JP3429511B2 - Rechargeable battery charging circuit - Google Patents

Rechargeable battery charging circuit

Info

Publication number
JP3429511B2
JP3429511B2 JP13711692A JP13711692A JP3429511B2 JP 3429511 B2 JP3429511 B2 JP 3429511B2 JP 13711692 A JP13711692 A JP 13711692A JP 13711692 A JP13711692 A JP 13711692A JP 3429511 B2 JP3429511 B2 JP 3429511B2
Authority
JP
Japan
Prior art keywords
terminal
voltage
charging
output
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13711692A
Other languages
Japanese (ja)
Other versions
JPH05336675A (en
Inventor
信雄 塩島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP13711692A priority Critical patent/JP3429511B2/en
Publication of JPH05336675A publication Critical patent/JPH05336675A/en
Application granted granted Critical
Publication of JP3429511B2 publication Critical patent/JP3429511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池の充電回路に係
り、特に複数個の二次電池を直列接続して充電を行う充
電回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging circuit for secondary batteries, and more particularly to a charging circuit for charging a plurality of secondary batteries in series.

【0002】[0002]

【従来の技術】二次電池の充電方式には種々のものがあ
るが、例えば特開平2−60073号公報には特に二次
電池の最大端子電圧が所定範囲となるように充電を行う
方法が記載されている。
2. Description of the Related Art There are various types of charging methods for secondary batteries. For example, Japanese Patent Application Laid-Open No. 2-60073 discloses a method of charging a secondary battery so that the maximum terminal voltage is within a predetermined range. Have been described.

【0003】この従来の充電方法では、負極活物質とし
てリチウム系金属、また正極活物質としてマンガン系酸
化物をそれぞれ用いた非水電解液二次電池を充電する場
合、その二次電池の最大端子電圧が3.50〜4.10
(V)の範囲となるように充電を行うことにより、サイ
クル寿命を延ばしている。
In this conventional charging method, when a non-aqueous electrolyte secondary battery using a lithium metal as a negative electrode active material and a manganese oxide as a positive electrode active material is charged, the maximum terminal of the secondary battery is charged. Voltage is 3.50-4.10.
By charging the battery within the range of (V), the cycle life is extended.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の充電方
法では、二次電池を複数(n)個直列接続して充電を行
う場合、n個の二次電池の直列回路の最大端子電圧が
3.50×n〜4.10×n(V)の範囲となるように
充電を行うことになる。このような方法で充電を行った
場合、個々の二次電池間に電気容量のばらつきがある
と、電気容量の比較的小さい電池の端子電圧が上記3.
50〜4.10(V)という最大端子電圧範囲を越えて
しまう。このように定められた最大端子電圧を越えて充
電すると、その電池に劣化や破損を生じ、結果的に電池
寿命が短くなってしまう。
In the conventional charging method described above, when a plurality (n) of secondary batteries are connected in series for charging, the maximum terminal voltage of the series circuit of n secondary batteries is 3 or less. Charging is performed so as to be in the range of 0.50 × n to 4.10 × n (V). When charging is performed by such a method, if there is a variation in the electric capacity between the individual secondary batteries, the terminal voltage of the battery having a relatively small electric capacity is 3.
The maximum terminal voltage range of 50 to 4.10 (V) will be exceeded. If the battery is charged in excess of the maximum terminal voltage determined in this way, the battery will be deteriorated or damaged, resulting in a shorter battery life.

【0005】この問題を避けるために、予め個々の二次
電池の電気容量を測定し、電気容量の揃った電池の組み
合わせで複数個の電池を直列接続して充電を行う方法が
考えられる。しかし、この方法は電気容量の揃った電池
を選別するという煩雑な作業が必要であるばかりでな
く、充電サイクルを繰り返すうちに個々の二次電池の電
気容量のばらつきが広がるため、上記問題の根本的な解
決策にはならない。
In order to avoid this problem, a method may be considered in which the electric capacities of the individual secondary batteries are measured in advance, and a plurality of batteries are connected in series with a combination of batteries having uniform electric capacities for charging. However, this method not only requires the complicated work of selecting batteries with uniform electric capacities, but also spreads the dispersion of electric capacities of individual secondary batteries during repeated charging cycles, which is the root cause of the above problem. Is not an effective solution.

【0006】本発明は、このような従来の問題点を解消
するためになされたもので、複数個の二次電池を直列接
続して充電を行う場合、個々の二次電池の電気容量にば
らつきがあっても電池の劣化や破損を引き起こすことの
ない二次電池の充電回路を提供することを目的とする。
The present invention has been made in order to solve such a conventional problem. When a plurality of secondary batteries are connected in series for charging, the electric capacity of each secondary battery varies. It is an object of the present invention to provide a charging circuit for a secondary battery which does not cause deterioration or damage of the battery.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係る二次電池の充電回路は、直列接続され
た複数個の二次電池を充電するための充電用電源と、前
記複数個の二次電池の端子電圧を検出する複数の電圧検
出手段と、これら複数の電圧検出手段の出力端子にそれ
ぞれの入力端子が接続され、それぞれの出力端子が共通
に接続された複数の理想ダイオード回路からなり、該複
数の理想ダイオード回路の共通出力端子に前記複数の電
圧検出手段の出力のうち最も高い電圧に相当する出力を
発生する信号処理手段と、前記充電用電源と前記複数個
の二次電池の直列回路との間に接続され、前記信号処理
手段の出力が設定値未満の期間は前記複数個の二次電池
に一定の充電電流を供給し、設定値に達した後は前記信
号処理手段の出力が該設定値以下を維持するように充電
電流を制御する制御手段とを備えたことを特徴とする。
In order to solve the above problems, a secondary battery charging circuit according to the present invention comprises a charging power source for charging a plurality of secondary batteries connected in series, and A plurality of voltage detection means for detecting the terminal voltage of the plurality of secondary batteries, and an output terminal for the plurality of voltage detection means.
Each input terminal is connected and each output terminal is common
Consisting of multiple ideal diode circuits connected to
Number of ideal diodes to the common output terminal
The output of the signal processing means is connected between the signal processing means for generating an output corresponding to the highest voltage among the outputs of the pressure detecting means, and the charging power source and the series circuit of the plurality of secondary batteries. Is supplied to the plurality of secondary batteries for a period of time less than the set value, and after reaching the set value, the charge current is controlled so that the output of the signal processing means maintains the set value or less. And a control means for controlling the operation.

【0008】[0008]

【作用】このように本発明では、直列接続された複数個
の二次電池に対して、端子電圧が最も高い電圧に相当す
る電圧検出手段の出力が設定値に満たない期間は定電流
充電を行い、設定値に達した後はいずれの電池も端子電
圧が設定値を越えないように充電電流を制御して、例え
ば定電圧充電を行うことにより、二次電池の電気容量に
ばらつきがあっても、電池の劣化や破損が生じることは
ない。
As described above, according to the present invention, constant current charging is performed for a plurality of secondary batteries connected in series while the output of the voltage detecting means corresponding to the highest terminal voltage is below the set value. After reaching the set value, the charging current is controlled so that the terminal voltage of all batteries does not exceed the set value, and for example, constant voltage charging is performed, resulting in variations in the electric capacity of the secondary battery. However, the battery will not be deteriorated or damaged.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明の一実施例に係る二次電池の充
電回路の回路図である。同図において、充電用電源1の
一端は制御回路2の入力端子INに接続されている。制
御回路2の出力端子OUTと充電用電源1の他端との間
には、複数個(この例では2個)の二次電池(例えばリ
チウム二次電池、以下、単に電池という)3,4が直列
に接続されている。なお、充電用電源1には、交流電源
の出力を整流して直流を得る電源や、他の比較的大容量
の電池が使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a charging circuit for a secondary battery according to an embodiment of the present invention. In the figure, one end of the charging power source 1 is connected to the input terminal IN of the control circuit 2. Between the output terminal OUT of the control circuit 2 and the other end of the charging power source 1, a plurality (two in this example) of secondary batteries (for example, lithium secondary batteries, hereinafter simply referred to as batteries) 3, 4 Are connected in series. As the charging power source 1, a power source for rectifying the output of an AC power source to obtain a direct current or another battery having a relatively large capacity is used.

【0010】制御回路2は、制御端子Cに印加される電
圧が基準電圧Vref(後述)より低い場合は、予め設
定された一定の充電電流を電池3,4に供給していわゆ
る定電流充電を行い、制御端子Cに印加される電圧が上
昇して基準電圧Vrefに達すると、制御端子Cに印加
される電圧がVrefまたはVrefに相当する一定の
電圧を維持するように充電電流を制御する。
When the voltage applied to the control terminal C is lower than the reference voltage Vref (described later), the control circuit 2 supplies a preset constant charging current to the batteries 3 and 4 to perform so-called constant current charging. When the voltage applied to the control terminal C rises and reaches the reference voltage Vref, the voltage is applied to the control terminal C.
That controls the charging current so that the voltage to be to maintain a constant voltage corresponding to Vref or Vref.

【0011】電圧検出回路5,7は電圧3,4の端子電
圧を検出するためのものであり、電圧検出回路5は抵抗
R1〜R4と演算増幅器6からなる差動増幅器により構
成され、同様に電圧検出回路7は抵抗R5〜R8と演算
増幅器8からなる差動増幅器により構成されている。電
圧検出回路5の入力端子a1,b1は電池3の正極端子
および負極端子にそれぞれ接続されると共に、抵抗R
1,R2を介して演算増幅器6の反転入力端子および非
反転入力端子にそれぞれ接続されている。演算増幅器6
の反転入力端子は抵抗R3を介して出力端子に接続さ
れ、非反転入力端子は抵抗R4を介して接地されてい
る。また、演算増幅器6の出力端子は電圧検出回路5の
出力端子c1に接続されている。
The voltage detection circuits 5 and 7 are for detecting the terminal voltages of the voltages 3 and 4, and the voltage detection circuit 5 is composed of a differential amplifier composed of resistors R1 to R4 and an operational amplifier 6, and similarly. The voltage detection circuit 7 is composed of a differential amplifier including resistors R5 to R8 and an operational amplifier 8. The input terminals a1 and b1 of the voltage detection circuit 5 are connected to the positive electrode terminal and the negative electrode terminal of the battery 3, respectively, and the resistance R
1 and R2 are connected to the inverting input terminal and the non-inverting input terminal of the operational amplifier 6, respectively. Operational amplifier 6
The inverting input terminal is connected to the output terminal via the resistor R3, and the non-inverting input terminal is grounded via the resistor R4. The output terminal of the operational amplifier 6 is connected to the output terminal c1 of the voltage detection circuit 5.

【0012】同様に、電圧検出回路7の入力端子a2,
b2は電池4の正極端子および負極端子にそれぞれ接続
されると共に、抵抗R5,R6を介して演算増幅器8の
反転入力端子および非反転入力端子にそれぞれ接続され
ている。演算増幅器8の反転入力端子は抵抗R7を介し
て出力端子に接続され、非反転入力端子は抵抗R8を介
して接地されている。また、演算増幅器8の出力端子は
電圧検出回路7の出力端子c2に接続されている。
Similarly, the input terminals a2 and a2 of the voltage detection circuit 7 are
b2 is connected to the positive electrode terminal and the negative electrode terminal of the battery 4, respectively, and is also connected to the inverting input terminal and the non-inverting input terminal of the operational amplifier 8 via the resistors R5 and R6. The inverting input terminal of the operational amplifier 8 is connected to the output terminal via the resistor R7, and the non-inverting input terminal is grounded via the resistor R8. The output terminal of the operational amplifier 8 is connected to the output terminal c2 of the voltage detection circuit 7.

【0013】従って電圧検出回路5,7の出力端子c
1,c2には、電池3,4の端子電圧に相当する出力電
圧Vt1,Vt2がそれぞれ得られる。これらの電圧検
出回路5,7の出力電圧Vt1,Vt2は、電池3,4
の端子電圧をV1,V2とし、抵抗R1,R2,R3,
R4,R5,R6,R7,R8の抵抗値をr1,r2,
r3,r4,r5,r6,r7,r8とし、またr1=
r2=r3=r4=r5=r6=r7=r8とすると、 Vt1=−V1 (1) Vt2=−V2 (2) となる。
Therefore, the output terminals c of the voltage detection circuits 5 and 7
Output voltages Vt1 and Vt2 corresponding to the terminal voltages of the batteries 3 and 4 are obtained at 1 and c2, respectively. The output voltages Vt1 and Vt2 of these voltage detection circuits 5 and 7 are
The terminal voltages of V1 and V2, and resistors R1, R2, R3
The resistance values of R4, R5, R6, R7, and R8 are r1, r2, and
r3, r4, r5, r6, r7, r8, and r1 =
If r2 = r3 = r4 = r5 = r6 = r7 = r8, then Vt1 = -V1 (1) Vt2 = -V2 (2).

【0014】電圧検出回路5,7の出力端子c1,c2
は、信号処理回路9の2つの入力端子d1,d2に接続
されている。信号処理回路9は、入力端子d1,d2に
入力される電圧のうち低い方に相当する出力電圧Vtm
を出力端子eより発生する。式(1)(2)に示したよ
うに、電圧検出回路5,7の出力電圧Vt1,Vt2は
電池3,4の端子電圧V1,V2に対して反転している
ので、結局、信号処理回路9の出力端子eに発生する電
圧Vtmは、電池3,4の端子電圧V1,V2のうち高
い方の電圧に相当する電圧となる。
Output terminals c1 and c2 of the voltage detection circuits 5 and 7
Are connected to the two input terminals d1 and d2 of the signal processing circuit 9. The signal processing circuit 9 outputs the output voltage Vtm corresponding to the lower one of the voltages input to the input terminals d1 and d2.
Is generated from the output terminal e. As shown in the equations (1) and (2), the output voltages Vt1 and Vt2 of the voltage detection circuits 5 and 7 are inverted with respect to the terminal voltages V1 and V2 of the batteries 3 and 4, so that the signal processing circuit is eventually ended. The voltage Vtm generated at the output terminal e of the battery 9 is a voltage corresponding to the higher one of the terminal voltages V1 and V2 of the batteries 3 and 4.

【0015】信号処理回路9は、2つの理想ダイオード
回路10,11によって構成されている。第1の理想ダ
イオード回路10は、抵抗R9,R10、ダイオードD
1,D2および演算増幅器12からなり、抵抗R9の一
端は信号処理回路9の入力端子d1に、他端は演算増幅
器12の反転入力端子にそれぞれ接続され、演算増幅器
12の非反転入力端子は接地され、演算増幅器12の反
転入力端子はさらにダイオードD1のアノードと抵抗R
10の一端に接続され、ダイオードD1のカソードは演
算増幅器12の出力端子とダイオードD2のアノードに
接続され、ダイオードD2のカソードと抵抗R10の他
端は信号処理回路9の出力端子eに接続されている。
The signal processing circuit 9 is composed of two ideal diode circuits 10 and 11. The first ideal diode circuit 10 includes resistors R9 and R10 and a diode D.
1 and D2 and an operational amplifier 12, one end of the resistor R9 is connected to the input terminal d1 of the signal processing circuit 9 and the other end is connected to the inverting input terminal of the operational amplifier 12, and the non-inverting input terminal of the operational amplifier 12 is grounded. The inverting input terminal of the operational amplifier 12 is further connected to the anode of the diode D1 and the resistor R.
10, the cathode of the diode D1 is connected to the output terminal of the operational amplifier 12 and the anode of the diode D2, and the cathode of the diode D2 and the other end of the resistor R10 are connected to the output terminal e of the signal processing circuit 9. There is.

【0016】同様に、第2の理想ダイオード回路11
は、抵抗R11,R12,ダイオードD3,D4および
演算増幅器13からなり、抵抗R11の一端は信号処理
回路9の入力端子d2に、他端は演算増幅器13の反転
入力端子にそれぞれ接続され、演算増幅器13の非反転
入力端子は接地され、演算増幅器13の反転入力端子は
さらにダイオードD3のアノードと抵抗R12の一端に
接続され、ダイオードD3のカソードは演算増幅器13
の出力端子とダイオードD4のアノードに接続され、ダ
イオードD4のカソードと抵抗R12の他端は信号処理
回路9の出力端子eに接続されている。
Similarly, the second ideal diode circuit 11
Is composed of resistors R11 and R12, diodes D3 and D4, and an operational amplifier 13. One end of the resistor R11 is connected to the input terminal d2 of the signal processing circuit 9 and the other end is connected to the inverting input terminal of the operational amplifier 13. The non-inverting input terminal of 13 is grounded, the inverting input terminal of the operational amplifier 13 is further connected to the anode of the diode D3 and one end of the resistor R12, and the cathode of the diode D3 is the operational amplifier 13.
Is connected to the anode of the diode D4, and the cathode of the diode D4 and the other end of the resistor R12 are connected to the output terminal e of the signal processing circuit 9.

【0017】今、信号処理回路9の入力端子d1,d2
に入力される電圧検出回路5,6の出力電圧を前述の通
りVt1,Vt2とし、抵抗R9,R10,R11,R
12の抵抗値をr9,r10,r11,r12とし、理
想ダイオード回路10,11の出力を互いに接続してい
ない状態を考えると、理想ダイオード回路10,11の
出力電圧Vx1,Vx2はそれぞれ Vx1=−Vt1×(r10/r9) (3) Vx2=−Vt2×(r12/r11) (4) となる。ここで、r9=r10、r11=r12とする
と、出力が互いに接続されていない状態での理想ダイオ
ード回路10,11の出力電圧Vx1,Vx2はそれぞ
れ−Vt1,−Vt2となる。
Now, the input terminals d1 and d2 of the signal processing circuit 9
The output voltages of the voltage detection circuits 5 and 6 input to the terminals are Vt1 and Vt2 as described above, and the resistors R9, R10, R11 and R
Assuming that the resistance values of 12 are r9, r10, r11 and r12 and the outputs of the ideal diode circuits 10 and 11 are not connected to each other, the output voltages Vx1 and Vx2 of the ideal diode circuits 10 and 11 are Vx1 = −, respectively. Vt1 × (r10 / r9) (3) Vx2 = −Vt2 × (r12 / r11) (4) Here, assuming that r9 = r10 and r11 = r12, the output voltages Vx1 and Vx2 of the ideal diode circuits 10 and 11 when the outputs are not connected to each other are −Vt1 and −Vt2, respectively.

【0018】電圧3,4の端子電圧V1,V2の関係が
V1>V2であるとすると、Vt1>Vt2>0である
から、理想ダイオード回路10の出力電圧Vx1(=−
Vt1)の方が理想ダイオード回路11の出力電圧Vx
2(=−Vt2)より高くなる。その結果、図1のよう
に理想ダイオード回路10,11の出力端子を共通に信
号処理回路9の出力端子eに接続すると、高い方の出力
電圧−Vt1が信号処理回路9の出力電圧Vtmとして
出力される。すなわち、 Vtm=−Vt1 =V1 (5) となり、電池3,4の端子電圧V1,V2のうち高い方
の電圧V1に相当する電圧がVtmとして出力される。
この信号処理回路9の出力Vtmは、制御回路2の制御
端子Cに入力される。
Assuming that the relationship between the terminal voltages V1 and V2 of the voltages 3 and 4 is V1> V2, Vt1>Vt2> 0. Therefore, the output voltage Vx1 of the ideal diode circuit 10 (=-
Vt1) is the output voltage Vx of the ideal diode circuit 11
2 (= -Vt2). As a result, when the output terminals of the ideal diode circuits 10 and 11 are commonly connected to the output terminal e of the signal processing circuit 9 as shown in FIG. 1, the higher output voltage −Vt1 is output as the output voltage Vtm of the signal processing circuit 9. To be done. That is, Vtm = -Vt1 = V1 (5), and the voltage corresponding to the higher voltage V1 of the terminal voltages V1 and V2 of the batteries 3 and 4 is output as Vtm.
The output Vtm of the signal processing circuit 9 is input to the control terminal C of the control circuit 2.

【0019】次に、図1の充電回路の動作をその充電特
性を示す図2の波形図を参照して説明する。図2におい
て、(a)は電池3,4の端子電圧V1,V2とその直
列合成電圧、(b)は電池3,4を流れる充電電流Iを
それぞれ示している。
Next, the operation of the charging circuit of FIG. 1 will be described with reference to the waveform diagram of FIG. 2 showing its charging characteristic. In FIG. 2, (a) shows the terminal voltages V1 and V2 of the batteries 3 and 4 and their series combined voltage, and (b) shows the charging current I flowing through the batteries 3 and 4, respectively.

【0020】充電が開始すると、充電用電源1から制御
回路2を介して電池3,4に一定の充電電流が供給され
る。例えば電池3,4がリチウム二次電池の場合、この
ように定電流充電を行うと、その端子電圧V1,V2は
図2(a)に示すようにほぼ直線的に上昇するが、充電
初期はV1,V2共に基準電圧Vrefより低い。
When charging is started, a constant charging current is supplied from the charging power source 1 to the batteries 3 and 4 via the control circuit 2. For example, in the case where the batteries 3 and 4 are lithium secondary batteries, when the constant current charging is performed in this way, the terminal voltages V1 and V2 increase almost linearly as shown in FIG. Both V1 and V2 are lower than the reference voltage Vref.

【0021】ここで、電池3の方が電池4より電気容量
が小さいとすると、電池3の端子電圧V1は電池4の端
子電圧V2より高いため、式(5)に示したように信号
処理回路9の出力端子eにはV1に相当する出力電圧V
tmが発生する。この出力電圧Vtmは、制御回路2の
制御端子Cに入力される。
Assuming that the battery 3 has a smaller electric capacity than the battery 4, the terminal voltage V1 of the battery 3 is higher than the terminal voltage V2 of the battery 4, so that the signal processing circuit as shown in the equation (5) is used. The output voltage V corresponding to V1 is applied to the output terminal e of 9
tm occurs. The output voltage Vtm is input to the control terminal C of the control circuit 2.

【0022】今、信号処理回路9の出力電圧Vtmが Vref>Vtm =V1 の時は、制御回路2は電池3,4を定電流で充電する
が、充電が進んで電池3,4の端子電圧が上昇し、 Vref=Vtm となる時刻t=t1以降は、図2(b)に示すように充
電電流を低下させ、電池3の端子電圧V1がVref一
定、すなわち定電圧充電となるように電池3,4を充電
する。
Now, when the output voltage Vtm of the signal processing circuit 9 is Vref> Vtm = V1, the control circuit 2 charges the batteries 3 and 4 with a constant current, but the charging proceeds and the terminal voltage of the batteries 3 and 4 increases. After time t = t1 when Vref = Vtm is reached, the charging current is reduced as shown in FIG. 2 (b) so that the terminal voltage V1 of the battery 3 is constant Vref, that is, constant voltage charging is performed. Charge 3 and 4.

【0023】一方、電池4の端子電圧V2は図2(b)
に示すように0<t<t1の期間は電池3の端子電圧V
1より低いが、傾きはほぼ同じ電圧変化を示す。この後
t1≦tになると、端子電圧V2の上昇の傾きが緩やか
になり、時間経過と共にV1に近付く。
On the other hand, the terminal voltage V2 of the battery 4 is shown in FIG.
As shown in, the terminal voltage V of the battery 3 during the period of 0 <t <t1
Although lower than 1, the slope shows almost the same voltage change. After this, when t1 ≦ t, the rising slope of the terminal voltage V2 becomes gentle and approaches V1 with the lapse of time.

【0024】このように、電池3,4の端子電圧V1,
V2のうち高い方の電圧が基準電圧Vrefに相当する
設定値に満たない期間中は電池3,4を定電流で充電
し、端子電圧V1,V2のうち高い方の電圧が設定値に
達した後は電池3,4を定電圧充電することにより、電
池3,4の電気容量にばらつきがあっても、電気容量の
小さい方の電池に設定値以上の電圧が加わることがな
く、電池の劣化や破損を防止することができる。
In this way, the terminal voltages V1,
During a period in which the higher voltage of V2 does not reach the set value corresponding to the reference voltage Vref, the batteries 3 and 4 are charged with a constant current, and the higher voltage of the terminal voltages V1 and V2 reaches the set value. After that, by charging the batteries 3 and 4 at a constant voltage, even if the electric capacities of the batteries 3 and 4 vary, the battery having the smaller electric capacity is not applied with a voltage higher than the set value, and the battery is deteriorated. And damage can be prevented.

【0025】図3に、図1の制御回路2の具体例を示
す。制御端子Cは演算増幅器14の反転入力端子に接続
され、演算増幅器14の非反転入力端子には基準電圧V
refが印加されている。演算増幅器14の出力端子
は、抵抗R13を介してトランジスタQ1のベースとト
ランジスタQ2のコレクタに接続されている。トランジ
スタQ1のコレクタは入力端子INに接続され、エミッ
タはトランジスタQ2のベースと抵抗R14の一端に接
続されている。トランジスタQ2のエミッタは、抵抗R
14の他端と共に出力端子OUTに接続されている。
FIG. 3 shows a concrete example of the control circuit 2 shown in FIG. The control terminal C is connected to the inverting input terminal of the operational amplifier 14, and the reference voltage V is applied to the non-inverting input terminal of the operational amplifier 14.
ref is being applied. The output terminal of the operational amplifier 14 is connected to the base of the transistor Q1 and the collector of the transistor Q2 via the resistor R13. The collector of the transistor Q1 is connected to the input terminal IN, and the emitter is connected to the base of the transistor Q2 and one end of the resistor R14. The emitter of the transistor Q2 has a resistor R
It is connected to the output terminal OUT together with the other end of 14.

【0026】今、制御端子Cに入力される電圧、すなわ
ち信号処理回路9の出力電圧Vtmが基準電圧Vref
より低い場合は、演算増幅器13の出力は高レベルとな
り、トランジスタQ1のベースに大きな電流が流れる。
この時、トランジスタQ2のベース・エミッタ間電圧を
BEとし、抵抗R14の抵抗値をr14とすると、トラ
ンジスタQ1にはVBE/r14で表される比較的大きな
一定の電流が流れ、図1の電池3,4に対して定電流充
電が行われる。一方、信号処理回路9の出力電圧が基準
電圧Vrefに達すると、演算増幅器14の出力が低レ
ベルとなるため、トランジスタQ1のベースに流れる電
流が減少し、VtmがVrefを越えないように電池
3,4に対して定電圧充電が行われる。本発明は上記の
実施例に限定されるものではなく、次のように種々変形
して実施することができる。
Now, the voltage input to the control terminal C, that is, the output voltage Vtm of the signal processing circuit 9 is the reference voltage Vref.
If it is lower, the output of the operational amplifier 13 becomes high level, and a large current flows through the base of the transistor Q1.
At this time, assuming that the base-emitter voltage of the transistor Q2 is V BE and the resistance value of the resistor R14 is r14, a relatively large constant current expressed by V BE / r14 flows in the transistor Q1, Constant current charging is performed on the batteries 3 and 4. On the other hand, when the output voltage of the signal processing circuit 9 reaches the reference voltage Vref, the output of the operational amplifier 14 becomes low level, so that the current flowing through the base of the transistor Q1 decreases and the battery 3 is kept so that Vtm does not exceed Vref. , 4 are subjected to constant voltage charging. The present invention is not limited to the above embodiments, but can be modified in various ways as follows.

【0027】(1)実施例では、制御回路2において充
電電流を制御する際、図3に示すような構成として、ト
ランジスタQ1の抵抗値を可変して余分な電力を熱に変
換したが、スイッチング制御方式で充電電流を制御して
もよい。このようにするとトランジスタでの損失が減少
し、発熱を少なくすることができる。
(1) In the embodiment, when controlling the charging current in the control circuit 2, the resistance value of the transistor Q1 is changed to convert the extra power into heat in the configuration as shown in FIG. The charging current may be controlled by a control method. By doing so, the loss in the transistor is reduced and heat generation can be reduced.

【0028】(2)実施例では、電池の端子電圧のみに
基づいて充電制御を行ったが、タイマー制御を組み合わ
せたり、充電可能な温度範囲を検出する温度制御を組み
合わせてもよい。
(2) In the embodiment, the charging control is performed only on the basis of the terminal voltage of the battery. However, timer control may be combined, or temperature control for detecting a chargeable temperature range may be combined.

【0029】(3)実施例では、制御回路2において信
号処理回路9の出力電圧Vtmが基準電圧Vrefに達
した後はVtmがVrefを維持するように充電電流を
制御したが、必ずしもその必要はない。例えばVtmが
Vrefに達した後、充電電流を単純に段階的に減少さ
せてもよく、要するにVtmがVref以下の電圧を維
持するように充電電流を制御すればよい。 (4)実施例では、電池および電圧検出回路が2組の場
合の例を示したが、3組以上であってもよい。
(3) In the embodiment, the control circuit 2 controls the charging current so that Vtm maintains Vref after the output voltage Vtm of the signal processing circuit 9 reaches the reference voltage Vref, but this is not always necessary. Absent. For example, after Vtm reaches Vref, the charging current may be simply reduced in steps, that is, the charging current may be controlled so that Vtm is maintained at a voltage equal to or lower than Vref. (4) In the embodiment, the example in which the battery and the voltage detection circuit are two sets is shown, but the number may be three or more.

【0030】(5)実施例では、直列接続された複数個
の電池の個々の端子電圧を検出し、それらのうちで最大
の電圧に対応する出力が設定値未満か設定値に達したか
によって電池の充電電流を制御したが、直列接続される
電池の個数がさらに多数の場合、それらの電池を複数の
グループに分け、その各グループ毎に端子電圧を検出し
てもよい。その場合、電圧検出回路や信号処理回路の増
幅度を選定すれば、各グループ内の電池の個数は同一で
なくとも制御が可能である。このようにグループ単位で
端子電圧を検出する構成とすると、直列接続される電池
の個数が多い場合でも、電圧検出回路や理想ダイオード
回路の数を減らして、全体の回路規模を削減することが
できる。
(5) In the embodiment, the terminal voltage of each of a plurality of batteries connected in series is detected and the output corresponding to the maximum voltage among them is less than the set value or has reached the set value. Although the charging current of the batteries is controlled, if the number of batteries connected in series is larger, the batteries may be divided into a plurality of groups and the terminal voltage may be detected for each group. In that case, if the amplification degree of the voltage detection circuit or the signal processing circuit is selected, it is possible to control even if the number of batteries in each group is not the same. With such a configuration in which the terminal voltage is detected in units of groups, it is possible to reduce the number of voltage detection circuits and ideal diode circuits and reduce the overall circuit scale even when the number of batteries connected in series is large. .

【0031】(6)実施例では、二次電池としてリチウ
ム二次電池を用いたが、本発明の充電回路は他の二次電
池、例えば鉛蓄電池などを用いた場合にも適用すること
が可能である。
(6) In the embodiment, a lithium secondary battery is used as the secondary battery, but the charging circuit of the present invention can be applied to the case where another secondary battery such as a lead storage battery is used. Is.

【0032】(7)実施例では、電圧検出手段および信
号処理手段を抵抗、ダイオード、演算増幅器等を用いた
ハードウェアで実現しているが、その一部または全部を
マイクロコンピュータ等を用いてプログラムで処理し、
ソフトウェアで実現してもよい。その他、本発明は要旨
を逸脱しない範囲で種々変形して実施することが可能で
ある。
(7) In the embodiment, the voltage detecting means and the signal processing means are realized by hardware using resistors, diodes, operational amplifiers, etc., but part or all of them are programmed by using a microcomputer or the like. Processed with
It may be realized by software. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば複
数個の二次電池の端子電圧をそれぞれ電圧検出手段によ
り検出すると共に、それらの電圧検出手段の出力端子に
それぞれの入力端子が接続され、それぞれの出力端子が
共通に接続された複数の理想ダイオード回路からなり、
該複数の理想ダイオード回路の共通出力端子に複数の電
圧検出手段の出力のうち最も高い電圧に相当する出力を
発生する信号処理手段を設け、この信号処理手段の出力
が設定値未満の期間は複数個の二次電池に一定の充電電
流を供給し、設定値に達した後は信号処理手段の出力が
該設定値以下を維持するよう充電電流を制御することに
より、二次電池の電気容量にばらつきがあっても、電池
の劣化や破損を引き起こすことなく充電を行うことがで
きる。従って、予め電池の電気容量を測定して容量の揃
った電池を選別する必要がなく、また充電サイクルを繰
り返して電気容量のばらつきが大きくとも、適切な充電
を行うことが可能である。
As described above, according to the present invention, the terminal voltages of a plurality of secondary batteries are detected by the voltage detecting means, and the output terminals of the voltage detecting means are detected.
Each input terminal is connected and each output terminal is
It consists of multiple ideal diode circuits connected in common,
A plurality of electric currents are connected to the common output terminals of the plurality of ideal diode circuits.
A signal processing means for generating an output corresponding to the highest voltage among the outputs of the pressure detecting means is provided, and a constant charging current is supplied to the plurality of secondary batteries while the output of the signal processing means is less than the set value. By controlling the charging current so that the output of the signal processing means maintains the set value or less after reaching the set value, the deterioration or damage of the battery is caused even if the electric capacity of the secondary battery varies. Can be charged without. Therefore, it is not necessary to select a uniform battery capacity by measuring the electrical capacitance of the pre-cell and an even greater variation in capacitance by repeating the charge cycle, it is possible to perform appropriate charging.

【0034】従って、予め電池の電気容量を測定して容
量の揃った電池を選別する必要がなく、また充電サイク
ルを繰り返して電気容量のばらつきが広がても、適切な
充電を行うことが可能である。
Therefore, it is not necessary to measure the electric capacity of the batteries in advance to select batteries having a uniform capacity, and it is possible to perform appropriate charging even if there are wide variations in electric capacity due to repeated charging cycles. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る二次電池の充電回路の
回路図
FIG. 1 is a circuit diagram of a charging circuit for a secondary battery according to an embodiment of the present invention.

【図2】図1の充電回路の動作を説明するための波形図2 is a waveform diagram for explaining the operation of the charging circuit of FIG.

【図3】図1における制御回路の具体例を示す回路図FIG. 3 is a circuit diagram showing a specific example of a control circuit in FIG.

【符号の説明】[Explanation of symbols]

1…充電用電源 2…制御回路 3,4…二次電池 5,7…電圧検
出回路 9…信号処理回路 10,11…理
想ダイオード回路
1 ... Charging power source 2 ... Control circuit 3, 4 ... Secondary battery 5, 7 ... Voltage detection circuit 9 ... Signal processing circuit 10, 11 ... Ideal diode circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H02J 7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直列接続された複数個の二次電池を充電す
るための充電用電源と、 前記複数個の二次電池の端子電圧を検出する複数の電圧
検出手段と、 これら複数の電圧検出手段の出力端子にそれぞれの入力
端子が接続され、それぞれの出力端子が共通に接続され
た複数の理想ダイオード回路からなり、該複数の理想ダ
イオード回路の共通出力端子に前記複数の電圧検出手段
の出力のうち最も高い電圧に相当する出力を発生する信
号処理手段と、 前記充電用電源と前記複数個の二次電池の直列回路との
間に接続され、前記信号処理手段の出力が設定値未満の
期間は前記複数個の二次電池に一定の充電電流を供給
し、設定値に達した後は前記信号処理手段の出力が該設
定値以下を維持するように充電電流を制御する制御手段
とを備えたことを特徴とする二次電池の充電回路。
1. A charging power source for charging a plurality of rechargeable batteries connected in series, a plurality of voltage detection means for detecting a terminal voltage of the plurality of rechargeable batteries, and a plurality of these voltage detection devices. Each input to the output terminal of the means
Terminals are connected and each output terminal is connected in common.
A plurality of ideal diode circuits,
The plurality of voltage detecting means are provided at a common output terminal of the ion circuit.
A signal processing means for generating a corresponding output to the highest voltage of the output, is connected between the series circuit of the secondary battery of the plurality and the charging power supply, the output of the signal processing means preset value Control means for supplying a constant charging current to the plurality of secondary batteries for a period of less than, and for controlling the charging current so that the output of the signal processing means maintains the set value or less after reaching the set value. A charging circuit for a secondary battery, comprising:
【請求項2】前記理想ダイオード回路の各々は、非反転
入力端子が接地された演算増幅器と、該演算増幅器の反
転入力端子と該理想ダイオード回路の入力端子との間に
接続された第1の抵抗と、前記演算増幅器の反転入力端
子と前記共通出力端子との間に接続された第2の抵抗
と、前記演算増幅器の反転入力端子にアノードが接続さ
れ、カソードが前記演算増幅器の出力端子に接続された
第1のダイオードと、前記演算増幅器の出力端子にアノ
ードが接続され、カソードが前記共通出力端子に接続さ
れた第2のダイオードとからなる請求項1記載の二次電
池の充電回路。
2. Each of the ideal diode circuits is non-inverted.
The operational amplifier whose input terminal is grounded, and the operational amplifier
Between the input terminal and the input terminal of the ideal diode circuit
The connected first resistor and the inverting input of the operational amplifier
A second resistor connected between the child and the common output terminal
And the anode is connected to the inverting input terminal of the operational amplifier.
And the cathode was connected to the output terminal of the operational amplifier.
An anode is connected to the first diode and the output terminal of the operational amplifier.
Connected to the cathode and the cathode to the common output terminal.
2. The secondary battery according to claim 1, comprising a second diode
Pond charging circuit.
JP13711692A 1992-05-28 1992-05-28 Rechargeable battery charging circuit Expired - Fee Related JP3429511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13711692A JP3429511B2 (en) 1992-05-28 1992-05-28 Rechargeable battery charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13711692A JP3429511B2 (en) 1992-05-28 1992-05-28 Rechargeable battery charging circuit

Publications (2)

Publication Number Publication Date
JPH05336675A JPH05336675A (en) 1993-12-17
JP3429511B2 true JP3429511B2 (en) 2003-07-22

Family

ID=15191206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13711692A Expired - Fee Related JP3429511B2 (en) 1992-05-28 1992-05-28 Rechargeable battery charging circuit

Country Status (1)

Country Link
JP (1) JP3429511B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2995142B2 (en) * 1994-05-12 1999-12-27 富士電気化学株式会社 Series battery charger
JPH10304588A (en) * 1997-02-25 1998-11-13 Matsushita Electric Ind Co Ltd Power source equipment
US20110025272A1 (en) * 2008-03-25 2011-02-03 Takeaki Nagashima Charging method, charging device, and battery pack
JP5322486B2 (en) * 2008-04-18 2013-10-23 キヤノン株式会社 Charging system, charging device, and charging method
JP5250727B1 (en) * 2011-11-17 2013-07-31 パナソニック株式会社 Battery charge method, charge control circuit and power supply system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238721A (en) 1979-02-06 1980-12-09 The United States Of America As Represented By The United States Department Of Energy System and method for charging electrochemical cells in series

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238721A (en) 1979-02-06 1980-12-09 The United States Of America As Represented By The United States Department Of Energy System and method for charging electrochemical cells in series

Also Published As

Publication number Publication date
JPH05336675A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
JP3231801B2 (en) Battery charger
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
CN1064485C (en) Battery charging apparatus with charging mode convertible function
Chen Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response
US4307330A (en) Method and device for monitoring the state of charge of a storage battery
KR100271094B1 (en) Charge contoller
JP3629791B2 (en) Charge control device for battery pack
SE465053B (en) METHOD AND DEVICE FOR FAST CHARGING OF ACCUMULATOR BATTERIES
JP3429511B2 (en) Rechargeable battery charging circuit
JPH06133465A (en) Method and apparatus for charging secondary battery
JP3096535B2 (en) Method and apparatus for charging secondary battery
JP3177955B2 (en) Rechargeable battery charging method and charging system
JP2897094B2 (en) Charge / discharge device
JP3268513B2 (en) Battery pack charger
JPH06245402A (en) Battery charger
JP2995142B2 (en) Series battery charger
JPH02273036A (en) Hybrid battery
JP3805807B2 (en) Secondary battery charging circuit
JP3216595B2 (en) Rechargeable battery charger
JPH09163624A (en) Secondary battery charging method
JPH05336674A (en) Charging circuit for secondary battery
JP3271138B2 (en) Rechargeable battery charger and charging method
JP3635760B2 (en) Charge control device for battery pack
JPH0778637A (en) Charging method for lead-acid battery
RU93032286A (en) METHOD OF DOSING ACCELERATED CHARGE OF ACCUMULATOR BATTERIES AND DEVICE FOR ITS IMPLEMENTATION

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees