JP3426961B2 - Autonomous distribution line voltage regulator and voltage control method for high voltage distribution line using the same - Google Patents

Autonomous distribution line voltage regulator and voltage control method for high voltage distribution line using the same

Info

Publication number
JP3426961B2
JP3426961B2 JP12776498A JP12776498A JP3426961B2 JP 3426961 B2 JP3426961 B2 JP 3426961B2 JP 12776498 A JP12776498 A JP 12776498A JP 12776498 A JP12776498 A JP 12776498A JP 3426961 B2 JP3426961 B2 JP 3426961B2
Authority
JP
Japan
Prior art keywords
voltage
distribution line
value
switch
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12776498A
Other languages
Japanese (ja)
Other versions
JPH11332103A (en
Inventor
新一 加藤
圭一郎 橋本
文孝 森田
克樹 壁村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP12776498A priority Critical patent/JP3426961B2/en
Publication of JPH11332103A publication Critical patent/JPH11332103A/en
Application granted granted Critical
Publication of JP3426961B2 publication Critical patent/JP3426961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分散配置した複数
台の自律型配電線電圧調整装置を協調させて電力系統の
電圧を制御するための装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for controlling a voltage of a power system by coordinating a plurality of autonomous distribution line voltage regulators arranged in a distributed manner.

【0002】[0002]

【従来の技術】現在、配電線の電圧は、配電線用母線と
配電線末端との電圧降下を600V以内になるよう管理
している。図7のような高圧配電線に柱上変圧器A,
B,C,Dがある。この4つの柱上変圧器で、低圧側電
源を適正に維持するため、高圧線の電圧に応じて4つの
タップを設定している。
2. Description of the Related Art At present, the voltage of a distribution line is managed so that the voltage drop between the distribution line bus and the terminal of the distribution line is within 600V. A high voltage distribution line as shown in FIG.
B, C, and D. In these four pole transformers, four taps are set according to the voltage of the high voltage line in order to properly maintain the low voltage side power supply.

【0003】変電所の送り出し電圧が6,900Vのと
き、Aの柱上変圧器を使用している一般需要家は、6,
750Vのタップを使用した柱上変圧器から低圧線と引
込線を通して電気を供給されることとなり、この範囲に
おいては電圧管理範囲(101±6V)に収めることが
できる。
[0003] When the output voltage of the substation is 6,900 V, general consumers using the pole transformer of A are:
Electricity is supplied from a pole transformer using a 750V tap through a low voltage line and a service line, and within this range, the voltage can be controlled within a voltage management range (101 ± 6V).

【0004】以下、Bの6,600Vタップを使用した
柱上変圧器、Cの6,450Vタップを使用した柱上変
圧器、Dの6,300Vタップを使用した柱上変圧器を
使用している区間においては、電圧管理範囲内に収める
ことができる。
A pole transformer using a 6,600V tap of B, a pole transformer using a 6,450V tap of C, and a pole transformer using a 6,300V tap of D will be described below. In a certain section, it can be kept within the voltage management range.

【0005】高圧配電線の電圧を許容範囲内に収める方
法として、現状ではLRTによる基準電圧調整と高圧自
動電圧調整器(以下SVR)、スイチド・キャパシタ
(以下SC)、静止型電圧調整器(以下SVC)などの
電圧調整機器の組み合わせ方式を採用している。
At present, as a method of keeping the voltage of a high-voltage distribution line within an allowable range, a reference voltage adjustment by LRT, a high-voltage automatic voltage regulator (hereinafter, SVR), a switched capacitor (hereinafter, SC), and a static voltage regulator (hereinafter, referred to as SVR). (SVC) and the like.

【0006】LRT方式では、あらかじめ想定した時刻
負荷により電圧降下を算出し、需要家端電圧が最適にな
るように変電所の送り出し電圧を時間ごとに調整するも
のであり、整定値は4段階で1日8回切換可能である。
整定値及び切換のタイミングの決定は、配電線電圧降下
計算値及び送り出し電流個別計測値により人が判断し、
また調整は配電用変圧器単位となっている。
In the LRT system, a voltage drop is calculated based on a time load assumed in advance, and a delivery voltage of a substation is adjusted every time so that a customer terminal voltage is optimized. It can be switched eight times a day.
The setting value and the timing of switching are determined by the person based on the distribution line voltage drop calculation value and the sending current individual measurement value,
Adjustments are made in units of distribution transformers.

【0007】SVR方式は、系統内の負荷中心点の電圧
を一定にすることを狙い、線路電圧降下補償器(LD
C)を用いて、線路状態(電圧、電流、力率の変化)に
応じて電圧を調整する方式であり、SVRの電圧調整範
囲は120V幅の8段階調整である。この方式は、回線
ごとに柱上設置が可能である。
[0007] The SVR system aims at making the voltage at the load center point in the system constant, and uses a line voltage drop compensator (LD).
C), the voltage is adjusted according to the line condition (changes in voltage, current, and power factor). The voltage adjustment range of the SVR is eight steps of 120V width. In this system, it is possible to install on a pole for each line.

【0008】SC(タイマ)方式は、配電線路にSCを
設置し、進み無効電力を発生することにより電圧降下を
軽減する方式で、SC1台につき約100Vの電源側の
電圧補償を行う。この方式は回線ごとに柱上設置可能で
あり、コンデンサの高圧配電線への接続及び開放は、配
電線電圧降下計算値または個別計測値により投入時間を
算出して設定したタイマー値による個別管理が必要であ
る。
[0008] The SC (timer) system is a system in which an SC is installed in a distribution line and advancing reactive power is generated to reduce a voltage drop, and voltage compensation of a power supply side of about 100 V per SC is performed. This system can be installed on a pole for each line, and the connection and disconnection of the capacitor to the high-voltage distribution line is managed individually by the timer value set by calculating the injection time based on the distribution line voltage drop calculation value or individual measurement value. is necessary.

【0009】SVC方式は、進み無効電力を発生するコ
ンデンサと遅れ無効電力を発生するリアクトルをサイリ
スタと組み合わせ位相制御し、電圧を調整するもので、
無接点のため、進みから遅れまでの電圧変動に対し連続
的に制御する。この方式は、応答速度が速いため、一時
的電圧降下に追従可能であり、また回線ごとに柱上設置
が可能である(例えば、特開平6−289946号公
報、特開平6−301432号公報等)。
In the SVC method, a capacitor that generates a leading reactive power and a reactor that generates a lagging reactive power are combined with a thyristor to perform phase control to adjust a voltage.
Since there is no contact, the voltage is continuously controlled from the lead to the delay. This method has a high response speed, so that it can follow a temporary voltage drop, and can be installed on a pole for each line (for example, JP-A-6-289946, JP-A-6-301432, etc.). ).

【0010】[0010]

【発明が解決しようとする課題】従来の柱上変圧器は、
6,700V、6,600V、6,450V、6,30
0Vの4つのタップの中から低圧側電源を適正に維持す
るため、高圧線の電圧に応じたタップを設定している。
このタップ設定は、柱上変圧器の新設または取替時の系
統及び負荷状況によりあらかじめ行うため、系統変更や
負荷の急な増減があった場合、適切な電圧を維持するた
めにその都度多数のタップ設定の変更を行う必要があ
る。このため、変圧器のタップ変更工事の省力化と電圧
管理の適正化を目的として、柱上変圧器の1タップ化が
指向されている。ところが、1タップ化に際して、前記
の現行方式では、それぞれ次のような問題がある。
The conventional pole transformer is:
6,700V, 6,600V, 6,450V, 6,30
In order to properly maintain the low voltage side power supply among the four taps of 0 V, taps corresponding to the voltage of the high voltage line are set.
This tap setting is performed in advance according to the system and load conditions at the time of new installation or replacement of pole transformers.Therefore, if there is a system change or a sudden increase or decrease of the load, a large number of You need to change the tap settings. For this reason, for the purpose of labor saving of the tap change work of the transformer and appropriate voltage management, the use of one tap of the pole transformer is being pursued. However, when one tap is used, the above-described current methods have the following problems.

【0011】(1)LRT方式では、送り出し電圧の調
整だけであり、長亘長配電線の電圧降下対策、すなわち
1タップ化の対策とはならない。また、実測による整定
値の決定ではなく、しかも段階的調整のため、電圧の微
調整ができない。 (2)SVR方式では、1タップ化のためにはSVRを
複数台設置の必要性があり、建設費が高い。 (3)SC(タイマ)方式では、1タップ化のためには
複数台の設置の必要性があり、負荷変動や系統変更に対
する弾力性に欠けるため、電圧制御の信頼性が低い。 (4)SVC方式では、1タップ化のためにはSVCを
複数台設置する必要性があり、建設費が高く、またコス
トが他の機器よりも高い。
(1) The LRT system only adjusts the delivery voltage, and does not take measures against a voltage drop of a long and long distribution line, that is, measures against a single tap. Further, fine adjustment of the voltage cannot be performed because the set value is not determined by actual measurement but is stepwise adjusted. (2) In the SVR system, it is necessary to install a plurality of SVRs for one tap, and the construction cost is high. (3) In the SC (timer) system, it is necessary to install a plurality of units in order to make one tap, and the system lacks resilience against load fluctuations and system changes, so that the reliability of voltage control is low. (4) In the SVC method, it is necessary to install a plurality of SVCs for one tap, so that the construction cost is high and the cost is higher than other devices.

【0012】そこで本発明が解決しようとする課題は、
低コストで1タップ化を実現し、電圧管理の最適化を可
能にする自律型配電線電圧調整装置及びそれを用いた高
圧配電線の電圧制御方法を提供することである。
Therefore, the problem to be solved by the present invention is as follows.
An object of the present invention is to provide an autonomous distribution line voltage regulator that realizes one tap at low cost and enables optimization of voltage management, and a voltage control method for a high-voltage distribution line using the same.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するた
め、本発明は、高圧配電線に適用する自律的に動作する
一定電圧制御可能な電圧調整方法において、前記高圧配
電線に開閉器を介して接続され前記高圧配電線の電圧を
上昇または降下させるコンデンサまたはリアクトルと、
前記高圧配電線の電圧を測定する電圧検出器と、前記電
圧検出器で測定された電圧が設定された電圧から外れた
ときに前記電圧検出器で測定された電圧計測値の3相平
均値の所定時間における移動平均値と電圧調整範囲の下
限値および上限値とを比較し、自動で調整設定された遅
延時間経過後、再度開閉器動作前の数サイクルの3相平
均電圧値と前記電圧調整範囲の上限値・下限値とを比較
し、前記数サイクルの3相平均電圧値が前記下限値より
小さければ前記開閉器を投入し 前記上限値より大きけ
れば前記開閉器を開放してコンデンサを高圧配電線に接
続および開放し、前記電圧検出器で計測された電圧計測
値の3相平均値の所定時間における移動平均値と電圧調
整範囲の上限値および下限値とを比較し、自動で調整設
定された遅延時間経過後、再度開閉器動作前の数サイク
ルの3相平均電圧値と前記電圧調整範囲の上限値・下限
値とを比較し、前記数サイクルの3相平均電圧値が前記
上限値よりも大きければ前記開閉器を投入し、前記下限
値よりも小さければ前記開閉器を開放して、リアクトル
高圧配電線に接続および開放する制御装置とを備えた
自律型配電線電圧調整装置を、前記高圧配電線に電源側
から末端に向けて所定間隔ごとに、変電所送り出しから
末端までの配電線各区間の電圧降下または電圧上昇が一
定電圧範囲内となるように設置基準にそった分散設置と
し、高圧配電線の電圧を全亘長にわたって一定電圧範囲
内となる所定範囲内に調整することを特徴とする。ま
た、本発明の自律型配電線電圧調整装置は、高圧配電線
に適用する電圧調整システムにおいて、前記高圧配電線
に開閉器を介して接続され前記高圧配電線の電圧を上昇
または降下させるコンデンサまたはリアクトルと、前記
高圧配電線の電圧を測定する電圧検出器と、検出された
電圧が設定された電圧から外れたときに前記開閉器を投
入・開放する制御装置とを備え、電圧検出器で計測され
た電圧計測値の3相平均値の所定時間における移動平均
値と電圧調整範囲の下限値および上限値とを比較し、前
記移動平均値が前記下限値 より小さければ前記開閉器を
投入し、前記上限値より大きければ前記開閉器を開放し
てコンデンサを高圧配電線に接続および開放するかまた
は、前記電圧検出器で計測された電圧計測値の3相平均
値の所定時間における移動平均値と電圧調整範囲の上限
値および下限値とを比較し、前記移動平均値が前記上限
値よりも大きければ前記開閉器を投入し、前記下限値よ
りも小さければ前記開閉器を開放して、リアクトルを高
圧配電線に接続および開放する手段と、前記電圧検出器
で計測された電圧計測値の3相平均値を電圧調整範囲の
下限値および上限値と比較し、前記3相平均値が前記下
限値より所定電圧値以上下降し、かつ所定時間以上継続
した場合は、前記開閉器を遅延時間後投入し、前記上限
値より所定電圧以上上昇し、かつ所定時間以上継続した
場合は前記開閉器を遅延時間後開放してコンデンサを高
圧配電線に接続および開放するかまたは、前記電圧検出
器で計測された電圧計測値の3相平均値を電圧調整範囲
の上限値および下限値と比較し、前記3相平均値が前記
上限値より所定電圧値以上上昇し、かつ所定時間以上継
続した場合は、前記開閉器を遅延時間後投入し、前記下
限値より所定電圧以上下降し、かつ所定時間以上継続し
た場合は前記開閉器を遅延時間後開放してリアクトルを
高圧配電線に接続および開放する手段と、前記開閉器の
投入・開放制御の遅延時間を自動的に調整する手段と、
電圧補償値が、上限値から下限値を引いた不感帯値を超
えた場合、線路電圧が開放電圧以下でない場合に、自動
的に前記上限値が高くなるように上限値を補正する手段
と、設定された遅延時間経過後、再度開閉器動作前の数
サイクルの3相平均電圧値と前記電圧調整範囲の上限値
・下限値とを比較し、前記数サイクルの3相平均電圧値
が前記電圧調整範囲の上限値・下限値を超えていれば前
記開閉器を投入・開放してコンデンサまたはリアクトル
を高圧配電線に接続・開放する手段と、開閉器の動作毎
に、不感帯電圧値を配電線系統の電圧降下及びフェラン
チ現象を考慮して自動的に増減変更する手段とを備えた
ことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to an autonomously operating constant voltage controllable voltage adjusting method applied to a high-voltage distribution line, the method comprising the steps of: A capacitor or reactor connected and connected to increase or decrease the voltage of the high-voltage distribution line,
A voltage detector that measures the voltage of the high-voltage distribution line, and a three-phase average value of the voltage measurement values measured by the voltage detector when the voltage measured by the voltage detector deviates from a set voltage. The moving average value at a predetermined time is compared with the lower limit value and the upper limit value of the voltage adjustment range, and the automatically adjusted delay is set.
After the elapse of the delay time, several cycles before the switch operation again
Comparing the equalized voltage value with the upper and lower limits of the voltage adjustment range
And the three-phase average voltage value of the several cycles is higher than the lower limit value.
The switch is turned on smaller size than the upper limit value
Open the switch and connect the capacitor to the high-voltage distribution line.
Connect and open, measure the voltage measured by the voltage detector
Moving average value and voltage adjustment of the three-phase average value for a predetermined time
The upper limit and lower limit of the adjustment range are compared and automatically adjusted.
After the specified delay time elapses, several cycles before the switch operation again
And the upper and lower limit of the voltage adjustment range
The three-phase average voltage value of the several cycles is
If it is larger than the upper limit, turn on the switch, and
If it is smaller than the value, open the switch and
Was a control device connected and open to the high-pressure distribution line
Connect the autonomous distribution line voltage regulator to the high-voltage distribution line on the power supply side.
From the substation at regular intervals from
Voltage drop or voltage rise in each section of the distribution line to the end
Distributed installation according to the installation standard so that it is within the constant voltage range
The voltage of the high-voltage distribution line is maintained in a constant voltage range over the entire length.
It is characterized in that the adjustment is made within a predetermined range. Ma
In addition, the autonomous distribution line voltage regulator of the present invention is a high-voltage distribution line.
A voltage regulating system applied to the high-voltage distribution line;
Connected via a switch to increase the voltage of the high-voltage distribution line
Or the capacitor or reactor to be dropped and
A voltage detector for measuring the voltage of the high-voltage distribution line;
When the voltage deviates from the set voltage, release the switch.
With a control device that opens and closes
Moving average of the measured values of the three phases of the measured voltage for a predetermined time
Value and the lower and upper limits of the voltage adjustment range.
If the moving average is smaller than the lower limit, the switch
And if it is larger than the upper limit, open the switch.
Connecting and disconnecting the capacitor to the high voltage distribution line
Is a three-phase average of the voltage measurement values measured by the voltage detector.
The moving average value and the upper limit of the voltage adjustment range during the specified time of the value
The moving average value is compared with the lower limit value.
If it is larger than the value, turn on the switch, and
If it is smaller, open the switch and raise the reactor
Means for connecting and disconnecting to a distribution line, and the voltage detector
The three-phase average value of the voltage measurement values measured at
Compared with the lower limit and the upper limit, the three-phase average
Lower than the limit value by more than the specified voltage value and continue for more than the specified time
In this case, the switch is turned on after the delay time, and the upper limit is set.
The voltage has risen from the value by more than the specified voltage and has continued for the specified time.
In this case, open the switch after the delay time and raise the capacitor.
Connect to and disconnect from the distribution line or detect the voltage
The three-phase average value of the voltage measurement value measured by the instrument is the voltage adjustment range
Compared with the upper limit and lower limit of the above, the three-phase average value is
The voltage rises from the upper limit by more than a predetermined voltage value and is
If it continues, close the switch after the delay time and
From the limit value for more than the specified voltage and continue for more than the specified time
If the switch is open after the delay time,
Means for connecting and disconnecting to the high voltage distribution line;
Means for automatically adjusting the delay time of the closing / opening control,
The voltage compensation value exceeds the dead band value obtained by subtracting the lower limit value from the upper limit value.
If the line voltage is not less than the open circuit voltage,
Means for correcting the upper limit value such that the upper limit value becomes higher.
And the number before the switch operation again after the set delay time
Three-phase average voltage value of cycle and upper limit value of the voltage adjustment range
.Comparing with the lower limit, the three-phase average voltage value of the above several cycles
Exceeds the upper and lower limits of the voltage adjustment range.
Turn the switch on and off to open the condenser or reactor.
Means for connecting / disconnecting to the high voltage distribution line
In addition, the dead zone voltage value is
Means to automatically increase or decrease in consideration of the switching phenomenon
It is characterized by the following.

【0014】[0014]

【発明の実施の形態】本発明においては、低コストで適
正電圧をメンテナンスフリーで維持可能とするために次
の開発コンセプトにより開発を行った。 (1) 変電所送り出しから末端までの配電線各区間の
電圧降下が柱上変圧器の1タップ範囲内になるようSC
で電圧制御する。 (2) SC設置箇所の電圧を計測し、自律的に開閉器
の投入・開放の制御を行う制御装置を開発する。 (3) SCを1配電線に複数台分散設置し、SVRと
の混在を可能にする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the following development concept was developed in order to make it possible to maintain an appropriate voltage at low cost and without maintenance. (1) SC so that the voltage drop in each section of the distribution line from the substation delivery to the terminal is within one tap of the pole transformer
To control the voltage. (2) Develop a control device that measures the voltage at the SC installation location and autonomously controls the opening and closing of switches. (3) A plurality of SCs are distributed and installed on one distribution line to enable coexistence with SVR.

【0015】具体的には、電圧検出器で計測された電圧
計測値の3相平均値の所定時間における移動平均値と電
圧調整範囲の下限値および上限値とを比較し、前記移動
平均値が前記下限値より小さければ前記開閉器を投入
し、前記上限値より大きければ前記開閉器を開放してコ
ンデンサを高圧配電線に接続および開放する。
Specifically, the moving average value of the three-phase average value of the voltage measurement values measured by the voltage detector for a predetermined time is compared with the lower limit value and the upper limit value of the voltage adjustment range, and the moving average value is determined. If it is smaller than the lower limit, the switch is turned on. If it is larger than the upper limit, the switch is opened to connect and open the capacitor to the high-voltage distribution line.

【0016】また、電圧検出器で計測された電圧計測値
の3相平均値の所定時間における移動平均値と電圧調整
範囲の上限値および下限値とを比較し、前記移動平均値
が前記上限値よりも大きければ前記開閉器を投入し、前
記下限値よりも小さければ前記開閉器を開放して、リア
クトルを高圧配電線に接続および開放する。
Further, a moving average value of a three-phase average value of the voltage measurement values measured by the voltage detector in a predetermined time is compared with an upper limit value and a lower limit value of a voltage adjustment range, and the moving average value is compared with the upper limit value. If it is larger than this, the switch is turned on, and if it is smaller than the lower limit, the switch is opened to connect and open the reactor to the high-voltage distribution line.

【0017】電圧検出器で計測された電圧計測値の3相
平均値を電圧調整範囲の下限値および上限値と比較し、
前記3相平均値が前記下限値より所定電圧値以上下降
し、かつ所定時間以上継続した場合は、前記開閉器を遅
延時間後投入し、前記上限値より所定電圧以上上昇し、
かつ所定時間以上継続した場合は前記開閉器を遅延時間
後開放してコンデンサを高圧配電線に接続および開放す
る。
The three-phase average value of the voltage measurement values measured by the voltage detector is compared with the lower limit value and the upper limit value of the voltage adjustment range,
If the three-phase average value falls below the lower limit by a predetermined voltage value or more and continues for a predetermined time or more, the switch is turned on after a delay time, and rises by a predetermined voltage or more from the upper limit value,
And when it continues for a predetermined time or more, the switch is opened after the delay time, and the capacitor is connected and opened to the high voltage distribution line.

【0018】電圧検出器で計測された電圧計測値の3相
平均値を電圧調整範囲の上限値および下限値と比較し、
前記3相平均値が前記上限値より所定電圧値以上上昇
し、かつ所定時間以上継続した場合は、前記開閉器を遅
延時間後投入し、前記下限値より所定電圧以上下降し、
かつ所定時間以上継続した場合は前記開閉器を遅延時間
後開放してリアクトルを高圧配電線に接続および開放す
る。
The three-phase average value of the measured voltage values measured by the voltage detector is compared with the upper limit value and the lower limit value of the voltage adjustment range,
When the three-phase average value rises by a predetermined voltage value or more from the upper limit value and continues for a predetermined time or more, the switch is turned on after a delay time, and falls by a predetermined voltage or more from the lower limit value,
And when it continues more than a predetermined time, the said switch is opened after a delay time, and a reactor is connected and opened to a high voltage distribution line.

【0019】前記開閉器の投入・開放制御の遅延時間を
自動でランダムに調整してコンデンサまたはリアクトル
によるハンチングを防止する。
The delay time of the closing / opening control of the switch is automatically and randomly adjusted to prevent hunting by a capacitor or a reactor.

【0020】電圧補償値が、上限値から下限値を引いた
不感帯値を超えた場合、線路電圧が上限値以下でない場
合に、自動的に前記上限値が高くなるように上限値を補
正してコンデンサまたはリアクトルによるハンチングを
防止する。
When the voltage compensation value exceeds a dead band value obtained by subtracting the lower limit value from the upper limit value, and when the line voltage is not less than the upper limit value, the upper limit value is automatically corrected so that the upper limit value is increased. Prevents hunting due to capacitors or reactors.

【0021】設定された遅延時間経過後、再度開閉器動
作前の数サイクルの3相平均電圧値と前記電圧調整範囲
の上限値・下限値とを比較し、前記数サイクルの3相平
均電圧値が前記電圧調整範囲の上限値・下限値を超えて
いれば前記開閉器を投入・開放してコンデンサまたはリ
アクトルを高圧配電線に接続・開放することによりコン
デンサまたはリアクトルによるハンチングを防止する。
After the set delay time has elapsed, the three-phase average voltage values of several cycles before the switch operation and the upper and lower limits of the voltage adjustment range are compared again, and the three-phase average voltage values of the several cycles are compared. If the voltage exceeds the upper and lower limits of the voltage adjustment range, the switch is turned on and off to connect and open the capacitor or reactor to the high-voltage distribution line, thereby preventing hunting due to the capacitor or reactor.

【0022】開閉器の動作毎に、不感帯電圧値を配電線
系統の電圧降下及びフェランチ現象を考慮して自動的に
増減変更することにより、コンデンサまたはリアクトル
による前記開閉器の動作回数を平滑する。
The number of times the switch is operated by a capacitor or a reactor is smoothed by automatically increasing or decreasing the dead band voltage value in consideration of the voltage drop of the distribution line system and the Ferranci phenomenon every time the switch operates.

【0023】これらの高圧配電線の電圧制御方法を実施
するため、本発明の自律型配電線電圧調整装置は、電圧
検出器で計測された電圧計測値の3相平均値の所定時間
における移動平均値と電圧調整範囲の下限値および上限
値とを比較し、前記移動平均値が前記下限値より小さけ
れば前記開閉器を投入し、前記上限値より大きければ前
記開閉器を開放してコンデンサを高圧配電線に接続およ
び開放するかまたは、前記電圧検出器で計測された電圧
計測値の3相平均値の所定時間における移動平均値と電
圧調整範囲の上限値および下限値とを比較し、前記移動
平均値が前記上限値よりも大きければ前記開閉器を投入
し、前記下限値よりも小さければ前記開閉器を開放し
て、リアクトルを高圧配電線に接続および開放手段と、
前記電圧検出器で計測された電圧計測値の3相平均値を
電圧調整範囲の下限値および上限値と比較し、前記3相
平均値が前記下限値より所定電圧値以上下降し、かつ所
定時間以上継続した場合は、前記開閉器を遅延時間後投
入し、前記上限値より所定電圧以上上昇し、かつ所定時
間以上継続した場合は前記開閉器を遅延時間後開放して
コンデンサを高圧配電線に接続および開放するかまた
は、前記電圧検出器で計測された電圧計測値の3相平均
値を電圧調整範囲の上限値および下限値と比較し、前記
3相平均値が前記上限値より所定電圧値以上上昇し、か
つ所定時間以上継続した場合は、前記開閉器を遅延時間
後投入し、前記下限値より所定電圧以上下降し、かつ所
定時間以上継続した場合は前記開閉器を遅延時間後開放
してリアクトルを高圧配電線に接続および開放する手段
と、前記開閉器の投入・開放制御の遅延時間を自動的に
調整する手段と、電圧補償値が、上限値から下限値を引
いた不感帯値を超えた場合、線路電圧が開放電圧以下で
ない場合に、自動的に前記上限値が高くなるように上限
値を補正する手段と、設定された遅延時間経過後、再度
開閉器動作前の数サイクルの3相平均電圧値と前記電圧
調整範囲の上限値・下限値とを比較し、前記数サイクル
の3相平均電圧値が前記電圧調整範囲の上限値・下限値
を超えていれば前記開閉器を投入・開放してコンデンサ
またはリアクトルを高圧配電線に接続・開放する手段
と、開閉器の動作毎に、不感帯電圧値を配電線系統の電
圧降下及びフェランチ現象を考慮して自動的に増減変更
する手段とを備えた構成とする。
In order to implement these voltage control methods for a high-voltage distribution line, the autonomous distribution line voltage regulator of the present invention uses a moving average of a three-phase average value of the voltage measurement values measured by the voltage detector in a predetermined time. The value is compared with the lower limit value and the upper limit value of the voltage adjustment range.If the moving average value is smaller than the lower limit value, the switch is turned on. Connect to and disconnect from the distribution line, or compare the moving average value of the three-phase average value of the voltage measurement values measured by the voltage detector in a predetermined time period with the upper limit value and the lower limit value of the voltage adjustment range. If the average value is larger than the upper limit value, the switch is turned on, and if the average value is smaller than the lower limit value, the switch is opened, and the reactor is connected to the high-voltage distribution line and opening means,
The three-phase average value of the voltage measurement values measured by the voltage detector is compared with a lower limit value and an upper limit value of a voltage adjustment range, and the three-phase average value falls by a predetermined voltage value or more from the lower limit value for a predetermined time. If the above continues, the switch is turned on after a delay time, the voltage rises by a predetermined voltage or more from the upper limit, and if the switch continues for a predetermined time or more, the switch is opened after the delay time and the capacitor is connected to the high voltage distribution line. Connect or disconnect, or compare the three-phase average value of the voltage measurement value measured by the voltage detector with the upper limit value and the lower limit value of the voltage adjustment range, and the three-phase average value is a predetermined voltage value from the upper limit value. When the voltage rises above and continues for a predetermined time or more, the switch is closed after a delay time, falls below the lower limit by a predetermined voltage or more, and when continued for a predetermined time or more, opens the switch after the delay time. High reactor Means for connecting and disconnecting from the distribution line, means for automatically adjusting the delay time of the switching on / off control of the switch, and when the voltage compensation value exceeds a dead band value obtained by subtracting the lower limit value from the upper limit value, Means for automatically correcting the upper limit so that the upper limit is increased when the line voltage is not lower than the open-circuit voltage; and a three-phase average voltage of several cycles after a set delay time and before the switch operation. The value is compared with the upper limit and lower limit of the voltage adjustment range, and if the three-phase average voltage value of the several cycles exceeds the upper limit and lower limit of the voltage adjustment range, the switch is turned on and off. Means for connecting and disconnecting the capacitor or reactor to the high-voltage distribution line, and means for automatically increasing or decreasing the dead band voltage value in consideration of the voltage drop and the ferranci phenomenon of the distribution line system each time the switch operates. Configuration.

【0024】[0024]

【実施例】以下、本発明を、図面に示す実施例を参照し
ながら具体的に説明する。本発明のシステム構成を図1
に示す。図において、1は配電変電所、2は高圧配電
線、3は電圧検出器としての電圧計測用乾式変圧器、4
はSC用制御箱(以下SCC)、5は開閉器、6はSC
(またはリアクトル)、7は電源用変圧器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the embodiments shown in the drawings. FIG. 1 shows the system configuration of the present invention.
Shown in In the figure, 1 is a distribution substation, 2 is a high voltage distribution line, 3 is a dry transformer for voltage measurement as a voltage detector, 4
Is a control box for SC (hereinafter SCC), 5 is a switch, 6 is SC
(Or reactor), 7 is a power transformer.

【0025】電圧調整装置4の内部構成を図2のブロッ
ク図に示す。図中8は計測回路、9は電源回路、10は
論理回路、11は制御回路である。
FIG. 2 is a block diagram showing the internal configuration of the voltage regulator 4. In the figure, 8 is a measurement circuit, 9 is a power supply circuit, 10 is a logic circuit, and 11 is a control circuit.

【0026】図1及び図2において、SC6と同一柱に
設置した2個の0.5kVA電圧計測用乾式変圧器3を
V結線により3相の低圧電圧に変換する。SCC4の計
測回路8が変換された低圧電圧を取込み、高圧電圧に換
算し高圧線各相の電圧を計測する。SC6は高圧配電線
2に並列に接続し、配電線2の無効電流をSC6の進相
電流で補償し、高圧配電線の電圧降下を低減させる。
In FIGS. 1 and 2, two 0.5 kVA voltage measuring dry transformers 3 installed on the same column as the SC 6 are converted into a three-phase low voltage by V connection. The measurement circuit 8 of the SCC 4 takes in the converted low voltage, converts it to a high voltage, and measures the voltage of each phase of the high voltage line. The SC 6 is connected in parallel to the high-voltage distribution line 2, and compensates for the reactive current of the distribution line 2 with the leading current of the SC 6, thereby reducing the voltage drop of the high-voltage distribution line.

【0027】本システムを1配電線の複数箇所に分散設
置し、各設置箇所の電圧を自律的に管理・制御すること
で配電線全体の電圧を所定範面内に維持する。SCCで
開閉器の投入・開放の電圧制御を決定する投入電圧、開
放電圧の設定値を図3に示す。変圧器3のタップを1タ
ップ範囲内とするために本実施例では電圧制御幅を20
0Vと決め、またSC補償電圧はSC動作による急激な
電圧変動での需要家機器への影響を考慮し、100Vと
した。本実施例のSCC4では配電線の瞬時電圧変動に
よる不要動作防止のため5分間の平均電圧値を採用し
た。また、電圧制御幅(200V)維持のため上下限に
一定の裕度電圧を設定した。
The system is distributed and installed at a plurality of locations on one distribution line, and the voltage of each installation location is autonomously managed and controlled to maintain the voltage of the entire distribution line within a predetermined range. FIG. 3 shows the set values of the on-voltage and the off-voltage that determine the on / off voltage control of the switch in the SCC. In this embodiment, the voltage control width is set to 20 in order to keep the tap of the transformer 3 within one tap range.
The voltage was determined to be 0 V, and the SC compensation voltage was set to 100 V in consideration of the influence on the consumer equipment due to a sudden voltage change due to the SC operation. In SCC4 of the present embodiment, an average voltage value for 5 minutes was adopted to prevent unnecessary operation due to instantaneous voltage fluctuation of the distribution line. In addition, a fixed tolerance voltage was set at the upper and lower limits to maintain the voltage control width (200 V).

【0028】SCCの主要機能を表1に示す。Table 1 shows the main functions of the SCC.

【表1】 [Table 1]

【0029】次に、本発明のSC設置基準について説明
する。 (1) 設置台数 (最大電圧降下−200)÷100 ・・・・・端数切り上げ
Next, the SC setting standard of the present invention will be described. (1) Number of installed units (maximum voltage drop -200) ÷ 100 ・ ・ ・ ・ ・ Rounded up

【0030】(2) 容量と設置範囲(2) Capacity and installation range

【表2】 [Table 2]

【0031】(3) 位置決め手順 (a) 1台目(負荷側から) 末端から10〜20V程度電圧の高い区間 (b) 2台目以降 図4参照 電圧軸上にSC1電圧からSC1補償電圧の点を求
める。(A点) 曲線上のSC1からAに直線を引き曲線との交点を
求める。(SC2)交わらない場合は,SC1隣接区間
をSC2設置区間とする。 電源側へ以上を繰り返して台数分の位置決めを行
う。 リアクタンスが1.7Ωになっても必要台数を満た
さないときは,位置決めしたSCの中間付近に適宜配置
する。 上記により位置決めした後,各SC毎の補償電圧を
算定し不足する場合は台数の追加を行う。
(3) Positioning procedure (a) First unit (from the load side) Section where voltage is high by about 10 to 20 V from the end (b) Second unit and thereafter See FIG. 4 On the voltage axis, SC1 voltage to SC1 compensation voltage Find points. (Point A) A straight line is drawn from SC1 on the curve to A, and an intersection with the curve is obtained. (SC2) When they do not intersect, the SC1 adjacent section is set as the SC2 installation section. Repeat the above to the power supply side to perform positioning for the number of units. If the required number is not satisfied even when the reactance becomes 1.7Ω, it is appropriately arranged near the center of the positioned SC. After positioning as described above, the compensation voltage for each SC is calculated, and if it is insufficient, the number of units is added.

【0032】図5に、本発明実施例における電圧調整装
置の処理フローを示す。 ・ステップ100(移動平均値制御処理) このステップでは、5分間の移動平均計算処理を行った
後、不感帯値と比較し、制御する。 ・ステップ110(瞬時電圧制御処理) このステップでは、線路電圧がSCの開放・投入電圧値
より所定電圧値以上電圧上昇または下降し所定時間以上
継続した場合は、SCを開放または投入する。 ・ステップ120(遅延時間制御処理) このステップでは、各電圧調整装置毎に開閉器の投入・
開放動作の遅延を自動でランダムに設定制御する。 ・ステップ130(瞬時値比較処理) このステップでは、開閉制御直前の瞬時値(5サイクル
平均電圧)と電圧調整範囲の下限値および上限値を比較
し制御する。 ・ステップ140(ハンチング防止制御処理) このステップでは、電圧補償値が不感帯値を超えた場
合、線路電圧が上限値以下でない場合に、自動的に前記
上限値の増減を制御する。 ・ステップ150(動作回数平滑制御処理) このステップでは、開閉器の動作毎に、不感帯電圧値を
配電線系統の電圧降下及びフェランチ現象を考慮して自
動的に増減制御する。 ・ステップ160(実績記録処理) このステップでは、実績記録をICカードに記録する。
FIG. 5 shows a processing flow of the voltage regulator in the embodiment of the present invention. Step 100 (moving average value control processing) In this step, after performing a moving average calculation processing for 5 minutes, the moving average calculation processing is compared with the dead zone value and controlled. Step 110 (Instantaneous Voltage Control Processing) In this step, when the line voltage rises or falls by more than a predetermined voltage value from the open / close voltage value of the SC and continues for a predetermined time or more, the SC is opened or turned on. Step 120 (delay time control processing) In this step, a switch is turned on for each voltage regulator.
Automatically and randomly set and control the delay of the opening operation. Step 130 (Instantaneous Value Comparison Processing) In this step, the instantaneous value (5 cycle average voltage) immediately before the opening / closing control is compared with the lower limit value and the upper limit value of the voltage adjustment range for control. Step 140 (Hunting prevention control processing) In this step, when the voltage compensation value exceeds the dead band value or when the line voltage is not less than the upper limit value, the increase / decrease of the upper limit value is automatically controlled. Step 150 (operation number smoothing control processing) In this step, the dead band voltage value is automatically increased / decreased in consideration of the voltage drop of the distribution line system and the ferranci phenomenon for each operation of the switch. Step 160 (Result Record Processing) In this step, the result record is recorded on the IC card.

【0033】図6は、本発明を実施した場合の、ある高
圧配電線系統における日間の電圧推移(a)とSCC動
作状況(b)を示すものである。4台のSC1〜SC4
を当該配電系統に分散設置して電圧制御した。この動作
試験における動作のタイミングを次に示す。 10:00 SCCの運転を開始 10:37 SVR1タップ固定 10:52 SVR3タップ固定 11:18 SCC4運転開始 11:30 SVR4タップ固定 11:37 SCC1運転開始 13:10 SCC2運転開始 13:35 SCC3運転開始 14:10 SVR1,LDC第1回設定変更で運転
開始 15:50 SVR1,LDC第2回設定変更で運転
開始 図6(a)から分かるように、運転開始後は、線路電圧
は、6,750〜6,550Vの設定範囲に制御されて
いる。
FIG. 6 shows a daily voltage transition (a) and an SCC operation state (b) in a certain high-voltage distribution line system when the present invention is carried out. 4 SC1-SC4
Were distributed and installed in the distribution system to control the voltage. The operation timing in this operation test is shown below. 10:00 Start SCC operation 10:37 SVR1 tap fixed 10:52 SVR3 tap fixed 11:18 SCC4 start 11:30 SVR4 tap fixed 11:37 SCC1 start 13:10 SCC2 start 13:35 SCC3 start 14:10 Start operation with SVR1, LDC first setting change 15:50 Start operation with SVR1, LDC second setting change As can be seen from FIG. 6 (a), after starting operation, the line voltage is 6,750. It is controlled within a setting range of up to 6,550 V.

【0034】なお、以上の実施例は、SCを高圧配電線
路に分散配置した例について説明したが、配電線路電圧
がフェランチ現象によって末端ほど上昇する場合には、
SCに代えてリアクトルを用いる。
Although the above embodiment has been described with respect to an example in which the SCs are dispersedly arranged in the high-voltage distribution line, when the distribution line voltage increases toward the end due to the ferranci phenomenon,
A reactor is used instead of SC.

【0035】[0035]

【発明の効果】上述したように、本発明によれば、下記
の効果を奏する。 (1)高圧配電線路に分散配置したSC(またはリアク
トル)の相互干渉によるハンチング現象もなく、配電線
の事故時、系統変更時においても、所定電圧範囲内に電
圧制御できる。 (2)本発明により、変圧器の1タップ範囲内の電圧制
御ができるため、タップ変更は不要となり、メンテナン
スフリーで低コストでの電圧管理精度の向上を図ること
ができる。
As described above, according to the present invention, the following effects can be obtained. (1) There is no hunting phenomenon due to mutual interference of SCs (or reactors) dispersedly arranged in the high-voltage distribution line, and the voltage can be controlled within a predetermined voltage range even in the event of a distribution line accident or system change. (2) According to the present invention, voltage control within one tap range of the transformer can be performed, so that tap change is unnecessary, and maintenance-free and low-cost voltage management accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のシステム構成を示す系統図である。FIG. 1 is a system diagram showing a system configuration of the present invention.

【図2】 本発明の電圧調整装置の内部構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing an internal configuration of a voltage regulator according to the present invention.

【図3】 本発明における投入電圧、開放電圧の設定値
を示す説明図である。
FIG. 3 is an explanatory diagram showing set values of a closing voltage and an open voltage according to the present invention.

【図4】 本発明における並列コンデンサ設置基準の位
置決め手順を示す説明図である。
FIG. 4 is an explanatory diagram showing a positioning procedure of a parallel capacitor installation reference in the present invention.

【図5】 本発明実施例における電圧調整装置の処理フ
ロー図である。
FIG. 5 is a processing flowchart of the voltage adjusting device according to the embodiment of the present invention.

【図6】 発明を実施した場合の、ある配電系統におけ
る日間の電圧推移(a)とSCC動作状況(b)を示す
ものである。
FIG. 6 shows a daily voltage transition (a) and an SCC operation state (b) in a certain distribution system when the invention is implemented.

【図7】 柱上変圧器のタップ調整による電圧管理方法
を示す説明図である。
FIG. 7 is an explanatory diagram showing a voltage management method based on tap adjustment of a pole transformer.

【符号の説明】[Explanation of symbols]

1 配電変電所、2 高圧配電線、3 電圧計測用乾式
変圧器(電圧検出器)、4 SCC(SC用制御箱)、
5 開閉器、6 SC(スイチドキャパシタ)またはリ
アクトル、7 電源用変圧器、8 計測回路、9 電源
回路、10 論理回路、11 制御回路
1 distribution substation, 2 high-voltage distribution lines, 3 dry transformers for voltage measurement (voltage detector), 4 SCC (control box for SC),
5 switch, 6 SC (switched capacitor) or reactor, 7 power transformer, 8 measuring circuit, 9 power circuit, 10 logic circuit, 11 control circuit

フロントページの続き (72)発明者 森田 文孝 福岡県福岡市中央区渡辺通二丁目1番82 号 九州電力株式会社内 (72)発明者 壁村 克樹 福岡県福岡市中央区渡辺通二丁目1番82 号 九州電力株式会社内 (56)参考文献 特開 平2−189610(JP,A) 特開 平3−92912(JP,A) 特開 平6−38374(JP,A) 池本欽哉,力率調整を検討する,フィ ールド・エンジニアライブラリー力率調 整テクニック,日本,株式会社電気書 院,1985年 5月25日,第1版,第4、 5頁、特に「3.コンデンサの自動制 御」参照 (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 Continuation of the front page (72) Inventor Fumitaka Morita 2-1-2, Watanabe-dori, Chuo-ku, Fukuoka, Fukuoka Prefecture (72) Inventor Katsuki Kabemura 2-1-1, Watanabe-dori, Chuo-ku, Fukuoka, Fukuoka No. 82 Kyushu Electric Power Co., Inc. (56) References JP-A-2-189610 (JP, A) JP-A-3-92912 (JP, A) JP-A-6-38374 (JP, A) Kinya Ikemoto, power factor Considering the adjustment, the field engineer library power factor adjustment technique, Japan, Denki Shoin Co., Ltd., May 25, 1985, 1st edition, pages 4 and 5, especially "3. (58) Field surveyed (Int. Cl. 7 , DB name) H02J 3/00-5/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高圧配電線に適用する自律的に動作する
一定電圧制御可能な電圧調整方法において、 前記高圧配電線に開閉器を介して接続され前記高圧配電
線の電圧を上昇または降下させるコンデンサまたはリア
クトルと、前記高圧配電線の電圧を測定する電圧検出器
と、前記電圧検出器で測定された電圧が設定された電圧
から外れたときに前記電圧検出器で測定された電圧計測
値の3相平均値の所定時間における移動平均値と電圧調
整範囲の下限値および上限値とを比較し、自動で調整設
定された遅延時間経過後、再度開閉器動作前の数サイク
ルの3相平均電圧値と前記電圧調整範囲の上限値・下限
値とを比較し、前記数サイクルの3相平均電圧値が前記
下限値より小さければ前記開閉器を投入し 前記上限値
より大きければ前記開閉器を開放してコンデンサを高圧
配電線に接続および開放し、前記電圧検出器で計測され
た電圧計測値の3相平均値の所定時間における移動平均
値と電圧調整範囲の上限値および下限値とを比較し、自
動で調整設定された遅延時間経過後、再度開閉器動作前
の数サイクルの3相平均電圧値と前記電圧調整範囲の上
限値・下限値とを比較し、前記数サイクルの3相平均電
圧値が前記上限値よりも大きければ前記開閉器を投入
し、前記下限値よりも小さければ前記開閉器を開放し
て、リアクトルを高圧配電線に接続および開放する制御
装置とを備えた自律型配電線電圧調整装置を、前記高圧
配電線に電源側から末端に向けて所定間隔ごとに、変電
所送り出しから末端までの配電線各区間の電圧降下また
は電圧上昇が一定電圧範囲内となるように設置基準にそ
った分散設置とし、高圧配電線の電圧を全亘長にわたっ
て一定電圧範囲内となる所定範囲内に調整することを特
徴とする高圧配電線の電圧制御方法
1. A voltage adjusting method applied to a high-voltage distribution line and capable of autonomously operating and controlling a constant voltage, wherein the capacitor is connected to the high-voltage distribution line via a switch to increase or decrease the voltage of the high-voltage distribution line. Or a reactor, a voltage detector for measuring the voltage of the high-voltage distribution line, and three of the voltage measurement values measured by the voltage detector when the voltage measured by the voltage detector deviates from a set voltage. The moving average value of the phase average value for a predetermined time is compared with the lower limit value and upper limit value of the voltage adjustment range, and the adjustment is automatically made.
After the specified delay time elapses, several cycles before the switch operation again
And the upper and lower limit of the voltage adjustment range
The three-phase average voltage value of the several cycles is
If it is smaller than the lower limit, the switch is turned on and the upper limit is set.
If larger, open the switch and set the capacitor to high pressure
Connected to the distribution line and opened, measured by the voltage detector
Moving average of the measured values of the three phases of the measured voltage for a predetermined time
Value and the upper and lower limits of the voltage adjustment range.
After the delay time adjusted and set by the operation, before the switch operation again
Above the three-phase average voltage value of several cycles
Limit value and lower limit value, and compare the three-phase average
If the pressure value is greater than the upper limit, turn on the switch
If it is smaller than the lower limit, open the switch.
An autonomous distribution line voltage regulator having a control device for connecting and disconnecting the reactor to the high-voltage distribution line.
At predetermined intervals, change the power distribution line from the power supply side to the terminal.
Voltage drop in each section of distribution line from
Must meet the installation standards so that the voltage rise is within a certain voltage range.
The distribution of the voltage of the high-voltage distribution line is
Adjustment within a certain range, which is within a certain voltage range.
High voltage distribution line voltage control method .
【請求項2】 電圧検出器で計測された電圧計測値の3
相平均値を電圧調整範囲の下限値および上限値と比較
し、前記3相平均値が前記下限値より所定電圧値以上下
降し、かつ所定時間以上継続した場合は、前記開閉器を
遅延時間後投入し、前記上限値より所定電圧以上上昇
し、かつ所定時間以上継続した場合は前記開閉器を遅延
時間後開放してコンデンサを高圧配電線に接続および開
放することを特徴とする請求項1記載の高圧配電線の電
圧制御方法
2. The method according to claim 1, wherein the voltage measured by the voltage detector is three.
Compare the phase average with the lower and upper limits of the voltage adjustment range
And the three-phase average value is lower than the lower limit value by a predetermined voltage value or more.
If the switch is lowered and continues for a predetermined time or more,
Input after the delay time, and rise above the upper limit by a predetermined voltage or more
And if it continues for more than a predetermined time, the switch is delayed.
Open after a while to connect and open the capacitor to the high voltage distribution line.
2. The high-voltage distribution line according to claim 1,
Pressure control method .
【請求項3】 電圧検出器で計測された電圧計測値の3
相平均値を電圧調整範囲の上限値および下限値と比較
し、前記3相平均値が前記上限値より所定電圧値以上上
昇し、かつ所定時間以上継続した場合は、前記開閉器を
遅延時間後投入し、前記下限値より所定電圧以上下降
し、かつ所定時間以上継続した場合は前記開閉器を遅延
時間後開放してリアクトルを高圧配電線に接続および開
放することを特徴とする請求項1記載の高圧配電線の電
圧制御方法。
3. The voltage measurement value 3 measured by a voltage detector.
Compare the phase average with the upper and lower limits of the voltage adjustment range
And the three-phase average value is higher than the upper limit value by a predetermined voltage value or more.
If the switch has risen and has continued for a predetermined time or more,
Turn on after the delay time and drop below the lower limit by more than a predetermined voltage
And if it continues for more than a predetermined time, the switch is delayed.
Open after a while and connect and open the reactor to the high voltage distribution line.
2. The high-voltage distribution line according to claim 1,
Pressure control method.
【請求項4】 前記開閉器の投入・開放制御の遅延時間
を自動でランダムに調整設定してコンデンサ又はリアク
トルによるハンチングを防止することを特徴とする請求
項2または3記載の高圧配電線の電圧制御方法。
4. A delay time of closing / opening control of said switch.
Automatically and randomly adjust and set the capacitor or reactor
Claims to prevent hunting due to torque
Item 4. The voltage control method for a high-voltage distribution line according to Item 2 or 3.
【請求項5】 電圧補償値が、上限値から下限値を引い
た不感帯値を超えた場合、線路電圧が上限値以下でない
場合に、自動的に前記上限値が高くなるように上限値を
補正してコンデンサまたはリアクトルによるハンチング
を防止することを特徴とする請求項1記載の高圧配電線
の電圧制御方法。
5. The voltage compensation value is obtained by subtracting a lower limit value from an upper limit value.
Line voltage is not below the upper limit value
In such a case, the upper limit is automatically set so that the upper limit is increased.
Hunting with capacitor or reactor with compensation
2. The high-voltage distribution line according to claim 1, wherein the high-voltage distribution line is prevented.
Voltage control method.
【請求項6】 開閉器の動作毎に、不感帯電圧値を配電
線系統の電圧降下及びフェランチ現象を考慮して自動的
に増減変更することにより、コンデンサまたはリアクト
ルによる前記開閉器の動作回数を平滑することを特徴と
する請求項1記載の高圧配電線の電圧制御方法。
6. A dead zone voltage value is distributed for each operation of the switch.
Automatically taking into account the voltage drop and ferranci phenomenon in the line system
By increasing or decreasing the capacitor or reactor
Smoothing the number of operations of the switch by the
The voltage control method for a high-voltage distribution line according to claim 1.
【請求項7】 高圧配電線に適用する電圧調整システム
において、前記高圧配電線に開閉器を介して接続され前
記高圧配電線の電圧を上昇または降下させるコンデンサ
またはリアクトルと、前記高圧配電線の電圧を測定する
電圧検出器と、検出された電圧が設定された電圧から外
れたときに前記開閉器を投入・開放する制御装置とを備
え、電圧検出器で計測された電圧計測値の3相平均値の
所定時間における移動平均値と電圧調整範囲の下限値お
よび上限値とを比較し、前記移動平均値が前記下限値よ
り小さければ前記開閉器を投入し、前記上限値より大き
ければ前記開閉器を開放してコンデンサを高圧配電線に
接続および開放するかまたは、前記電圧検出器で計測さ
れた電圧計測値の3相平均値の所定時間における移動平
均値と電圧調整範囲の上限値および下限値とを比較し、
前記移動平均値が前記上限値よりも大きければ前記開閉
器を投入し、前記下限値よりも小さければ前記開閉器を
開放して、リアクトルを高圧配電線に接続および開放す
る手段と、 前記電圧検出器で計測された電圧計測値の3
相平均値を電圧調整範囲の下限値および上限値と比較
し、前記3相平均値が前記下限値より所定電圧値以上下
降し、かつ所定時間以上継続した場合は、前記開閉器を
遅延時間後投入し、前記上限値より所定電圧以上上昇
し、かつ所定時間以上継続した場合は前記開閉器を遅延
時間後開放してコンデンサを高圧配電線に接続および開
放するかまたは、前記電圧検出器で計測された電圧計測
値の3相平均値を電圧調整範囲の上限値および下限値と
比較し、前記3相平均値が前記上限値より所定電圧値以
上上昇し、かつ所定時間以上継続した場合は、前記開閉
器を遅延時間後投入し、前記下限値より所定電圧以上下
降し、かつ所定時間以上継続した場合は前記開閉器を遅
延時間後開放してリアクトルを高圧配電線に接続および
開放する手段と、前記開閉器の投入・開放制御の遅延時
間を自動的に調整する手段と、電圧補償値が、上限値か
ら下限値を引いた不感帯値を超えた場合、線路電圧が開
放電圧以下でない場合に、自動的に前記上限値が高くな
るように上限値を補正する手段と、設定された遅延時間
経過後、再度開閉器動作前の数サイクルの3相平均電圧
値と前記電圧調整範囲の上限値・下限値とを比較し、前
記数サイクルの3相平均電圧値が前記電圧調整範囲の上
限値・下限値を超えていれば前記開閉器を投入・開放し
てコンデンサまたはリアクトルを高圧配電線に接続・開
放する手段と、開閉器の動作毎に、不感帯電圧値を配電
線系統の電圧降下及びフェランチ現象を考慮して自動的
に増減変更する手段とを備えたことを特徴とする自律型
配電線電圧調整装置。
7. A voltage adjustment system applied to a high-voltage distribution line.
Before being connected to the high-voltage distribution line via a switch
A capacitor that raises or lowers the voltage of the high-voltage distribution line
Or measure the voltage of the reactor and the high-voltage distribution line
The voltage detector and the detected voltage are outside the set voltage.
A control device for closing and opening the switch when the switch is opened.
Of the three-phase average of the voltage measured by the voltage detector
The moving average and the lower limit of the voltage
And the moving average value is compared with the lower limit value.
If it is smaller, turn on the switch and make it larger than the upper limit.
If necessary, open the switch to connect the capacitor to the high-voltage distribution line.
Connect and disconnect or measure with the voltage detector
Moving average of the measured three-phase average value of the measured voltage for a predetermined time
The average value is compared with the upper and lower limits of the voltage adjustment range.
If the moving average value is larger than the upper limit value,
And if it is smaller than the lower limit, the switch
Open and connect and open the reactor to the high voltage distribution line.
Means for measuring the voltage measured by the voltage detector.
Compare the phase average with the lower and upper limits of the voltage adjustment range
And the three-phase average value is lower than the lower limit value by a predetermined voltage value or more.
If the switch is lowered and continues for a predetermined time or more,
Input after the delay time, and rise above the upper limit by a predetermined voltage or more
And if it continues for more than a predetermined time, the switch is delayed.
Open after a while to connect and open the capacitor to the high voltage distribution line.
Release or measure the voltage measured by the voltage detector
The average value of the three phases is calculated as the upper and lower limits of the voltage adjustment range.
And comparing the three-phase average value with a predetermined voltage value from the upper limit value.
If it rises and continues for more than a predetermined time,
After the delay time, and lower than the lower limit by a predetermined voltage or more.
If the switch is lowered and continues for a predetermined time or more, the switch is delayed.
Open after the delay time, connect the reactor to the high voltage distribution line and
Opening means and delay of closing / opening control of the switch
Means to automatically adjust the voltage and whether the voltage compensation value is
If the lower limit is subtracted from the dead band, the line voltage will open.
If not below the discharge voltage, the upper limit automatically increases.
Means to correct the upper limit so that the set delay time
After the lapse of time, the three-phase average voltage for several cycles before the switch operation again
Value and the upper and lower limits of the voltage adjustment range, and
The three-phase average voltage value in the numbered cycles is above the voltage adjustment range.
If the limit or lower limit is exceeded, turn the switch on and off.
To connect and open the capacitor or reactor to the high-voltage distribution line.
Discharge means and dead band voltage value distribution for each switch operation
Automatically taking into account the voltage drop and ferranci phenomenon in the line system
Autonomous type characterized by comprising means for increasing and decreasing
Distribution line voltage regulator.
JP12776498A 1998-05-11 1998-05-11 Autonomous distribution line voltage regulator and voltage control method for high voltage distribution line using the same Expired - Fee Related JP3426961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12776498A JP3426961B2 (en) 1998-05-11 1998-05-11 Autonomous distribution line voltage regulator and voltage control method for high voltage distribution line using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12776498A JP3426961B2 (en) 1998-05-11 1998-05-11 Autonomous distribution line voltage regulator and voltage control method for high voltage distribution line using the same

Publications (2)

Publication Number Publication Date
JPH11332103A JPH11332103A (en) 1999-11-30
JP3426961B2 true JP3426961B2 (en) 2003-07-14

Family

ID=14968128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12776498A Expired - Fee Related JP3426961B2 (en) 1998-05-11 1998-05-11 Autonomous distribution line voltage regulator and voltage control method for high voltage distribution line using the same

Country Status (1)

Country Link
JP (1) JP3426961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259259A (en) * 2012-11-14 2013-08-21 陕西省电力公司规划评审中心 System and method of high voltage shunt reactor configuration restraining electromagnetic transient problem of 750kV multi-FACTS line

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488846B2 (en) * 2004-09-09 2010-06-23 中国電力株式会社 Control method of static reactive power compensator
JP5311370B2 (en) * 2008-03-11 2013-10-09 東京電力株式会社 Voltage regulator
JP5311372B2 (en) * 2008-04-08 2013-10-09 東京電力株式会社 Distribution line voltage adjustment method and apparatus
JP5311373B2 (en) * 2008-04-08 2013-10-09 東京電力株式会社 Distribution line voltage adjustment method and apparatus
JP5311374B2 (en) * 2008-04-08 2013-10-09 東京電力株式会社 Method for cooperative control of shunt reactors for multiple distribution lines
JP2010068599A (en) * 2008-09-09 2010-03-25 Tokyo Electric Power Co Inc:The Reactor setting method, distribution system, and shunt reactor
JP5611138B2 (en) * 2011-07-19 2014-10-22 三菱電機株式会社 Voltage control device
US8639389B2 (en) * 2011-07-19 2014-01-28 General Electric Company System and method for controlling voltage on a distribution feeder
WO2013140555A1 (en) 2012-03-21 2013-09-26 三菱電機株式会社 Voltage control system for electricity distribution system
JP5538639B1 (en) 2013-08-30 2014-07-02 三菱電機株式会社 Voltage control device and voltage monitoring device
CN111799112A (en) * 2020-06-09 2020-10-20 国网山东省电力公司检修公司 Intelligent phase selection control system and method with dynamic self-adaptive function
KR102522218B1 (en) * 2020-11-25 2023-04-17 한국철도기술연구원 Voltage management method and apparatus using train driving data recording system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
池本欽哉,力率調整を検討する,フィールド・エンジニアライブラリー力率調整テクニック,日本,株式会社電気書院,1985年 5月25日,第1版,第4、5頁、特に「3.コンデンサの自動制御」参照

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259259A (en) * 2012-11-14 2013-08-21 陕西省电力公司规划评审中心 System and method of high voltage shunt reactor configuration restraining electromagnetic transient problem of 750kV multi-FACTS line
CN103259259B (en) * 2012-11-14 2016-04-20 陕西省电力公司规划评审中心 A kind of high resistance configuration-system and method suppressing 750kV many FACTS circuit electromagnetic transient problems

Also Published As

Publication number Publication date
JPH11332103A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP3426961B2 (en) Autonomous distribution line voltage regulator and voltage control method for high voltage distribution line using the same
JP5463333B2 (en) Wind park driving method
US7091703B2 (en) Dynamic reactive compensation system and method
EP1236261B1 (en) Voltage regulation of a utility power network
CN107069766B (en) Reactive compensation coordination control method in direct-current emergency power support process
US5402057A (en) System and method for coordinating shunt reactance switching
US5621305A (en) Overload management system
BRPI0621491A2 (en) SYSTEM AND METHODS FOR A SELF-HEALING GRID USING SIDE DEMAND MANAGEMENT AND ENERGY STORAGE TECHNIQUES
KR20100017790A (en) Dynamic voltage sag correction
JP5592290B2 (en) Distribution system voltage regulator and power control system
EP2549615A2 (en) System and method for controlling voltage on a distribution feeder
WO2014071459A1 (en) Grid stability control system and method
WO2001041545A2 (en) Method and apparatus for discharging a superconducting magnet
CN111600312A (en) Power supply station area terminal low-voltage distributed treatment method based on reactive compensation
CN109873432B (en) System for power factor and harmonic correction in an electrical grid
US6414853B2 (en) Method and apparatus for controlling a phase angle of AC power to keep DC voltage from an energy source constant
US11527966B2 (en) Power conversion apparatus that judges system power failure based on system frequency and voltage
JP2006166683A (en) Method and system for suppressing voltage fluctuation
Sen et al. Fundamental concepts of regulating distribution system voltages
Bostrom et al. Voltage stabilization for wind generation integration in Western Texas grid
US20220085608A1 (en) Magnetic Field Control Device and Magnetic Field Control Method of Synchronous Machine
CN106208088B (en) The idle autocontrol method of region voltage and system for load-center substation
KR20220111100A (en) Integrated control device, control method and control system of variable shunt reactor
CN116526538A (en) Control method and device of direct current transmission system
Gretsch et al. Balancing and Stabilizing of the Mains Voltage by a 50 kVA Battery Energy Storage System In a Low-Voltage Network

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees