JP3430944B2 - Impression evaluation method - Google Patents
Impression evaluation methodInfo
- Publication number
- JP3430944B2 JP3430944B2 JP35656298A JP35656298A JP3430944B2 JP 3430944 B2 JP3430944 B2 JP 3430944B2 JP 35656298 A JP35656298 A JP 35656298A JP 35656298 A JP35656298 A JP 35656298A JP 3430944 B2 JP3430944 B2 JP 3430944B2
- Authority
- JP
- Japan
- Prior art keywords
- impression
- evaluation
- evaluation value
- makeup
- regression equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Processing (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、化粧する者が望ま
しい化粧法を容易に選択できるようにするため、その者
の印象を顔画像の特徴に基づいて客観的に得られる評価
値で表示する方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention displays a person's impression by an evaluation value objectively obtained based on the characteristics of a facial image so that the person who applies the makeup can easily select a desired makeup method. A method and apparatus.
【0002】[0002]
【従来の技術】従来、メイクアップ・アーティスト等の
化粧技術者は、伝えたいメッセージや印象をファッショ
ン全体に実現するため、まず、化粧を施すモデルの顔全
体あるいは目鼻口等の要素の比率等を観察することによ
り、その顔の特徴を把握し、それを様々な印象のタイプ
にあてはめて分類する。次いで、その分類を踏まえて、
各化粧技術者の個性を反映させつつ、種々の化粧技法を
施し、化粧が全体として目的とする印象を与えるものと
なるよう個々の化粧を行う。2. Description of the Related Art Conventionally, a makeup technician such as a makeup artist or the like must first determine the ratio of elements such as the entire face or eyes, nose and mouth of a model to be applied in order to realize a message or impression that he or she wants to convey. By observing, the features of the face are grasped, and the features are classified into various impression types. Then, based on the classification,
Various makeup techniques are applied while reflecting the individuality of each makeup technician, and individual makeup is performed so that the makeup as a whole gives the desired impression.
【0003】また、化粧品店の店頭等では、化粧品アド
バイザー等の化粧技術者が、アドバイスを受けようとす
る顧客の相貌や身体の特徴を観察してそれにより引き起
こされる印象を把握し、顧客の好みなどを聞き取り、顧
客の目的とする全体的な印象が発揮されるように化粧法
を調整する。そして、その化粧法を紙面に記入したり、
顔の一部又は全顔に対して実際に実施したりしてアドバ
イスしている。At a cosmetic store, a cosmetics technician such as a cosmetics adviser observes the face and body characteristics of a customer who wants to receive advice, grasps the impression caused by the physical appearance, and recognizes the customer's preference. And adjust the makeup method so that the customer's overall impression is achieved. Then, write down the makeup method on the paper,
I give advice by actually implementing it for some or all of the faces.
【0004】[0004]
【発明が解決しようとする課題】しかし、この化粧技術
者によるアドバイス方法では、化粧技術者が把握した特
徴が明示的かつ客観的に顧客に示されず、また、目鼻口
等の個々の部位の特徴やそこに施す化粧法と、目的とす
る全体的印象との関連も明示的かつ客観的には示されな
い。そのため、化粧技術者が化粧法を紙面に記入して
も、化粧技術者が抱く最終仕上がりのイメージが十分に
顧客に伝わらないという問題がある。そこで、化粧を実
際に施した場合においても、その後、顧客が自ら化粧し
た場合には、目的とする全体的な印象にならない場合が
往々にして生じている。However, according to this advice method by the cosmetic technician, the characteristics grasped by the cosmetic technician are not explicitly and objectively shown to the customer, and the characteristics of individual parts such as eyes, nose and mouth, etc. There is also no explicit or objective indication of the relationship between the makeup method applied there or the intended overall impression. Therefore, there is a problem that even if the makeup technician writes the makeup method on the paper, the image of the final finish held by the makeup technician is not sufficiently transmitted to the customer. Therefore, even when the makeup is actually applied, if the customer subsequently applies makeup himself, the desired overall impression often does not occur.
【0005】また、化粧技術者が分類する印象のタイプ
も当該化粧技術者により異なっている。さらに、化粧技
術者が分類するタイプの種類は、そのほとんどが主観的
かつ抽象的である。そのため、化粧技術者によるタイプ
の分類は、芸術的には利点があっても、実用的には統一
をはかることが困難であり、結局、一般人が化粧技術者
の印象のタイプの分類を利用することはできない。Further, the types of impressions classified by a makeup technician also differ depending on the makeup technician. Furthermore, most of the types of types that cosmetic technicians classify are subjective and abstract. Therefore, the classification of types by a cosmetician is artistically advantageous, but it is difficult to unify practically. In the end, the general public uses the classification of impression types of a cosmetician. It is not possible.
【0006】本発明は、以上のような従来技術の課題を
解決しようとするものであり、化粧のアドバイスを受け
る者が、化粧技術者の提案した化粧法を十分に理解し、
その化粧を自ら行った場合でも、容易に所望の印象の顔
に化粧できるようにするため、また、化粧技術者が、そ
の特性や技量に依存することなく、アドバイスを受ける
者に適した化粧法を容易に選択できるようにするため、
化粧のアドバイスを受ける者が本来的に有する印象を、
その者の顔画像の特徴に基づいて客観的に得られる評価
値で表示できるようにすることを目的とする。The present invention is intended to solve the above problems of the prior art, and a person who receives advice on makeup fully understands the makeup method proposed by the makeup technician,
In order to easily apply makeup to the face with the desired impression even when the makeup is applied by itself, the makeup technique is suitable for the person receiving the advice regardless of the characteristics or skill of the makeup technician. So that you can easily select
The impression that the person who receives makeup advice originally has
It is an object of the present invention to be able to display an evaluation value obtained objectively based on the characteristics of the face image of the person.
【0007】[0007]
【課題を解決するための手段】本発明は、上記の目的を
達成するため、予め、複数人の顔画像の特徴量と、所定
の評価軸における顔の印象の評価値との回帰式を求め、
次いで被験者の顔画像の特徴量に基づいて当該被験者の
顔の印象の評価値を得ることを特徴とする印象の評価方
法を提供する。特に、この印象の評価方法において、特
徴量として、顔画像中の所定の測定点間の距離や、顔画
像中の形状についての問診の評価値を使用し、顔の印象
の評価軸として、性別印象要素軸と年齢印象要素軸等の
生物学的要因に基づく評価軸を使用する方法を提供す
る。In order to achieve the above object, the present invention obtains in advance a regression equation of the feature amount of face images of a plurality of persons and the evaluation value of the facial impression on a predetermined evaluation axis. ,
Then, an evaluation method of an impression is provided, which is characterized in that an evaluation value of the impression of the face of the subject is obtained based on the feature amount of the face image of the subject. In particular, in this impression evaluation method, the distance between predetermined measurement points in the face image and the evaluation value of the inquiry about the shape in the face image are used as the feature amount, and the gender is used as the evaluation axis of the face impression. A method of using an evaluation axis based on biological factors such as an impression element axis and an age impression element axis is provided.
【0008】また、この方法を実施するのに好適な装置
として、顔画像の入力装置、複数人の顔画像の特徴量と
所定の評価軸における顔の印象の評価値との回帰式に基
づき、被験者の顔画像の特徴量から該被験者の印象の評
価値を出力する計算機能を備えた計算機、及び計算機か
ら出力される被験者の印象の評価値を表示する情報表示
装置からなる印象の評価装置を提供する。Further, as a device suitable for carrying out this method, based on a face image input device, a regression equation of a feature amount of face images of a plurality of persons and an evaluation value of a facial impression on a predetermined evaluation axis, An impression evaluation device comprising a computer having a calculation function for outputting the evaluation value of the impression of the subject from the feature amount of the face image of the subject, and an information display device for displaying the evaluation value of the impression of the subject output from the computer. provide.
【0009】本発明において、顔画像の特徴量とは、顔
の形状や色の特徴を表す量を包含し、例えば顔画像中の
所定の部位の間の計測値や、それらの顔全体あるいは目
鼻口等の各要素の形状に関する問診結果を所定の基準で
数値化したもの等をいう。In the present invention, the feature amount of the face image includes the amount representing the feature of the shape and color of the face, for example, the measured value between predetermined parts in the face image, the whole face or the nose and nose. It is a numerical representation of the results of an inquiry regarding the shape of each element such as the mouth, etc., according to a predetermined standard.
【0010】本発明によれば、顔画像の特徴量と印象の
評価値とに基づく回帰式により、化粧のアドバイスを受
ける者の顔の特徴を客観的にとらえ、その者が本来的に
有する印象をその者に示すことができる。According to the present invention, the regression equation based on the feature amount of the facial image and the evaluation value of the impression is used to objectively capture the facial features of the person who receives the makeup advice, and the impression that the person originally has. Can be shown to that person.
【0011】したがって、化粧のアドバイスを行う化粧
技術者は、化粧のアドバイスを受ける者に、その者が望
む顔の印象を実現するために好適な化粧法を、化粧のア
ドバイスを受ける者が本来有する顔の印象と、化粧法
と、その化粧法により得られる全体の印象との関連を含
めて説明することが可能となる。Therefore, a makeup technician who gives makeup advice naturally has a makeup method suitable for the person receiving the makeup advice to realize the desired facial impression. It is possible to explain the relationship between the facial impression, the makeup method, and the overall impression obtained by the makeup method.
【0012】一方、化粧のアドバイスを受ける者は、化
粧技術者の説明を容易に理解できるようになり、化粧技
術者が提示した化粧法を自ら実施した場合でも、容易に
所望の印象を呈する顔に化粧できるようになる。On the other hand, a person who receives makeup advice can easily understand the explanation of the makeup technician, and even if he / she implements the makeup method presented by the makeup technician, he / she can easily obtain a desired impression. You will be able to put on makeup.
【0013】[0013]
【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
【0014】図1は、本発明の印象の評価方法を実施す
る本発明の装置10の一態様のブロック図である。FIG. 1 is a block diagram of an embodiment of an apparatus 10 of the present invention for implementing the impression evaluation method of the present invention.
【0015】同図のように、この装置10は、画像入力
装置1、情報入力装置2、計算機3及び情報表示装置4
(モニター4a、プリンター4b)からなっている。As shown in FIG. 1, the device 10 includes an image input device 1, an information input device 2, a computer 3 and an information display device 4.
(Monitor 4a, printer 4b).
【0016】このうち画像入力装置1は、ビデオカメ
ラ、イメージスキャナ等の顔画像を計算機3に取り込ま
せる装置である。情報入力装置2は、数値情報等を計算
機に入力する装置であり、キーボード等からなる。情報
表示装置4は、計算機3の出力等を表示する装置であ
り、モニター4aとプリンター4bとからなる。なお、
これら本発明の装置10を構成する各装置は、必ずしも
同一室内あるいは同一施設内にある必要はなく、例え
ば、画像入力装置1、情報入力装置2及び情報表示装置
4を計算機3と離れた化粧品店の店頭等に設置し、これ
らを通信回線で接続し、情報の授受を遠隔的に行っても
よい。Of these, the image input device 1 is a device such as a video camera or an image scanner that causes the computer 3 to capture a face image. The information input device 2 is a device for inputting numerical information and the like into a computer, and includes a keyboard and the like. The information display device 4 is a device that displays the output of the computer 3 and the like, and includes a monitor 4a and a printer 4b. In addition,
Each of the devices constituting the device 10 of the present invention does not necessarily have to be in the same room or the same facility. For example, the image input device 1, the information input device 2, and the information display device 4 are separated from the computer 3 in a cosmetics store. It may be installed at a store or the like, and these may be connected by a communication line to exchange information remotely.
【0017】計算機3は、予め用意した、顔画像の特徴
量と所定の評価軸における顔の印象の評価値との回帰式
に基づき、被験者の顔画像の特徴量から該被験者の印象
の評価値を出力する計算機能を有するものを使用する。The computer 3 calculates the evaluation value of the impression of the subject from the feature value of the face image of the subject based on the regression formula prepared in advance, which is the regression value of the feature amount of the face image and the evaluation value of the face impression on a predetermined evaluation axis. Use the one that has the calculation function to output.
【0018】本発明において、回帰式は、被験者の顔画
像を取り込ませる当該計算機3に、予め、複数人の顔画
像の特徴量と所定の評価軸における顔の印象の評価値と
を入力することにより求めておいたものを使用してもよ
く、あるいは、別個の計算機で求めておいたものを使用
してもよい。In the present invention, for the regression equation, the feature amount of the face images of a plurality of persons and the evaluation value of the impression of the face on a predetermined evaluation axis are input in advance to the computer 3 for loading the face images of the subjects. The one obtained by the above may be used, or the one obtained by a separate computer may be used.
【0019】この回帰式は、複数人の顔画像の特徴量と
所定の評価軸における顔の印象の評価値とを、公知の統
計解析プログラムで処理することにより求めることがで
きる。This regression equation can be obtained by processing the feature values of the facial images of a plurality of people and the evaluation value of the facial impression on a predetermined evaluation axis by a known statistical analysis program.
【0020】また、回帰式は、年代又は性別ごとに求め
ておき、被験者の属する年代又は性別の回帰式を使用す
ることが好ましい。これにより、回帰式を用いて得られ
る被験者の印象の評価値と化粧技術者から得る印象との
相関性を高めることができる。この場合、年代は、一般
的に化粧料や化粧方法が若年、中年あるいは熟年で異な
るのに合わせて区分することが好ましく、例えば、10
代〜20代、30代〜40代、50代〜60代に区分す
ることや、また、10代〜20代前半、20代後半〜3
0代、40代、50代〜60代に区分することが好まし
い。The regression equation is preferably obtained for each age or sex, and the regression equation for the age or sex to which the subject belongs is preferably used. As a result, the correlation between the evaluation value of the subject's impression obtained using the regression equation and the impression obtained from the cosmetician can be increased. In this case, it is preferable to classify the age groups according to the fact that cosmetics and makeup methods generally differ between young, middle-aged, and mature.
Dividing into teens to 20s, 30s to 40s, 50s to 60s, and teens to early 20s, late 20s to 3
It is preferable to divide into 0's, 40's, 50's to 60's.
【0021】本発明において、顔画像の特徴量として
は、例えば計算機3が、画像入力装置1から取り込んだ
顔画像に基づいて計測した所定の測定点間の距離を使用
することが好ましく、特にこの測定点間の距離として
は、統計的抽出により決定された測定点間の距離を使用
することが好ましい。ここで、統計的抽出により測定点
を決定するとは、ステップワイズ重回帰分析等により、
相関が高く、能率のよい重回帰式を求めることをいう。
このような測定点間の距離の具体例としては、図2
(a)の顔正面図に示すように、顔の長さY0、顔の横
幅X0、額の長さY1、鼻の長さY2、頬の幅、特に口
の高さでの頬の幅(あごの幅とも称する)X4、上あご
の長さY3、目の横幅X1、目の縦幅Y4、目と目の間
隔X2、目の高さでの顔の輪郭線から目の横方向の中心
位置(目頭と目尻の中央)までの距離(目の位置(横)
と称する)X6等をあげることができる。In the present invention, it is preferable to use, for example, the distance between predetermined measurement points measured by the computer 3 based on the face image taken from the image input device 1 as the feature amount of the face image. As the distance between the measurement points, it is preferable to use the distance between the measurement points determined by statistical extraction. Here, determining the measurement points by statistical extraction means that stepwise multiple regression analysis, etc.
It means obtaining a highly efficient multiple regression equation with high correlation.
As a specific example of the distance between such measurement points, see FIG.
As shown in the front view of the face in (a), the face length Y0, the face width X0, the forehead length Y1, the nose length Y2, the cheek width, especially the cheek width at the mouth height ( It is also called the width of the chin) X4, the length of the upper chin Y3, the lateral width of the eye X1, the vertical width of the eye Y4, the eye-to-eye distance X2, and the lateral center of the eye from the contour line of the face at the eye height. Distance to the position (center of the inner and outer corners of the eye) (Eye position (horizontal)
X6 etc. can be mentioned.
【0022】顔画像の特徴量としては、上記のような直
接的な測定点間の距離の計測値の他、それらの計測値か
ら計算により求められる比率や面積、例えば、口の縦幅
Y5を横幅X3で割ることにより計算できる口の丸さ
や、あごの幅X4と下あごの長さY6を用いて計算され
るあごの角度をあげることができる。また、測定点間を
結ぶ直線の傾きや測定点間を結ぶ直線同士のなす角度、
例えば、目頭と目尻を結ぶ直線L1の画像の水平線に対
する角度θ1や、鼻の幅X5を底辺とし、この底辺の垂
直二等分線が、目の上ラインL2と目の下ラインL3と
の中間ラインL4と交わる点を頂点P1とする二等辺三
角形を想定した場合の二等辺三角形の頂角θ2(鼻筋角
と称する)などもあげることができる。As the feature amount of the face image, in addition to the measured values of the distance between the direct measurement points as described above, the ratio and area obtained by calculation from those measured values, for example, the vertical width Y5 of the mouth are used. The mouth roundness that can be calculated by dividing by the lateral width X3 and the jaw angle that is calculated using the jaw width X4 and the lower jaw length Y6 can be given. Also, the inclination of the straight line connecting the measurement points and the angle formed by the straight lines connecting the measurement points,
For example, the angle θ1 of the straight line L1 connecting the inner corner of the eye and the outer corner of the eye with respect to the horizontal line of the image and the width X5 of the nose are taken as the base, and the vertical bisector of this base is an intermediate line L4 between the upper line L2 of the eye and the lower line L3 of the eye. An apex angle θ2 (referred to as a nose muscle angle) of the isosceles triangle in the case of assuming an isosceles triangle having a vertex P1 at which it intersects with the vertex P1 can also be mentioned.
【0023】さらに、図2(b)のような顔側面図の鼻
尖P2と眉間P3とを結ぶ直線L5と鼻根P4との距離
Z1なども特徴量とすることができる。Further, the distance Z1 between the nose root P4 and the straight line L5 connecting the nose tip P2 and the eyebrow P3 in the side view of the face as shown in FIG. 2B can also be used as the feature amount.
【0024】なお、これら顔画像の特徴量は、計算機3
自体が画像入力装置1から入力された画像データに基づ
いて計測するようにしてもよく、キーボード等の情報入
力装置2から外部入力してもよい。The feature amount of these face images is calculated by the computer 3.
The device itself may be measured based on the image data input from the image input device 1, or may be externally input from the information input device 2 such as a keyboard.
【0025】さらに、顔画像の特徴量としては、上述の
ような計測値あるいは算出値の他、問診データを使用し
てもよい。この場合、問診データは、所定の評価基準に
したがって数値化した値を入力することが好ましい。Further, as the feature amount of the face image, inquiry data may be used in addition to the above-mentioned measured value or calculated value. In this case, it is preferable that the inquiry data be input as a numerical value according to a predetermined evaluation standard.
【0026】例えば、目尻の上がり又は下がりの程度に
関する問診データとしては、目尻が目頭よりも上がって
いるか、下がっているか、又は同程度かの3段階を基準
とし、それぞれに所定の評価値を割り当てて得られる数
値を使用することができる。また、鼻筋の通り方の程度
に関する問診データとしては、鼻根の位置の高さが額の
高さに近いか、目の高さに近いか、又は両者の中間かの
3段階を基準とし、それぞれに所定の評価値を割り当て
て得られる数値を使用することができる。For example, as the inquiry data regarding the degree of rise or fall of the outer corner of the eye, a predetermined evaluation value is assigned to each of the three levels of whether the outer corner of the eye is higher than, lower than or equal to the inner corner of the eye. It is possible to use the obtained numerical value. In addition, as the interview data regarding the degree of passage of the nose, based on three levels, the height of the nose root is close to the height of the forehead, close to the height of the eyes, or between the two, A numerical value obtained by assigning a predetermined evaluation value to each can be used.
【0027】顔画像の特徴量として、上述のような形状
や大きさに関する数値に限らず、色に関する数値を使用
してもよい。この色に関する特徴量としては、計算機3
が画像入力装置1から取り込んだ顔画像の所定の部位に
おけるRGB強度(赤・緑・青各成分の強度)として出
力した数値、別途色度計により求めた数値、あるいは所
定の基準で数値化した問診の評価値等を使用することが
できる。The feature amount of the face image is not limited to the above numerical values regarding the shape and size, but numerical values regarding color may be used. As the feature quantity related to this color, the calculator 3
Was output as RGB intensities (intensities of red, green, and blue components) at predetermined parts of the face image captured from the image input device 1, values obtained by a separate chromaticity meter, or digitized by predetermined criteria. It is possible to use the evaluation value of the inquiry.
【0028】また、以上のような顔画像の特徴量として
は、顔画像の特徴量と所定の評価軸における顔の印象の
評価値とに基づいて算出される回帰式、さらにはそれに
より求められる印象が化粧のアドバイスに利用されると
いう点から、目鼻口等の具体的な顔の部分の情報を含む
ものを使用することが好ましい。Further, as the above-described feature amount of the face image, a regression equation calculated based on the feature amount of the face image and the evaluation value of the impression of the face on a predetermined evaluation axis, and further obtained by it. From the viewpoint that the impression is used for makeup advice, it is preferable to use one that includes information on specific facial parts such as eyes, nose and mouth.
【0029】一方、本発明において、顔の印象の評価軸
としては、従来、化粧技術者が任意に分類していた主観
的かつ抽象的な印象の分類ではなく、生物学的要因に基
づく評価軸を使用することが好ましく、特に、男性的−
女性的で表現される性別印象要素軸と、子供っぽい−大
人っぽいで表現される年齢印象要素軸を使用することが
好ましい。On the other hand, in the present invention, the evaluation axis of the facial impression is not the subjective and abstract classification of impressions conventionally classified by a cosmetician, but an evaluation axis based on biological factors. It is preferable to use
It is preferable to use a gender impression element axis expressed as feminine and an age impression element axis expressed as childish-adult.
【0030】性別印象要素軸あるいは年齢印象要素軸に
ついて、顔の印象の評価値を回帰式で求める場合に、実
際上は、当該評価軸への寄与の大きい特徴量を選択して
使用することが、回帰式による評価値と化粧技術者によ
る評価値との相関性を高め、かつ、回帰式の算出や各被
験者への回帰式の適用を容易にするので好ましい。この
ような点から、性別印象要素軸の回帰式には、特徴量と
して、頬の幅、目の上がり下がり度合い及び鼻筋の通り
具合を使用することが好ましく、年齢印象要素軸の回帰
式には、目の大きさ、口の丸さ、鼻の長さ及び上あごの
長さを使用することが好ましい。When the evaluation value of the facial impression is obtained by the regression equation with respect to the gender impression element axis or the age impression element axis, it is actually possible to select and use a feature amount that makes a large contribution to the evaluation axis. It is preferable because it enhances the correlation between the evaluation value obtained by the regression equation and the evaluation value obtained by the cosmetician, and facilitates the calculation of the regression equation and the application of the regression equation to each subject. From such a point, it is preferable to use the cheek width, the degree of ups and downs of the eyes, and the degree of passage of the nose as the feature amount in the regression equation of the gender impression element axis. It is preferable to use the size of the eyes, the roundness of the mouth, the length of the nose and the length of the upper jaw.
【0031】なお、性別印象要素軸あるいは年齢印象要
素軸の特徴量に対応する具体的なデータは、それぞれの
特徴量を指標するものである限り、計測値、計測値に基
づく算出値、問診評価値のいずれでもよい。また、計測
位置や問診評価値の基準等も適宜設定することができ
る。例えば、性別印象要素軸の特徴量について、頬の幅
としては、図2(a)のあごの幅X4を使用することが
でき、目の上がり下がり度合いとしては、目頭と目尻を
結ぶ直線L1の画像の水平線に対する角度θ1や、目尻
の上がり下がりに関する問診評価値を使用することがで
きる。鼻筋の通り具合としては、鼻筋角θ2や図2
(b)の鼻尖P2と眉間P3とを結ぶ直線L5と鼻根P
4との距離Z1や問診評価値を使用することができる。
また、年齢対象評価軸の特徴量について、目の大きさと
しては、図2(a)の目の縦幅Y4を使用することがで
き、口の丸さとしては、(口の縦幅Y5)/(口の横幅
X3)を使用することができ、鼻の長さとしては、眉間
と鼻尖との長さY2を使用することができる。As long as the specific data corresponding to the feature amount of the gender impression element axis or the age impression element axis is an index of each feature value, the measured value, the calculated value based on the measured value, the interview evaluation It can be any of the values. Further, the measurement position, the criteria for the inquiry evaluation value, and the like can be set as appropriate. For example, regarding the feature amount of the gender impression element axis, the width X4 of the chin of FIG. 2A can be used as the width of the cheek, and the degree of ups and downs of the eye can be calculated by using the straight line L1 connecting the inner and outer corners of the eye. It is possible to use the angle θ1 with respect to the horizontal line of the image and the inquiry evaluation value regarding rising and falling of the outer corner of the eye. As the condition of the nose muscles, the angle of the nose muscles θ2 and FIG.
The straight line L5 connecting the nose tip P2 and the eyebrow P3 in (b) and the nose root P
The distance Z1 from 4 and the inquiry evaluation value can be used.
Further, regarding the feature amount of the age-targeted evaluation axis, the eye vertical width Y4 in FIG. 2A can be used as the eye size, and the mouth roundness is (mouth vertical width Y5). / (Horizontal width X3) can be used, and the length Y2 between the eyebrow and the tip of the nose can be used as the length of the nose.
【0032】性別印象要素軸あるいは年齢印象要素軸と
いった生物学的要因に基づく評価軸は、印象を評価され
る全ての者に存在するが故に化粧のアドバイスを受けよ
うとする者全てにも共通に存在し、かつ人の印象を評価
する側の者がその印象の根底に抱くものである。したが
って、従来、化粧技術者や一般人の間で任意に、また主
観的に行われている印象の分類を、この生物学的要因に
基づく評価軸の分類に帰属させることができる。例え
ば、シャープ、きつい、行動的等の印象は、性別印象要
素軸の男性的な傾向が強い方に帰属され、ソフト、優し
い、おとなしい等の印象は、性別印象要素軸の女性的な
傾向の強い方に帰属される。また、大人っぽい、エレガ
ント、落ちついた等の印象は、年齢印象要素軸の年齢が
高い方に帰属され、子供っぽい、かわいい、若々しい等
の印象は、年齢印象要素軸の年齢が低い方に帰属され
る。Since the evaluation axis based on biological factors such as the gender impression element axis or the age impression element axis exists for all persons whose impression is evaluated, it is common to all persons who want to receive makeup advice. The person who exists and evaluates the person's impression has the basis of that impression. Therefore, it is possible to attribute the classification of impressions, which has been conventionally performed arbitrarily and subjectively by a cosmetic technologist or a general person, to the classification of evaluation axes based on this biological factor. For example, impressions such as sharpness, tightness, and behavior are attributed to those who have a strong masculine tendency in the gender impression element axis, while impressions such as soft, gentle, and gentle tend to have a feminine tendency in the gender impression element axis. Be attributed to you. In addition, the impression of adultness, elegance, calmness, etc. is attributed to the older one on the age impression element axis, and the impression of childish, cute, youthful, etc. is on the lower age axis. Be attributed to you.
【0033】このように生物学的要因に基づく評価軸は
全ての印象の根底に存在するので、化粧のアドバイスを
受ける者が、例えば、「情熱的」、「清楚」等の印象を
呈する化粧を望んだ場合でも、その化粧のアドバイスを
受ける者が本来的に有する印象を、当該化粧のアドバイ
スを受ける者あるいはその者に化粧のアドバイスを行う
化粧技術者に把握させることが重要となる。As described above, since the evaluation axis based on biological factors exists at the root of all impressions, a person who receives makeup advice may apply makeup that gives an impression of, for example, "passionate" or "neat". Even if desired, it is important for the person who receives the makeup advice or the makeup technician who gives the makeup advice to the person to understand the impression that the person who receives the makeup advice originally has.
【0034】本発明における、上記装置10(図1参
照)の使用方法としては、まず画像入力装置1で被験者
の顔画像を入力し、その画像情報を計算機3に転送す
る。さらに必要に応じて、被験者に化粧の仕上げの好み
等について問診し、その回答の情報も、計算機3に入力
する。As a method of using the device 10 (see FIG. 1) in the present invention, first, a face image of a subject is input by the image input device 1, and the image information is transferred to the computer 3. Further, if necessary, the subject is inquired about the makeup finishing preference and the like, and the answer information is also input to the computer 3.
【0035】計算機3は、画像入力装置1から被験者の
顔画像の情報を受けると、印象の評価結果として、前述
の回帰式にしたがって求めた印象の分類結果を出力し、
情報表示装置4がそれを表示する。この場合、計算機3
の出力態様としては、単に各評価軸ごとに顔画像の特徴
量に対応した評価値を出力するものとしてもよいが、適
当な評価値または予測値を設定し、それと大小を比較し
た印象の分類結果を出力するようにしてもよい。例え
ば、評価値の平均値を基準値としてそれより大きい場合
には大人っぽく見えるタイプ、それ以下の場合は子供っ
ぽく見えるタイプというように分類することも可能であ
る。When the computer 3 receives the information on the face image of the subject from the image input device 1, the computer 3 outputs the impression classification result obtained according to the above regression equation as the impression evaluation result,
The information display device 4 displays it. In this case, computer 3
As the output mode of, the evaluation value corresponding to the feature amount of the face image may be simply output for each evaluation axis, but an appropriate evaluation value or predicted value is set, and the classification of impressions is compared with that. You may make it output a result. For example, it is possible to classify the average value of the evaluation values as a reference value so that when it is larger than that, it looks like an adult, and when it is less than that, it looks like a child.
【0036】また、複数の評価軸を組み合わせた出力形
式としてもよい。例えば、回帰式による印象の分類結果
が、男性的−女性的という性別印象要素軸と、子供っぽ
い−大人っぽいという年齢印象要素軸の2次元で表され
るようにしてもよい。Further, the output format may be a combination of a plurality of evaluation axes. For example, the classification result of impressions by the regression equation may be represented two-dimensionally with a gender impression element axis of masculine-feminine and an age impression element axis of childish-adult.
【0037】こうして得た被験者の印象の評価は、モニ
ター4aに画面表示してもよく、プリンター4bに出力
してもよい。The evaluation of the subject's impression thus obtained may be displayed on the screen of the monitor 4a or output to the printer 4b.
【0038】以上の画像入力装置1、情報入力装置2、
計算機3及び情報表示装置4からなる本発明の装置10
には、さらに、公知の化粧シミュレーション装置のよう
に、被験者の顔画像に化粧、髪型、服装を画像的に合成
し、最終仕上がりを画像的に確認できるようにする化粧
シミュレーション機能を持たせてもよい。またこの場
合、被験者の顔画像が本来的に呈する印象を踏まえ、そ
れに対する注意点を盛り込んだメイクテクニックを模式
図や実際の動画で紹介し、被験者が化粧方法を選択でき
るようにしてもよい。The above image input device 1, information input device 2,
The device 10 of the present invention, which comprises the computer 3 and the information display device 4.
In addition, like a known makeup simulation device, the makeup image may be combined with makeup, hairstyle, and clothes on the face image of the subject, and a makeup simulation function that allows the final finish to be visually confirmed may be added. Good. Further, in this case, based on the impression that the face image of the subject inherently presents, a makeup technique including precautions may be introduced in a schematic diagram or an actual moving image so that the subject can select a makeup method.
【0039】[0039]
【実施例】以下、本発明を実施例に基づいて具体的に説
明する。EXAMPLES The present invention will be specifically described below based on examples.
【0040】実施例1
(1)回帰式の取得
103名の20代〜30代の女性パネルの顔写真を撮影
し、同時に各パネルの好む印象タイプをアンケートの形
で尋ねた。Example 1 (1) Acquisition of Regression Formulas Face photographs of 103 female panels in their twenties to thirties were taken, and at the same time, an impression type preferred by each panel was asked in the form of a questionnaire.
【0041】また、得られた顔写真を、20名の化粧技
術者を評価者とし、「大人っぽい−子供っぽい」と「女
性的−男性的」の2つの印象要素軸について評価し、
「大人っぽい」に1、「子供っぽい」に−1、両者の中
間に0を割り当て、また、「女性的」に1、「男性的」
に−1、両者の中間に0を割り当て、それぞれ20名の
評価者の評価結果を平均し、基準化(Z変換)して印象
の評価値を得た。Further, the obtained facial photograph was evaluated for two impression element axes of "adultish-childish" and "feminine-masculine" with 20 makeup engineers as evaluators.
"Adult-like" is assigned 1, "Child-like" is assigned -1, and 0 is assigned between the two. Also, "feminine" is 1 and "masculine".
Was assigned to -1, and 0 was assigned to the middle of the two, and the evaluation results of 20 evaluators were averaged and standardized (Z conversion) to obtain an evaluation value of impression.
【0042】一方、画像入力装置(キャノンEOS-DCS3c
デジタルカメラ)、情報処理装置(アップルPower Maci
ntosh 8500/150 コンピュータ)、情報入力装置(アッ
プルPower Macintosh 8500/150 コンピュータ)、情報
表示装置(ラディウス PressView 17SR ディスプレイ)
からなる本発明の印象の評価装置を用い、顔写真の特徴
量として、目の高さにおける顔の横幅を100として、
額の長さ、鼻の長さ、上あごの長さ、下あごの長さ、目
の横幅、目の縦幅、口の横幅、口の縦幅、頬の幅(口の
高さの顔の幅として定義)等の相対値を測定した。この
内、下あごの長さと頬の幅を用いてあごの角度を算出
し、口の縦幅と口の横幅を用いて口の丸さを算出した。
さらに、目尻の上がり下がり度合いと、鼻筋が通ってい
る通っていないの尺度評価を行った。On the other hand, an image input device (Canon EOS-DCS3c
Digital cameras, information processing devices (Apple Power Maci)
ntosh 8500/150 computer), information input device (Apple Power Macintosh 8500/150 computer), information display device (Radius PressView 17SR display)
Using the evaluation device for impression of the present invention consisting of, the width of the face at eye height is 100
Forehead length, nose length, upper jaw length, lower jaw length, eye width, eye height, mouth width, mouth height, cheek width (face at mouth height) (Defined as the width of)) and the like. Among these, the angle of the jaw was calculated using the length of the lower jaw and the width of the cheek, and the roundness of the mouth was calculated using the vertical width of the mouth and the horizontal width of the mouth.
In addition, the scale evaluation of the degree of rise and fall of the outer corner of the eye and whether or not the nose was passed was performed.
【0043】これらの値をそれぞれ基準化(Z変換)
し、その値を用いて、「大人っぽい−子供っぽい」につ
いての年齢印象要素の評価値と、「女性的−男性的」に
ついての性別印象要素の評価値を予測する回帰式を求め
た。得られた式を以下に示す。Each of these values is normalized (Z conversion).
Then, using that value, a regression equation for predicting the evaluation value of the age impression factor for "adult-childish" and the evaluation value of the gender impression factor for "feminine-masculine" was obtained. . The formula obtained is shown below.
【0044】年齢印象要素評価値=(-0.083)×(額の長
さ) +(0.476)×(鼻の長さ)
+(0.372)×(上あごの長さ) +(-0.124)×(あごの角度) +
(-0.403)×(目の大きさ(縦)) +(-0.047)×(目の大きさ
(横)) +(-0.249)×(口の丸さ(=口の縦/横))
性別印象要素評価値=(-0.294)×(頬幅) +(-0.124)×
(あごの角度)+(0.321)×(目尻) +(0.328)×(鼻筋)Age impression element evaluation value = (-0.083) x (length of forehead) + (0.476) x (length of nose) + (0.372) x (length of upper jaw) + (-0.124) x ( Chin angle) +
(-0.403) x (eye size (vertical)) + (-0.047) x (eye size
(Horizontal)) + (-0.249) × (roundness of mouth (= vertical / horizontal of mouth) Gender impression element evaluation value = (-0.294) × (cheek width) + (-0.124) ×
(Chin Angle) + (0.321) x (Extremity) + (0.328) x (Nose Muscle)
【0045】これらの式から得られる評価値と、評価者
から直接得た評価値との相関係数は、それぞれ0.587と
0.644であった。図3と図4に年齢と性別のそれぞれの
評価者から直接得た評価値と回帰式に基づく評価値(あ
てはめ値)との関係図を示す。これにより、回帰式に基
づく評価値と評価者から直接得た評価値とは良好な相関
関係を有していることがわかる。The correlation coefficient between the evaluation value obtained from these equations and the evaluation value directly obtained from the evaluator is 0.587, respectively.
It was 0.644. FIG. 3 and FIG. 4 show relationship diagrams between the evaluation values directly obtained from the respective evaluators of age and sex and the evaluation values (fitting values) based on the regression equation. This shows that the evaluation value based on the regression equation and the evaluation value directly obtained from the evaluator have a good correlation.
【0046】さらに、評価者から直接得た評価値の0を
基準点として年齢印象要素軸及び性別印象要素軸を各々
2分類した合計4分類の結果と、回帰式に基づく評価値
の0を基準点として同様に各々2分類した合計4分類の
結果を比較すると、4分類の結果が全て一致(すなわ
ち、「大人っぽい−子供っぽい」の年齢印象評価値と、
「女性的−男性的」の性別印象評価値の両方の分類につ
いて、評価者から直接得た評価値と回帰式に基づく評価
値が一致)したのは、63.1%に達し、逆に両方の印象に
ついて評価者から直接得た評価値と回帰式に基づく基づ
く評価値とが共に不一致であったのは7.8%であった。
残りは、いずれか一方の分類でのみ一致していた例であ
る。これによっても、回帰式に基づく評価値と評価者か
ら直接得た評価値とは良好な相関関係を有することがわ
かる。Further, with the evaluation value of 0 directly obtained from the evaluator as a reference point, the results of four classifications in which the age impression element axis and the sex impression element axis are respectively classified into two, and the evaluation value of 0 based on the regression equation are used as a reference. Similarly, when the results of the four classifications in which the respective two classifications are similarly performed are compared, all the results of the four classifications match (that is, the age impression evaluation value of “adult-childlike”,
For both classifications of “female-male” gender impression evaluation values, the evaluation value obtained directly from the evaluator and the evaluation value based on the regression equation reached 63.1%, and conversely both impressions About 7.8%, there was a discrepancy between the evaluation value obtained directly from the evaluator and the evaluation value based on the regression equation.
The rest are examples in which only one of the classifications matches. This also shows that the evaluation value based on the regression equation and the evaluation value directly obtained from the evaluator have a good correlation.
【0047】(2)顔形から受ける印象の分類
被験者を20〜30代の女性の全12人とし、上記
(1)と同様の装置を用いて被験者の顔写真の特徴量を
測定し、また、鼻筋の通り具合と目尻の上がり又は下が
り度合いの問診項目を聴取した。そして、上記(1)で
取得した回帰式に基づきそれぞれの年齢印象要素の評価
値と性別印象要素の評価値を予測した。さらに、得られ
た予測値と本人が自己評価した場合の評価値とを、それ
ぞれ上記(1)と同様に年齢印象要素軸及び性別印象要
素軸を各々2分類した合計4分類に分類し、両者の一致
度を以下の基準で判定した。(2) Classification of Impressions Received from Face Shapes The subjects are 12 females in their twenties and thirties, and the features of the facial photographs of the subjects are measured using the same apparatus as in (1) above. , Listening to the interview items regarding the condition of the nose and the degree of rise or fall of the outer corners of the eyes. Then, the evaluation value of each age impression element and the evaluation value of the gender impression element were predicted based on the regression equation acquired in (1) above. Further, the obtained predicted value and the evaluation value when the person self-evaluates are classified into a total of 4 classifications in which the age impression element axis and the gender impression element axis are each classified into 2 as in the above (1). The degree of coincidence was judged according to the following criteria.
【0048】
◎:本人の自己評価による分類と、回帰式により求めた
評価の分類とが完全に一致した場合
○:本人の自己評価による分類と、回帰式により求めた
評価の分類とが完全には一致しなかったが、回帰式によ
り求めた分類結果の要因(例えば、目の大きさ等に関す
る顔の特徴量と回帰式により得られる評価値との関係)
を本人に説明することにより本人が納得した場合
×:本人の自己評価による分類と、回帰式により求めた
評価の分類とが一致せず、かつ回帰式により求めた分類
結果の要因を本人に説明しても本人がその結果を納得し
なかった場合
これらの結果を表1に示す。◎: When the classification by the person's self-evaluation and the classification of the evaluation obtained by the regression equation completely match ○: The classification by the person's self-evaluation and the evaluation classification obtained by the regression equation are completely Did not match, but the factors of the classification result obtained by the regression equation (for example, the relationship between the facial feature amount related to the size of the eyes and the evaluation value obtained by the regression equation)
If the person is satisfied by explaining to the person x: The classification by the person's self-evaluation does not match the classification of the evaluation obtained by the regression equation, and the factors of the classification result obtained by the regression equation are explained to the person Even if the person was not satisfied with the results, these results are shown in Table 1.
【0049】[0049]
【表1】 被験者No. 回帰式による分類 本人による分類 分類判定 1 子供っぽい−女性的 子供っぽい−女性的 ◎ 2 子供っぽい−女性的 子供っぽい−女性的 ◎ 3 大人っぽい−女性的 大人っぽい−女性的 ◎ 4 子供っぽい−男性的 子供っぽい−女性的 ○ 5 子供っぽい−男性的 子供っぽい−男性的 ◎ 6 大人っぽい−女性的 大人っぽい−女性的 ◎ 7 大人っぽい−男性的 大人っぽい−女性的 ○ 8 大人っぽい−女性的 子供っぽい−女性的 ○ 9 大人っぽい−女性的 大人っぽい−女性的 ◎ 10 子供っぽい−男性的 子供っぽい−男性的 ◎ 11 子供っぽい−女性的 子供っぽい−女性的 ◎ 12 大人っぽい−女性的 大人っぽい−女性的 ◎ [Table 1] Subject No. Regression classification Classification by the person Classification judgment 1 Childish-feminine Childish-feminine ◎ 2 Childish-feminine Childish-feminine 3 Adult-feminine Adult − Feminine ◎ 4 Childish − masculine Childish − feminine ○ 5 Childish − masculine Childish − masculine ◎ 6 Adult-feminine Adult − feminine ◎ 7 Adult − Male-Adult-Feminine ○ 8 Adult-Feminine Child-Feminine ○ 9 Adult-Feminine Adult-Feminine 10 Child-Men Child-Men Target ◎ 11 Childish-feminine Childish-feminine ◎ 12 Adult-feminine Adult-feminine ◎
【0050】表1に示したように、回帰式による評価値
の分類と本人による分類とは、被験者の75%で一致
し、残りの被験者も分類の要因の説明を受けることによ
り、回帰式による評価値の分類を納得した。これによ
り、本人の分類には多少の迷いがあること、回帰式に基
づく客観評価が化粧技術者による評価として一般人に受
け入れられることがわかる。As shown in Table 1, the classification of the evaluation values by the regression equation and the classification by the person match each other in 75% of the subjects, and the rest of the subjects also receive the explanation of the factors of the classification, so that the regression equation I was satisfied with the classification of evaluation values. From this, it can be seen that there is some hesitation in the classification of the person himself, and that the objective evaluation based on the regression equation is accepted by the general public as the evaluation by the cosmetician.
【0051】(3)顔形から受ける印象の分類とそれに
応じたメイクテクニックの説明
被験者を20代の女性の全10人とし、画像入力装置
(ソニー DCR-PC10デジタルビデオカメラ)、情報処理
装置(エプソンVA-626Fコンピュータ)、情報入力装置
(エプソンVA-626Fコンピュータ)、情報表示装置(ラ
ディウス Press View 17SR ディスプレイ)、情報表示
装置(エプソン PM-700C プリンタ)からなる印象の評
価装置を用い、上記(1)と同様にして被験者の顔写真
の特徴量を測定し、また、鼻筋の通り具合と目尻の上が
り又は下がり度合いの問診項目を聴取した。そして、上
記(1)で取得した回帰式に基づいてそれぞれの年齢印
象要素の評価値と性別印象要素の評価値を予測した。さ
らに、得られた予測値と本人が自己評価した場合の評価
値とを、それぞれ上記(1)と同様に年齢印象要素軸及
び性別印象要素軸を各々2分類した合計4分類に分類
し、両者の一致度を判定した。(3) Classification of Impressions Received from Faces and Explanation of Makeup Techniques According to the Impressions The subjects are all women in their twenties, image input device (Sony DCR-PC10 digital video camera), information processing device ( Using an impression evaluation device consisting of an Epson VA-626F computer), an information input device (Epson VA-626F computer), an information display device (Radius Press View 17SR display), and an information display device (Epson PM-700C printer), the above ( In the same manner as in 1), the feature amount of the subject's facial photograph was measured, and the interview items regarding the condition of the nose muscles and the degree of rising or falling of the outer corner of the eyes were heard. Then, the evaluation value of each age impression element and the evaluation value of the gender impression element were predicted based on the regression equation acquired in (1) above. Further, the obtained predicted value and the evaluation value when the person self-evaluates are classified into a total of 4 classifications in which the age impression element axis and the gender impression element axis are each classified into 2 as in the above (1). Was determined.
【0052】また、分類結果に応じたメイクテクニック
を、顔面部位ごとに動画画像としてディスプレイ上に引
き続いて表示し、化粧のアドバイスを行った。そして、
このアドバイスに対する評価を以下の基準で判定しても
らい、さらにその理由を自由に答えてもらった。Further, the makeup technique according to the classification result was successively displayed on the display as a moving image for each facial part to give makeup advice. And
We asked them to evaluate this advice based on the following criteria, and we also asked them to freely give their reasons.
【0053】 ◎:アドバイスが非常にわかりやすい ○:アドバイスがわかりやすい ×:アドバイスがわかりにくい これらの結果を表2に示す。[0053] ◎: Very easy to understand advice ○: Advice is easy to understand ×: The advice is difficult to understand The results are shown in Table 2.
【0054】[0054]
【表2】 被験者No. 回帰式による分類 本人による分類 分類判定 アト゛ハ゛イス評価 1 子供っぽい−女性的 大人っぽい−女性的 ○ ◎ 2 子供っぽい−女性的 子供っぽい−女性的 ◎ ◎ 3 子供っぽい−女性的 子供っぽい−女性的 ◎ ◎ 4 大人っぽい−男性的 子供っぽい−男性的 ○ ◎ 5 子供っぽい−男性的 子供っぽい−男性的 ◎ ◎ 6 子供っぽい−女性的 子供っぽい−女性的 ◎ ◎ 7 大人っぽい−男性的 大人っぽい−女性的 ○ ○ 8 大人っぽい−女性的 大人っぽい−女性的 ◎ ◎ 9 子供っぽい−女性的 子供っぽい−女性的 ◎ ◎ 10 子供っぽい−男性的 子供っぽい−男性的 ◎ ◎ [Table 2] Subject No. Classification by regression type Classification by the person Classification judgment By evaluation 1 Childish-feminine Adult-feminine ○ ◎ 2 Childish-feminine Childish-feminine ◎ ◎ 3 Childish-female Childish-feminine ◎ ◎ 4 Adult-masculine Childish-masculine ○ ◎ 5 Childish-masculine Childish-masculine ◎ ◎ 6 Childish-feminine Childish- Feminine ◎ ◎ 7 Adult-masculine Adult-feminine ○ ○ 8 Adult-feminine Adult-feminine ◎ 9 Child-feminine Child-feminine ◎ 10 Childish-masculine Childish-masculine ◎ ◎
【0055】表2に示したように、回帰式による評価値
の分類と本人による分類とは、被験者の70%で一致
し、残りの被験者も分類の要因の説明を受けることによ
り、回帰式による評価値の分類を納得した。As shown in Table 2, the classification of the evaluation values by the regression equation and the classification by the person are the same in 70% of the test subjects, and the rest of the test subjects are also explained by the regression formula by receiving the explanation of the factors of the classification. I was satisfied with the classification of evaluation values.
【0056】さらに、メイクテクニックの動画を見せる
と、ほとんどの被験者がこの化粧のアドバイスをわかり
やすいと評価した。また、その理由としては、印象の分
類に応じてメイクテクニックを変えることで、基本のメ
イクを自分に適合させる方法がわかりやすくなるため、
あるいは、全体のメイクのバランスを考えやすくなるた
めというものが多く、本発明の効果を支持するものであ
った。Furthermore, by showing a video of the makeup technique, most of the subjects evaluated that the makeup advice was easy to understand. Also, the reason is that by changing the makeup technique according to the impression classification, it becomes easier to understand how to adapt the basic makeup to yourself,
In many cases, this is because the balance of the entire makeup can be easily considered, which supports the effect of the present invention.
【0057】実施例2
(1) 100名の40代〜50代の女性パネルの顔写
真を撮影した。得られた顔写真を、20名の化粧技術者
を評価者とし、「大人っぽい−子供っぽい」(年齢印象
要素軸)と、「女性的−男性的」(性別印象要素軸)の
2つの印象要素軸について、それぞれ次の7段階に評価
値を割り当て、平均して各顔写真ごとの印象の評価値を
得た。Example 2 (1) Face photographs of 100 female panels in their 40s to 50s were taken. The obtained facial photograph was evaluated by 20 makeup technologists and was classified into 2 categories: "adult-childish" (age impression element axis) and "feminine-masculine" (sex impression element axis). For each of the impression element axes, the evaluation values were assigned to the following 7 levels, and the evaluation values were averaged to obtain the evaluation value of the impression for each facial photograph.
【0058】年齢印象要素軸 「非常に大人っぽい」 −3 「大人っぽい」 −2 「やや大人っぽい」 −1 「大人っぽい」と「子供っぽい」の中間 0 「やや子供っぽい」 1 「子供っぽい」 2 「非常に子供っぽい」 3 性別印象要素軸 「非常に女性的」 −3 「女性的」 −2 「やや女性的」 −1 「女性的」と「男性的」の中間 0 「やや男性的」 1 「男性的」 2 「非常に男性的」 3Age impression element axis "Very mature" -3 "Adult-like" -2 "Slightly mature" -1 Midway between "adult-like" and "child-like" 0 "Slightly childish" 1 "Childish" 2 "Very childish" 3 Gender impression element axis "Very feminine" -3 "Feminine" -2 "Slightly feminine" -1 Between "feminine" and "masculine" 0 "Slightly masculine" 1 "Masculine" 2 "Very masculine" 3
【0059】一方、実施例1と同様の装置を用いて顔の
部位の計測を行った。また、目尻の上がり下がり度合い
と、鼻筋が通っている通っていないについては、実施例
1と同様に尺度評価を行った。On the other hand, the face part was measured using the same apparatus as in Example 1. In addition, scale evaluation was performed in the same manner as in Example 1 regarding the degree of rising and falling of the outer corners of the eyes and the presence or absence of passage of the nose muscles.
【0060】本実施例では、実施例1とは異なり、測定
値、計算値及び評価値のそれぞれについて基準化(Z変
換)を行わず、得られた値をそのまま用いて重回帰式を
算出した。これにより、定数項を含む、次の式が得られ
た。In this Example, unlike Example 1, normalization (Z conversion) was not performed for each of the measured value, calculated value and evaluated value, and the multiple regression equation was calculated using the obtained values as they were. . As a result, the following equation including the constant term was obtained.
【0061】年齢印象要素評価値=(0.066)×(目の大き
さ(縦)) +(0.006)×(口の丸さ(=口の縦/横%)) +(-0.
157)×(鼻の長さ) +(-0.061)×(上あごの長さ) +4.404
性別印象要素評価値=(-0.039)×(頬幅) +(0.509)×(目
尻) +(0.349)×(鼻筋)+3.133
これらの式から得られる評価値と、評価者から直接得た
評価値との相関係数は、それぞれ0.515と0.704であっ
た。Age impression element evaluation value = (0.066) × (eye size (vertical)) + (0.006) × (mouth roundness (= vertical / horizontal%)) + (-0.
157) × (length of nose) + (-0.061) × (length of upper jaw) +4.404 Gender impression element evaluation value = (-0.039) × (cheek width) + (0.509) × (external corner of the eye) + (0.349 ) × (nasal muscle) +3.133 The correlation coefficient between the evaluation value obtained from these expressions and the evaluation value directly obtained from the evaluator was 0.515 and 0.704, respectively.
【0062】(2) 目尻の上がり下がり度合い、鼻筋
が通っている通っていない、のそれぞれの指標とする特
徴量として、上述の尺度評価に代えて、目頭と目尻を結
ぶ直線L1の画像の水平線に対する角度θ1(゜)、鼻
筋角θ2(゜)(図2(a)参照)を使用し、性別印象
要素評価値を求める回帰式を求めたところ、次式が得ら
れた。(2) Instead of the above-mentioned scale evaluation, the horizontal line of the image of the straight line L1 connecting the inner corner of the eye and the outer corner of the eye is used as the characteristic amount as the index of the degree of rising and falling of the outer corner of the eye, and whether or not the nose muscle passes. Using the angle θ1 (°) and the nose ridge angle θ2 (°) (see FIG. 2 (a)) with respect to, a regression formula for obtaining the impression value of the gender was obtained, and the following formula was obtained.
【0063】性別印象要素評価値=(-0.034)×(頬幅) +
(0.052)×(目尻の上がり下がり(角度θ1)) +(-0.027)
×(鼻筋角θ2) +3.928
この式から得られる評価値と、評価者から直接得た評価
値との相関係数は、0.505であった。Gender impression element evaluation value = (− 0.034) × (cheek width) +
(0.052) × (up and down of the outer corner of the eye (angle θ1)) + (-0.027)
× (nasal muscle angle θ2) +3.928 The correlation coefficient between the evaluation value obtained from this formula and the evaluation value directly obtained from the evaluator was 0.505.
【0064】(3) さらに計測項目を追加し、回帰式
に使用する特徴量として、あごの角度と目の位置(横)
(図2(a)のX6)を加え、性別印象要素評価値を求
める回帰式を求めたところ、次式が得られた。(3) A measurement item is further added, and the angle of the chin and the position of the eye (horizontal) are used as the feature amount used in the regression equation.
(X6 in FIG. 2A) was added and a regression equation for obtaining the impression value of the gender impression element was obtained, and the following equation was obtained.
【0065】性別印象要素評価値=(-0.036)×(頬幅) +
(0.057)×(目尻の上がり下がり(角度θ1)) +(-0.027)
×(鼻筋角θ2) +(-0.013)×(あごの角度) +(0.119)×
(目の位置(横)) +(-0.124)
この式から得られる評価値と、評価者から直接得た評価
値との相関係数は0.544であり、改善がみられた。Gender impression element evaluation value = (-0.036) x (cheek width) +
(0.057) × (up and down of the outer corner of the eye (angle θ1)) + (-0.027)
× (nasal muscle angle θ2) + (-0.013) × (jaw angle) + (0.119) ×
(Eye position (horizontal)) + (-0.124) The correlation coefficient between the evaluation value obtained from this formula and the evaluation value obtained directly from the evaluator was 0.544, which was an improvement.
【0066】実施例3
(1) 203名の20代〜50代の女性パネルの顔写
真を撮影した。得られた顔写真を、20名の化粧技術者
を評価者とし、「大人っぽい−子供っぽい」(年齢印象
要素評価軸)と、「女性的−男性的」(性別印象要素評
価軸)の2つの印象要素軸について、実施例2と同様に
それぞれ7段階に評価値を割り当て、平均して各顔写真
ごとの印象の評価値を得た。Example 3 (1) A photograph of the face of a panel of 203 females in their 20s to 50s was taken. 20 facial technologists were used as evaluators of the obtained facial photographs, and "adult-like" (age impression factor evaluation axis) and "feminine-masculine" (sex impression factor evaluation axis) For the two impression element axes of (1), the evaluation values were assigned to 7 grades in the same manner as in Example 2 and averaged to obtain the evaluation value of the impression for each facial photograph.
【0067】一方、実施例1と同様の装置を用いて顔の
部位の計測を行った。また、目尻の上がり下がり度合い
と、鼻筋が通っている通っていないについては、実施例
1と同様に尺度評価を行った。On the other hand, the face part was measured using the same apparatus as in Example 1. In addition, scale evaluation was performed in the same manner as in Example 1 regarding the degree of rising and falling of the outer corners of the eyes and the presence or absence of passage of the nose muscles.
【0068】本実施例では、実施例2と同様に、測定
値、計算値及び評価値のそれぞれについて基準化(Z変
換)を行わず、得られた値をそのまま用いて重回帰式を
算出したので、定数項を含む次の式が得られた。In this example, as in Example 2, standardization (Z conversion) was not performed on each of the measured value, calculated value and evaluated value, and the obtained values were used as they were to calculate the multiple regression equation. Therefore, the following equation including the constant term is obtained.
【0069】年齢印象要素評価値=(0.312)×(目の大き
さ(縦)) +(0.034)×(口の丸さ(=口の縦/横%)) +(-0.
150)×(鼻の長さ) +(-0.185)×(上あごの長さ) +4.458
性別印象要素評価値=(-0.049)×(頬幅) +(0.471)×(目
尻) +(0.372)×(鼻筋)+3.959
これらの式から得られる評価値と、評価者から直接得た
評価値との相関係数は、それぞれ0.625と0.662であっ
た。Age impression factor evaluation value = (0.312) × (eye size (vertical)) + (0.034) × (mouth roundness (= vertical / horizontal%)) + (-0.
150) x (length of nose) + (-0.185) x (length of upper chin) + 4.458 Gender impression element evaluation value = (-0.049) x (cheek width) + (0.471) x (extremity) + (0.372 ) × (nasal muscle) +3.959 The correlation coefficient between the evaluation value obtained from these expressions and the evaluation value directly obtained from the evaluator was 0.625 and 0.662, respectively.
【0070】(2) 目尻の上がり下がり度合い、鼻筋
が通っている通っていない、のそれぞれの指標とする特
徴量として、上述の尺度評価に代えて、実施例2の
(2)と同様に角度θ1(゜)、鼻筋角θ2(゜)を使
用し、性別印象要素評価値を求める回帰式を求めたとこ
ろ、次式が得られた。(2) Instead of the above-described scale evaluation, the angle is the same as in (2) of the second embodiment, as the characteristic amount used as the index of the degree of ups and downs of the outer corner of the eye, and whether the nose muscle is not passed. Using θ1 (°) and nasal muscle angle θ2 (°), a regression equation for obtaining the impression value of the sex impression factor was obtained, and the following equation was obtained.
【0071】性別印象要素評価値=(-0.053)×(頬幅) +
(0.037)×(目尻の上がり下がり(角度θ1)) +(-0.024)
×(鼻筋角θ2) +5.413
この式から得られる評価値と、評価者から直接得た評価
値との相関係数は、0.494であった。Gender impression element evaluation value = (-0.053) x (cheek width) +
(0.037) × (up and down of the outer corner of the eye (angle θ1)) + (-0.024)
× (nasal muscle angle θ2) +5.413 The correlation coefficient between the evaluation value obtained from this formula and the evaluation value directly obtained from the evaluator was 0.494.
【0072】(3) さらに計測項目を実施例2の
(3)と同様に追加し、性別印象要素評価値を求める回
帰式を求めたところ、次式が得られた。(3) Further, measurement items were added in the same manner as in (3) of Example 2, and a regression equation for obtaining the impression value of the sex impression element was obtained, and the following equation was obtained.
【0073】性別印象要素評価値=(-0.050)×(頬幅) +
(0.049)×(目尻の上がり下がり(角度θ1)) +(-0.022)
×(鼻筋角θ2) +(-0.006)×(あごの角度) +(0.091)×
(目の位置(横)) +(3.519)
この式から得られる評価値と、評価者から直接得た評価
値との相関係数は0.511であり、改善がみられた。Gender impression element evaluation value = (− 0.050) × (cheek width) +
(0.049) × (up and down of the outer corner of the eye (angle θ1)) + (-0.022)
× (nasal muscle angle θ2) + (-0.006) × (chin angle) + (0.091) ×
(Eye position (horizontal)) + (3.519) The correlation coefficient between the evaluation value obtained from this equation and the evaluation value obtained directly from the evaluator was 0.511, indicating improvement.
【0074】[0074]
【発明の効果】本発明によれば、化粧のアドバイスを受
ける者の印象を、その者の顔画像の特徴に基づいて客観
的に評価することができる。したがって、この客観的に
評価された印象を踏まえ、化粧のアドバイスを受ける者
が、化粧技術者の提案した化粧法を十分に理解し、その
化粧を自ら行った場合でも、所望の印象の顔に化粧する
ことが容易となる。また、化粧技術者が、その特性や技
量に依存することなく、アドバイスを受ける者に適した
化粧法を選択することが容易となる。According to the present invention, it is possible to objectively evaluate the impression of a person who receives makeup advice based on the characteristics of the face image of the person. Therefore, based on this objectively evaluated impression, the person receiving the makeup advice fully understands the makeup method proposed by the makeup technician, and even if he / she applies the makeup himself, the face with the desired impression is obtained. Makes it easy to put on. Further, it becomes easy for the makeup technician to select a makeup method suitable for the person who receives the advice, without depending on the characteristics or skill.
【図1】本発明の装置のブロック図である。1 is a block diagram of an apparatus of the present invention.
【図2】顔画像における測定点の説明図である。FIG. 2 is an explanatory diagram of measurement points on a face image.
【図3】「大人っぽい−子供っぽい」についての、回帰
式に基づく評価値と評価者から直接得た評価値との関係
図である。FIG. 3 is a diagram showing a relationship between an evaluation value based on a regression equation and an evaluation value directly obtained from an evaluator for “adult-childlike”.
【図4】「女性的−男性的」についての、回帰式に基づ
く評価値と評価者から直接得た評価値との関係図であ
る。FIG. 4 is a diagram showing a relationship between an evaluation value based on a regression equation and an evaluation value directly obtained from an evaluator for “feminine-male”.
1 画像入力装置 2 情報入力装置 3 計算機 4 情報表示装置 4a モニター 4b プリンター 10 印象の評価装置 1 Image input device 2 Information input device 3 calculator 4 Information display device 4a monitor 4b printer 10 Impression evaluation device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 南 孝英 東京都墨田区文花2−1−3 花王株式 会社研究所内 (56)参考文献 特開 平6−129834(JP,A) 特開 平7−302327(JP,A) 特開 平8−191956(JP,A) 特開 平7−271964(JP,A) 特開 平6−333023(JP,A) 実開 平2−63159(JP,U) (58)調査した分野(Int.Cl.7,DB名) G06T 1/00 280 - 340 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takahide Minami 2-1-3 Fumika, Sumida-ku, Tokyo Inside Kao Co. Ltd. (56) Reference JP-A-6-129834 (JP, A) JP-A-7 -302327 (JP, A) JP-A-8-1991956 (JP, A) JP-A-7-271964 (JP, A) JP-A-6-333023 (JP, A) Actual break flat 2-63159 (JP, U) ) (58) Fields investigated (Int.Cl. 7 , DB name) G06T 1/00 280-340 JISST file (JOIS)
Claims (2)
印象要素軸及び年齢印象要素軸における顔の印象の評価
値との回帰式を求め、次いで被験者の顔画像の特徴量に
基づいて当該被験者の顔の印象の評価値を前記回帰式か
ら求める印象の評価方法であって、性別印象要素軸にお
ける顔の印象の評価値の回帰式が、特徴量として、頬の
幅、目の上がり下がり度合い及び鼻筋の通り具合を使用
し、年齢印象要素軸における顔の印象の評価値の回帰式
が、特徴量として、目の大きさ、口の丸さ、鼻の長さ及
び上あごの長さを使用することを特徴とする印象の評価
方法。1. A regression equation is calculated in advance between the facial image feature values of a plurality of people and the facial impression evaluation values on the gender impression element axis and the age impression element axis, and then based on the facial image feature values of the subjects. The evaluation value of the subject's facial impression by the regression equation
An evaluation method Luo seek impression, your gender impression element axis
Kicking regression evaluation value impression of face, as the feature amount, the width of the cheek, use <br/> street degree of eye rise and fall degree and nose, the evaluation value of the impression of the face in the age Impression element axis regression <br/> is, as the feature quantity, mesh size, mouth roundness, the evaluation method of the impression, characterized by using the length of the length and the upper jaw of the nose.
又は性別ごとに求める請求項1記載の印象の評価方法。2. The method for evaluating an impression according to claim 1, wherein the regression equation is obtained for each of young, middle-aged or mature, or for each sex.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35656298A JP3430944B2 (en) | 1997-12-15 | 1998-12-15 | Impression evaluation method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34563197 | 1997-12-15 | ||
JP9-345631 | 1997-12-15 | ||
JP35656298A JP3430944B2 (en) | 1997-12-15 | 1998-12-15 | Impression evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11265443A JPH11265443A (en) | 1999-09-28 |
JP3430944B2 true JP3430944B2 (en) | 2003-07-28 |
Family
ID=26578065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35656298A Expired - Fee Related JP3430944B2 (en) | 1997-12-15 | 1998-12-15 | Impression evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3430944B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2510615T3 (en) | 2000-03-31 | 2014-10-21 | Cosmetic Technologies Llc | Nail polish color selection procedure |
US6516245B1 (en) | 2000-05-31 | 2003-02-04 | The Procter & Gamble Company | Method for providing personalized cosmetics |
JP2002132916A (en) * | 2000-10-26 | 2002-05-10 | Kao Corp | Method for providing advice on makeup |
DK1834309T3 (en) | 2004-11-08 | 2014-01-20 | Cosmetic Technologies Llc | Automated, customized cosmetic dispenser |
CN101341507B (en) | 2005-12-01 | 2012-07-04 | 株式会社资生堂 | Face classification method, face classifier, classification map, face classification program and recording medium having recorded program |
JP5219184B2 (en) * | 2007-04-24 | 2013-06-26 | 任天堂株式会社 | Training program, training apparatus, training system, and training method |
US9189679B2 (en) | 2010-06-21 | 2015-11-17 | Pola Chemical Industries, Inc. | Age estimation method and sex determination method |
JP5959920B2 (en) * | 2012-04-25 | 2016-08-02 | 花王株式会社 | Eye size impression determination method and apparatus |
DE102014226858A1 (en) * | 2014-12-22 | 2016-06-23 | Robert Bosch Gmbh | Method for operating an activatable locking device for a door and / or a window, securing device for a vehicle, vehicle |
CA2988947C (en) | 2015-06-08 | 2023-10-03 | Cosmetic Technologies, Llc | Automated delivery system of a cosmetic sample |
JP6028188B1 (en) * | 2015-12-15 | 2016-11-16 | 一般社団法人日本ファッションスタイリスト協会 | Information providing apparatus and information providing method |
WO2020065706A1 (en) * | 2018-09-25 | 2020-04-02 | 三菱電機株式会社 | Information processing device and information processing method |
CA3216239A1 (en) * | 2021-04-09 | 2022-10-13 | Johnson & Johnson Consumer Inc. | Method of determining the effectiveness of a treatment on a face |
-
1998
- 1998-12-15 JP JP35656298A patent/JP3430944B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11265443A (en) | 1999-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3430944B2 (en) | Impression evaluation method | |
JP3582458B2 (en) | Makeup advice system | |
WO2013005447A1 (en) | Face impression analysis method, cosmetic counseling method, and face image generation method | |
JP4761924B2 (en) | Skin condition diagnosis system and beauty counseling system | |
US7764303B2 (en) | Imaging apparatus and methods for capturing and analyzing digital images of the skin | |
EP1813189B1 (en) | Skin condition diagnostic system and beauty counseling system | |
WO2007063878A1 (en) | Face classifying method, face classifying device, classification map, face classifying program, recording medium where this program is recorded | |
US20120044335A1 (en) | Makeup simulation system, makeup simulation apparatus, makeup simulation method, and makeup simulation program | |
JP4809056B2 (en) | Face classification device for cheek makeup, face classification program, and recording medium on which the program is recorded | |
WO2006030600A1 (en) | Skin analysis network system | |
JPH1156469A (en) | Method for evaluating hair style and hairstyle image map | |
WO2006043643A1 (en) | Lip categorizing method, makeup method, categorizing map, and makeup tool | |
WO2015122195A1 (en) | Impression analysis device, game device, health management device, advertising support device, impression analysis system, impression analysis method, program, and program recording medium | |
US20020093515A1 (en) | Method of measuring and sizing objects from an image of a human face using iris size | |
JP2007517337A (en) | System and method for improving aesthetics | |
WO2001078553A2 (en) | Makeup color image sorting method and makeup color image map | |
JP5095182B2 (en) | Face classification device, face classification program, and recording medium on which the program is recorded | |
JP3755384B2 (en) | Skin color information display method | |
JP2017120595A (en) | Method for evaluating state of application of cosmetics | |
JP5905702B2 (en) | Face impression judgment chart | |
JP2013008319A (en) | Hair color presentation method | |
JP3459400B2 (en) | Hair color advice system | |
JP2001025460A (en) | Method for displaying skin color information | |
CN108292418B (en) | Information providing device and information providing method | |
WO2024122363A1 (en) | Stress diagnosis system, stress diagnosis apparatus, program, and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140523 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |