、これら各ピン16
a、16aは、上記小断面積部22部分での圧縮量に、
上記各中断面積部23、23部分での圧縮量を加えた分
だけ、全体として圧縮される。 【0028】この様な、各ピン16a、16a毎の全体
としての圧縮量のうち、上記小断面積部22での圧縮量
が或る程度を占める為、上記各中断面積部23、23の
圧縮量は限られたものとなる。従って、これら各中断面
積部23、23の圧縮では降伏点を通過しないか、通過
したとしても上記1対の軸受カップ10、10の押し込
み作業の完了間際で通過するだけである。従って、上記
1対のピン16a、16aの中断面積部23、23の圧
縮量に大きな差を生じる事はない。この様に、これら1
対のピン16a、16aは、上記小断面積部22による
圧縮量を確保した状態で更に中断面積部23、23を圧
縮するので、これら各ピン16a、16aの見掛け上の
圧縮特性は、図15に実線cで示す如く、降伏点が存在
しない様な滑らかなものとなる。 【0029】従って、優れた耐熱性を有するPPSを使
用するにも拘らず、ポリアセタール樹脂を使用した場合
と同様に、軸方向反対位置に存在する1対のピン16
a、16aの圧縮量に大きな差を生じない様にできる。
この結果、やはり軸方向反対位置に設けた1対のシール
リング14、14の圧縮量を、何れも適性範囲内に納め
る事ができる。この為、何れかのシールリング14が過
度に圧縮されて耐久性が低下したり、或は反対側のシー
ルリング14の圧縮量が不足してシール性能が損なわれ
る事がない。 【0030】尚、PPS製のピン16aの見掛け上の圧
縮特性を滑らかなものにする為には、このピン16aの
寸法を次の様に規制すれば良い事が、本発明者の実験に
より確認された。先ず、軸方向両端に形成した大断面積
部21、21同士の間隔D21を1.0とした場合に、小
断面積部22の長さ寸法L22を0.25〜0.4の範囲
に納める(L22=(0.25〜0.4)D21)。この長
さ寸法L22の絶対値は、ピン16a全体として必要な圧
縮量L0 よりも小さい。要は、上記小断面積部22が完
全に圧縮されて(それ以上圧縮する為には極く大きな荷
重を必要とする様になって)も、その圧縮量が上記必要
な圧縮量L0 に達しない様に、上記長さ寸法L22を規制
する。又、上記小断面積部22の軸方向両側に存在する
中断面積部23、23の長さ寸法は互いに等しくする。
更に、これら各中断面積部23、23の断面積S23を1
とした場合に、上記小断面積部22の断面積S22を0.
5〜0.7の範囲に納める(S22=(0.5〜0.7)
23)。 【0031】次に、図5〜7は本発明の第二実施例を示
している。本実施例の場合には、PPS製のピン16b
の小断面積部22の外周面4個所位置に、それぞれが軸
方向に亙る補強リブ24、24を形成している。本実施
例の場合には、この様な補強リブ24、24の存在に基
づき、上記ピン16bを挿入孔15に圧入する際に、上
記小断面積部22が折れ曲がりにくくなる。本実施例の
場合には、小断面積部22の断面積は、これら補強リブ
24、24を含んだものとする。即ち、上記断面積規制
の式(S22=(0.5〜0.7)S23)は、補強リブ2
4、24の断面積を含んだ断面積で満たす必要がある。
尚、上記補強リブ24、24の数は、ピン16bの機能
の面からは特に規制されない。但し、補強リブ24、2
4の数を2本又は4本とし、円周方向等間隔に配置すれ
ば、射出成形時にアンダーカット部分がなくなり、単純
な二つ割れの型で成形できる為、有利である。その他の
構成及び作用は、上述した第一実施例と同様である。 【0032】次に、図8〜9は本発明の第三実施例を示
している。本実施例の場合には、PPS製のピン16c
の小断面積部22の断面形状を正方形にしている。その
他の構成及び作用は、前述した第一実施例の場合と同様
である。尚、図示の各実施例は何れも、1対の中断面積
部23、23により小断面積部22を、軸方向両側から
挟んでいるが、本発明の作用効果を得る為には、必ずし
もこの様な配置でなくても良い。要は、少なくとも1個
ずつの小断面積部22と中断面積部23とが、両端の大
断面積部21、21同士の間に、軸方向に亙り互いに直
列に設けられていれば良い。但し、図示の実施例の様な
配置にすれば、軸方向に隣り合う断面積部同士の間の段
差を少なくして、成形に伴う変形を小さくできる等の効
果がある。 【0033】 【発明の効果】本発明の自在継手は、以上に述べた通り
構成され作用するので、次の〜の効果を同時に得ら
れる。 PPS製のピンの使用により十分な耐熱性を確保で
きる為、エンジンルーム内等の高温環境下で長期間使用
してもがたつき等の不具合を発生しにくい。 シールリングの圧縮量を適正にできる為、このシー
ルリングの耐久性及びシール性能の確保を図れる。 組立時に十字軸を固定する等の面倒な作業を必要と
しない為、製品の歩留が向上する事と合わせて、価格の
低減を図れる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention A universal joint according to the present invention is incorporated in, for example, a steering device of an automobile, and is used for transmitting the movement of a handle shaft to a steering gear. 2. Description of the Related Art A cross joint called a cardan joint has been widely known as a universal joint used for a steering device of an automobile. For example, Japanese Utility Model Application No. 5-3652
Japanese Unexamined Patent Publication (Kokai) No. H11-15087 discloses a universal joint as shown in FIG. 11 which is incorporated in a steering device as shown in FIG. As shown in FIG. 10, the steering device is configured to transmit the movement of the steering wheel 1 to a steering gear 4 via a steering shaft 2 and an intermediate shaft 3, and to steer the wheels by the steering gear 4. The steering shaft 2 and the steering gear 4
The input shaft 5 is usually not provided on the same straight line as the input shaft 5. For this purpose, an intermediate shaft 3 is provided between the two shafts 2 and 5, and both ends of the intermediate shaft 3 and the ends of the steering shaft 2 and the input shaft 5 are connected to the universal joints 6 and 6 to which the present invention is applied. Are coupled through. [0003] Regarding the structure of each of these universal joints 6, 6,
This will be described with reference to FIG. 11 and FIG. The structure shown in FIG. 11 is a so-called anti-vibration joint for preventing transmission of vibration, but the universal joint to which the present invention is applied does not necessarily have to have the anti-vibration structure. Therefore, in the following description, the vibration proof structure is omitted, and the universal joint 6 will be described. The universal joint 6 is composed of a pair of yokes 7a and 7b, each of which is bifurcated from a metal material having sufficient rigidity, and a cross shaft 8 made of a hard metal such as an alloy steel. . At both ends of the yokes 7a, 7b, circular holes 9, 9 concentric with each other are formed. And each circular hole 9, 9
In addition, bearing cups 10, 10 also made of a hard metal such as bearing steel or the like and having a bottomed cylindrical shape are internally fitted and fixed with their openings facing each other. The cross shaft 8 has a shape such that the middle portions of a pair of pillars are orthogonal to each other,
It has four shaft portions 11, 11 each having a columnar shape. The four shaft portions 11, 11 are inserted into the bearing cups 10, 10, respectively. A radial bearing 12, such as a needle bearing, is provided between the inner peripheral surface of each of the bearing cups 10, 10 and the outer peripheral surface of each of the shaft portions 11, 11.
12 and the yokes 7a with respect to the cross shaft 8;
7b is made to oscillate with a light force. With this configuration, even when the center axes of the yokes 7a and 7b do not coincide with each other, the transmission of the rotational force between the yokes 7a and 7b can be performed with almost no transmission loss. The basic structure of the universal joint 6 is as described above. In such a universal joint 6, between the base 13 of the cross shaft 8 and the openings of the bearing cups 10, 10. , Are provided with seal rings 14, 14, respectively. These seal rings 14 prevent the muddy water and the like from entering the installation portions of the radial bearings 12, 12, thereby ensuring the durability of the universal joint 6.
Further, bottomed insertion holes 15, 15 are respectively formed in the center portions of the four shaft portions 11, 11, and the shafts of the shaft portions 11, 11 are opened in the end surfaces of the shaft portions 11, 11, respectively. It is formed over the direction. And each of these insertion holes 15,
As shown in detail in, for example, Japanese Utility Model Publication No. 64-2982, pins 16
6 is inserted. Conventionally, each of these pins 16 has been formed in a shape as shown in FIG. 13 or FIG. That is, the flange-shaped large-diameter portion 1 is provided at both axial ends of the cylindrical small-diameter portion 17.
8 and 18 are formed, and the outer end surfaces of the large diameter portions 18 and 18 are formed as protruding surfaces 19 and 19 having a truncated cone shape. In the example shown in FIG. 13, ribs 20, 20 are formed from both ends in the axial direction of the small-diameter portion 17 to the base ends of the large-diameter portions 18, 18, and the example shown in FIG. Such ribs 20, 2
0 is omitted. In any case, when assembling the universal joint 6, these pins 16, 16 are inserted into the respective insertion holes 1.
5, 15 and one end is inserted into each of these insertion holes 15, 1
5 and the other end of each bearing cup 1
It hits the bottom of 0,10. The pins 16, 16 are stretched between the bearing cups 10, 10 and the shafts 11, 11 so that the open ends of the bearing cups 10, 10 and the base 13 are extended. Prevents the distance from being too short.
This is to prevent the sealings 14 and 14 from being excessively compressed and, conversely, the compression amount from being excessively reduced. That is, a thrust load is applied between the cross shaft 8 and the bearing cups 10 and 10 when the universal joint 6 is used. Therefore, if no countermeasure is taken, the seal ring 14 on the thrust load acting side (anchor side) is excessively compressed and the durability is impaired, and the compression amount of the opposite side (anti-anchor side) seal ring 14 decreases. Too much, this seal ring 14
This is because the sealing performance is impaired. Each of the above pins 1
The bearings 6 and 16 have a role of supporting the thrust load in such a manner as to maintain the compression amount of each of the seal rings 14 and 14 within an appropriate range. The above-mentioned pins 16 and 1 which fulfill such a function
In order to perform the mounting work of No. 6, first, each of these pins 16,
16 is inserted into each of the insertion holes 15,
Insert at 15. At this time, when the pins 16 shown in FIG. 13 are used, the pins 16 are inserted into the insertion holes 1 while plastically deforming the outer peripheral edges of the ribs 20.
5 and 15 are press-fitted to the deep ends of the respective insertion holes 15 and 15. After the press-fitting, these pins 16 and 16 do not drop out of the insertion holes 15 and 15 carelessly. Rib 20,
When using the pin 16 shown in FIG. 14 which does not have the pin 20, the pins 16 are inserted into the insertion holes 15 before the bearing cups 10 are mounted as described below. During this time, these pins 16 are held down in order to prevent the pins 16 from falling off. In this manner, with the pins 16, 16 inserted into the insertion holes 15, 15, the shafts 11, 11 are inserted.
Are positioned in the circular holes 9 of the yoke 7a (7b). Then, the bearing cups 10 and 10 are press-fitted into the circular holes 9 and 9 from the outer end opening side, and the bearing cups 10 and 10 are directed toward the shafts 11 and 11 in a direction approaching each other. Press. Of course, prior to the pressing operation, the seal rings 14 are fitted to the base ends of the shafts 11. During the pressing operation, the radial bearings 12, 12 are set inside the bearing cups 10, 10, respectively. Further, the open ends of the bearing cups 10 and 10 are previously squeezed inward in the diametrical direction. By the pressing operation, the bearing cups 10, 10 on the opposite side in the axial direction are fixedly fitted in predetermined positions in the respective circular holes 9, 9, and at the same time, the pins 16, 16 are compressed in the axial direction. Is done. That is, the small diameter portion 1 of each of the pins 16
By being strongly clamped between the bottom surfaces of the bearing cups 10, 10 and the inner surfaces of the insertion holes 15, 15, the members 7, 17 are deformed into a beer barrel shape as shown in FIG. In this state, the pins 16 are connected to the bearing cups 10 and 10, respectively.
Between the bottom surface of the bearing cup and the inner surface of each of the insertion holes 15, 15, regardless of the thrust load.
0 and 10 are prevented from being displaced in the axial direction. As a result,
The compression amount of each of the seal rings 14, 14 is appropriately maintained. Since the contact area between the bottom surfaces of the bearing cups 10, 10 and the protruding surfaces 19, 19 is small, the friction loss at the contact portions between these bottom surfaces and the protruding surfaces 19, 19 can be small. Conventionally, a polyacetal resin has been used as a synthetic resin for forming the pins 16. When a compressive load is applied to the polyacetal resin pins 16, 16, the relationship between the compressive load and the amount of compression is as follows:
As shown by the dashed line a in FIG. 15, it becomes smooth. In other words, a slight difference in the compression load does not greatly affect the compression amount. Therefore, the pressing operation does not cause a large difference in the amount of compression between the pair of pins 16, 16 located at positions opposite to each other in the axial direction. That is, these pins 16, 16
May vary slightly due to errors (dimensional errors, material quality errors) that cannot be avoided in manufacturing. If the relationship between the compression load and the amount of compression is smooth as shown by the dashed line a, there is no large difference in the amount of compression between the pair of pins 16 and 16 and the 1 There is no large difference in the amount of compression between the pair of seal rings 14, 14. [0011] However, in the case of a conventional universal joint constructed and operated as described above, the pin 1
Due to the material of the synthetic resin that constitutes 6 and 16, there are the following problems to be solved. That is, these pins 16,
The polyacetal resin conventionally used as the synthetic resin constituting the 16 does not always have sufficient heat resistance, whereas the universal joint 6 constituting the steering device is provided in a high-temperature engine room. In particular, the temperature in the engine room tends to increase due to a recent increase in engine output and a decrease in space in the engine room due to an increase in accessories. Moreover, since the universal joint for the steering device is often arranged adjacent to the exhaust pipe, it must be considered that the universal joint is exposed to a considerably high temperature. In the case of the pins 16 made of polyacetal resin, they are softened and deformed when exposed to a high temperature, and as a result, each pin 16
There is a possibility that a gap may be formed between the end of the bearing cup and the bottom surface of the bearing cup 10, 10. If a gap occurs, rattling occurs at the universal joint 6 and undesired phenomena such as discomfort to the driver operating the steering wheel 1 (FIG. 10) occur. The above-mentioned problem can be solved by using a polyphenylene sulfide-based resin (hereinafter referred to as "PPS") having excellent heat resistance as the synthetic resin constituting the pins 16, 16. , Instead, PPS
Due to the characteristics described above, the following problem occurs. That is, when a compressive load is applied to a PPS pin,
The relationship between the compression load and the compression amount is as shown by a broken line b in FIG. As is clear from the broken line b, a yield point clearly appears as a material characteristic of PPS. As a result, when the compression load and the compression amount exceed certain values, the compression amount suddenly increases (increases) despite the small (small) change amount of the compression load. There is no particular problem if the above-mentioned yield point is located outside the range of use. However, if the pins 16, 16 incorporated in the universal joint 6 generally used for a steering device or the like are made of PPS, this yield A dot appears within the range of use. When the yield point appears in the range of use as described above, the compression amount of one pin 16 of the pair of pins 16 provided on the opposite side in the axial direction is reduced to the compression amount of the other pin 16. In comparison, they are significantly different. That is, the bearing cups 10 and 10 are inserted into the circular holes 9 and
9 (for example, FIG. 12).
Before the small diameter portion 17 of the pin 16 (above) reaches the yield point, the small diameter portion 1 of the other pin 16 (for example, the lower portion of FIG. 12).
7 may reach the yield point. In such a case, with the pushing operation which continues even after the small diameter portion 17 of the other pin 16 reaches the yield point, the compression amount of the other pin 16 is reduced as compared with the compression amount of the one pin 16. The amount increases.
It is sufficient that the yield points of the small diameter portions 17 and 17 of the pair of pins 16 and 16 are as close as possible.
As shown in FIG. 12, the amount of compression of the pair of pins 16, 16 greatly differs. As a result, the amount of compression of the seal ring 14 corresponding to the other pin 16 is large (excessive), and the seal ring 14 corresponding to the one pin 16 is compressed.
Compression amount becomes insufficient (insufficient). The variation in the amount of compression of the seal rings 14, 14 due to the bias of the amount of compression of the pins 16, 16 is as follows.
Insufficient durability of the seal ring 14 (when the compression amount is excessive) or deterioration of the sealing performance (when the compression amount is insufficient)
Invite. For this reason, conventionally, all the compression amounts of the seal rings 14, 14 of the universal joint 6 in which the mounting of the bearing cups 10, 10 is completed are inspected, and defective products are discarded. Because of this,
The production cost of the universal joint 6 has been increased due to the reduced yield. Regardless of the variation in the compression characteristics of the pins 16, 16, the pins 16, 16 provided on the opposite side in the axial direction are provided.
In order to prevent the amount of compression from varying, it is conceivable to press the bearing cups 10 and 10 while the cross shaft 8 is fixed. That is, 4 forming the cross shaft 8
Of the shafts 11, 11, two of which are not pressed (for example, arranged horizontally in FIG. 12)
The above-mentioned pushing work is performed while supporting and fixing 1, 11. If the pushing operation is performed in this manner, the above-mentioned variation in the amount of compression can be prevented, but the operation of fixing the cross shaft 8 is required, and the manufacturing process of the universal joint 6 is complicated, and the manufacturing cost of the universal joint 6 is also increased. Will be higher. The universal joint of the present invention was invented in view of such circumstances. A universal joint according to the present invention has a pair of yokes each having a bifurcated shape, and two ends each of which are formed like a conventional universal joint. A circular hole formed concentrically with each other, a cylindrical bearing cup with a bottom, which is internally fitted and fixed inside each of the circular holes with the openings facing each other, and each of which has a cylindrical shape. Radial bearings having a plurality of shaft portions, a cross shaft in which each shaft portion is inserted into each of the bearing cups, and a radial bearing provided between an inner peripheral surface of each of the bearing cups and an outer peripheral surface of each of the shaft portions. A seal ring provided between a base of the cross shaft and an opening of each of the bearing cups; and an inner side of the cross shaft with an opening at an end face of each of the shaft portions. A formed bottomed insertion hole,
A pin made of synthetic resin is inserted into each insertion hole, one end of which is abutted against the back end of the insertion hole, and the other end is abutted against the bottom surface of each bearing cup. In particular, in the universal joint of the present invention, the synthetic resin forming each of these pins is PPS. Each of the pins is formed at both ends in the axial direction, and is provided with a large cross-sectional area that can be inserted into each of the insertion holes, and is provided in series between the two large cross-sectional areas in the axial direction. A small cross-sectional area and an interrupted area. The universal joint of the present invention configured as described above functions to transmit a rotational force between a pair of shafts that do not exist on the same straight line, and that each pin is located at the back end of the insertion hole. The effect of restricting the amount of compression of the seal ring to an appropriate range by stretching between the bearing and the inner surface of the bearing cup is the same as that of the above-mentioned conventional universal joint. In particular, in the case of the universal joint of the present invention, the relationship between the compression load and the compression amount of each pin can be made smooth.
That is, when a compressive load is applied to each of these pins, the small cross-sectional area is deformed first, and then the interrupted area is deformed. At the point when the break area begins to deform, both of the pair of pins have been somewhat compressed. Before the deformation of the interrupted area starts, it passes through the yield point of the PPS at the small cross-sectional area that is easily deformed, but after the small cross-sectional area is sufficiently compressed, the interrupted area of the pair of pins is used. Starts to be compressed by further applying a compressive load. In other words, after the yield of the small cross section,
Yielding of the interrupted area occurs successively. As a result, the apparent characteristics of the pin as a whole become smooth such that there is no yield point, and a large difference does not occur in the compression amount of the interrupted area of the pair of pins. As a result, in spite of using PPS having excellent heat resistance, as in the case of using polyacetal resin, the amount of compression of a pair of seal rings existing at positions opposite to each other in the axial direction can be reduced. It can be placed within the appropriate range. 1 to 4 show a first embodiment of the present invention. The feature of the present invention is that the pins 16a, 16a are P
The shape of each of the pins 16a, 16a has been devised so as to use a PS and to keep the amount of compression of the pair of seal rings 14, 14 provided at positions opposite to the cross shaft 8 in the axial direction within an appropriate range. is there. Since the structure and operation of the other parts are the same as those of the conventional structure described above, the same parts are denoted by the same reference numerals, and duplicated description is omitted or simplified.
The following description focuses on the features of the present invention. Although the universal joint 6 shown in FIG. 1 does not have a vibration-proof structure, it is free to have a vibration-proof structure as shown in FIG. At both ends in the axial direction (vertical direction in FIGS. 1 to 3) of the pins 16a, 16a made of PPS, cylindrical large cross-sectional areas 21, 21 are formed. This large cross section 21, 2
The outer diameter of 1 is formed by four shaft portions 11, 11 constituting the cross shaft 8.
Are equal to or slightly smaller than the inner diameters of the insertion holes 15 and 15 opened at the center of the end face. Therefore, each of these large cross-sectional area portions 21 is provided with the above-described insertion hole 15.
It can be inserted freely. Further, a small cross-sectional area portion 22 having a columnar shape is also formed at the center in the axial direction of each of the pins 16a, 16a. Further, between the both ends in the axial direction of the small cross-sectional area 22 and the large cross-sectional areas 21, interrupted area sections 23 are provided, respectively. Each of the above pins 16a having such a shape,
16a is inserted into the insertion holes 15, 15 formed in the shaft portions 11, 11, respectively, and is stretched between the inner ends of the insertion holes 15, 15 and the bottom surfaces of the bearing cups 10, 10. In the case of the illustrated embodiment, each of the above-mentioned interrupted area portions 2
Ribs 20, 20 are formed from 3, 23 to the large cross-sectional area portions 21, 21, respectively. Therefore, each of the insertion holes 1
The pins 16a, 16a inserted in the bearings 5, 15 do not accidentally fall off before the bearing cups 10, 10 are mounted. In the case of the universal joint of the present invention including the pins 16a and 16 as described above,
a, the relationship between the compressive load and the amount of compression can be made smooth, and a pair of pins 16a, 16
The compression amount of “a” can be made substantially uniform. That is, each of the bearing cups 10 is inserted into a pair of circular holes 9 formed in the yoke 7a.
10, the pins 16a, 16a
When a compressive load is applied to a, the small sectional area portion 22 is first compressed and deformed. Then, in a state where the small cross-sectional area portion 22 has been completely compressed and deformed to a certain extent, each of the interruption area portions 23 and 23 starts to be compressed and deformed. Note that while the small cross-sectional area 22 is being compressed and deformed, the interruption area parts 23 and 23 are also slightly compressed and deformed, but are much smaller than the deformation of the small cross-sectional area 22. Therefore, at the time when each of the interruption area portions 23, 23 starts to substantially compressively deform, the pair of pins 16
Both a and 16a are compressed to some extent by the compression deformation of the small cross-sectional area 22. Before the deformation of the interrupted area portions 23 starts, the small cross-sectional area portion 22 passes through the yield point of PPS. Incidentally, at the stage where the compression deformation of each of the interruption area portions 23, 23 is started,
The compression amount of each of the pins 16a, 16a as a whole has not yet reached the use range. In other words, each of the interruption area portions 23, 2
At the point when 3 starts substantially compressive deformation, the small cross-sectional area 22 is almost completely compressed and deformed. Therefore, even if there is a difference between the yield points of the small cross-sectional area portions 22 of the pair of pins 16a, 16a, when the pressing of the pair of bearing cups 10, 10 is completed, the difference is determined by the compression of the entire pins 16a, 16a. Has little effect on volume. After the small cross-sectional area portion 22 is compressed and cut, each of the interrupted area portions 2 of the pair of pins 16a, 16a
The members 3 and 23 start to be compressed substantially when a further compressive load is applied as the pair of bearing cups 10 and 10 continue to be pushed. The pair of pins 16
The a and 16a are each compressed by a predetermined amount as a whole by compressing the respective interrupted area portions 23 and 23 in addition to the respective small cross-sectional area portions 22. That is, each of these pins 16
a and 16a represent the amount of compression in the small cross-sectional area portion 22;
As a result of the addition of the compression amount in each of the interruption area portions 23, 23, compression is performed as a whole. Since the amount of compression in the small cross-sectional area 22 occupies a certain amount of the total amount of compression for each of the pins 16a, 16a, the compression of the interrupted area portions 23, 23 The amount will be limited. Therefore, the compression of each of the interruption area portions 23, 23 does not pass the yield point, or even if it does, it only passes immediately before the completion of the pushing operation of the pair of bearing cups 10, 10. Therefore, there is no large difference in the amount of compression between the interruption area portions 23 of the pair of pins 16a. Thus, these 1
The pair of pins 16a, 16a further compresses the interrupted area portions 23, 23 in a state where the amount of compression by the small cross-sectional area portion 22 is secured, and the apparent compression characteristics of these pins 16a, 16a are as shown in FIG. As shown by a solid line c in FIG. Therefore, in spite of using PPS having excellent heat resistance, similarly to the case of using polyacetal resin, a pair of pins 16 located at positions opposite to each other in the axial direction is used.
It is possible to prevent a large difference between the compression amounts of a and 16a.
As a result, the amount of compression of the pair of seal rings 14, 14 also provided at positions opposite to each other in the axial direction can be kept within an appropriate range. For this reason, there is no possibility that any of the seal rings 14 is excessively compressed and the durability is reduced, or the sealing performance is not impaired due to insufficient compression of the seal ring 14 on the opposite side. Experiments conducted by the present inventors have confirmed that the dimensions of the PPS pin 16a should be regulated as follows in order to make the apparent compression characteristics of the pin 16a smooth. Was done. First, when a large cross sectional area portion 21, 21 between the spacing D 21 formed at both axial ends and 1.0, the length L 22 of the small cross-sectional area portion 22 of 0.25 to 0.4 range paid to the (L 22 = (0.25~0.4) D 21). The absolute value of the length L 22 is smaller than the compression amount L 0 required as a whole pin 16a. In short, even if the small cross-sectional area portion 22 is completely compressed (a very large load is required for further compression), the compression amount is equal to the required compression amount L 0 . so as not to reach, to regulate the length dimension L 22. Further, the length dimensions of the interruption area portions 23, 23 present on both sides in the axial direction of the small sectional area portion 22 are made equal to each other.
Further, the cross-sectional area S23 of each of the interruption area portions 23 , 23 is set to 1
, The sectional area S 22 of the small sectional area portion 22 is set to 0.
Pay in the range of 5~0.7 (S 22 = (0.5~0.7)
S 23). Next, FIGS. 5 to 7 show a second embodiment of the present invention. In the case of this embodiment, the pin 16b made of PPS is used.
Reinforcing ribs 24, 24 each extending in the axial direction are formed at four positions on the outer peripheral surface of the small cross-sectional area portion 22. In the case of the present embodiment, the small cross-sectional area 22 is less likely to be bent when the pin 16b is pressed into the insertion hole 15 due to the presence of the reinforcing ribs 24, 24. In the case of this embodiment, it is assumed that the cross-sectional area of the small cross-sectional area 22 includes these reinforcing ribs 24, 24. That is, the cross-sectional area regulation of the formula (S 22 = (0.5~0.7) S 23) , the reinforcing ribs 2
It is necessary to fill with a cross-sectional area including the cross-sectional areas of 4, 24.
The number of the reinforcing ribs 24 is not particularly limited in terms of the function of the pin 16b. However, the reinforcing ribs 24, 2
If the number of 4 is 2 or 4 and they are arranged at regular intervals in the circumferential direction, there is no undercut portion at the time of injection molding, and it is advantageous since molding can be performed with a simple split mold. Other configurations and operations are the same as those of the above-described first embodiment. Next, FIGS. 8 and 9 show a third embodiment of the present invention. In the case of this embodiment, the pin 16c made of PPS is used.
The cross-sectional shape of the small cross-sectional area 22 is square. Other configurations and operations are the same as those of the above-described first embodiment. In each of the illustrated embodiments, the small cross-sectional area 22 is sandwiched from both sides in the axial direction by the pair of interruption area parts 23, 23. However, in order to obtain the operation and effect of the present invention, this is not necessarily the case. The arrangement need not be such. The point is that at least one small cross-sectional area 22 and at least one interruption area 23 may be provided in series in the axial direction between the large cross-sectional areas 21 at both ends. However, when the arrangement is as shown in the illustrated embodiment, there is an effect that the step between the cross-sectional areas adjacent to each other in the axial direction is reduced, and the deformation accompanying the molding can be reduced. Since the universal joint of the present invention is constructed and operates as described above, the following effects can be obtained at the same time. Since sufficient heat resistance can be ensured by using a PPS pin, problems such as rattling hardly occur even when used for a long time in a high temperature environment such as in an engine room. Since the amount of compression of the seal ring can be properly adjusted, the durability and sealing performance of the seal ring can be ensured. Since no troublesome work such as fixing the cross shaft is required at the time of assembling, the yield can be improved and the cost can be reduced.

【図面の簡単な説明】 【図1】本発明の第一実施例を示す部分切断側面図。 【図2】十字軸に一方のヨークのみを装着した状態を示
す、図1のA−A断面に相当する図。 【図3】第一実施例に使用するピンの拡大側面図。 【図4】図3のB−B断面図。 【図5】本発明の第二実施例を、軸受カップの押し込み
途中の状態で示す部分拡大断面図。 【図6】第二実施例に使用するピンの側面図。 【図7】一部を省略して示す、図6のC−C断面図。 【図8】本発明の第三実施例を示す、ピンの側面図。 【図9】一部を省略して示す、図8のD−D断面図。 【図10】自在継手を組み込んだステアリング装置の斜
視図。 【図11】従来から知られた自在継手の1例を示す部分
切断側面図。 【図12】従来の自在継手を示す、図2と同様の図。 【図13】従来使用されていたピンの第1例を示す側面
図。 【図14】同第2例を示す側面図。 【図15】ピンの軸方向に加わる圧縮荷重とピンの軸方
向に亙る圧縮量との関係を示す線図。 【符合の説明】 1 ステアリングホイール 2 ステアリングシャフト 3 中間シャフト 4 ステアリングギヤ 5 入力シャフト 6 自在継手 7a、7b ヨーク 8 十字軸 9 円孔 10 軸受カップ 11 軸部 12 ラジアル軸受 13 基部 14 シールリング 15 挿入孔 16、16a、16b、16c ピン 17 小径部 18 大径部 19 突出面 20 リブ 21 大断面積部 22 小断面積部 23 中断面積部 24 補強リブ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cut-away side view showing a first embodiment of the present invention. FIG. 2 is a view corresponding to an AA cross section of FIG. 1, showing a state where only one yoke is mounted on a cross shaft. FIG. 3 is an enlarged side view of a pin used in the first embodiment. FIG. 4 is a sectional view taken along line BB of FIG. 3; FIG. 5 is a partially enlarged cross-sectional view showing the second embodiment of the present invention in a state where the bearing cup is being pushed. FIG. 6 is a side view of a pin used in the second embodiment. FIG. 7 is a cross-sectional view taken along the line CC of FIG. FIG. 8 is a side view of a pin showing a third embodiment of the present invention. FIG. 9 is a cross-sectional view taken along the line DD of FIG. FIG. 10 is a perspective view of a steering device incorporating a universal joint. FIG. 11 is a partially cut-away side view showing an example of a conventionally known universal joint. FIG. 12 is a view similar to FIG. 2, showing a conventional universal joint. FIG. 13 is a side view showing a first example of a conventionally used pin. FIG. 14 is a side view showing the second example. FIG. 15 is a diagram showing a relationship between a compressive load applied in the axial direction of the pin and an amount of compression in the axial direction of the pin. DESCRIPTION OF THE SYMBOLS 1 Steering wheel 2 Steering shaft 3 Intermediate shaft 4 Steering gear 5 Input shaft 6 Universal joints 7a, 7b Yoke 8 Cross shaft 9 Circular hole 10 Bearing cup 11 Shaft 12 Radial bearing 13 Base 14 Seal ring 15 Insertion hole 16, 16a, 16b, 16c Pin 17 Small diameter portion 18 Large diameter portion 19 Projecting surface 20 Rib 21 Large cross-sectional area 22 Small cross-sectional area 23 Interruption area 24 Reinforcing rib

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16D 3/26 - 3/41 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F16D 3/26-3/41

Claims (1)

(57)【特許請求の範囲】 【請求項1】 それぞれが二又状に形成された1対のヨ
ークと、各ヨークの両端部に互いに同心に形成された円
孔と、互いの開口を対向させた状態で上記各円孔の内側
に内嵌固定された、有底円筒状の軸受カップと、それぞ
れが円柱状に形成された4個所の軸部を有し、各軸部を
上記各軸受カップ内に挿入された十字軸と、上記各軸受
カップの内周面と上記各軸部の外周面との間に設けられ
たラジアル軸受と、上記十字軸の基部と上記各軸受カッ
プの開口部との間に設けられたシールリングと、上記各
軸部の端面に開口する状態で上記十字軸の内側に、軸方
向に亙って形成された有底の挿入孔と、各挿入孔に挿入
されてそれぞれの一端をこの挿入孔の奥端に突き当てら
れ、それぞれの他端を上記各軸受カップの底面に突き当
てられた合成樹脂製のピンとを備えた自在継手に於い
て、これら各ピンを構成する合成樹脂はポリフェニレン
サルファイド系であり、且つ、上記各ピンは、軸方向両
端部に形成された、上記各挿入孔に挿入自在な大断面積
部と、両大断面積部同士の間に軸方向に亙って互いに直
列に設けられた、小断面積部及び中断面積部とを備えて
いる事を特徴とする自在継手。
(57) [Claims 1] A pair of yokes each formed in a bifurcated shape, circular holes formed concentrically at both ends of each yoke, and mutual openings facing each other. A cylindrical bearing cup having a bottom and fixed to the inside of each of the circular holes in a state where the bearings are closed, and four shaft portions each formed in a cylindrical shape, and each shaft portion is connected to each of the bearings A cross shaft inserted into the cup, a radial bearing provided between an inner peripheral surface of each of the bearing cups and an outer peripheral surface of each of the shaft portions, a base of the cross shaft, and an opening of each of the bearing cups , A bottomed insertion hole formed along the axial direction inside the cross shaft in a state of being opened at the end face of each of the shaft portions, and inserted into each of the insertion holes. And one end of each is abutted against the back end of the insertion hole, and the other end is protruded to the bottom surface of each bearing cup. In the universal joint having a pin made of synthetic resin applied thereto, the synthetic resin constituting each of these pins is a polyphenylene sulfide-based resin, and each of the pins is formed at both ends in the axial direction. It has a large cross-sectional area that can be inserted into the insertion hole, and a small cross-sectional area and an interrupting area that are provided in series in the axial direction between the two large cross-sectional areas. And universal joint.
JP27799194A 1994-11-11 1994-11-11 Universal joint Expired - Lifetime JP3435854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27799194A JP3435854B2 (en) 1994-11-11 1994-11-11 Universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27799194A JP3435854B2 (en) 1994-11-11 1994-11-11 Universal joint

Publications (2)

Publication Number Publication Date
JPH08135674A JPH08135674A (en) 1996-05-31
JP3435854B2 true JP3435854B2 (en) 2003-08-11

Family

ID=17591109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27799194A Expired - Lifetime JP3435854B2 (en) 1994-11-11 1994-11-11 Universal joint

Country Status (1)

Country Link
JP (1) JP3435854B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755943B2 (en) * 1996-11-11 2006-03-15 株式会社三共製作所 Cam device
JP2006064020A (en) * 2004-08-25 2006-03-09 Jtekt Corp Universal joint
JP5035264B2 (en) * 2009-02-09 2012-09-26 日本精工株式会社 Universal joint
JP4983816B2 (en) * 2009-02-09 2012-07-25 日本精工株式会社 Universal joint
CA2795186C (en) 2011-01-26 2015-02-10 Nsk Ltd. Shell-type needle bearing and cross-type universal joint
US10184525B2 (en) 2013-08-30 2019-01-22 Nsk Ltd. Method of manufacturing cross shaft universal joint

Also Published As

Publication number Publication date
JPH08135674A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
US4874073A (en) Clutch release bearing device
US5836821A (en) Elastic coupling for steering apparatus
US6283867B1 (en) Elastic shaft joint
JP3735926B2 (en) Wheel support hub unit
JPH09164803A (en) Driving wheel supporting hub unit
US5916026A (en) Elastic universal joint
JP3435854B2 (en) Universal joint
JP2003247595A (en) Dynamic damper and propeller shaft
JP4613875B2 (en) Cross shaft joint and vehicle steering apparatus including the same
JP4453740B2 (en) Belt-type continuously variable transmission shaft, stationary sheave for continuously variable transmission, manufacturing method thereof and continuously variable transmission
JP2002061665A (en) Power transmission shaft for vehicle
JP3393078B2 (en) Liquid filled type vibration damping device and method of manufacturing the same
JP2000320567A (en) Boot for constant velocity universal joint
JP4280650B2 (en) Cross joint
JP2000249180A (en) Bushing for leaf spring
JP2006118586A (en) Power transmission device
JP2007321943A (en) Cross shaft coupling, universal coupling and steering system for vehicle
JP5084410B2 (en) Dynamic damper for propeller shaft
JPH09196077A (en) Shaft coupling and manufacture thereof
JP3821914B2 (en) Elastic shaft coupling
JPH0422111Y2 (en)
JP3380303B2 (en) Liquid-filled anti-vibration mount
JPH06323354A (en) Pyro-ball bush
JPH11148518A (en) Bearing cup for universal joint
JP5175669B2 (en) Torsional vibration reduction device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 11

EXPY Cancellation because of completion of term