JP3433579B2 - Moisture measurement method - Google Patents

Moisture measurement method

Info

Publication number
JP3433579B2
JP3433579B2 JP17844295A JP17844295A JP3433579B2 JP 3433579 B2 JP3433579 B2 JP 3433579B2 JP 17844295 A JP17844295 A JP 17844295A JP 17844295 A JP17844295 A JP 17844295A JP 3433579 B2 JP3433579 B2 JP 3433579B2
Authority
JP
Japan
Prior art keywords
cathode
anode
diaphragm
titration
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17844295A
Other languages
Japanese (ja)
Other versions
JPH0933484A (en
Inventor
弘眞 加藤
尚子 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17844295A priority Critical patent/JP3433579B2/en
Publication of JPH0933484A publication Critical patent/JPH0933484A/en
Application granted granted Critical
Publication of JP3433579B2 publication Critical patent/JP3433579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明は、水分測定方法に関し、
更に詳しくはカールフィッシャー(以下、KFと略記す
る)電量滴定法を利用した水分測定方法に関わるもので
ある。
TECHNICAL FIELD The present invention relates to a method for measuring water content,
More specifically, it relates to a water content measuring method using a Karl Fischer (hereinafter abbreviated as KF) coulometric titration method.

【0002】[0002]

【従来の技術】KF反応は下記(1)式のように表さ
れ、この反応では水分子が定量的に反応することから、
水分定量に広く利用されている。そして、水分定量に使
用される薬品がKF試薬として製品化され、広く一般に
用いられている。
2. Description of the Related Art The KF reaction is represented by the following equation (1). Since water molecules react quantitatively in this reaction,
Widely used for moisture determination. A chemical used for quantitative determination of water is commercialized as a KF reagent and is widely used.

【0003】[0003]

【数1】 SO2 +I2 +3Base+H2 O→ 2Base・HI+Base・SO3 (1)[Equation 1] SO 2 + I 2 + 3Base + H 2 O → 2Base · HI + Base · SO 3 (1)

【0004】従来のKF試薬には容量滴定用試薬と電量
滴定用試薬がある。容量滴定用試薬は、二酸化硫黄と塩
基の共存化でヨウ素I2 により滴定し、その時の滴定量
より水分量を求めるための試薬である。一方、電量滴定
用試薬は二酸化硫黄と塩基の共存化でヨウ化物イオンを
電気化学的にヨウ素I2 に酸化して上記(1)式の反応
を行わせ、その時に要した電気量より水分量を測定する
ための試薬である。
Conventional KF reagents include volumetric titration reagents and coulometric titration reagents. The volumetric titration reagent is a reagent for titrating with iodine I 2 in the coexistence of sulfur dioxide and a base, and determining the water content from the titration amount at that time. On the other hand, the reagent for coulometric titration electrochemically oxidizes iodide ion to iodine I 2 in the coexistence of sulfur dioxide and a base to cause the reaction of the above formula (1) to be carried out, and the amount of water is more than the amount of electricity required Is a reagent for measuring.

【0005】KF反応を生じさせる電解セルは通常、図
2のような構造をしている。陽極(網状白金電極)5で
はヨウ化物イオンの酸化が起こり、陰極(網状白金電
極)6ではその電気量に応じた還元反応が起こってい
る。また、陽極5と陰極6の表面積はほぼ同じで通常、
5から10cm2 である。陰極6と陽極5の間には隔膜
7が設けられている。陰極6では、陰極液3によって異
なるが、例えば四塩化炭素、二酸化硫黄及びアミンなど
のメタノール溶液からなる場合は四塩化炭素が還元され
たり、二酸化硫黄が還元されたり、メタノールが還元さ
れたりしていた(Anal.Sci.,7,299(1
991))。この際二酸化硫黄が還元されると還元力の
強い硫黄酸化物が生成され、隔膜を通って陽極液側に電
気泳動で移動して、陽極で生成されたヨウ素を還元し、
測定値に影響を与える可能性がある。従って、還元反応
をメタノールの電解による水素ガス生成のみに制御でき
れば、隔膜7は不要となり、また、一般に二酸化硫黄を
大量に含んでいる陽極液を陰極液として用いることも可
能となる。隔膜無し電解セルは保守が容易であり、ある
限られた試料に対しては便利であった。
An electrolysis cell for causing a KF reaction usually has a structure as shown in FIG. Oxidation of iodide ions occurs at the anode (reticular platinum electrode) 5, and reduction reaction according to the amount of electricity occurs at the cathode (reticular platinum electrode) 6. Further, the surface areas of the anode 5 and the cathode 6 are almost the same, and
It is 5 to 10 cm 2 . A diaphragm 7 is provided between the cathode 6 and the anode 5. At the cathode 6, although it depends on the catholyte 3, for example, when it is composed of a methanol solution of carbon tetrachloride, sulfur dioxide, amine, etc., carbon tetrachloride is reduced, sulfur dioxide is reduced, or methanol is reduced. (Anal.Sci., 7,299 (1
991)). At this time, when the sulfur dioxide is reduced, a strong reducing power of sulfur oxide is generated, which migrates through the diaphragm to the anolyte side by electrophoresis to reduce the iodine generated at the anode,
May affect measurements. Therefore, if the reduction reaction can be controlled only to generate hydrogen gas by electrolysis of methanol, the diaphragm 7 becomes unnecessary, and in general, the anolyte containing a large amount of sulfur dioxide can be used as the catholyte. The diaphragmless electrolysis cell was easy to maintain and convenient for some limited samples.

【0006】[0006]

【発明が解決しようとする課題】しかし、試料によって
は正確性に疑問が生じるような場合がある。例えば、陰
極で還元を受けるような化合物を含む試料を測定する場
合、陰極で還元された化合物が陽極で生成されたヨウ素
と直接、反応し、水分測定を妨害する。例えば、ニトロ
エタンなどを隔膜無しの電解セルで測定すると、陰極で
ニトロエタンが還元され、その還元生成物がヨウ素と反
応するため、正常な測定値を得ることは困難である。本
発明は上記従来の問題を解決し、高い滴定精度を可能と
し、陽極液、陰極液に同じ陽極液を用いることができ、
試薬の保守管理が容易なKF電量滴定方法を提供するこ
とを目的とする。
However, the accuracy may be questioned depending on the sample. For example, when measuring a sample containing a compound that undergoes reduction at the cathode, the compound reduced at the cathode reacts directly with iodine produced at the anode, interfering with moisture measurement. For example, when nitroethane or the like is measured in an electrolytic cell without a diaphragm, it is difficult to obtain a normal measured value because nitroethane is reduced at the cathode and the reduction product reacts with iodine. The present invention solves the above-mentioned conventional problems, enables high titration accuracy, and can use the same anolyte as the anolyte and catholyte,
It is an object of the present invention to provide a KF coulometric titration method that facilitates maintenance and management of reagents.

【0007】[0007]

【課題を解決するための手段】本発明は、KF電量滴定
法による水分測定方法であって、少なくとも検出電極、
陽極を保持する陽極槽、および陰極を保持する陰極槽と
から成り、陽極槽と陰極槽は隔膜で仕切られており、且
つ、陰極の電流密度が1〜20A/cm2 となる表面積
の陰極を有する電解セルを用い、一液型の滴定用電解液
にて電量滴定することを特徴とする水分測定方法であ
る。即ち、特定の電流密度となるようにした陰極を設
け、且つ陽極槽と陰極槽との間に隔膜を設け、また特別
な陰極液を用いることなしに陽極液を陽極液としての他
に、陰極液として用い、即ち、一液型で用いても正確な
測定を可能とした。
The present invention provides a method for measuring water content by a KF coulometric titration method, which comprises at least a detection electrode,
It consists of an anode tank holding an anode and a cathode tank holding a cathode. The anode tank and the cathode tank are separated by a diaphragm, and a cathode having a surface area such that the current density of the cathode is 1 to 20 A / cm 2 It is a method for measuring water content, characterized in that coulometric titration is carried out using a one-liquid type electrolyte for titration using the electrolytic cell provided. That is, a cathode having a specific current density is provided, and a diaphragm is provided between the anode bath and the cathode bath, and the anolyte is used as the anolyte without using a special catholyte. Accurate measurement was possible even when used as a liquid, that is, when used as a one-liquid type.

【0008】[0008]

【発明の実施の形態】図1に本発明の電解セルを示し
た。本発明の電解セルを使用することによって、正確な
測定が可能となり、陽極液および陰極液に同じ陽極液を
使用することができるため、試薬の保守管理が容易にな
った。このように陰極で還元を受けやすい化合物を含む
試料の場合でも、隔膜で仕切られているため、精度のよ
い測定を行うことができる。陰極の電流密度は1〜20
A/cm2 とする。1A/cm2未満では、陰極での還
元反応で、還元力の強い硫黄酸化物が生成し易くなり、
20A/cm2 を越えると正常な電極反応が起きにく
い。
FIG. 1 shows an electrolytic cell of the present invention. By using the electrolysis cell of the present invention, accurate measurement is possible and the same anolyte can be used for the anolyte and the catholyte, which facilitates maintenance and management of the reagent. Even in the case of a sample containing a compound that is susceptible to reduction at the cathode as described above, since it is partitioned by the diaphragm, accurate measurement can be performed. The current density of the cathode is 1 to 20
A / cm 2 . If it is less than 1 A / cm 2 , the reduction reaction at the cathode tends to produce a strong reducing oxide,
If it exceeds 20 A / cm 2 , normal electrode reaction is difficult to occur.

【0009】本発明における陰極の表面積は0.02〜
1cm2 が好ましい。更には0.05〜0.5cm2
好ましい。材質は白金線よりなるが、他の材質例えば、
金、ロジウム、チタニウム、グラファイト、カーボンフ
ァイバーあるいはそれらに白金メッキされていても良
い。隔膜はイオンを通して、溶液は通さないものであれ
ばよく、特にセラミック、イオン交換膜、又は多孔性ガ
ラス等が好ましい。例えば、アルミナ・シリカ主成分か
らなるセラミックでは細孔容積0.1から0.5ml/
gのものがよい。
The surface area of the cathode in the present invention is 0.02 to 0.02.
1 cm 2 is preferred. Furthermore, 0.05 to 0.5 cm 2 is preferable. The material is platinum wire, but other materials such as
It may be gold, rhodium, titanium, graphite, carbon fiber, or platinum-plated on them. The diaphragm may be one that allows ions to pass therethrough and does not allow a solution to pass therethrough, and ceramics, ion exchange membranes, or porous glass are particularly preferable. For example, for ceramics composed mainly of alumina / silica, the pore volume is 0.1 to 0.5 ml /
g is better.

【0010】本発明では一液型として用いるKF電解液
は以下のように、アミン、二酸化硫黄、ヨウ化物イオン
を必須成分とする非水溶液が望ましい。アミンとしては
モノエタノールアミン、ジエタノールアミン、トリエタ
ノールアミンなどのアルコールアミン、又はピリジン、
1,3−ジ−(2−ピリジル)プロパン、1,3−ジ−
(4−ピリジル)プロパン、2−メチルアミノピリジン
などのピリジン誘導体、イミダゾールやイミダゾール誘
導体、モルホリンなどがよく、1種類又は2種類以上の
混合アミンでもよい。濃度は0.1〜5M、好ましくは
0.5〜3Mである。
In the present invention, the KF electrolyte used as a one-pack type is preferably a non-aqueous solution containing amine, sulfur dioxide and iodide ion as essential components as follows. As the amine, alcohol amines such as monoethanolamine, diethanolamine and triethanolamine, or pyridine,
1,3-di- (2-pyridyl) propane, 1,3-di-
Pyridine derivatives such as (4-pyridyl) propane and 2-methylaminopyridine, imidazole and imidazole derivatives, and morpholine are preferable, and one kind or a mixed amine of two or more kinds may be used. The concentration is 0.1 to 5M, preferably 0.5 to 3M.

【0011】二酸化硫黄は0.05〜5M、好ましくは
0.1〜3Mである。ヨウ化物イオンは0.01〜1
M、好ましくは0.03〜0.3Mである。溶媒は、メ
タノール、エタノール、プロパノールなどのアルコール
類、エチレングリコール、プロピレングリコールなどの
グリコール類、上記グリコール類のモノアルキルエーテ
ル、ジエチレングリコールモノアルキルエーテルなどの
グリコールモノアルキルエーテル類、プロピレンカーボ
ネート、N−メチル−2−ピロリドン、1,3−ジメチ
ル−2−イミダゾリジノンなどの単独又は2種類以上の
混合系がよい。特にはアルコール類、グリコール類、グ
リコールモノアルキルエーテル類が好ましい。
The sulfur dioxide content is 0.05 to 5M, preferably 0.1 to 3M. Iodide ion is 0.01 to 1
M, preferably 0.03 to 0.3M. Solvents include alcohols such as methanol, ethanol and propanol, glycols such as ethylene glycol and propylene glycol, monoalkyl ethers of the above glycols, glycol monoalkyl ethers such as diethylene glycol monoalkyl ether, propylene carbonate and N-methyl- It is preferable to use 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone or the like alone or as a mixture of two or more kinds. Alcohols, glycols and glycol monoalkyl ethers are particularly preferable.

【0012】[0012]

【実施例】【Example】

実施例1 陰極として表面積0.24cm2 の白金線を用い、且
つ、陰極と陽極の間にセラミックの隔膜で仕切られた電
解セルを用いた。水分計としては400mA(陰極の電
流密度1.67A/cm2 )の定電流パルス電解を行う
ことができるModel「CA−05」(三菱化学製)
を用いた。陽極液、陰極液には市販の「アクアミクロン
AX」(三菱化学製、主な溶媒はメタノール及びプロピ
レンカーボネート)を各々100ml、5ml用いた。
水10μlを5回とニトロエタン1g、1−ニトロプロ
パン1g、o−ニトロトルエン1gを各2回装置の電解
セルに注入することによって測定した。尚、各試料毎に
陽極側の電解液は新しく入れ直した。その結果を表1、
2に示す。
Example 1 A platinum wire having a surface area of 0.24 cm 2 was used as a cathode, and an electrolytic cell partitioned by a ceramic diaphragm was used between the cathode and the anode. As a moisture meter, Model “CA-05” (manufactured by Mitsubishi Chemical) capable of performing constant current pulse electrolysis of 400 mA (cathode current density 1.67 A / cm 2 ).
Was used. Commercially available "Aquamicron AX" (manufactured by Mitsubishi Chemical, main solvents are methanol and propylene carbonate) were used as the anolyte and the catholyte in 100 ml and 5 ml, respectively.
The measurement was carried out by injecting 10 μl of water 5 times, 1 g of nitroethane, 1 g of 1-nitropropane, and 1 g of o-nitrotoluene twice into the electrolytic cell of the apparatus. The electrolyte solution on the anode side was newly replaced for each sample. The results are shown in Table 1,
2 shows.

【0013】比較例1 隔膜を保持しない電解セルを用いた以外は実施例1と同
じ測定を行った。その結果を表1、2に示す。ニトロエ
タン、1−ニトロプロパン、o−ニトロトルエンは正常
に測定できなかった。 比較例2 陰極の表面積が約7cm2 (陰極の電流密度0.06A
/cm2 )であること以外は実施例1と同じ測定を行っ
た。その結果を表1に示す。陰極液に二酸化硫黄が多く
含まれているため、その還元生成物が陽極側に移動し、
高めの測定値が得られた。なお、表2における通常の測
定値は、陽極槽と陰極槽が隔膜で仕切られている二液型
の電解セルを用いて測定したものである。
Comparative Example 1 The same measurement as in Example 1 was carried out except that an electrolytic cell without a diaphragm was used. The results are shown in Tables 1 and 2. Nitroethane, 1-nitropropane and o-nitrotoluene could not be measured normally. Comparative Example 2 The surface area of the cathode was about 7 cm 2 (current density of the cathode was 0.06 A
/ Cm 2 ) except that the same measurement as in Example 1 was performed. The results are shown in Table 1. Since the catholyte contains a large amount of sulfur dioxide, its reduction product moves to the anode side,
Higher measurements were obtained. The usual measured values in Table 2 are measured using a two-liquid type electrolytic cell in which the anode tank and the cathode tank are partitioned by a diaphragm.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】本発明によると、同じ陽極液を陽極液お
よび陰極液として使用でき、試薬の保守管理が容易で、
且つ、陰極ではほとんど二酸化硫黄が還元されないた
め、正確な水分値が得られるようになった。ニトロエタ
ン、1−ニトロプロパン、o−ニトロトルエンのように
隔膜がなければ陰極で還元を受け、陽極で生成したヨウ
素と反応するような試料でも、正確な測定が可能とな
る。
According to the present invention, the same anolyte can be used as the anolyte and the catholyte, and the reagent can be easily maintained and managed.
Moreover, since the sulfur dioxide is hardly reduced at the cathode, an accurate moisture value can be obtained. Accurate measurement is possible even with a sample such as nitroethane, 1-nitropropane, or o-nitrotoluene that has no diaphragm and undergoes reduction at the cathode and reacts with iodine produced at the anode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を適用した電量滴定用電解セ
ルの構成を模式的に示す断面説明図である。
FIG. 1 is a cross-sectional explanatory view schematically showing the constitution of an electrolysis cell for coulometric titration to which an embodiment of the present invention is applied.

【図2】従来の電量滴定用電解セルの構成を模式的に示
す断面説明図である。
FIG. 2 is a cross-sectional explanatory view schematically showing the configuration of a conventional coulometric titration electrolytic cell.

【符号の説明】[Explanation of symbols]

1 電解セル 2 陽極液 3 陰極液 4 検出電極 5 陽極 6 陰極 7 隔膜 1 Electrolysis cell 2 Anolyte 3 Catholyte 4 detection electrodes 5 anode 6 cathode 7 diaphragm

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/44 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 27/44

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カールフィッシャー電量滴定法による水
分測定方法であって、少なくとも検出電極、陽極を保持
する陽極槽、および陰極を保持する陰極槽とから成り、
陽極槽と陰極槽は隔膜で仕切られており、且つ、陰極の
電流密度が1〜20A/cm2 となる表面積の陰極を有
する電解セルを用い、一液型の滴定用電解液にて電量滴
定することを特徴とする水分測定方法。
1. A method for measuring water content by Karl Fischer coulometric titration, comprising at least a detection electrode, an anode tank holding an anode, and a cathode tank holding a cathode.
An anode cell and a cathode cell are separated by a diaphragm, and an electrolytic cell having a cathode having a surface area such that the current density of the cathode is 1 to 20 A / cm 2 is used, and coulometric titration is performed with a one-component titration electrolytic solution. A method for measuring water content, comprising:
【請求項2】 隔膜がセラミック、イオン交換膜又は多
孔性ガラスであることを特徴とする請求項1に記載の水
分測定方法。
2. The moisture measuring method according to claim 1, wherein the diaphragm is ceramic, an ion exchange membrane, or porous glass.
【請求項3】 滴定用電解液がアルコール類、グリコー
ル類又はグリコールモノアルキルエーテル類を含有する
ことを特徴とする請求項1又は2に記載の水分測定方
法。
3. The method for measuring water content according to claim 1, wherein the titration electrolytic solution contains alcohols, glycols or glycol monoalkyl ethers.
JP17844295A 1995-07-14 1995-07-14 Moisture measurement method Expired - Fee Related JP3433579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17844295A JP3433579B2 (en) 1995-07-14 1995-07-14 Moisture measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17844295A JP3433579B2 (en) 1995-07-14 1995-07-14 Moisture measurement method

Publications (2)

Publication Number Publication Date
JPH0933484A JPH0933484A (en) 1997-02-07
JP3433579B2 true JP3433579B2 (en) 2003-08-04

Family

ID=16048600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17844295A Expired - Fee Related JP3433579B2 (en) 1995-07-14 1995-07-14 Moisture measurement method

Country Status (1)

Country Link
JP (1) JP3433579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477913B2 (en) * 2010-11-22 2014-04-23 株式会社堀場製作所 Electrode body and measuring apparatus using the electrode body

Also Published As

Publication number Publication date
JPH0933484A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
US4227974A (en) Electrochemical cell having a polarographic device with ion selective electrode as working electrode and method of use
Matsuura et al. Standard potentials of alkali metals, silver, and thallium metal/ion couples in N, N′-dimethylformamide, dimethyl sulfoxide, and propylene carbonate
Fujinaga et al. Polarographic studies of dissolved oxygen in DMSO-water mixtures
US4368105A (en) Electrolytic solution for Karl Fischer coulometric titration
JP3433579B2 (en) Moisture measurement method
Yang et al. Determination of hydrazine compounds by capillary electrophoresis with a poly (glutamic acid) modified microdisk carbon fiber electrode
Lanning et al. Voltammetric study of the hydrogen ion/hydrogen couple in acetonitrile/water mixtures
Stanley et al. Amperometric membrane electrode for measurement of ozone in water
Solomon et al. Voltammetric studies of ion transfer across the water-nitrobenzene interface using crystal violet tetraphenylborate as supporting electrolyte in the organic phase
Guilbault et al. Glass-metal composite electrodes
Paddon et al. A reference electrode for electrochemical and cryoelectrochemical use in tetrahydrofuran solvent
Roberts Jr et al. Voltammetric determination of carbon monoxide at gold electrodes
Barek et al. Determination of carcinogenic azobenzene derivatives by constant-potential coulometry
Belanger Determination of sulfur dioxide by anodic oxidation on lead dioxide electrodes
McNicol et al. The influence of electrolyte purity on electrochemical measurements using platinum electrodes
O'Brien et al. Electrochemical study of ubiquinone 6 in aqueous methanol
Głab et al. Autoprotolysis constants by coulometric titration
GB1208209A (en) Method and system for determining the oxygen content in liquids
Hartley et al. Polarography of Nitroferrocene.
GB1436287A (en) Ion monitoring method and apparatus
Vaaler Graphite Anodes in Brine Electrolysis: IV. Effect of Anolyte pH on Corrosion Rate in Chlor‐Alkali Cells
Mihajlović et al. Application of hydrogen—palladium and deuterium—palladium electrodes in the coulometric—potentiometric determination of bases in some dipolar aprotic solvents
RU2660749C1 (en) Voltammetric method for the determination of hydrogen peroxide in aqueous solutions on a graphite electrode modified with colloidal silver particles
Bond et al. Alternating current and direct current voltammetry with a mercury pool electrode in concentrated hydrofluoric acid
Raspi et al. Voltammetric behaviour of the nitrosodisulfonate/hydroxylaminedisulfonate redox system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees