JP3427737B2 - Prediction method of fatigue crack growth direction - Google Patents

Prediction method of fatigue crack growth direction

Info

Publication number
JP3427737B2
JP3427737B2 JP19007798A JP19007798A JP3427737B2 JP 3427737 B2 JP3427737 B2 JP 3427737B2 JP 19007798 A JP19007798 A JP 19007798A JP 19007798 A JP19007798 A JP 19007798A JP 3427737 B2 JP3427737 B2 JP 3427737B2
Authority
JP
Japan
Prior art keywords
measured
coil
stress
maximum principal
fatigue crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19007798A
Other languages
Japanese (ja)
Other versions
JP2000019161A (en
Inventor
禎明 境
仁久 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP19007798A priority Critical patent/JP3427737B2/en
Publication of JP2000019161A publication Critical patent/JP2000019161A/en
Application granted granted Critical
Publication of JP3427737B2 publication Critical patent/JP3427737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼構造物などに作
用している応力状態を測定する磁歪センサーを用いて、
繰り返し負荷される応力によって発生する疲労き裂の進
展方向を予測する方法に関する。
TECHNICAL FIELD The present invention uses a magnetostrictive sensor for measuring a stress state acting on a steel structure or the like,
The present invention relates to a method of predicting the propagation direction of a fatigue crack generated by stress repeatedly applied.

【0002】[0002]

【従来の技術】従来より、鋼構造物や機械部品などの表
面または表面近傍に発生するき裂の検出は、「目視検
査」、「浸透探傷試験」、「磁粉探傷試験」、「渦流探
傷試験」などの方法で行われてきた。
2. Description of the Related Art Conventionally, cracks generated on or near the surface of steel structures or mechanical parts have been detected by "visual inspection", "penetration flaw detection test", "magnetic particle flaw detection test", "eddy current flaw detection test". , Etc.

【0003】一方、鋼構造物のうちトラス構造の各メン
バー、船舶二重底などのビルトアップロンジ、船舶・橋
梁などのフランジ付きスティフナなどに用いられるウエ
ブとフランジが溶接で組み立てられたビルトアップ部材
などでは、組み立てたままの状態で重大事故を未然に防
止する対策を講じられるように繰り返し負荷される荷重
により発生する疲労き裂の進展方向を予測する方法が待
望されている。
On the other hand, a built-up member in which a web and a flange are assembled by welding, which are used in each member of a truss structure among steel structures, a built-up longe for a ship double bottom, a stiffener with a flange for a ship, a bridge, etc. There is a demand for a method of predicting the direction of fatigue crack propagation that occurs due to repeated loading so that measures can be taken to prevent serious accidents in the assembled state.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来のき裂検出法では、き裂そのものを検出すること
はできるが、き裂の進展方向を予測することは困難であ
る。
However, although the above-mentioned conventional crack detection method can detect the crack itself, it is difficult to predict the propagation direction of the crack.

【0005】本発明はこのような課題を解決するために
なされたもので、軸力荷重を繰り返し受ける部材に発生
する疲労き裂の進展方向を予測する方法を提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide a method for predicting the propagation direction of a fatigue crack occurring in a member that is repeatedly subjected to an axial load.

【0006】[0006]

【課題を解決するための手段】上記課題は、第1の発明
である励磁用コイルを巻いたコの字型のヨークと検出用
コイルを巻いたコの字型のヨークが互いにヨーク鞍部の
中央部で直交するように配置され、前記励磁用コイルに
交流電流を流して被測定物を励磁し、前記検出用コイル
に誘起される起電力を測定して前記被測定物に作用して
いる応力状態を求める磁歪センサーを前記被測定物上で
非接触に回転させて前記検出用コイルに誘起される起電
力の波形を下記の式(1)で表したときにパラメータC
から求まる最大主応力方向の測定を、前記被測定物の複
数点で行い、前記複数点の最大主応力方向の収束点を結
ぶ疲労き裂の進展方向の予測法により解決される。
SUMMARY OF THE INVENTION The above-mentioned problems are solved by the first aspect of the present invention, in which a U-shaped yoke having an exciting coil wound around it and a U-shaped yoke having a detecting coil wound around the center of the yoke saddle portion. Stresses acting on the object to be measured by measuring the electromotive force induced in the detection coil by exciting an object to be measured by passing an alternating current through the excitation coil. When the magnetostrictive sensor for determining the state is rotated on the object to be measured in a non-contact manner and the waveform of the electromotive force induced in the detection coil is represented by the following formula (1), the parameter C
The maximum principal stress direction obtained from the above is measured at a plurality of points of the object to be measured, and the fatigue crack growth direction prediction method connecting the convergence points of the plurality of points in the maximum principal stress direction is solved.

【0007】 V=A+B・COS[2・(θ−C)]・・・(1) ここで、Vは前記検出用コイルに誘起される交流起電力
の整流値、θは前記検出用コイルを巻いたコの字型のヨ
ークの開口端を結ぶ直線と最大主応力方向のなす角、CO
S[2・(θ−C)]は余弦関数、A、B、Cはパラメータ
である。
V = A + B · COS [2 · (θ−C)] (1) where V is the rectified value of the AC electromotive force induced in the detection coil, and θ is the detection coil. The angle between the straight line connecting the open ends of the wound U-shaped yoke and the direction of maximum principal stress, CO
S [2 · (θ−C)] is a cosine function, and A, B and C are parameters.

【0008】また、第2の発明は被測定物の構造が軸力
を繰り返し受ける隅肉溶接部を有した構造であり、例え
ばウエブとフランジが溶接で組み立てられたビルトアッ
プ部材に第1の発明を用いる疲労き裂の進展方向の予測
法である。
A second aspect of the present invention is a structure in which the structure of the object to be measured has a fillet weld that repeatedly receives an axial force. For example, the first aspect of the present invention is a built-up member in which a web and a flange are assembled by welding. Is a method of predicting the direction of fatigue crack growth.

【0009】最初に、本発明法で用いる磁歪センサーの
原理について説明する。鉄鋼材料などの強磁性体に作用
している応力を測定する方法として、磁歪効果、すなわ
ち応力によって磁気的性質が変化する現象を利用した応
力測定方法がある。なかでも、磁歪効果によって生じる
磁気異方性を利用する応力測定方法は、鋼構造物や機械
部品に作用している応力を非破壊で、しかも比較的簡便
に測定できる方法として、特開昭62ー121325号
公報、実開平1ー135338号公報、特開平7ー11
0270号公報あるいは文献1〔境等:土木学会第50
回年次学術講演会予稿集、P662〜663(199
5.9)〕などに紹介されている。
First, the principle of the magnetostrictive sensor used in the method of the present invention will be described. As a method for measuring the stress acting on a ferromagnet such as a steel material, there is a stress measuring method using a magnetostriction effect, that is, a phenomenon in which magnetic properties change due to the stress. Among them, the stress measuring method utilizing the magnetic anisotropy caused by the magnetostrictive effect is a method for non-destructively measuring the stress acting on a steel structure or a mechanical part, and is relatively simple. No. 121325, Japanese Utility Model Publication No. 1-135338, and Japanese Patent Laid-Open No. 7-11
No. 0270 Publication or Document 1 [Boundaries, etc .: JSCE No. 50
Proceedings of the Annual Scientific Lecture Meeting, P662-663 (199
5.9)] etc.

【0010】図6に、磁歪効果によって生じる磁気異方
性を利用する応力測定方法の一例を示す。
FIG. 6 shows an example of a stress measuring method utilizing the magnetic anisotropy caused by the magnetostrictive effect.

【0011】この方法では、励磁用コイルを巻いたコの
字型のヨーク11と検出用コイルを巻いたコの字型のヨ
ーク12と励磁のための交流電源13と被測定物20を
流れる磁束を検出すための電圧計14から構成され、ヨ
ーク11とヨーク12が互いにヨーク鞍部の中央部で直
交するように配置された磁歪センサー1を用い、次のよ
うな原理で応力が測定される。
In this method, a U-shaped yoke 11 around which an exciting coil is wound, a U-shaped yoke 12 around which a detecting coil is wound, an AC power supply 13 for excitation, and a magnetic flux flowing through the object 20 to be measured. The stress is measured on the basis of the following principle using the magnetostrictive sensor 1 which is composed of a voltmeter 14 for detecting the following, and in which the yoke 11 and the yoke 12 are arranged so as to be orthogonal to each other at the center of the yoke saddle.

【0012】いま、被測定物20のX軸方向に引張応力
σx が作用すると、磁性材料である被測定物20の
X、Y軸方向の透磁率μx、μyには、磁歪効果により
下記の式(2)の関係、すなわち磁気異方性が生じる。 μx>μy・・・(2)
When a tensile stress σx acts on the measured object 20 in the X-axis direction, the magnetic permeability μx, μy in the X- and Y-axis directions of the measured object 20, which is a magnetic material, can be expressed by the following equation due to the magnetostriction effect. The relationship of (2), that is, magnetic anisotropy occurs. μx> μy (2)

【0013】このような状態にある被測定物20に磁歪
センサー1を接近させ、この磁歪センサー1のヨーク1
1に巻かれた励磁用コイルに交流電源13より交流電流
を流して被測定物20を励磁すると、ヨーク11の開口
端11aから出た磁束の大部分は直接ヨーク11の開口
端11bへ向かうが、被測定物20には引張応力σxに
より式(2)のような磁気異方性が生じているため、磁
束の一部はヨーク12を経由してヨーク11の開口端1
1bへ流れる。そのため、ヨーク12に巻かれた検出用
コイルに取付けられた電圧計14には下記の式(3)に
示す波形の起電力Vが誘起される。
The magnetostrictive sensor 1 is brought close to the DUT 20 in such a state, and the yoke 1 of the magnetostrictive sensor 1 is moved.
When an alternating current is supplied from the alternating-current power supply 13 to the excitation coil wound around 1 to excite the object to be measured 20, most of the magnetic flux emitted from the opening end 11a of the yoke 11 goes directly to the opening end 11b of the yoke 11. Since the tensile stress σx causes the magnetic anisotropy in the object to be measured 20 as shown in the equation (2), a part of the magnetic flux passes through the yoke 12 and the opening end 1 of the yoke 11 moves.
Flow to 1b. Therefore, an electromotive force V having a waveform represented by the following formula (3) is induced in the voltmeter 14 attached to the detection coil wound around the yoke 12.

【0014】 V=M0・(μx−μy)・COS[2・(θ−π/4)]・・・(3) ここで、Vは検出用コイルに誘起される交流起電力の整
流値、M0は励磁条件、コイルの条件、被測定物20の
磁気的特性などにより定まる定数、COS[2・(θ−π/
4)]は余弦関数、θはヨーク12の開口端12aと12
bを結ぶ直線とX軸のなす角である。
V = M 0 · (μx−μy) · COS [2 · (θ−π / 4)] (3) where V is the rectified value of the AC electromotive force induced in the detection coil. , M 0 is a constant determined by the excitation condition, the coil condition, the magnetic characteristics of the DUT 20, and the like, COS [2 · (θ−π /
4)] is a cosine function, and θ is the opening ends 12a and 12 of the yoke 12.
It is the angle between the straight line connecting b and the X axis.

【0015】透磁率の差(μx−μy)は応力の差(σ
x−σy)に比例するので、式(3)は下記の式(4)
のように書換えできる。
The difference in magnetic permeability (μx-μy) is the difference in stress (σ
x-σy), the formula (3) is expressed by the following formula (4).
Can be rewritten as

【0016】 V=M・(σx−σy)・COS[2・(θ−π/4)]・・・(4) ここで、Mは励磁条件、コイルの条件、被測定物20の
磁気的特性などにより定まる定数である。
V = M · (σx−σy) · COS [2 · (θ−π / 4)] (4) where M is the excitation condition, the coil condition, the magnetic field of the DUT 20. It is a constant determined by the characteristics.

【0017】式(4)より、Vを測定することにより被
測定物20に作用している応力を求めることができる。
From the equation (4), the stress acting on the object to be measured 20 can be obtained by measuring V.

【0018】上記磁歪センサーを鋼構造物や機械部品の
ような被測定物から一定の距離(リフトオフと呼ぶ)離
して回転させて、すなわちθを変えて磁歪センサーの検
出用コイルに誘起される起電力の波形を求め、その波形
を式(1)で表したときに求まるパラメータBとCの測
定を被測定物の定点上で行えば、式(1)と式(4)を
対比すれば明らかなようにパラメータBは主応力差、パ
ラメータCは最大主応力の方向を表しているので、Bと
Cから測定点の応力状態を知ることができる。
The magnetostrictive sensor is rotated at a fixed distance (called lift-off) from an object to be measured such as a steel structure or a mechanical part, that is, θ is changed and induced in the detection coil of the magnetostrictive sensor. If the waveforms of electric power are obtained and the parameters B and C obtained when the waveforms are expressed by the equation (1) are measured on a fixed point of the object to be measured, it is clear by comparing the equations (1) and (4). Since the parameter B represents the principal stress difference and the parameter C represents the direction of the maximum principal stress, the stress state at the measurement point can be known from B and C.

【0019】次に、この磁歪センサーを用いて軸力荷重
を繰り返し受ける部材、例えばウエブとフランジが溶接
で組み立てられるビルトアップ部材における疲労き裂の
進展方向を予測する方法について説明する。
Next, a method of predicting the propagation direction of a fatigue crack in a member that is repeatedly subjected to an axial load using this magnetostrictive sensor, for example, a built-up member in which a web and a flange are assembled by welding, will be described.

【0020】図2に、ウエブとフランジが溶接で組み立
てられたビルトアップ部材の一例を示す。
FIG. 2 shows an example of a built-up member in which the web and the flange are assembled by welding.

【0021】このビルトアップ部材では、ウエブ2にフ
ランジ3が隅肉溶接4によって取り付けられている。こ
の部材に一定の大きさの応力が繰り返し作用すると、角
回し溶接部5を起点として疲労き裂が発生する。
In this built-up member, the flange 3 is attached to the web 2 by fillet welding 4. When a constant amount of stress is repeatedly applied to this member, a fatigue crack is generated starting from the corner turning welded portion 5.

【0022】図3に、図2の角回し溶接部近傍の応力状
態の測定点を示す。このような角回し溶接部5近傍の複
数の測定点6で、上記磁歪センサーにより応力状態を測
定する。
FIG. 3 shows measurement points of the stress state near the corner turning welded portion of FIG. The stress state is measured by the magnetostrictive sensor at a plurality of measurement points 6 near the corner turning welded portion 5.

【0023】図4に、図2のウエブのX方向に繰り返し
引張応力が作用したときのき裂発生初期の応力状態を示
す。図4で、各測定点6の矢印の大きさは主応力差の大
きさ、方向は最大主応力方向を表す。
FIG. 4 shows a stress state at the initial stage of crack initiation when a tensile stress is repeatedly applied in the X direction of the web of FIG. In FIG. 4, the size of the arrow at each measurement point 6 represents the size of the principal stress difference, and the direction represents the maximum principal stress direction.

【0024】X方向に繰り返し引張応力が作用すると、
き裂7はY方向に発生するが、最大主応力方向は溶接に
よる残留応力の影響でX方向とならない。
When tensile stress is repeatedly applied in the X direction,
Although the crack 7 occurs in the Y direction, the maximum principal stress direction is not in the X direction due to the residual stress due to welding.

【0025】図5に、図4の各測定点の最大主応力方向
を延長した様子を示す。各測定点6の最大主応力方向を
延長すると、いくつかの測定点6における最大主応力方
向の延長線は一点8に収束し、この最大主応力方向の収
束点8を結んで得られる直線がき裂の進展方向に一致す
ることが明らかになった。
FIG. 5 shows a state where the maximum principal stress direction at each measurement point in FIG. 4 is extended. When the maximum principal stress direction of each measurement point 6 is extended, the extension lines of some measurement points 6 in the maximum principal stress direction converge to one point 8, and a straight line obtained by connecting the convergence points 8 of the maximum principal stress direction is drawn. It became clear that it was in agreement with the direction of crack propagation.

【0026】実際、図4の場合では、最大主応力方向の
収束点同士を結んで得られる直線はき裂7の進展方向、
すなわちY方向に一致していることがわかる。
In fact, in the case of FIG. 4, the straight line obtained by connecting the convergence points in the direction of the maximum principal stress is the propagation direction of the crack 7,
That is, it can be seen that they match in the Y direction.

【0027】したがって、任意の方向に繰り返し引張応
力が作用する場合でも、上記のように複数点において最
大主応力方向を求め、その収束点を結ぶことにより疲労
き裂の進展方向を予測できる。
Therefore, even when the tensile stress repeatedly acts in any direction, the maximum principal stress direction is obtained at a plurality of points as described above, and the propagation direction of the fatigue crack can be predicted by connecting the convergence points.

【0028】本発明によって疲労き裂の進展方向を予測
する方法は、ウエブとフランジが溶接で組み立てられた
ビルトアップ部材だけでなく、軸力荷重を繰り返し受け
る隅肉溶接部を有する構造体にも同様に適用できる。
The method of predicting the direction of fatigue crack growth according to the present invention is applicable not only to a built-up member in which a web and a flange are assembled by welding, but also to a structure having a fillet weld which is repeatedly subjected to an axial load. The same applies.

【0029】[0029]

【発明の実施の形態】図1に、本発明方法の実施の形態
を示すフロー図を示す。
1 is a flow chart showing an embodiment of the method of the present invention.

【0030】最初に、ウエブにおけるフランジとの角回
し溶接部近傍に複数の測定点を設定しておき、そのうち
のある測定点上に、例えば1mmのリフトオフで図6に
示す磁歪センサーを設置する(S1)。そして、磁歪セ
ンサーを回転させ起電力を測定してその波形を求め(S
2)、求めた波形を上記の式(1)で表したときのパラ
メータCを求める(S3)。同様に、他の測定点におけ
るパラメータCも求める(S3)。
First, a plurality of measurement points are set in the vicinity of the corner-turned welded portion with the flange on the web, and the magnetostrictive sensor shown in FIG. 6 is installed at a certain measurement point at a lift-off of, for example, 1 mm ( S1). Then, the magnetostrictive sensor is rotated and the electromotive force is measured to obtain the waveform (S
2) Obtain the parameter C when the obtained waveform is expressed by the above equation (1) (S3). Similarly, the parameter C at another measurement point is also obtained (S3).

【0031】次に、各測定点のパラメータCから各測定
点の最大主応力方向を求め(S4)、その収束点を求め
(S5)、収束点を結んでき裂の進展方向を決定する。
Next, the maximum principal stress direction of each measurement point is obtained from the parameter C of each measurement point (S4), its convergence point is obtained (S5), the convergence point is connected and the crack propagation direction is determined.

【0032】[0032]

【発明の効果】本発明は以上説明したように構成されて
いるので、軸力荷重を繰り返し受ける部材に発生する疲
労き裂の進展方向を予測する方法を提供できる。
Since the present invention is configured as described above, it is possible to provide a method for predicting the propagation direction of a fatigue crack that occurs in a member that is repeatedly subjected to an axial load.

【0033】また、本発明法で予測された疲労き裂の進
展方向にドリルホールを設ければ、き裂の進展を阻止し
重大事故を未然に防止できる。
If a drill hole is provided in the fatigue crack propagation direction predicted by the method of the present invention, the crack propagation can be prevented and a serious accident can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施の形態を示すフロー図であ
る。
FIG. 1 is a flow chart showing an embodiment of a method of the present invention.

【図2】ウエブとフランジが溶接で組み立てられたビル
トアップ部材の一例を示す図である。
FIG. 2 is a view showing an example of a built-up member in which a web and a flange are assembled by welding.

【図3】図2の角回し溶接部近傍の応力状態の測定点を
示す図である。
FIG. 3 is a diagram showing measurement points of a stress state in the vicinity of the corner turning welded portion of FIG. 2;

【図4】図2のウエブのX方向に繰り返し引張応力が作
用したときのき裂発生初期の応力状態を示す図である。
FIG. 4 is a diagram showing a stress state in the initial stage of crack generation when a tensile stress is repeatedly applied to the web of FIG. 2 in the X direction.

【図5】図4の各測定点の最大主応力方向を延長した様
子を示す図である。
FIG. 5 is a diagram showing a state in which the maximum principal stress direction at each measurement point in FIG. 4 is extended.

【図6】磁歪効果によって生じる磁気異方性を利用する
応力測定方法の1例を示す図である。
FIG. 6 is a diagram showing an example of a stress measuring method utilizing magnetic anisotropy generated by a magnetostrictive effect.

【符号の説明】[Explanation of symbols]

1 磁歪センサー 2 ウエブ 3 フランジ 4 隅肉溶接部 5 角回し溶接部 6 測定点 7 き裂 8 最大主応力方向の収束点 11 励磁用コイルを巻いたコの字型のヨーク 11a ヨーク11の開口端 11b ヨーク11の開口端 12 検出用コイルを巻いたコの字型のヨーク 12a ヨーク12の開口端 12b ヨーク12の開口端 13 交流電源 14 電圧計 20 被測定物 30 磁束の流れる方向 1 Magnetostrictive sensor 2 web 3 flange 4 fillet welds 5 corner turning weld 6 measurement points 7 cracks 8 Convergence point in the direction of maximum principal stress 11 U-shaped yoke with a coil for excitation 11a Opening end of yoke 11 11b Opening end of yoke 11 12 U-shaped yoke with a coil for detection 12a Opening end of yoke 12 12b Opening end of yoke 12 13 AC power supply 14 Voltmeter 20 DUT 30 Direction of magnetic flux

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−2601(JP,A) 特開 昭55−46143(JP,A) 特開 平11−23537(JP,A) 特開 平10−332643(JP,A) 特開 平6−265525(JP,A) 特表 平8−508343(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/72 - 27/90 JICSTファイル(JOIS) 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 2000-2601 (JP, A) JP 55-46143 (JP, A) JP 11-23537 (JP, A) JP 10-332643 (JP, A) JP-A-6-265525 (JP, A) Special table: 8-508343 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/72-27 / 90 JISST file (JOIS) Practical file (PATOLIS) Patent file (PATOLIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励磁用コイルを巻いたコの字型のヨーク
と検出用コイルを巻いたコの字型のヨークが互いにヨー
ク鞍部の中央部で直交するように配置され、前記励磁用
コイルに交流電流を流して被測定物を励磁し、前記検出
用コイルに誘起される起電力を測定して前記被測定物に
作用している応力状態を求める磁歪センサーを前記被測
定物上で非接触に回転させて前記検出用コイルに誘起さ
れる起電力の波形を下記の式(1)で表したときにパラ
メータCから求まる最大主応力方向の測定を、前記被測
定物の複数点で行い、前記複数点の最大主応力方向の収
束点を結んで求める疲労き裂の進展方向の予測法。 V=A+B・COS[2・(θ−C)]・・・(1) ここで、Vは前記検出用コイルに誘起される交流起電力
の整流値、θは前記検出用コイルを巻いたコの字型のヨ
ークの開口端を結ぶ直線と最大主応力方向のなす角、CO
S[2・(θ−C)]は余弦関数、A、B、Cはパラメータ
である。
1. A U-shaped yoke around which an exciting coil is wound and a U-shaped yoke around which a detecting coil is wound are arranged so as to be orthogonal to each other at the center of the yoke saddle, and the exciting coil is connected to the exciting coil. A magnetostrictive sensor is excited on an object to be measured by exciting an object to be measured by applying an alternating current and measuring the electromotive force induced in the detection coil to obtain a stress state acting on the object to be measured. When the waveform of the electromotive force induced in the detection coil by rotating the coil is represented by the following formula (1), the maximum principal stress direction obtained from the parameter C is measured at a plurality of points of the measured object, A method of predicting a fatigue crack propagation direction obtained by connecting the convergence points of the plurality of points in the maximum principal stress direction. V = A + B · COS [2 · (θ−C)] (1) where V is the rectified value of the AC electromotive force induced in the detection coil, and θ is the coil wound around the detection coil. The angle between the straight line connecting the open ends of the U-shaped yoke and the direction of maximum principal stress, CO
S [2 · (θ−C)] is a cosine function, and A, B and C are parameters.
【請求項2】 被測定物の構造が軸力荷重を繰り返し受
ける隅肉溶接部を有した構造である請求項1に記載の疲
労き裂の進展方向の予測法。
2. The method for predicting the direction of propagation of a fatigue crack according to claim 1, wherein the structure of the object to be measured has a fillet weld that is repeatedly subjected to an axial load.
JP19007798A 1998-07-06 1998-07-06 Prediction method of fatigue crack growth direction Expired - Fee Related JP3427737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19007798A JP3427737B2 (en) 1998-07-06 1998-07-06 Prediction method of fatigue crack growth direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19007798A JP3427737B2 (en) 1998-07-06 1998-07-06 Prediction method of fatigue crack growth direction

Publications (2)

Publication Number Publication Date
JP2000019161A JP2000019161A (en) 2000-01-21
JP3427737B2 true JP3427737B2 (en) 2003-07-22

Family

ID=16251989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19007798A Expired - Fee Related JP3427737B2 (en) 1998-07-06 1998-07-06 Prediction method of fatigue crack growth direction

Country Status (1)

Country Link
JP (1) JP3427737B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931576B (en) * 2012-09-14 2018-05-11 天津大学 A kind of characterizing method of weld crack expansion process
CN104777218A (en) * 2014-01-15 2015-07-15 天津大学 Method for determining ferromagnetic material crack generation by metal magnetic memory detection technology
CN106989885A (en) * 2017-03-30 2017-07-28 重庆泓美仪表有限责任公司 A kind of actuation generator

Also Published As

Publication number Publication date
JP2000019161A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US7696747B2 (en) Electromagnetic induction type inspection device and method
CN102713598B (en) Eddy current measuring sensor and inspection method using this eddy current measuring sensor
JP4975142B2 (en) Eddy current measuring sensor and eddy current measuring method
JP2009085894A (en) Method and device for detecting weld zone defect
Xu et al. Imaging a weld cross-section using a novel frequency feature in multi-frequency eddy current testing
US6073493A (en) Method of diagnosing fatigue life of structural steelwork and a member of steelwork having life diagnostic function
JP5200513B2 (en) Non-destructive inspection device for welds and non-destructive inspection method for welds
JP2005292111A (en) Non-destructive inspection system for steel frame material of reinforced concrete
Wang et al. A novel AC-MFL probe based on the parallel cables magnetizing technique
JP3427737B2 (en) Prediction method of fatigue crack growth direction
Saari et al. Design of eddy current testing probe for surface defect evaluation
JP3317190B2 (en) Fatigue crack detection method
JP6352321B2 (en) Non-contact stress measuring method and measuring apparatus by composite resonance method
JP3159132B2 (en) Method for measuring stress in steel pipes
JP3317195B2 (en) Fatigue crack detection method
CN108982651A (en) Exchange leakage field sensor based on ferromagnetic butt plates welding seam crack detection and the method using its progress crack detection
JP2005164442A (en) Flaw detection method
JPH11194003A (en) Method for detecting welding seam part of steel pipe
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
JP4073472B1 (en) Method and apparatus for evaluating chilled structure of cast parts
JPH11194005A (en) Method for detecting welding joint part
SHIMOKAWA et al. Fatigue strengths of large-size gusset joints of 800 MPa class steels
JP4476776B2 (en) Method and apparatus for measuring stress in curved pipe
Kim Development of nondestructive detecting system for elevator wire ropes using hall-effect sensors
JPH09257598A (en) Stress measuring method utilizing magnetic distortion effect and device thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees