JP3428664B2 - Generation method of high pressure gas - Google Patents

Generation method of high pressure gas

Info

Publication number
JP3428664B2
JP3428664B2 JP12085492A JP12085492A JP3428664B2 JP 3428664 B2 JP3428664 B2 JP 3428664B2 JP 12085492 A JP12085492 A JP 12085492A JP 12085492 A JP12085492 A JP 12085492A JP 3428664 B2 JP3428664 B2 JP 3428664B2
Authority
JP
Japan
Prior art keywords
pressure
gas
low
liquid
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12085492A
Other languages
Japanese (ja)
Other versions
JPH0658500A (en
Inventor
昭夫 小林
直良 石川
Original Assignee
日酸工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日酸工業株式会社 filed Critical 日酸工業株式会社
Priority to JP12085492A priority Critical patent/JP3428664B2/en
Priority to KR1019930008338A priority patent/KR930023599A/en
Publication of JPH0658500A publication Critical patent/JPH0658500A/en
Application granted granted Critical
Publication of JP3428664B2 publication Critical patent/JP3428664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低温液化ガスから高圧ガ
スを発生させる方法に関し、特に特別な動力を要せずに
高圧ガスを発生させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for generating a high pressure gas from a low temperature liquefied gas, and more particularly to a method for generating a high pressure gas without requiring special power.

【0002】[0002]

【従来の技術】液化酸素など超低温の液化ガス(以下、
「液」と称する)から数百気圧の高圧ガスを発生させる
に際して、従来は高圧の液体ポンプを用いて液を昇圧
し、ついでこれを気化させて常温の高圧ガスとするか、
または低圧で液を気化させたのち、これを高圧のガス圧
縮機で昇圧させる方法が一般に採用されてきた。
2. Description of the Related Art Ultra low temperature liquefied gas such as liquefied oxygen (hereinafter,
When a high pressure gas of several hundred atmospheres is generated from a "liquid"), conventionally, a high pressure liquid pump is used to pressurize the liquid, and then this is vaporized to form a high temperature gas at room temperature.
Alternatively, a method in which a liquid is vaporized at a low pressure and then the pressure is increased by a high-pressure gas compressor has been generally adopted.

【0003】[0003]

【発明が解決しようとする課題】このような従来の技術
にはさまざまな課題があった。即ち、液体ポンプを用い
て液を昇圧してからこれを気化させる方法では、起動す
るに先立ってポンプを予備冷却する必要があり、そのた
めに多くの労力と経費が費やされていた。また液体ポン
プが回転機構を有するために液の吸い込み不良などのト
ラブルが発生し易く、その対策や保守にも多大の労力と
経費を要した。また、低圧で液を気化させたのち、これ
を高圧のガス圧縮機で昇圧させる方法では、多段の圧縮
機構を持つ複数の圧縮機か、または往復動型とダイアフ
ラム型を組み合わせた機構を持つ圧縮機を必要とし、い
ずれにしても機構が複雑であってその運転上トラブルが
発生し易く、その使用にも保守にも多大の労力と経費が
費やされていた。このように従来の方法はいずれも、高
圧の回転機構を必要とするので危険性が高く、保守はい
うまでもなく、突発的な故障に対しても常に細心の注意
を払い続ける必要があった。本発明はこのような従来の
課題を解決するためになされたものであり、その目的
は、回転機構を要しない高圧ガスの発生方法を提供する
ことによって運転と保守に要する労力と経費を軽減する
ことにある。
There are various problems in such a conventional technique. That is, in the method of increasing the pressure of the liquid using the liquid pump and then vaporizing the liquid, it is necessary to precool the pump before starting it, which requires a lot of labor and cost. Further, since the liquid pump has a rotating mechanism, troubles such as poor suction of liquid are likely to occur, and a great deal of labor and cost are required for countermeasures and maintenance. In addition, in the method of evaporating the liquid at low pressure and then boosting it with a high-pressure gas compressor, there are multiple compressors with multi-stage compression mechanism, or compression with a combination of reciprocating type and diaphragm type. A machine was required, the mechanism was complicated in any case, and troubles were likely to occur during its operation, and much labor and cost were spent for its use and maintenance. As described above, all of the conventional methods require a high-pressure rotating mechanism, which is highly dangerous, and it is necessary to always pay close attention to sudden failures, not to mention maintenance. . The present invention has been made to solve such conventional problems, and an object thereof is to provide a method for generating high-pressure gas that does not require a rotating mechanism, thereby reducing labor and cost required for operation and maintenance. Especially.

【0004】[0004]

【課題を解決するための手段】本発明は上記のような課
題を解決するために、低温液化ガスを、断熱された耐圧
筒に該筒容積の少なくとも80%以上を導入する工程
と、耐圧筒に導入された低温液化ガスを、トラップを介
して蒸発器に導いて気化させる工程と、気化した常温高
圧ガスを気蓄器に導入する工程とを所望回数行うことか
らなる高圧ガスの発生方法を提供する。このとき、前記
耐圧筒に低温液化ガスを導入するに当たり、該耐圧筒が
予備冷却されることが好ましい。また、前記耐圧筒に導
入された低温液化ガスのうち、気化したガスが回収され
ることが好ましい。
In order to solve the above problems, the present invention introduces a low temperature liquefied gas into a heat-insulating pressure-resistant cylinder at least 80% of its volume, and a pressure-resistant cylinder. The low-temperature liquefied gas introduced into the, the step of leading to the evaporator via a trap to be vaporized, and the step of introducing the vaporized room-temperature high-pressure gas into the gas accumulator by a desired number of times, a method of generating high-pressure gas. provide. At this time, when introducing the low temperature liquefied gas into the pressure-resistant cylinder, it is preferable that the pressure-resistant cylinder be pre-cooled. Further, of the low temperature liquefied gas introduced into the pressure resistant cylinder, it is preferable that the vaporized gas is recovered.

【0005】本発明の高圧ガス発生方法では、低温の液
が、まず断熱され、場合によっては予備冷却された耐圧
筒にその容積の80%以上まで導入される。この液は、
つぎに耐圧筒と蒸発器の間の弁を開くと、耐圧筒内のガ
ス圧によってトラップを介して蒸発器に送られる。蒸発
器は大気温に維持されているから、ここで液は大気熱を
吸収して気化し、高圧のガスとなる。この高圧ガスは気
蓄器に送られて貯えられる。このような操作がサイクル
として繰り返されると、気蓄器のガス圧が逐次上昇し、
回転機構を用いずに数百気圧の高圧ガスを得ることがで
きる。その到達し得る圧力は液化ガスの物性や温度圧力
等の設定条件にもよるが、500〜700気圧まで昇圧
することが可能である。このとき耐圧筒に送られる液の
温度は可及的に低温に維持される必要があり、そのため
に耐圧筒は断熱され、好ましくは液化窒素などで予め冷
却された後、液が導入される。また液を導入する際に耐
圧筒内に少容量残された圧縮されたガスは、液を蒸発器
に送る推力として使用されるが、送り終えたときには冷
却されて低圧ガスとなっている。このようなガスは次の
サイクルに先立って大気中に放出することもできるが、
経済性や公害の原因となることを考慮すると回収するこ
とが好ましい。
In the high-pressure gas generating method of the present invention, the low-temperature liquid is first introduced into a pressure-insulating cylinder which has been heat-insulated and optionally pre-cooled to reach 80% or more of its volume. This liquid is
Next, when the valve between the pressure resistant cylinder and the evaporator is opened, the gas pressure in the pressure resistant cylinder sends the gas to the evaporator via the trap. Since the evaporator is maintained at the atmospheric temperature, the liquid absorbs atmospheric heat and is vaporized into a high-pressure gas. This high-pressure gas is sent to and stored in the air accumulator. When such an operation is repeated as a cycle, the gas pressure of the air accumulator sequentially rises,
It is possible to obtain a high-pressure gas of several hundred atmospheric pressure without using a rotating mechanism. The pressure that can be reached depends on the physical properties of the liquefied gas and the setting conditions such as temperature and pressure, but can be increased to 500 to 700 atm. At this time, the temperature of the liquid sent to the pressure-resistant tube must be kept as low as possible. For this reason, the pressure-resistant tube is thermally insulated, preferably cooled beforehand with liquefied nitrogen or the like, and then the liquid is introduced. Further, the compressed gas, which has a small volume left in the pressure-resistant cylinder when the liquid is introduced, is used as a thrust for sending the liquid to the evaporator, but is cooled to be a low-pressure gas when the sending is completed. Such gases could be released into the atmosphere prior to the next cycle,
It is preferable to collect it in consideration of economical efficiency and pollution.

【0006】このような本発明の方法によれば、回転機
構を全く使用せずに、所望圧力の高圧ガスを安全かつ安
定的に発生させることができる。また、本発明の方法に
用いられる装置は手動でも全自動的にも操作することが
でき、しかもその保守は、弁類や計器類の定期的な点検
のみでよいから極めて容易であり、省力に役立つばかり
でなく、高圧回転系の突発事故発生の可能性に悩まされ
ることもない。さらに本発明の方法は、ガスの物性値が
正確に把握されていれば、ほとんど理論値どおりに実際
の装置を設計し運転することができるという利点があ
る。
According to the method of the present invention as described above, it is possible to safely and stably generate a high-pressure gas having a desired pressure without using any rotating mechanism. Further, the apparatus used in the method of the present invention can be operated both manually and fully automatically, and its maintenance is extremely easy because it requires only periodic inspection of valves and instruments, thus saving labor. Not only will it be useful, but you will not be bothered by the possibility of a high-pressure rotating system accident. Further, the method of the present invention has an advantage that an actual device can be designed and operated almost according to theoretical values if the physical property values of gas are accurately grasped.

【0007】[0007]

【実施例】つぎに本発明を実施例によってくわしく説明
する。この実施例は完全自動式の装置によって運転され
るものである。図1はこの実施例に用いる装置の概略を
示す。この実施例はLNGを気化して250気圧の高圧
ガスを発生させるものである。図1において10は耐圧
筒を、20は高圧蒸発器を、30は高圧気蓄器を示して
いる。40は粉末真空断熱構造の液貯槽を、50は低圧
蒸発器を、60は低圧気蓄器を示している。耐圧筒10
の周面には冷却用のコイル管12が設けられ、このコイ
ル管12は、一方の端が図示しない液化窒素貯槽に接続
された自動弁V4に接続され、コイル管12の他端は図
示しない排出トラップに接続されている。耐圧筒10は
さらにその周囲を断熱材13によって被覆されている。
また、T’は常温トラップを、V1、V2、V3、V4は自
動弁を、V5、V6、V7、V8、V10は逆止弁を、V9
11、V12は手動弁を示している。
EXAMPLES Next, the present invention will be described in detail with reference to Examples. This embodiment is operated by a fully automatic device. FIG. 1 shows the outline of the apparatus used in this example. In this embodiment, LNG is vaporized to generate a high pressure gas of 250 atm. In FIG. 1, 10 is a pressure resistant cylinder, 20 is a high pressure evaporator, and 30 is a high pressure gas accumulator. Reference numeral 40 denotes a liquid storage tank having a powder vacuum insulation structure, 50 denotes a low-pressure evaporator, and 60 denotes a low-pressure gas accumulator. Pressure tube 10
A cooling coil tube 12 is provided on the circumferential surface of the coil tube 12. One end of the coil tube 12 is connected to an automatic valve V 4 connected to a liquefied nitrogen storage tank (not shown), and the other end of the coil tube 12 is shown. Not connected to the discharge trap. The pressure-resistant cylinder 10 is further covered with a heat insulating material 13.
Further, T 'is a normal temperature trap, the V 1, V 2, V 3 , V 4 are automatic valves, V 5, V 6, V 7, V 8, V 10 is a check valve, V 9,
V 11 and V 12 indicate manual valves.

【0008】つぎにこの装置を用いた高圧ガスの発生方
法の具体例について述べる。まず、全ての自動弁と手動
弁が閉止の状態から、準備操作として自動弁V4を開い
て液化窒素をコイル管12に流入し、耐圧筒10を所望
温度に冷却する。つぎにタイマによって自動弁V1、V2
が、及び手動弁V9が開かれると、液が液貯槽40から
その内圧によって管11を通って耐圧筒10内に流入す
る。この過程で発生した蒸発ガスの一部は手動弁V9
ら低圧系統に送られる。耐圧筒10に液が80%以上充
填されたとき、自動弁V1、V2、V4を閉じ、自動弁V3
を開くと、耐圧筒10内の液は内圧によって管11から
逆止弁V5、常温トラップT’、逆止弁V6を経て高圧蒸
発器20に送られる。ここで液は大気熱を吸収して常温
の高圧ガスとなり、逆止弁V7を経由して高圧気蓄器3
0に貯えられる。この、自動弁V2が開かれ、耐圧筒
10内で液の押しだしを果たしたガスは、開かれている
手動弁V9を経て低圧系に自由膨張して低圧気蓄器60
に回収される。このガス膨張によって耐圧筒10内は2
52〜143Kの低温に保持される。このようにして運
転操作の1サイクルが終了すると、自動的に次のサイク
ルに移行し、同様な操作が所定回数反復される。
Next, a specific example of a method for generating high-pressure gas using this apparatus will be described. First, from the closed state of all the automatic valves and the manual valves, as a preparatory operation, the automatic valve V 4 is opened to allow liquefied nitrogen to flow into the coil tube 12 to cool the pressure resistant cylinder 10 to a desired temperature. Next, the automatic valves V 1 and V 2 are set by the timer.
However, when the manual valve V 9 is opened, the liquid flows from the liquid storage tank 40 into the pressure resistant cylinder 10 through the pipe 11 by its internal pressure. A part of the vaporized gas generated in this process is sent from the manual valve V 9 to the low pressure system. When the pressure cylinder 10 is filled with 80% or more of the liquid, the automatic valves V 1 , V 2 and V 4 are closed and the automatic valve V 3 is closed.
When opened, the liquid in the pressure resistant cylinder 10 is sent from the pipe 11 to the high-pressure evaporator 20 through the check valve V 5 , the room temperature trap T ′, and the check valve V 6 by the internal pressure. Here, the liquid absorbs atmospheric heat to become high-pressure gas at room temperature, and passes through the check valve V 7 to generate high-pressure gas accumulator 3
Stored at 0. After that , the automatic valve V 2 is opened, and the gas that has pushed out the liquid in the pressure resistant cylinder 10 freely expands into the low pressure system through the opened manual valve V 9 and the low pressure gas accumulator 60.
Will be collected. Due to this gas expansion, the pressure cylinder 10 has 2
It is kept at a low temperature of 52 to 143K. When one cycle of the driving operation is completed in this way, the operation automatically shifts to the next cycle, and the same operation is repeated a predetermined number of times.

【0009】(実施例1)上記のような装置と運転操作
により、下記の条件で高圧ガスを発生させた。 耐圧筒10…内径0.060m、全長9.26m、内容
積0.0262m3 高圧蒸発器20…内径0.025m、全長68.79
m、内容積0.034m 高圧気蓄器30…内容積0.215m LNG(液化メタン)の液貯槽40内温度…121K 耐圧筒10への1回のチャージ液量…10kg その結果、初回のチャージで高圧気蓄器30内に38.
4気圧のガスが充填され、サイクルを重ねる毎に逐次昇
圧し、9サイクル目で251気圧の高圧LNGガスが得
られた。
(Example 1) A high-pressure gas was generated under the following conditions by the above apparatus and operation. Pressure cylinder 10 ... inner diameter 0.060 m, total length 9.26 m, internal volume 0.0262 m 3 high pressure evaporator 20 ... inner diameter 0.025 m, total length 68.79
m, internal volume 0.034 m 3 high-pressure gas accumulator 30 ... internal volume 0.215 m 3 LNG (liquefied methane) liquid storage tank 40 internal temperature ... 121 K one-time charge liquid amount to pressure cylinder 10 ... 10 kg As a result, first time Is charged into the high-pressure air accumulator 30 by the charge of 38.
Gas of 4 atm was filled, and the pressure was sequentially increased with each cycle, and high pressure LNG gas of 251 atm was obtained in the 9th cycle.

【0010】(実施例2)液化アルゴンガスを実施例1
と同様な装置と運転条件によって高圧ガスを発生させた
ところ、1サイクル目で50.5気圧となり、6サイク
ル目で253.1気圧の高圧アルゴンガスが得られた。
(Example 2) A liquefied argon gas was used in Example 1.
When high-pressure gas was generated by the same apparatus and operating conditions as in (1), the pressure was 50.5 atm in the first cycle, and high-pressure argon gas at 253.1 atm was obtained in the sixth cycle.

【0011】[0011]

【効果】本発明の高圧ガスの発生方法は、低温液化ガス
を断熱された耐圧筒に該筒容積の少なくとも80%以上
を導入する工程と、耐圧筒に導入された低温液化ガス
を、トラップを介して蒸発器に導いて気化せしめる工程
と、気化した常温高圧ガスを気蓄器に導入する工程とを
所望回数行うものであるので、その運転は手動でも自動
でも行うことができ、装置に高圧の回転機構を必要とし
ないので安全度が高く、運転操作も保守も極めて容易で
あるという効果がある。
The high-pressure gas generating method of the present invention comprises a step of introducing at least 80% or more of the volume of the low-temperature liquefied gas into a pressure-resistant cylinder insulated, and a trap of the low-temperature liquefied gas introduced into the pressure-resistant cylinder. Since the step of introducing the vaporized gas through the evaporator to the vaporizer and the step of introducing the vaporized room-temperature high-pressure gas into the gas accumulator are performed a desired number of times, the operation can be performed manually or automatically. Since there is no need for the rotating mechanism, the safety is high and the operation and maintenance are extremely easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の高圧ガスの発生方法に用いられる装
置の一具体例を示す概略図である。
FIG. 1 is a schematic view showing a specific example of an apparatus used in the method for generating high-pressure gas according to the present invention.

【符号の説明】[Explanation of symbols]

10…耐圧筒、11…管、12…コイル管、13…断熱
材、20…高圧蒸発器、30…高圧気蓄器、40…液貯
槽、50…低圧蒸発器、60…低圧気蓄器、T’…常温
トラップ、V1,V2,V3,V4…自動弁、V5,V6,V
7,V8,V10…逆止弁、V9,V11,V12…手動弁。
DESCRIPTION OF SYMBOLS 10 ... Pressure-resistant cylinder, 11 ... Tube, 12 ... Coil tube, 13 ... Insulation material, 20 ... High pressure evaporator, 30 ... High pressure gas storage device, 40 ... Liquid storage tank, 50 ... Low pressure evaporator, 60 ... Low pressure gas storage device, T '... cold trap, V 1, V 2, V 3, V 4 ... automatic valves, V 5, V 6, V
7, V 8, V 10 ... check valve, V 9, V 11, V 12 ... manual valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−98299(JP,A) 特開 昭61−17799(JP,A) 特開 昭54−99213(JP,A) (58)調査した分野(Int.Cl.7,DB名) F17C 7/04 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-60-98299 (JP, A) JP-A-61-17799 (JP, A) JP-A-54-99213 (JP, A) (58) Field (Int.Cl. 7 , DB name) F17C 7/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 低温液化ガスを断熱された耐圧筒に該筒
容積の少なくとも80%以上を導入する工程と、耐圧筒
に導入された低温液化ガスを、トラップを介して蒸発器
に導いて気化せしめる工程と、気化した常温高圧ガスを
気蓄器に導入する工程とを所望回数行うことを特徴とす
る高圧ガスの発生方法。
1. A step of introducing at least 80% or more of the volume of the low-temperature liquefied gas into a heat-insulating pressure-resistant cylinder, and introducing the low-temperature liquefied gas introduced into the pressure-resistant cylinder to an evaporator through a trap to vaporize it. A method for generating high-pressure gas, which comprises performing the step of squeezing and the step of introducing the vaporized room-temperature high-pressure gas into a gas accumulator a desired number of times.
【請求項2】 前記耐圧筒に低温液化ガスを導入するに
当たり、該耐圧筒が予備冷却されることを特徴とする請
求項1記載の高圧ガスの発生方法。
2. The method for generating high-pressure gas according to claim 1, wherein the pressure cylinder is precooled when the low temperature liquefied gas is introduced into the pressure cylinder.
【請求項3】 前記耐圧筒に導入された低温液化ガスの
うち、気化したガスが回収されることを特徴とする請求
項1記載の高圧ガスの発生方法。
3. The method for generating high-pressure gas according to claim 1, wherein the vaporized gas is recovered from the low-temperature liquefied gas introduced into the pressure-resistant cylinder.
JP12085492A 1992-05-13 1992-05-13 Generation method of high pressure gas Expired - Fee Related JP3428664B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12085492A JP3428664B2 (en) 1992-05-13 1992-05-13 Generation method of high pressure gas
KR1019930008338A KR930023599A (en) 1992-05-13 1993-05-13 Inclined Plate Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12085492A JP3428664B2 (en) 1992-05-13 1992-05-13 Generation method of high pressure gas

Publications (2)

Publication Number Publication Date
JPH0658500A JPH0658500A (en) 1994-03-01
JP3428664B2 true JP3428664B2 (en) 2003-07-22

Family

ID=14796595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12085492A Expired - Fee Related JP3428664B2 (en) 1992-05-13 1992-05-13 Generation method of high pressure gas

Country Status (2)

Country Link
JP (1) JP3428664B2 (en)
KR (1) KR930023599A (en)

Also Published As

Publication number Publication date
JPH0658500A (en) 1994-03-01
KR930023599A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US6374617B1 (en) Cryogenic pulse tube system
US6430938B1 (en) Cryogenic vessel system with pulse tube refrigeration
US7490635B2 (en) Method for filling a pressure vessel with gas
US20050217281A1 (en) Method for the reliquefaction of gas
JP2006527348A (en) Method for cooling products (especially natural gas) and apparatus for carrying out this method
JP2008514740A (en) Natural gas compression method
EP2397668A2 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
JP2007010149A (en) Filling method of low-temperature liquefied gas
JP3428664B2 (en) Generation method of high pressure gas
JP2002013699A (en) Equipment and method for feeding liquefied gas
US6598423B1 (en) Sacrificial cryogen gas liquefaction system
JP2003097859A (en) Method and device for generating cold
JPH1172198A (en) Low temperature gas recovering method of ce equipment
US6668581B1 (en) Cryogenic system for providing industrial gas to a use point
JP2000146372A (en) Refrigerant recovering apparatus
DE2736491C2 (en) Process for evacuating a vacuum container for a liquefaction plant for low-boiling gases
JPH1073333A (en) Cryogenic cooling apparatus
JPH09273837A (en) Method for filling container with liquid ammonia
JPS61226904A (en) Very low temperature cooling method and very low temperature cooling device
JP2000230478A (en) Liquefied gas compression device
EP0412161A4 (en) Cryogenic adsorption refrigerator and method of cooling an object thereby
JPH028234B2 (en)
Lashmet et al. A closed-cycle cascade helium refrigerator
GB1222843A (en) A method of maintaining electric apparatus at low temperature
US918468A (en) Art or process of producing liquid air.

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030401

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees