JP3426881B2 - Gas turbine blades - Google Patents
Gas turbine bladesInfo
- Publication number
- JP3426881B2 JP3426881B2 JP32521596A JP32521596A JP3426881B2 JP 3426881 B2 JP3426881 B2 JP 3426881B2 JP 32521596 A JP32521596 A JP 32521596A JP 32521596 A JP32521596 A JP 32521596A JP 3426881 B2 JP3426881 B2 JP 3426881B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- blade
- steam
- gas turbine
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は蒸気と圧縮機吐出空
気との二種類の冷却媒体を併用して冷却を行なうガスタ
ービン翼に関する。
【0002】
【従来の技術】高温ガスタービンに用いられる冷却翼
は、翼の内部に冷却空気の通路を形成し、同通路に低温
の空気を流して翼を冷却して翼自身の温度を燃焼ガス温
度より低い許容値に抑えている。
【0003】即ち、従来の空気冷却方式のものでは、図
4に(a),(b)としてその縦断面図及びB−B断面
図を示すように、翼に供給された冷却空気は翼根部から
翼内部へと向けて形成された内部冷却通路を通過し、主
流に向けて翼部に開口して設けた穴から、一方向流れと
して主流ガス中に放出されるようになっている。
【0004】
【発明が解決しようとする課題】前記した従来のもので
は、熱効率上限界があり、同熱効率の改善を目指して近
年に至り翼の冷却を空気に代えて蒸気で行うものが提案
されるようになった。
【0005】この蒸気冷却方式のものでは、冷却に供し
た蒸気を主流中に放出せずに回収し、この回収した蒸気
からガスタービンの冷却熱を蒸気タービンで回収するこ
とによりプラント全体の効率の低下を防ぎ、また、ガス
タービン内への冷却媒体の吹き出し量を抑えることでタ
ービン効率を向上できることを意図している。
【0006】即ち、蒸気タービンで蒸気を回収する場
合、ガスタービンの冷却で生じる圧力損失を抑え、でき
るだけ蒸気タービンの高圧な段で回収すれば効率の低下
を小さく抑えることが可能であるが故である。
【0007】しかし、ガスタービン動翼における翼後縁
部は、空気冷却を例にして図4に示したものからも理解
されるように空力損失を抑えるために肉厚が薄くなって
おり、この薄い部分の内部にサーペンタインまたはイン
ピンジ冷却などの対流冷却構造を設けることは極めて困
難なことである。
【0008】本発明はこのような点に着目してなされ、
熱効率向上を配慮したうえで薄肉の翼の後端部の加工に
ついても問題のないようにしたものを提供することを課
題とするものである。
【0009】
【課題を解決するための手段】本発明は前記した課題を
解決すべくなされたものであり、翼部・プラットホーム
部・翼根部で構成されるガスタービン動翼において、翼
の前縁部および中央部に熱回収型の蒸気冷却を行なう冷
却構造を設け、シャンク部に設けた冷却空気通路入口か
ら翼の後縁部に圧縮機吐出空気を導入して対流冷却およ
びフィルム冷却を行なう冷却構造を設け、前記プラット
ホーム部には、前記蒸気冷却を行なう冷却構造における
冷却蒸気供給口の下流と冷却蒸気回収口の上流を連通す
る冷却通路を設けたガスタービン翼を提供するものであ
る。すなわち、本発明は、翼の肉厚が大きい前縁部と中
央部についてはたとえばサーペンタイン流路のような冷
却通路に冷却用の蒸気を供給し、最終的に熱回収を行う
ようにした蒸気冷却の冷却構造を採用し、一方、翼の肉
厚が薄い後縁部については圧縮機吐出空気を翼のシャン
ク部に設けた冷却空気通路入口から冷却空気として導入
し、対流冷却を行い、次いでフィルム冷却を行うように
した冷却構造を採用し、更にプラットホーム部において
は、前記蒸気冷却を行なう冷却構造の冷却蒸気供給口下
流と冷却蒸気回収口上流を連通する冷却通路を設け、前
記サーペンタイン流路のような冷却通路に供給する蒸気
を分岐して流し、プラットホーム部を冷却した後前記サ
ーペンタイン流路のような冷却通路での翼冷却蒸気と混
合して回収するようにし、前記空気冷却と前記蒸気冷却
との巧みな組み合わせにより、加工上の困難性に遭遇す
ることもなく効果的な冷却を行うようにしたものであ
る。
【0010】
【発明の実施の形態】本発明の実施の一形態を図1ない
し図3に基づいて説明する。図1はガスタービン翼の立
断面を示し、図2はプラットホームの冷却構造を示し、
また、図3はプラットホーム対流冷却孔の断面を示して
いる。
【0011】図において、1は翼部、2はプラットホー
ム、3は翼の前縁部と中央部にかけて形成された冷却サ
ーペンタイン通路、4は冷却蒸気供給口、5は冷却蒸気
回収口、6はプラットホーム2に設けたマルチホール型
の冷却通路、7は翼の後縁部に設けた冷却空気通路、8
は同冷却空気通路7に続いて翼の後縁部に設けた対流冷
却孔、10は冷却空気通路入口、11は翼根部、そして
12は圧縮機吐出空気の流入を示す矢印である。
【0012】前記の構成を有する本実施の形態におい
て、翼冷却蒸気は、翼根部11の冷却蒸気の供給口4を
通してローター系より供給され翼部1の内部冷却サーペ
ンタイン通路3を矢印に沿って流れて冷却を行った後、
翼根部11の回収口5からローター系へ回収される。
【0013】同時に、プラットホーム2は冷却蒸気の供
給口4の下流にて分岐され、マルチホール型の対流冷却
通路6に蒸気を流して対流冷却を行った後、冷却蒸気回
収口5の上流にて翼冷却蒸気と混合されて回収される。
【0014】翼後縁部は、冷却空気通路入口10から圧
縮機吐出空気12を供給し、冷却空気通路7を通り、翼
後縁部の対流冷却孔8を通して冷却を行った後ガスター
ビン主流中に放出される。
【0015】このように本実施の形態においては、翼の
前縁部及び中央部、そしてこれに加えてプラットホーム
はローター系から供給される冷却蒸気を内部対流冷却通
路に導き、サーペンタイン通路3およびマルチホール冷
却通路6により蒸気冷却した後、冷却で奪った熱ととも
に再びローター系に戻し外部に回収する。
【0016】この蒸気を図示省略の蒸気タービンで熱回
収することによりタービン性能の低下を防ぎ、かつ、冷
却媒体をガスタービン内に入れないことによるガスター
ビン効率の向上を図ることができ、これらの効果を結合
してプラント全体の効率向上を図るものである。
【0017】また、翼後縁部については、圧縮機吐出空
気をシャンク部に設けた冷却空気通路入口10に導き、
翼根から翼端に向かって設けられた冷却空気通路7を通
って翼後縁部に設けられた対流冷却孔8および翼面のフ
ィルム冷却孔を通して吹き出し冷却を行う。この冷却空
気通路7、対流冷却孔8の設置は、前記サーペンタイン
通路3のように容積を要するものではないので加工上の
ネックとなることはなく、前記フィルム冷却によりメタ
ル温度を許容温度以下に抑えることができるものであ
る。
【0018】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
【0019】
【発明の効果】以上本発明によれば、翼の前縁部から中
央部はプラットホーム部と共に回収式蒸気冷却とし、同
翼の前縁部から中央部およびプラットホーム部を冷却蒸
気で許容温度以下に冷却した後冷却熱を蒸気タービンで
回収し、翼の後縁部についてはシャンク部に設けた冷却
空気通路入口から冷却空気を導入して冷却する空気冷却
を併用することにより、プラント全体の性能向上および
信頼性の向上、歩留まり向上に大きく寄与するという効
果を奏することのできたものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine blade that performs cooling by using two types of cooling media, that is, steam and compressor discharge air. 2. Description of the Related Art A cooling blade used in a high-temperature gas turbine has a passage for cooling air formed inside the blade, cools the blade by flowing low-temperature air through the passage, and burns the temperature of the blade itself. It is kept to a lower value than the gas temperature. That is, in a conventional air cooling system, as shown in FIGS. 4A and 4B as a longitudinal sectional view and a BB sectional view, the cooling air supplied to the blade has a blade root portion. Then, the air passes through an internal cooling passage formed toward the inside of the blade, and is discharged into the mainstream gas as a one-way flow from a hole opened in the blade toward the main flow. [0004] In the above-mentioned conventional apparatus, there is a limit in terms of thermal efficiency. In order to improve the thermal efficiency, recently, there has been proposed an apparatus in which cooling of the blade is performed by steam instead of air. It became so. [0005] In this steam cooling system, the steam provided for cooling is recovered without being released into the main stream, and the cooling heat of the gas turbine is recovered from the recovered steam by the steam turbine, thereby improving the efficiency of the entire plant. It is intended that turbine efficiency can be improved by preventing the decrease and suppressing the amount of the cooling medium blown into the gas turbine. That is, when recovering steam by a steam turbine, it is possible to suppress the pressure loss caused by cooling the gas turbine and to recover the steam at a high pressure stage of the steam turbine as much as possible, so that a decrease in efficiency can be suppressed to a small extent. is there. However, the trailing edge of the blade of the gas turbine rotor blade is reduced in thickness in order to suppress aerodynamic loss, as can be understood from FIG. It is extremely difficult to provide a convection cooling structure such as serpentine or impingement cooling inside the thin part. [0008] The present invention has been made in view of such a point,
It is an object of the present invention to provide a thin blade having no problem in processing a rear end portion of the blade in consideration of improvement in thermal efficiency. [0009] Means for Solving the Problems The present invention has the problems described above were solved all Kunasa, in the gas turbine blade consists of wings platform portion, the blade root portion, the leading edge of the wing A cooling structure that performs heat recovery type steam cooling is provided in the section and the center, and the cooling air passage entrance provided in the shank is
The cooling structure for the convective cooling and film cooling is provided by introducing the compressor discharge air to the trailing edge of the Tsubasa Luo, the Pratt
The home part has a cooling structure for performing the steam cooling.
Communicate downstream of the cooling steam supply port and upstream of the cooling steam recovery port
Der provides a gas turbine blade having a cooling passage that
You. That is, the present invention provides a steam cooling system that supplies cooling steam to a cooling passage such as a serpentine channel at a leading edge portion and a central portion where the thickness of the blade is large, and finally performs heat recovery. of a cooling structure is adopted, whereas, the compressor discharge air for the trailing edge thickness of the wing is thinner introduced as cooling air from the cooling air passage inlet provided in the shank portion of the blade performs convection cooling, then the film Adopting a cooling structure that performs cooling, and further in the platform part
Below the cooling steam supply port of the cooling structure that performs the steam cooling.
A cooling passage communicating the flow and the upstream of the cooling steam recovery port is provided.
Steam supplied to a cooling passage such as a serpentine passage
After branching off and cooling the platform,
-Mixing with blade cooling steam in a cooling passage such as a pentane channel
Air and steam cooling
With the skillful combination of the above, effective cooling can be performed without encountering processing difficulties. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a vertical section of a gas turbine blade, FIG. 2 shows a cooling structure of a platform,
FIG. 3 shows a cross section of the platform convection cooling hole. In the drawing, 1 is a blade, 2 is a platform, 3 is a cooling serpentine passage formed between the leading edge and the center of the blade, 4 is a cooling steam supply port, 5 is a cooling steam recovery port, and 6 is a platform. 2 is a multi-hole type cooling passage, 7 is a cooling air passage provided at the trailing edge of the blade, 8
Is a convection cooling hole provided at the trailing edge of the blade following the cooling air passage 7, 10 is a cooling air passage inlet, 11 is a blade root, and 12 is an arrow indicating the inflow of compressor discharge air. In this embodiment having the above configuration, the blade cooling steam is supplied from the rotor system through the cooling steam supply port 4 of the blade root 11 and flows through the internal cooling serpentine passage 3 of the blade 1 along the arrow. After cooling
It is collected from the collection port 5 of the blade root 11 to the rotor system. At the same time, the platform 2 branches off downstream of the cooling steam supply port 4, performs convection cooling by flowing steam through the multi-hole type convection cooling passage 6, and then upstream of the cooling steam recovery port 5. It is recovered after being mixed with the blade cooling steam. The trailing edge of the blade supplies compressor discharge air 12 from a cooling air passage inlet 10, passes through the cooling air passage 7, cools through a convection cooling hole 8 in the trailing edge of the blade, and then cools the mainstream of the gas turbine. Will be released. As described above, in the present embodiment, the leading edge and the center of the blade, and in addition to this, the platform guides the cooling steam supplied from the rotor system to the internal convection cooling passage, and the serpentine passage 3 and the multi-passage. After being steam-cooled by the hole cooling passage 6, it is returned to the rotor system together with the heat taken by the cooling and collected outside. By recovering the steam with a steam turbine (not shown), the turbine performance can be prevented from deteriorating, and the efficiency of the gas turbine can be improved by preventing the cooling medium from entering the gas turbine. The effects are combined to improve the efficiency of the entire plant. Further, with respect to the trailing edge of the blade, the compressor discharge air is guided to a cooling air passage inlet 10 provided in a shank portion,
The cooling is performed by blowing through a cooling air passage 7 provided from the blade root toward the blade tip, through a convection cooling hole 8 provided at the trailing edge of the blade and a film cooling hole on the blade surface. The installation of the cooling air passage 7 and the convection cooling hole 8 does not require a volume unlike the serpentine passage 3 and does not become a bottleneck in processing, and the metal temperature is suppressed to an allowable temperature or less by the film cooling. Is what you can do. Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to such embodiments.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention. According to the present invention as described above, the central portion from the front edge of the wing is the recovery-type steam cooling with platform unit, the
Cooling steam from the leading edge of the wing to the center and platform
The cooling heat after cooling to below the allowable temperature in the gas recovered by the steam turbine, the trailing edge of the wing is provided on the shank portion cooling
By using air cooling for introducing and cooling the cooling air from the air passage inlet, the effect of greatly improving the performance and reliability of the entire plant and the yield can be achieved.
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るガスタービン翼部
の冷却構造を示す断面図。
【図2】図1のものにおけるプラットホームの冷却構造
を示す平面図。
【図3】図2のA−A断面図。
【図4】従来の翼冷却構造を示し(a)は縦断面図、
(b)は(a)のB−B断面図。
【符号の説明】
1 翼部
2 プラットホーム
3 冷却サーペンタイン通路
4 冷却蒸気供給口
5 冷却蒸気回収口
6 冷却通路
7 後縁空気冷却通路
8 対流冷却孔
11 翼根部
12 冷却空気通路入口BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a gas turbine blade cooling structure according to an embodiment of the present invention. FIG. 2 is a plan view showing a cooling structure of the platform in FIG. FIG. 3 is a sectional view taken along line AA of FIG. 2; 4A and 4B show a conventional blade cooling structure, and FIG.
(B) is BB sectional drawing of (a). [Description of Signs] 1 Wing portion 2 Platform 3 Cooling serpentine passage 4 Cooling steam supply port 5 Cooling steam recovery port 6 Cooling passage 7 Trailing edge air cooling passage 8 Convection cooling hole 11 Blade root 12 Cooling air passage inlet
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−319803(JP,A) 特開 平2−241902(JP,A) 特開 平6−257405(JP,A) 特開 平10−82302(JP,A) 特開 平10−26003(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01D 1/00 - 11/10 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-8-319803 (JP, A) JP-A-2-241902 (JP, A) JP-A-6-257405 (JP, A) JP-A-10- 82302 (JP, A) JP-A-10-26003 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F01D 1/00-11/10
Claims (1)
されるガスタービン動翼において、翼の前縁部および中
央部に熱回収型の蒸気冷却を行なう冷却構造を設け、シ
ャンク部に設けた冷却空気通路入口から翼の後縁部に圧
縮機吐出空気を導入して対流冷却およびフィルム冷却を
行なう冷却構造を設け、前記プラットホーム部には、前
記蒸気冷却を行なう冷却構造における冷却蒸気供給口の
下流と冷却蒸気回収口の上流を連通する冷却通路を設け
たことを特徴とするガスタービン翼。(57) [Claim 1] In a gas turbine rotor blade composed of a blade portion, a platform portion, and a blade root portion, cooling for performing heat recovery type steam cooling at a leading edge portion and a central portion of the blade. Provide a structure and
Introducing compressor discharge air from the cooling air passage inlet provided in Yanku portion to the edge portion of the airfoil cooling structure for convective cooling and film cooling provided, on the platform portion, before
The cooling steam supply port in the cooling structure that performs steam cooling
A gas turbine blade provided with a cooling passage communicating downstream and upstream of a cooling steam recovery port .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32521596A JP3426881B2 (en) | 1996-12-05 | 1996-12-05 | Gas turbine blades |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32521596A JP3426881B2 (en) | 1996-12-05 | 1996-12-05 | Gas turbine blades |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10169404A JPH10169404A (en) | 1998-06-23 |
JP3426881B2 true JP3426881B2 (en) | 2003-07-14 |
Family
ID=18174319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32521596A Expired - Fee Related JP3426881B2 (en) | 1996-12-05 | 1996-12-05 | Gas turbine blades |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3426881B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8814517B2 (en) * | 2010-09-30 | 2014-08-26 | General Electric Company | Apparatus and methods for cooling platform regions of turbine rotor blades |
US8628300B2 (en) * | 2010-12-30 | 2014-01-14 | General Electric Company | Apparatus and methods for cooling platform regions of turbine rotor blades |
GB2578095B (en) | 2018-10-12 | 2022-08-24 | Bae Systems Plc | Compressor Module |
GB2577932B (en) | 2018-10-12 | 2022-09-07 | Bae Systems Plc | Turbine module |
-
1996
- 1996-12-05 JP JP32521596A patent/JP3426881B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10169404A (en) | 1998-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6079946A (en) | Gas turbine blade | |
JP2851575B2 (en) | Steam cooling wings | |
KR100533902B1 (en) | Gas turbine airfoil cooling | |
US7632062B2 (en) | Turbine rotor blades | |
US5584651A (en) | Cooled shroud | |
EP0330601B1 (en) | Cooled gas turbine blade | |
US7497655B1 (en) | Turbine airfoil with near-wall impingement and vortex cooling | |
JP4801513B2 (en) | Cooling circuit for moving wing of turbomachine | |
JP4883834B2 (en) | Ceramic turbine airfoil where trailing edge block is cooled | |
JP2971386B2 (en) | Gas turbine vane | |
CN107908816B (en) | Integrated design method for cooling and cooling air of aircraft engine | |
JPS58126402A (en) | Aerofoil which can be cooled | |
JPH0424524B2 (en) | ||
JPH10252404A (en) | Gas turbine moving blade | |
JPH0353442B2 (en) | ||
KR20050018594A (en) | Microcircuit cooling for a turbine blade | |
JP2001073707A (en) | Rear-edge cooling passage causing partial turbulence for gas turbine nozzle | |
JP2000345808A (en) | Pressure compensation turbine nozzle | |
JP2015516539A (en) | Turbine airfoil trailing edge cooling slot | |
KR19990063131A (en) | Hollow Air Foil | |
JP3426881B2 (en) | Gas turbine blades | |
JP2953842B2 (en) | Turbine vane | |
JP3426841B2 (en) | Gas turbine blade | |
JP3182343B2 (en) | Gas turbine vane and gas turbine | |
JP3015531B2 (en) | gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030415 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080509 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090509 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090509 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100509 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140509 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |