JP3435647B2 - Manufacturing method of vibration type semiconductor sensor - Google Patents
Manufacturing method of vibration type semiconductor sensorInfo
- Publication number
- JP3435647B2 JP3435647B2 JP35718396A JP35718396A JP3435647B2 JP 3435647 B2 JP3435647 B2 JP 3435647B2 JP 35718396 A JP35718396 A JP 35718396A JP 35718396 A JP35718396 A JP 35718396A JP 3435647 B2 JP3435647 B2 JP 3435647B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- etching
- stop layer
- electrode portion
- movable electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 94
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims description 95
- 238000005530 etching Methods 0.000 claims description 63
- 238000005192 partition Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- UJMWVICAENGCRF-UHFFFAOYSA-N oxygen difluoride Chemical compound FOF UJMWVICAENGCRF-UHFFFAOYSA-N 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0808—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
- G01P2015/0811—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
- G01P2015/0814—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
Landscapes
- Drying Of Semiconductors (AREA)
- Gyroscopes (AREA)
- Micromachines (AREA)
- Pressure Sensors (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は半導体基板をエッチ
ング技術により加工形成して作製される加速度センサや
マイクロジャイロ等の振動型半導体センサの製造方法に
関するものである。
【0002】
【従来の技術】図2の(a)には振動型半導体センサで
あるマイクロジャイロの一例が示され、図2の(b)に
は図2の(a)に示すA−A部分の断面図が示されてい
る。図2の(a)と(b)に示すように、ガラス基板で
構成された基台1の上に支持部2(2a,2b)が固定
形成され、また、上記支持部2a,2bには梁部22を
介して共通に連接する可動部3が形成されている。この
可動部3にはその両側面から櫛歯形状の可動電極4がそ
れぞれ伸長形成されており、上記可動部3と可動電極4
により可動電極部20が構成されている。この可動電極
部20に対向する基台1の表面には凹部5が形成され、
可動電極部20が基台1から離間した状態で梁部22を
介して支持部2により支持されている。また、基台1の
凹部5の底面には空隙を介して前記可動部3に対向する
検出電極6が形成されている。
【0003】このように、可動電極部20に対向する基
台1の表面に凹部5が形成されているので、可動電極部
20は図2の(b)に示すz方向に変位することができ
る。また、上記梁部22はy軸方向に伸長形成されてい
るので、可動電極部20は図2の(a)に示すx方向に
変位することが可能である。
【0004】また、前記基台1の上には固定部7(7
a,7b)が固定形成され、これら固定部7には前記可
動電極4に噛み合うように櫛歯形状の固定電極8が伸長
形成されており、上記可動電極4の電極面と固定電極8
の電極面は空隙を介して対向している。上記固定部7と
固定電極8により固定電極部21が構成されている。さ
らに、基台1の上には上記可動電極4と検出電極6の各
電極にそれぞれ導通接続するリード導体10が形成され
ると共に該リード導体10の先端側に連接する電極パッ
ト11が形成されている。また、電極パット11は、固
定部7にも形成されている。
【0005】上記支持部2と可動部3と可動電極4と固
定部7と固定電極8と梁部22は低抵抗なシリコン(例
えば、ポリシリコン)により構成されている。
【0006】図2に示す振動型半導体センサは上記のよ
うに構成されており、例えば、上記各電極パット11を
予め定めた接続部(図示せず)に導通接続させ、上記可
動電極4と固定電極8を上記電極パット11とリード導
体10を介して電圧印加手段(図示せず)に接続させ上
記可動電極4と固定電極8間に交流電圧を印加すると、
可動電極4と固定電極8間に静電力が発生し、該静電力
によって可動電極部20(可動部3と可動電極4)が図
2の(a)の矢示Aで示すx方向に励振振動する。
【0007】このように励振振動している状態で、上記
振動型半導体センサがy軸を中心軸にして角速度が作用
すると、励振振動方向と上記中心軸方向との両方向に直
交する方向(z方向)にコリオリ力が発生する。このコ
リオリ力によって可動電極部20がz方向に検出振動
し、この検出振動により可動部3と検出電極6間の静電
容量が可変する。上記可動部3と検出電極6間の静電容
量の変化をリード導体10と電極パット11を介して容
量電圧変換回路(図示せず)に入力して電圧に変換し、
該検出電圧に基づきy軸回りの回転角速度の大きさを検
知することが可能である。
【0008】上記構成の振動型半導体センサの製造方法
の一例を図3と図4に基づき説明する。なお、図3と図
4は前記図2に示す振動型半導体センサの製造過程の一
例を図2の(a)のA−A部分の断面により示してい
る。
【0009】予め、図4の(a)に示すように、ガラス
基板で構成される基台1の表面に可動電極部20に対向
する凹部5を形成し、その後、図4の(b)に示すよう
に、上記凹部5の底面に検出電極6を形成すると共に、
基台1の表面にリード導体10と電極パット11を形成
しておく。
【0010】そして、図3の(a)に示すように、シリ
コン基板で構成される第1の半導体基板12と、シリコ
ン基板で構成される第2の半導体基板13とを酸化シリ
コンにより形成されるエッチングストップ層14を介し
て接合一体化して接合基板体15を形成し、この接合基
板体15の第1の半導体基板12の表面に支持部2と可
動電極部20と固定電極部21と梁部22を形成する領
域を規定するマスク(例えば、窒化膜(図示せず))を
被覆する。
【0011】その後、第1の半導体基板12の表面側か
らKOH水溶液により異方性エッチングを行って、図3
の(b)に示すように、可動電極部20と固定電極部2
1を区画する仕切り領域16と、支持部2と固定電極部
21の固定部7と梁部22をかたどる領域17とをエッ
チングストップ層14に達するまでエッチング除去し、
支持部2と可動電極部20と固定電極部21と梁部22
を加工形成する。
【0012】上記KOH水溶液はシリコン基板である第
1の半導体基板12を深さ方向にエッチングし、酸化シ
リコンの層であるエッチングストップ層14に対して侵
食しないものであり、エッチングストップ層14はKO
H水溶液によるエッチングをストップさせる。
【0013】次に、上記第1の半導体基板12上のマス
クを取り除き、図3の(c)に示すように、図4で示し
た前記基台1の凹部5に可動電極部20を位置合わせし
て基台1の上に接合基板体15を配置し、支持部2と固
定電極部21の固定部7とを基台1に接触させて陽極接
合法により接合固定させる。
【0014】そして、第2の半導体基板13の表面側か
らエッチングを行って、図3の(d)に示すように、第
2の半導体基板13を全て除去し、然る後、図3の
(e)に示すように、エッチングストップ層14を取り
除いて、可動電極部20と固定電極部21を分離し振動
型半導体センサが完成する。
【0015】
【発明が解決しようとする課題】しかしながら、上記振
動型半導体センサの製造方法では、基台1と接合基板体
15を接合させた後に、図3の(d)に示すように、第
2の半導体基板13を全て取り除いていたために、不良
品が多くなり、振動型半導体センサの歩留まりが低下す
るという問題がある。それというのは、上記のように、
第2の半導体基板13を全て取り除くと、第1の半導体
基板12との接合界面に生じるエッチングストップ層1
4の応力により、エッチングストップ層14が反って支
持部2や固定部7を持ち上げ、支持部2や固定部7が基
台1から剥がれてしまう場合が多く、つまり、不良品が
多くなり、振動型半導体センサの歩留まりが低下すると
いうものである。
【0016】この発明は上記課題を解決するためになさ
れたものであり、その目的は、歩留まりの向上が図るこ
とが可能な振動型半導体センサの製造方法を提供するこ
とにある。
【0017】
【課題を解決するための手段】上記目的を達成するため
にこの発明は次のような構成をもって前記課題を解決す
る手段としている。すなわち、この発明の振動型半導体
センサの製造方法は、第1の半導体基板と第2の半導体
基板がエッチングストップ層を挟み込んで接合一体化し
た接合基板体と、表面に凹部が形成された基台とを用意
しておき、まず、上記接合基板体の第1の半導体基板の
表面側から異方性エッチングを行って固定電極部と可動
電極部を区画する仕切り領域と、上記可動電極部に連接
する支持部をかたどる領域とを上記エッチングストップ
層に達するまでエッチング除去し固定電極部と可動電極
部と支持部を加工形成し、その後、上記接合基板体の可
動電極部を上記基台の凹部に位置合わせして基台に上記
固定電極部と支持部を接合固定し、次に、第2の半導体
基板の表面側からエッチングを行い、第2の半導体基板
の厚みが予め定められた厚みとなったときに第2の半導
体基板のエッチングを終了し、然る後、上記第2の半導
体基板の表面からエッチングストップ層に達する通路を
第2の半導体基板に形成し、該通路を通してエッチング
ストップ層にエッチング液を侵食させエッチングストッ
プ層をエッチング除去して第2の半導体基板を剥離し、
固定電極部と可動電極部を分離する構成をもって前記課
題を解決する手段としている。
【0018】上記構成の発明において、接合基板体の支
持部と固定電極部を基台に接合させた後に、第2の半導
体基板を予め定めた厚さ分だけ残しておくことにより、
第1の半導体基板との接合界面に発生するエッチングス
トップ層の応力は、第2の半導体基板との接合界面に発
生するエッチングストップ層の応力により相殺され、上
記接合界面の応力に起因したエッチングストップ層の反
りが回避される。
【0019】このように、エッチングストップ層の反り
が回避されるので、エッチングストップ層の反りによっ
て支持部や固定電極部が持ち上げられて支持部や固定電
極部が基台から剥がれるという問題を防止でき、このこ
とにより、振動型半導体センサの歩留まりの向上が図
れ、安価な振動型半導体センサを提供することが可能と
なる。
【0020】
【発明の実施の形態】以下に、この発明に係る実施形態
例を図面に基づき説明する。
【0021】図1には本実施形態例の振動型半導体セン
サの製造方法が示されている。この実施形態例に示す振
動型半導体センサは前記図2に示す従来技術と同様の構
成を有し、前記図1には図2の振動型半導体センサの製
造過程の一例が図2のA−A部分の断面により示されて
いる。なお、図2の振動型半導体センサの構成は前述し
たので、その重複説明は省略する。
【0022】この実施形態例では、シリコン基板で形成
される第1の半導体基板12とシリコン基板で形成され
る第2の半導体基板13が酸化シリコンで形成されるエ
ッチングストップ層14を挟み込み予め接合一体化して
いるSOI(Silicon on insulator)基板を接合基板体
15として用い、前記同様に、第1の半導体基板12に
支持部2と可動電極部20(可動部3と可動電極4)と
固定電極部21(固定部7と固定電極8)と梁部22を
写真食刻手法を用いて加工形成し、一方、ガラス基板に
より構成される基台1に凹部5を形成し、該凹部5の底
面に検出電極6を形成すると共にリード導体10と電極
パット11を形成して、図1の(a)に示すように、基
台1の凹部5に接合基板体15の可動電極部20を位置
合わせして基台1の上に接合基板体15を配置し、基台
1との接触部分である支持部2と固定電極部21の固定
部7を基台1に陽極接合法により接合する。
【0023】なお、上記SOI基板の第1の半導体基板
12の厚みは第2の半導体基板13よりも格段に薄く形
成されている。
【0024】次に、図1の(b)に示すように、プラズ
マエッチングやウェットエッチング等のエッチング技術
により第2の半導体基板13の表面側からエッチングを
行って第2の半導体基板13の厚みを予め定めた厚さ
(例えば、第1の半導体基板12の厚みとほぼ同じ厚
さ)まで薄くする。
【0025】その後、上記第2の半導体基板13の表面
からエッチングストップ層14に達する通路18を第2
の半導体基板13に形成し、この通路18からエッチン
グストップ層14にエッチング液(例えば、弗素酸化物
水溶液)を侵食させ、エッチングストップ層14をエッ
チング除去する。このエッチング液に対してシリコン基
板はエッチングされないので、上記エッチング液によっ
て前記支持部2と可動電極部20と固定電極部21と梁
部22が損傷してしまうことはない。
【0026】上記エッチングストップ層14のエッチン
グ除去に伴って、第2の半導体基板13が剥離し、図1
の(d)に示すように、可動電極部20と固定電極部2
1が分離して振動型半導体センサが完成する。
【0027】この実施形態例によれば、基台1に接合基
板体15を接合させた後に、第2の半導体基板13を全
て取り除くのではなく、第2の半導体基板13を予め定
めた厚み分だけ残すので、第1の半導体基板12との接
合界面に発生するエッチングストップ層14の応力は、
第2の半導体基板13との接合界面に発生するエッチン
グストップ層14の応力により相殺され、上記接合界面
の応力に起因したエッチングストップ層14の反りを防
止することができる。
【0028】このように、エッチングストップ層14の
反りを防止できるので、前述したようなエッチングスト
ップ層14の反りに起因した問題、つまり、エッチング
ストップ層14の反りに伴って支持部2や固定部7が持
ち上がり、基台1から支持部2や固定部7が剥がれてし
まうという問題を回避することができ、振動型半導体セ
ンサの歩留まりを向上させることが容易となり、このこ
とにより、振動型半導体センサの価格を安価にすること
ができる。
【0029】なお、この発明は上記実施形態例に限定さ
れるものではなく、様々な実施の形態を採り得る。例え
ば、上記実施形態例では、第1の半導体基板12と第2
の半導体基板13がエッチングストップ層14を挟み込
み予め接合一体化したSOI基板を用いたが、第1の半
導体基板12と第2の半導体基板13を別個に用意して
おき、上記第1の半導体基板12と第2の半導体基板1
3をエッチングストップ層14を介して接合一体化して
接合基板体15を作製してもよい。
【0030】また、上記実施形態例では、エッチングス
トップ層14は酸化シリコンにより形成されていたが、
ガラス材料により形成してもよい。さらに、上記実施形
態例では、基台1はガラス基板により構成されていた
が、ガラス以外の絶縁体により構成してもよい。さら
に、上記実施形態例では、第1の半導体基板12や第2
の半導体基板13はシリコン基板により構成されていた
が、シリコン以外のゲルマニウム等の半導体基板により
構成してもよい。
【0031】さらに、上記実施形態例では、第1の半導
体基板12の異方性エッチングを行うときにはKOH水
溶液をエッチング液として用いていたが、第1の半導体
基板12を異方性エッチングでき、かつ、エッチングス
トップ層14に対して侵食しない溶液であれば、上記K
OH水溶液以外のエッチング液を用いてもよい。さら
に、第1の半導体基板12のエッチングは、低温RIE
などのドライエッチングによって行うこともできる。
【0032】さらに、この実施形態例では、図2に示す
振動型半導体センサを例にして説明したが、この発明の
振動型半導体センサの製造方法は上記図2の振動型半導
体センサ以外の振動型半導体センサ(異なる構成のマイ
クロジャイロ、加速度センサ等)にも適用することがで
きる。
【0033】
【発明の効果】この発明によれば、基台に接合基板体を
接合した後に、第2の半導体基板を予め定めた厚み分だ
け残すので、第1の半導体基板との接合界面に生じるエ
ッチングストップ層の応力は、第2の半導体基板との接
合界面に生じるエッチングストップ層の応力により相殺
され、上記接合界面の応力に起因したエッチングストッ
プ層の反りを防止することができる。
【0034】上記のように、エッチングストップ層の反
りを防止できるので、エッチングストップ層の反りに伴
って支持部や固定電極部が持ち上がって支持部や固定電
極部が基台から剥がれてしまうという問題を回避するこ
とが可能である。このことによって、振動型半導体セン
サの歩留まりを向上させることができる。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method of manufacturing a vibration type semiconductor sensor such as an acceleration sensor or a micro gyro manufactured by processing and forming a semiconductor substrate by an etching technique. is there. 2. Description of the Related Art FIG. 2 (a) shows an example of a microgyro which is a vibration type semiconductor sensor, and FIG. 2 (b) shows an AA portion shown in FIG. 2 (a). Is shown in cross section. As shown in FIGS. 2A and 2B, a support 2 (2a, 2b) is fixedly formed on a base 1 made of a glass substrate, and the support 2a, 2b is The movable portion 3 commonly connected via the beam portion 22 is formed. The movable portion 3 has comb-shaped movable electrodes 4 extending from both side surfaces thereof.
The movable electrode section 20 is constituted by. A concave portion 5 is formed on the surface of the base 1 facing the movable electrode portion 20,
The movable electrode section 20 is supported by the support section 2 via the beam section 22 in a state of being separated from the base 1. A detection electrode 6 is formed on the bottom surface of the concave portion 5 of the base 1 so as to face the movable portion 3 via a gap. As described above, since the concave portion 5 is formed on the surface of the base 1 facing the movable electrode portion 20, the movable electrode portion 20 can be displaced in the z direction shown in FIG. . Further, since the beam portion 22 is formed to extend in the y-axis direction, the movable electrode portion 20 can be displaced in the x direction shown in FIG. [0004] A fixing portion 7 (7
a, 7b) are fixedly formed, and the fixed portion 7 is formed with a comb-shaped fixed electrode 8 extending so as to mesh with the movable electrode 4, and the electrode surface of the movable electrode 4 and the fixed electrode 8 are fixed.
Are opposed to each other via a gap. The fixed part 7 and the fixed electrode 8 constitute a fixed electrode part 21. Further, on the base 1, a lead conductor 10 which is electrically connected to each of the movable electrode 4 and the detection electrode 6 is formed, and an electrode pad 11 which is connected to the leading end side of the lead conductor 10 is formed. I have. The electrode pad 11 is also formed on the fixed part 7. The support 2, movable section 3, movable electrode 4, fixed section 7, fixed electrode 8, and beam section 22 are made of low-resistance silicon (for example, polysilicon). The vibration type semiconductor sensor shown in FIG. 2 is constructed as described above. For example, each electrode pad 11 is conductively connected to a predetermined connecting portion (not shown), and is fixed to the movable electrode 4. When the electrode 8 is connected to voltage applying means (not shown) through the electrode pad 11 and the lead conductor 10 and an AC voltage is applied between the movable electrode 4 and the fixed electrode 8,
An electrostatic force is generated between the movable electrode 4 and the fixed electrode 8, and the electrostatic force causes the movable electrode portion 20 (the movable portion 3 and the movable electrode 4) to vibrate in the x direction indicated by the arrow A in FIG. I do. If the angular velocity acts on the vibrating semiconductor sensor with the y axis as the central axis in the state of the excitation vibration as described above, a direction orthogonal to both the excitation vibration direction and the central axis direction (z direction). ) Generates Coriolis force. The movable electrode section 20 detects and vibrates in the z direction due to the Coriolis force, and the capacitance between the movable section 3 and the detection electrode 6 is changed by the detected vibration. A change in the capacitance between the movable part 3 and the detection electrode 6 is input to a capacitance-voltage conversion circuit (not shown) via the lead conductor 10 and the electrode pad 11 and converted into a voltage.
It is possible to detect the magnitude of the rotational angular velocity around the y-axis based on the detected voltage. An example of a method of manufacturing the vibration type semiconductor sensor having the above configuration will be described with reference to FIGS. 3 and 4 show an example of a manufacturing process of the vibration type semiconductor sensor shown in FIG. 2 by a cross section taken along the line AA in FIG. 2 (a). As shown in FIG. 4A, a concave portion 5 facing the movable electrode portion 20 is previously formed on the surface of the base 1 made of a glass substrate, and thereafter, as shown in FIG. As shown, a detection electrode 6 is formed on the bottom surface of the recess 5 and
A lead conductor 10 and an electrode pad 11 are formed on the surface of the base 1. Then, as shown in FIG. 3A, a first semiconductor substrate 12 composed of a silicon substrate and a second semiconductor substrate 13 composed of a silicon substrate are formed of silicon oxide. A bonding substrate body 15 is formed by joining and integrating via an etching stop layer 14, and the supporting portion 2, the movable electrode portion 20, the fixed electrode portion 21, and the beam portion are formed on the surface of the first semiconductor substrate 12 of the bonding substrate body 15. A mask (for example, a nitride film (not shown)) that defines an area where 22 is to be formed is covered. Thereafter, anisotropic etching is performed from the surface side of the first semiconductor substrate 12 with a KOH aqueous solution to obtain a structure shown in FIG.
(B), the movable electrode part 20 and the fixed electrode part 2
1 is removed by etching until the partition region 16 that defines the first region 1 and the region 17 that follows the support portion 2, the fixed portion 7 of the fixed electrode portion 21, and the beam portion 22 reach the etching stop layer 14,
Support part 2, movable electrode part 20, fixed electrode part 21, beam part 22
Is formed. The KOH aqueous solution etches the first semiconductor substrate 12, which is a silicon substrate, in the depth direction and does not erode the etching stop layer 14, which is a silicon oxide layer.
Stop the etching with the H aqueous solution. Next, the mask on the first semiconductor substrate 12 is removed, and as shown in FIG. 3C, the movable electrode section 20 is aligned with the concave portion 5 of the base 1 shown in FIG. Then, the bonding substrate body 15 is arranged on the base 1, and the support 2 and the fixing part 7 of the fixed electrode part 21 are brought into contact with the base 1 and fixed by anodic bonding. Then, etching is performed from the front surface side of the second semiconductor substrate 13 to remove all the second semiconductor substrate 13 as shown in FIG. 3D, and thereafter, (FIG. As shown in e), the etching stop layer 14 is removed, the movable electrode section 20 and the fixed electrode section 21 are separated, and the vibration type semiconductor sensor is completed. However, in the method of manufacturing the vibration type semiconductor sensor, after the base 1 and the bonding substrate 15 are bonded, as shown in FIG. Since the second semiconductor substrate 13 is entirely removed, there is a problem that the number of defective products increases and the yield of the vibration type semiconductor sensor decreases. Because, as mentioned above,
When the second semiconductor substrate 13 is completely removed, the etching stop layer 1 formed at the bonding interface with the first semiconductor substrate 12 is formed.
In many cases, the stress 4 causes the etching stop layer 14 to warp and lift the support portion 2 and the fixing portion 7, and the support portion 2 and the fixing portion 7 come off the base 1 in many cases. That is, the yield of the type semiconductor sensor is reduced. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a vibration type semiconductor sensor capable of improving the yield. Means for Solving the Problems In order to achieve the above object, the present invention has the following structure to solve the above problems. That is, a method of manufacturing a vibration-type semiconductor sensor according to the present invention includes a bonding substrate body in which a first semiconductor substrate and a second semiconductor substrate are bonded and integrated with an etching stop layer interposed therebetween, and a base having a concave portion formed on the surface. First, anisotropic etching is performed from the surface side of the first semiconductor substrate of the bonding substrate body to partition the fixed electrode portion and the movable electrode portion, and the partition region is connected to the movable electrode portion. The region that models the supporting portion to be etched is removed until the etching stop layer is reached, and the fixed electrode portion, the movable electrode portion, and the supporting portion are processed and formed. Thereafter, the movable electrode portion of the bonded substrate body is formed in the concave portion of the base. The fixed electrode portion and the support portion are joined and fixed to the base by aligning, and then etching is performed from the front surface side of the second semiconductor substrate, so that the thickness of the second semiconductor substrate becomes a predetermined thickness. Was When the etching of the second semiconductor substrate is completed, a passage from the surface of the second semiconductor substrate to the etching stop layer is formed in the second semiconductor substrate, and the etching is performed on the etching stop layer through the passage. The second semiconductor substrate is peeled off by etching the etching stop layer by eroding the liquid,
The above-mentioned problem is solved by a configuration in which the fixed electrode portion and the movable electrode portion are separated from each other. In the invention having the above structure, after the supporting portion of the bonded substrate and the fixed electrode portion are bonded to the base, the second semiconductor substrate is left by a predetermined thickness.
The stress of the etching stop layer generated at the bonding interface with the first semiconductor substrate is offset by the stress of the etching stop layer generated at the bonding interface with the second semiconductor substrate, and the etching stop caused by the stress of the bonding interface is performed. Layer warpage is avoided. As described above, since the warpage of the etching stop layer is avoided, the problem that the support portion and the fixed electrode portion are lifted by the warpage of the etching stop layer and the support portion and the fixed electrode portion are separated from the base can be prevented. Thus, the yield of the vibration-type semiconductor sensor can be improved, and an inexpensive vibration-type semiconductor sensor can be provided. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a method of manufacturing a vibration type semiconductor sensor according to this embodiment. The vibration type semiconductor sensor shown in this embodiment has the same configuration as that of the prior art shown in FIG. 2, and FIG. 1 shows an example of the manufacturing process of the vibration type semiconductor sensor shown in FIG. It is indicated by the section of the part. Since the configuration of the vibration-type semiconductor sensor of FIG. 2 has been described above, a duplicate description thereof will be omitted. In this embodiment, a first semiconductor substrate 12 formed of a silicon substrate and a second semiconductor substrate 13 formed of a silicon substrate are joined together in advance by sandwiching an etching stop layer 14 formed of silicon oxide. An SOI (Silicon on insulator) substrate is used as the bonding substrate body 15, and the support portion 2, the movable electrode portion 20 (the movable portion 3 and the movable electrode 4), and the fixed electrode portion are provided on the first semiconductor substrate 12 as described above. 21 (fixed portion 7 and fixed electrode 8) and beam portion 22 are processed and formed by using a photo-etching method. On the other hand, concave portion 5 is formed in base 1 formed of a glass substrate, and the bottom surface of concave portion 5 is formed. Forming the detection electrode 6 and forming the lead conductor 10 and the electrode pad 11, the movable electrode portion 20 of the bonding substrate 15 is aligned with the concave portion 5 of the base 1 as shown in FIG. On the base 1 The case substrate 15 is disposed, is joined by anodic bonding to the support portion 2 which is a contact portion between the base 1 and the fixing portion 7 of the fixed electrode portion 21 to the base 1. The thickness of the first semiconductor substrate 12 of the SOI substrate is formed to be much thinner than that of the second semiconductor substrate 13. Next, as shown in FIG. 1B, etching is performed from the surface side of the second semiconductor substrate 13 by an etching technique such as plasma etching or wet etching to reduce the thickness of the second semiconductor substrate 13. The thickness is reduced to a predetermined thickness (for example, substantially the same thickness as the thickness of the first semiconductor substrate 12). Thereafter, a passage 18 reaching the etching stop layer 14 from the surface of the second semiconductor substrate 13 is formed in the second
Then, an etching solution (for example, a fluorine oxide aqueous solution) is eroded from the passage 18 into the etching stop layer 14 to remove the etching stop layer 14 by etching. Since the silicon substrate is not etched by this etchant, the etchant does not damage the support 2, movable electrode 20, fixed electrode 21, and beam 22. As the etching stop layer 14 is removed by etching, the second semiconductor substrate 13 is peeled off.
(D), the movable electrode part 20 and the fixed electrode part 2
1 is separated to complete the vibration type semiconductor sensor. According to this embodiment, after bonding the bonding substrate body 15 to the base 1, the second semiconductor substrate 13 is not removed by a predetermined thickness instead of removing the entire second semiconductor substrate 13. , The stress of the etching stop layer 14 generated at the bonding interface with the first semiconductor substrate 12 is:
The warpage of the etching stop layer 14 caused by the stress at the bonding interface, which is offset by the stress of the etching stop layer 14 generated at the bonding interface with the second semiconductor substrate 13, can be prevented. As described above, since the warpage of the etching stop layer 14 can be prevented, the problem caused by the warpage of the etching stop layer 14 described above, that is, the support portion 2 and the fixed portion 7 can be lifted, and the problem that the support portion 2 and the fixing portion 7 are peeled off from the base 1 can be avoided, and it is easy to improve the yield of the vibration type semiconductor sensor. Can be made cheaper. The present invention is not limited to the above-described embodiment, but can adopt various embodiments. For example, in the above embodiment, the first semiconductor substrate 12 and the second
Although the SOI substrate is used in which the semiconductor substrate 13 is pre-joined and integrated with the etching stop layer 14 interposed therebetween, the first semiconductor substrate 12 and the second semiconductor substrate 13 are separately prepared, and the first semiconductor substrate 13 is used. 12 and second semiconductor substrate 1
3 may be joined and integrated via an etching stop layer 14 to produce a joined substrate body 15. In the above embodiment, the etching stop layer 14 is formed of silicon oxide.
It may be formed of a glass material. Furthermore, in the above embodiment, the base 1 is formed of a glass substrate, but may be formed of an insulator other than glass. Further, in the above embodiment, the first semiconductor substrate 12 and the second
Although the semiconductor substrate 13 is composed of a silicon substrate, it may be composed of a semiconductor substrate of germanium other than silicon. Further, in the above embodiment, when performing anisotropic etching of the first semiconductor substrate 12, a KOH aqueous solution is used as an etchant. However, the first semiconductor substrate 12 can be anisotropically etched. If the solution does not erode the etching stop layer 14, the above K
An etchant other than the OH aqueous solution may be used. Further, the etching of the first semiconductor substrate 12 is performed by low-temperature RIE.
It can also be performed by dry etching such as. Further, in this embodiment, the vibration type semiconductor sensor shown in FIG. 2 has been described as an example, but the method of manufacturing the vibration type semiconductor sensor of the present invention is not limited to the vibration type semiconductor sensor shown in FIG. The present invention can also be applied to a semiconductor sensor (a micro gyro, an acceleration sensor, or the like having a different configuration). According to the present invention, the second semiconductor substrate is left by a predetermined thickness after the bonding substrate is bonded to the base, so that the bonding interface with the first semiconductor substrate is formed. The generated stress of the etching stop layer is offset by the stress of the etching stop layer generated at the bonding interface with the second semiconductor substrate, and the warpage of the etching stop layer due to the stress at the bonding interface can be prevented. As described above, since the warpage of the etching stop layer can be prevented, the problem that the support portion and the fixed electrode portion are lifted due to the warpage of the etching stop layer and the support portion and the fixed electrode portion are peeled off from the base. Can be avoided. Thus, the yield of the vibration type semiconductor sensor can be improved.
【図面の簡単な説明】
【図1】この発明に係る振動型半導体センサの製造方法
の一実施形態例を示す説明図である。
【図2】振動型半導体センサの一例を示す説明図であ
る。
【図3】従来の振動型半導体センサの製造手法の一例を
示す説明図である。
【図4】基台の製造過程の一例を示す説明図である。
【符号の説明】
1 基台
2 支持部
3 可動部
4 可動電極
5 凹部
7 固定部
8 固定電極
12 第1の半導体基板
13 第2の半導体基板
14 エッチングストップ層
15 接合基板体
16 仕切り領域
17 領域
18 通路
20 可動電極部
21 固定電極部BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing one embodiment of a method for manufacturing a vibration type semiconductor sensor according to the present invention. FIG. 2 is an explanatory diagram showing an example of a vibration type semiconductor sensor. FIG. 3 is an explanatory view showing an example of a conventional method of manufacturing a vibration type semiconductor sensor. FIG. 4 is an explanatory view showing an example of a manufacturing process of the base. DESCRIPTION OF REFERENCE NUMERALS 1 base 2 support part 3 movable part 4 movable electrode 5 concave part 7 fixed part 8 fixed electrode 12 first semiconductor substrate 13 second semiconductor substrate 14 etching stop layer 15 bonding substrate body 16 partition area 17 area 18 passage 20 movable electrode section 21 fixed electrode section
Claims (1)
エッチングストップ層を挟み込んで接合一体化した接合
基板体と、表面に凹部が形成された基台とを用意してお
き、まず、上記接合基板体の第1の半導体基板の表面側
から異方性エッチングを行って固定電極部と可動電極部
を区画する仕切り領域と、上記可動電極部に連接する支
持部をかたどる領域とを上記エッチングストップ層に達
するまでエッチング除去し固定電極部と可動電極部と支
持部を加工形成し、その後、上記接合基板体の可動電極
部を上記基台の凹部に位置合わせして基台に上記固定電
極部と支持部を接合固定し、次に、第2の半導体基板の
表面側からエッチングを行い、第2の半導体基板の厚み
が予め定められた厚みとなったときに第2の半導体基板
のエッチングを終了し、然る後、上記第2の半導体基板
の表面からエッチングストップ層に達する通路を第2の
半導体基板に形成し、該通路を通してエッチングストッ
プ層にエッチング液を侵食させエッチングストップ層を
エッチング除去して第2の半導体基板を剥離し、固定電
極部と可動電極部を分離する振動型半導体センサの製造
方法。(57) [Claim 1] A bonded substrate body in which a first semiconductor substrate and a second semiconductor substrate are bonded and integrated with an etching stop layer interposed therebetween, and a base having a concave portion formed on the surface. First, anisotropic etching is performed from the surface side of the first semiconductor substrate of the bonding substrate body to partition the fixed electrode portion and the movable electrode portion, and the partition region is connected to the movable electrode portion. The region that models the supporting portion to be etched is removed until the etching stop layer is reached, and the fixed electrode portion, the movable electrode portion, and the supporting portion are processed and formed. Thereafter, the movable electrode portion of the bonded substrate body is formed in the concave portion of the base. The fixed electrode portion and the support portion are joined and fixed to the base by aligning, and then etching is performed from the front surface side of the second semiconductor substrate, so that the thickness of the second semiconductor substrate becomes a predetermined thickness. When the second semiconductor After the etching of the plate is completed, a passage from the surface of the second semiconductor substrate to the etching stop layer is formed in the second semiconductor substrate, and the etching solution is eroded into the etching stop layer through the passage to stop the etching. A method for manufacturing a vibration-type semiconductor sensor in which a layer is removed by etching to peel off a second semiconductor substrate and separate a fixed electrode portion and a movable electrode portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35718396A JP3435647B2 (en) | 1996-12-26 | 1996-12-26 | Manufacturing method of vibration type semiconductor sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35718396A JP3435647B2 (en) | 1996-12-26 | 1996-12-26 | Manufacturing method of vibration type semiconductor sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10189500A JPH10189500A (en) | 1998-07-21 |
JP3435647B2 true JP3435647B2 (en) | 2003-08-11 |
Family
ID=18452818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35718396A Expired - Fee Related JP3435647B2 (en) | 1996-12-26 | 1996-12-26 | Manufacturing method of vibration type semiconductor sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3435647B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9446938B2 (en) | 2013-05-09 | 2016-09-20 | Denso Corporation | SOI substrate, physical quantity sensor, SOI substrate manufacturing method, and physical quantity sensor manufacturing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6277666B1 (en) * | 1999-06-24 | 2001-08-21 | Honeywell Inc. | Precisely defined microelectromechanical structures and associated fabrication methods |
JP6020341B2 (en) * | 2013-05-09 | 2016-11-02 | 株式会社デンソー | Capacitive physical quantity sensor and manufacturing method thereof |
-
1996
- 1996-12-26 JP JP35718396A patent/JP3435647B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9446938B2 (en) | 2013-05-09 | 2016-09-20 | Denso Corporation | SOI substrate, physical quantity sensor, SOI substrate manufacturing method, and physical quantity sensor manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH10189500A (en) | 1998-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3575373B2 (en) | Manufacturing method of external force detection sensor | |
US6263735B1 (en) | Acceleration sensor | |
JP2000206142A (en) | Semiconductor dynamic quantity sensor and its manufacture | |
JP2000205862A (en) | Inertial microsensor and manufacture thereof | |
US6973829B2 (en) | Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate | |
JPH06123632A (en) | Dynamic quantity sensor | |
JP3435647B2 (en) | Manufacturing method of vibration type semiconductor sensor | |
JPH10190007A (en) | Manufacture of semiconductor inertia sensor | |
JP2001004658A (en) | Dual-shaft semiconductor acceleration sensor and manufacture thereof | |
JPH10270714A (en) | Manufacture of semiconductor inertia sensor | |
US8329491B2 (en) | Mechanical quantity sensor and method of manufacturing the same | |
JPH08247768A (en) | Angular velocity sensor | |
JPH10163505A (en) | Semiconductor inertia sensor and its manufacture | |
JPH10270718A (en) | Manufacture of semiconductor inertia sensor | |
JP4356217B2 (en) | Electronic component manufacturing method and electronic component | |
KR101573518B1 (en) | Ultrasonic transducer and fabricating method thereof | |
JP4367111B2 (en) | Semiconductor dynamic quantity sensor | |
JP4569167B2 (en) | Manufacturing method of external force detection sensor | |
JP4127198B2 (en) | Semiconductor device | |
JP2002148278A (en) | Semiconductor kinetic quantity sensor and its manufacturing method | |
JP2000082824A (en) | Manufacture of semiconductor mechanical strain sensor | |
JP5062146B2 (en) | PHYSICAL QUANTITY SENSOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE | |
JP3551821B2 (en) | Method for manufacturing semiconductor device | |
JP3578028B2 (en) | Method of manufacturing acceleration sensor | |
JP3569950B2 (en) | Method of manufacturing vibration type semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080606 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |