JP3426344B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator

Info

Publication number
JP3426344B2
JP3426344B2 JP12926294A JP12926294A JP3426344B2 JP 3426344 B2 JP3426344 B2 JP 3426344B2 JP 12926294 A JP12926294 A JP 12926294A JP 12926294 A JP12926294 A JP 12926294A JP 3426344 B2 JP3426344 B2 JP 3426344B2
Authority
JP
Japan
Prior art keywords
water
electrode
reverse
state
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12926294A
Other languages
Japanese (ja)
Other versions
JPH07328627A (en
Inventor
安夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP12926294A priority Critical patent/JP3426344B2/en
Publication of JPH07328627A publication Critical patent/JPH07328627A/en
Application granted granted Critical
Publication of JP3426344B2 publication Critical patent/JP3426344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、水または食塩水等の原
水を電解槽にて電解処理する電解水生成装置に関する。 【0002】 【従来の技術】この種の装置においては、電解槽の電極
に印加される直流電圧の正逆を切り換えないで正電状態
にて長時間使用していると、マイナス側電極の表面にカ
ルシウム,ナトリウム等が層状に付着して通電率を低下
させ、所望の電解水が得られなくなる。かかる問題は、
例えば実公平2−7675号公報に示されているよう
に、電解槽への給水停止と略同時に電極に印加される直
流電圧の正逆を切り換えて逆電状態とし、電解槽の残水
が排出されるまで逆電洗浄する(上記した付着物を電極
から剥離させる)ことにより解消することができる。 【0003】 【発明が解決しようとする課題】ところで、上記した公
報の電解水生成装置においては、電解槽への給水停止か
ら電解槽の残水が排出される時間だけ電極に直流電圧を
逆電状態にて印加することにより逆電洗浄が行われるも
のであり、残水の排水に伴って電極が空気中に順次露呈
し、露呈した部位は逆電洗浄されないため、逆電洗浄を
十分に行うことができない。また、電解槽への給水停止
から電解槽の残水が排出される時間(電極に直流電圧を
逆電状態にて印加する時間)は、当該装置の製品間バラ
ツキや配管の長短等設置条件によって異なるため、当該
装置の設置状態にて予め計測しなければ適正な時間設定
を行うことが難しい。本発明は、上記した問題に対処す
べくなされたものであり、その目的は時間設定を行うこ
となく逆電洗浄を十分かつ的確に行い得る電解水生成装
置を提供することにある。 【0004】 【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、当該電解イオン水生成装置
を、水または食塩水等の原水を貯溜する貯水タンクと、
下部に流入口を有し上部に流出口を有して内部の電極へ
の直流電圧の印加により内部の水を電解処理する電解槽
と、前記貯水タンクの原水を接続管を通して前記電解槽
の流入口に圧送する電動ポンプと、前記貯水タンクの水
面より上方に立ち上がる立上部と大気に連通可能な開口
を有して前記電解槽の流出口に接続される排出管と、電
源回路から前記電極に印加される直流電圧の正逆を切り
換える電極切換手段と、前記電動ポンプ及び前記電極切
換手段の作動を制御する制御装置を備えて、前記電動ポ
ンプの駆動により前記貯水タンクの原水が前記電解槽及
び前記排出管に向けて圧送され、また前記電動ポンプの
停止により前記排出管に残留する残留水が前記電解槽を
通して前記貯水タンクに向けて逆流するようにしてな
り、また前記制御装置が、起動信号に基づいて前記電動
ポンプを駆動状態に維持するとともに前記電極切換手段
を正電状態に維持して電解水生成状態とする電解生成維
持手段と、停止信号に基づいて前記電動ポンプを停止さ
せるとともに前記電極切換手段を逆電状態に切り換えて
逆電洗浄状態とする逆電洗浄維持手段と、前記逆電洗浄
状態にて前記電極に付与される電流値または電圧値が設
定範囲外となったとき前記逆電洗浄状態を終了させる逆
電洗浄終了手段を備える構成とした。 【0005】 【作用】本発明による電解水生成装置においては、起動
スイッチがオン操作された後の電解水生成運転時、制御
装置の電解生成維持手段によって、電動ポンプが駆動状
態に維持されるとともに、電極切換手段が正電状態に維
持されるため、貯水タンク内の原水が接続管を通して電
解槽の流入口に供給されるとともに、電解槽の電極に電
源回路からの直流電圧が正電状態にて印加維持される。
このため、電動ポンプによって貯水タンクから電解槽に
供給された原水は、電解槽内で電解処理されて電解水と
なり、電解槽から排出管に排出されて排出管を通し所望
の箇所に導かれる。 【0006】また、停止スイッチがオン操作されたとき
には、停止スイッチのオン操作直後に制御装置の逆電洗
浄維持手段によって、電動ポンプが停止されるととも
に、電極切換手段が逆電状態に切り換えられるため、排
出管内に残留する水が電解槽を通して貯水タンクに向け
て逆流する作用が得られるとともに、電解槽の電極に電
源回路からの直流電圧が逆電状態にて印加維持され、排
出管内に残留する水の貯水タンクへの逆流時に逆電洗浄
が行われる。 【0007】ところで、上記した逆流によって排出管内
に残留する水の水位が低下し、この水位が更に低下して
電解槽内の電極が空気中に露呈し始める位置にまで至る
と、電源回路が定電圧回路であって所定値の直流電圧が
電極に印加されるようにしてある場合には、電極の露呈
によって抵抗値が増して電極に付与される電流値が減少
し、また電源回路が定電流回路であって所定値の電流が
電極に付与されるようにしてある場合には、電極の露呈
によって抵抗値が増して電極に付与される電圧値が増加
する。このため、電極に付与される電流値または電圧値
が設定範囲外となって制御装置の逆電洗浄終了手段が逆
電洗浄状態を終了させる。 【0008】 【実施例】以下に、本発明の一実施例を図面に基づいて
説明する。図1は本発明による電解水生成装置を示して
いて、この電解水生成装置は原水(水道水)を所要量貯
える貯水タンク10を備えている。貯水タンク10は、
制御装置100に接続された水位センサ11(上限水位
と下限水位を検出するもの)を内部に備えていて、この
水位センサ11からの信号により給水管19(水道に接
続されている)に設けた電磁開閉弁V1が開閉されて貯
水タンク10内の水位が所定の範囲に維持されるように
構成されている。また、貯水タンク10にはオーバーフ
ローパイプ12が設けられるとともに、電解槽30の両
流入口31a,31bに分岐して接続される接続管13
が取付けられており、接続管13には制御装置100に
よって作動を制御される電動ポンプP1と手動で調整可
能な流量調整バルブV2,V3がそれぞれ介装されてい
て、略同量の原水が接続管13を通して電解槽30の両
流入口31a,31bに供給されるように構成されてい
る。 【0009】電解槽30は、一対の流入口31a,31
bを下部に有しかつ一対の流出口31c,31dを上部
に有する樹脂製(過熱によって変形する)の槽本体31
と、この槽本体31内に対向配設した一対の電極32,
33と、これら両電極32,33間に配設されて各電極
32,33を収容する各電極室34,35を形成する隔
膜36によって構成されていて、各電極32,33とし
てはチタン基材の表面に白金メッキ或いは白金イリジウ
ムを焼成してなるものが採用され、また左方の電極室3
4には流入口31aと流出口31cが連通し、右方の電
極室35には流入口31bと流出口31dが連通してい
る。 【0010】また、各流出口31c,31dには各排出
管37,38が接続されていて、各排出管37,38は
上方に立ち上がる立上部37a,38aを有して図2に
て示したように各イオン水の使用場所であるシンクTの
配設位置まで延出配管されており、各排出管37,38
の立上部37a,38aには貯溜タンク部37b,38
bが形成されている。また、各排出管37,38の中間
部位に設けた各立上部37a,38aは上端が各通気細
管37c,38cを通して大気に連通開口していて、各
排出管37,38の流出端部がシンクT内にて水没して
も、不具合(例えば、当該装置の停止時におけるサイフ
ォン現象の発生)が生じないように機能する。また、本
実施例においては、電解槽30の底部が貯水タンク10
に設けたオーバーフローパイプ12の上端より所定量L
1上方に位置するように配置されていて、図示のごとき
当該装置の停止時には各排出管37,38および電解槽
30内に水が溜まらない構成となっている。 【0011】各電極32,33は電極切換器110を介
して電源回路120に接続されている。電極切換器11
0は、制御装置100からの信号に応じて両電極32,
33に印加される直流電圧の正逆を切り換えるものであ
り、図1の仮想線で示した状態にて制御装置100から
正電信号を受けたとき実線の状態に切り替わって電源回
路120のマイナス電極を電極32に接続するとともに
プラス電極を電極33に接続し、また図1の実線で示し
た状態にて制御装置100から逆電信号を受けたときに
仮想線の状態に切り替わって電源回路120のマイナス
電極を電極33に接続するとともにプラス電極を電極3
2に接続するようになっている。電源回路120は交流
電圧を所定値の直流電圧に変換するものであり、制御装
置100からオフ信号を受けたときにはマイナス電極と
プラス電極間の直流電圧がゼロとなるように、また制御
装置100からオン信号を受けたときにはマイナス電極
とプラス電極間に所定値の直流電圧が印加維持されるよ
うになっている。 【0012】制御装置100は、図3及び図4のフロー
チャートに対応したプログラムを実行するマイクロコン
ピュータ(図示省略)を備えていて、図2に示したよう
にシンクTに近接して配設した起動スイッチ101及び
停止スイッチ102の各操作と水位センサ11からの信
号に基づいて電磁開閉弁V1、電動ポンプP1、電極切
換器110、電源回路120等の作動を制御するように
なっており、図1に示したメインスイッチ103がオン
操作されている状態にて各スイッチ101,102が操
作されることにより以下に説明する作動が得られるよう
になっている。 【0013】上記のように構成した本実施例において
は、メインスイッチ103がオン操作されると、制御装
置100のマイクロコンピュータが図3のステップ20
1にてプログラムの実行を開始し、起動スイッチ101
がオン操作されるまでステップ202の処理(当該装置
を待機状態に維持する処理)を繰り返し実行し、起動ス
イッチ101がオン操作されると、ステップ203〜2
05の処理(当該装置を電解水生成状態とする処理)が
実行されたのち停止スイッチ102がオン操作されるま
でステップ206の処理(当該装置を電解水生成状態に
維持する処理)が繰り返し実行される。 【0014】しかして、上記したステップ203では電
動ポンプP1にオン信号が出力され、ステップ204で
は電極切換器110に正電信号が出力され、ステップ2
05では電源回路120にオン信号が出力される。した
がって、電動ポンプP1が駆動されるとともに、電極切
換器110が実線状態に維持され、また電源回路120
がオン信号を受けてマイナス電極とプラス電極間に所定
値の直流電圧が印加維持されて電解槽30の両電極3
2,33に正電状態にて直流電圧が印加維持され、かか
る電解水生成状態が停止スイッチ102がオン操作され
るまで維持される。 【0015】このため、貯水タンク10内の原水が電動
ポンプP1と接続管13と各流量調整バルブV2,V3
を通して電解槽30の各電極室34,35に供給される
とともに、原水が電解槽30内で電気分解されて、マイ
ナス側電極32の電極室34からは水酸イオンが増加し
た所定PHのアルカリ性イオン水が排出管37を通して
シンクTに導かれ、またプラス側電極33の電極室35
からは水素イオンが増加した所定PHの酸性イオン水が
排出管38を通してシンクTに導かれる。 【0016】上記した正電圧印加によるイオン水生成作
動により貯水タンク10内の水位が設定範囲の下限に達
すると、水位センサ11が作動しこれに基づいて制御装
置100から電磁開閉弁V1に開弁信号が出力され、電
磁開閉弁V1が開かれて水道水が給水管19を通して貯
水タンク10に補給される。かかる水道水の補給により
貯水タンク10内の水位が設定範囲の上限に達すると、
水位センサ11が作動しこれに基づいて制御装置100
から電磁開閉弁V1に閉弁信号が出力され、電磁開閉弁
V1が閉じられ水道水の補給が止まる。なお、この作動
は制御装置100のマイクロコンピュータによって得ら
れる作動とは別個に得られる。 【0017】また、上記した電解水生成状態にて停止ス
イッチ102がオン操作されると、図4のステップ20
7,208の処理(当該装置を逆電洗浄状態とする処
理)が実行されたのち電極32,33に付与される電流
値Aが設定範囲(A1〜A2)外となるまでステップ2
09の処理(当該装置を逆電洗浄状態に維持する処理)
が繰り返し実行される。なお、上記した電流値Aは図1
に示した電極32,33への通電回路に設けた電流検出
器131からの信号に基づいて得られるようになってい
る。 【0018】しかして、上記したステップ207では電
動ポンプP1にオフ信号が出力され、ステップ208で
は電極切換器110に逆電信号が出力される。したがっ
て、電動ポンプP1が停止されるとともに、電極切換器
110が実線状態から仮想線状態に切り換えられて電解
槽30の電極32が電源回路120のプラス電極に接続
されるとともに電極33がマイナス電極に接続され、か
かる逆電洗浄状態が電極32,33に付与される電流値
Aが設定範囲外となるまで維持される。 【0019】このため、電動ポンプP1の停止直後から
各排出管37,38に残留する水が各電極室34,35
に落差により自動的に供給される逆流時に電解槽30内
の電極32,33全体が水没した状態で逆電洗浄が行わ
れ、電極32からカルシウム,ナトリウム等付着物が剥
離されて逆流水とともに接続管13と電動ポンプP1を
通して貯水タンク10に向けて電解槽30外に排出され
る。 【0020】ところで、上記した逆電洗浄状態にて排出
管37,38内に残留する水の水位が低下し、この水位
が更に低下して電解槽30内の電極32,33が空気中
に露呈し始める位置にまで至ると、電極32,33の露
呈によって抵抗値が増し電極32,33に付与される電
流値Aが減少して設定範囲外となり、ステップ210の
処理(当該装置の逆電洗浄状態を終了させる処理)が実
行されたのちステップ211の処理が実行される。 【0021】しかして、上記したステップ210では電
源回路120にオフ信号が出力されて、電源回路120
のマイナス電極とプラス電極間の直流電圧がゼロとされ
る。またステップ211では、メインスイッチ103が
オフ操作されているか否かによって、図3のステップ2
02に戻ってプログラムの実行が繰り返されるか、ステ
ップ212に進んでプログラムの実行を終了するかが判
定される。 【0022】上記実施例においては、電源回路120が
制御装置100からオン信号を受けたときマイナス電極
とプラス電極間に所定値の直流電圧が印加維持される構
成(定電圧回路構成)であるため、電極32,33に付
与される電流値の変化によって逆電洗浄の終了タイミン
グを検出するようにしたが、電源回路120が制御装置
100からオン信号を受けたときマイナス電極とプラス
電極間に所定の直流電圧が印加されて供給電流が所定値
に維持される構成(定電流回路構成)である場合には、
電極32,33に付与される電圧値の変化(電極の露呈
によって抵抗値が増して電極に付与される電圧値が増加
する)によって逆電洗浄の終了タイミングを検出するよ
うにして実施する。なお、上記した電圧値は図1に示し
た電極32,33への通電回路に設けた電圧検出器13
2からの信号に基づいて得られるようにする。 【0023】また、上記実施例においては、水道水を原
水として本発明を実施したが、例えば特開平4−755
76号公報に示されている装置によって得られる食塩水
を原水として本発明を実施することも可能である。ま
た、上記実施例においては、電解槽として隔膜36を有
する電解槽30を採用したが、隔膜の無い電解槽を採用
した電解水生成装置にも本発明は同様に実施できるもの
である。なお、隔膜の無い電解槽を採用した場合には、
電極室が単一であって原水を分流させる必要がないた
め、接続管と排出管が単一の構成となる。 【0024】 【発明の効果】以上の説明から明らかなように、本発明
による電解水生成装置においては、排出管内に残留する
水の貯水タンクへの逆流時に逆電洗浄が行われるもので
あり、電解槽内の電極全体が水没した状態で逆電洗浄が
行われるため、逆電洗浄を十分に行うことができる。 【0025】また、本発明による電解水生成装置におい
ては、上記した逆流によって排出管内に残留する水の水
位が低下し、この水位が更に低下して電解槽内の電極が
空気中に露呈し始める位置にまで至ったときに生じる電
気的変化、すなわち電極に付与される電流値または電圧
値の変化によって逆電洗浄状態が終了するようにしたた
め、逆電洗浄の時間設定を予め行う必要がなく、当該装
置の製品間バラツキや配管の長短等設置条件の相違に基
づく設置状態での逆流時間に差異がある場合にも何等問
題なく実施することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyzed water generator for electrolyzing raw water such as water or salt water in an electrolyzer. 2. Description of the Related Art In a device of this type, if the DC voltage applied to an electrode of an electrolytic cell is used for a long time in a positive state without switching the polarity, the surface of the negative electrode is Calcium, sodium, etc. adhere in a layered manner to lower the electric conductivity, so that desired electrolyzed water cannot be obtained. Such problems are:
For example, as shown in Japanese Utility Model Publication No. 2-7675, the DC voltage applied to the electrodes is switched between normal and reverse at almost the same time as the supply of water to the electrolytic cell is stopped, so as to be in a reverse power state, and the residual water in the electrolytic cell is discharged. This can be solved by performing back-electrode cleaning (peeling off the above-mentioned deposits from the electrodes) until the cleaning is completed. In the electrolyzed water generating apparatus disclosed in the above-mentioned publication, a direct current voltage is applied to the electrode only when the remaining water in the electrolyzer is discharged after the water supply to the electrolyzer is stopped. The reverse voltage cleaning is performed by applying in the state, and the electrodes are sequentially exposed to the air with the drainage of the residual water, and the exposed portion is not subjected to the reverse voltage cleaning, so the reverse voltage cleaning is sufficiently performed. I can't. The time during which the residual water in the electrolytic cell is drained after the water supply to the electrolytic cell is stopped (the time during which a DC voltage is applied to the electrode in a reverse voltage state) depends on the installation conditions, such as variations between products of the apparatus and the length of piping. Because of the difference, it is difficult to set an appropriate time unless measurement is performed in advance in the installation state of the device. SUMMARY OF THE INVENTION The present invention has been made to address the above-described problem, and an object of the present invention is to provide an electrolyzed water generation apparatus capable of performing back-and-forth electric cleaning sufficiently and accurately without setting time. [0004] In order to achieve the above-mentioned object, according to the present invention, the electrolytic ionic water generator is provided with a water storage tank for storing raw water such as water or salt water,
An electrolytic cell having an inlet at the bottom and an outlet at the top for electrolytically treating the internal water by applying a DC voltage to the internal electrode; and flowing the raw water from the water storage tank through a connecting pipe to the electrolytic tank. An electric pump for pressure feeding to the inlet, a rising pipe rising above the water surface of the water storage tank, a discharge pipe having an opening capable of communicating with the atmosphere and connected to the outlet of the electrolytic cell, and a power supply circuit to the electrode. Electrode switching means for switching the direction of the applied DC voltage, and a control device for controlling the operation of the electric pump and the electrode switching means, the raw water of the water storage tank is driven by the electric pump and the electrolytic cell and The residual water that is pressure-fed toward the discharge pipe and remains in the discharge pipe due to the stop of the electric pump flows back toward the water storage tank through the electrolytic cell, and the control device However, the electric pump is maintained in a driving state based on a start signal, the electrode switching means is maintained in a positive state, and an electrolytic generation maintaining means is set to an electrolyzed water generating state.The electric pump is controlled based on a stop signal. A reverse-current cleaning maintaining means for stopping and switching the electrode switching means to a reverse-current state to be in a reverse-current cleaning state, and a current value or a voltage value applied to the electrode in the reverse-current cleaning state is out of a set range. In this case, the apparatus is provided with a reverse-current cleaning ending means for terminating the reverse-current cleaning state when it becomes. In the electrolyzed water generation apparatus according to the present invention, during the electrolyzed water generation operation after the start switch is turned on, the electric pump is maintained in a driving state by the electrolysis generation maintaining means of the control device. Since the electrode switching means is maintained in the positive state, the raw water in the water storage tank is supplied to the inlet of the electrolytic cell through the connection pipe, and the DC voltage from the power supply circuit is applied to the electrode of the electrolytic cell in the positive state. Is maintained.
For this reason, the raw water supplied from the water storage tank to the electrolytic tank by the electric pump is subjected to electrolytic treatment in the electrolytic tank to become electrolytic water, discharged from the electrolytic tank to a discharge pipe, and guided to a desired location through the discharge pipe. Further, when the stop switch is turned on, the electric pump is stopped by the backwashing maintaining means of the control unit immediately after the stop switch is turned on, and the electrode switching means is switched to the reverse state. In addition, the water remaining in the discharge pipe flows backward through the electrolytic tank toward the water storage tank, and the DC voltage from the power supply circuit is applied to the electrodes of the electrolytic tank in a reverse voltage state and is maintained in the discharge pipe. Backwashing is performed when the water flows back into the water storage tank. [0007] By the way, the water level of the water remaining in the discharge pipe is reduced by the above-mentioned backflow, and when the water level is further reduced to a position where the electrodes in the electrolytic cell start to be exposed to the air, the power supply circuit is deactivated. In a voltage circuit, when a predetermined DC voltage is applied to the electrodes, the resistance value increases due to the exposure of the electrodes, the current value applied to the electrodes decreases, and the power supply circuit operates at a constant current. In the case of a circuit in which a predetermined value of current is applied to the electrode, the resistance value increases due to the exposure of the electrode, and the voltage value applied to the electrode increases. For this reason, the current value or the voltage value applied to the electrode is out of the set range, and the backwashing ending means of the control device ends the backwashing state. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an electrolyzed water generating apparatus according to the present invention. The electrolyzed water generating apparatus includes a water storage tank 10 for storing a required amount of raw water (tap water). The water storage tank 10
A water level sensor 11 (for detecting an upper limit water level and a lower limit water level) connected to the control device 100 is provided inside, and provided on a water supply pipe 19 (connected to a water supply) by a signal from the water level sensor 11. The electromagnetic on-off valve V1 is opened and closed so that the water level in the water storage tank 10 is maintained in a predetermined range. An overflow pipe 12 is provided in the water storage tank 10, and a connection pipe 13 branched and connected to both inlets 31 a and 31 b of the electrolytic cell 30.
Is mounted on the connection pipe 13, and an electric pump P1 whose operation is controlled by the control device 100 and flow rate adjustment valves V2 and V3 which can be manually adjusted are interposed respectively, and substantially the same amount of raw water is connected. It is configured to be supplied to both inflow ports 31 a and 31 b of the electrolytic cell 30 through the tube 13. The electrolytic cell 30 has a pair of inlets 31a, 31
b having resin b at the bottom and having a pair of outlets 31c and 31d at the upper part made of resin (deformed by overheating)
And a pair of electrodes 32 disposed opposite to each other in the tank body 31,
33 and a diaphragm 36 disposed between the electrodes 32 and 33 to form electrode chambers 34 and 35 for accommodating the electrodes 32 and 33, respectively. Is formed by firing platinum plating or platinum iridium on the surface of the electrode chamber.
4, an inlet 31a and an outlet 31c communicate with each other, and the electrode chamber 35 on the right side communicates with an inlet 31b and an outlet 31d. Further, discharge pipes 37, 38 are connected to the outlets 31c, 31d, respectively, and the discharge pipes 37, 38 have rising portions 37a, 38a which rise upward, as shown in FIG. As described above, the pipe extends to the position where the sink T is used, where each ion water is used.
Storage tank portions 37b, 38
b is formed. Further, each of the rising portions 37a, 38a provided at an intermediate portion of each of the discharge pipes 37, 38 has an upper end communicating with the atmosphere through each of the ventilation fine pipes 37c, 38c, and an outflow end of each of the discharge pipes 37, 38 has a sink. Even if submerged in T, it functions so as not to cause a problem (for example, occurrence of a siphon phenomenon when the device is stopped). In this embodiment, the bottom of the electrolytic cell 30 is
A predetermined amount L from the upper end of the overflow pipe 12 provided at
1 so that water does not accumulate in the discharge pipes 37 and 38 and the electrolytic cell 30 when the apparatus is stopped as shown in the figure. The electrodes 32 and 33 are connected to a power supply circuit 120 via an electrode switch 110. Electrode switch 11
0 corresponds to both electrodes 32,
The switching of the DC voltage applied to the power supply circuit 33 is performed. When a positive signal is received from the control device 100 in the state shown by the virtual line in FIG. Is connected to the electrode 32 and the plus electrode is connected to the electrode 33. When a reverse voltage signal is received from the control device 100 in the state shown by the solid line in FIG. Connect the negative electrode to the electrode 33 and the positive electrode to the electrode 3
2 is connected. The power supply circuit 120 converts an AC voltage into a DC voltage having a predetermined value. When an OFF signal is received from the control device 100, the DC voltage between the negative electrode and the positive electrode becomes zero, and When a turn-on signal is received, a predetermined DC voltage is applied and maintained between the negative electrode and the positive electrode. The control device 100 includes a microcomputer (not shown) for executing a program corresponding to the flowcharts shown in FIGS. 3 and 4, and is provided with a start-up device arranged near the sink T as shown in FIG. Based on each operation of the switch 101 and the stop switch 102 and a signal from the water level sensor 11, the operation of the electromagnetic on-off valve V1, the electric pump P1, the electrode switch 110, the power supply circuit 120, and the like is controlled. By operating each of the switches 101 and 102 while the main switch 103 is turned on, the operation described below can be obtained. In this embodiment constructed as described above, when the main switch 103 is turned on, the microcomputer of the control device 100 operates in step 20 of FIG.
1 starts the execution of the program, and the start switch 101
Is repeatedly executed until the start switch 101 is turned on, and when the start switch 101 is turned on, steps 203 to 2 are executed.
After the process of 05 (the process of setting the device in the electrolyzed water generation state) is performed, the process of step 206 (the process of maintaining the device in the electrolyzed water generation state) is repeatedly executed until the stop switch 102 is turned on. You. In step 203, an ON signal is output to the electric pump P1, and in step 204, a positive signal is output to the electrode switch 110.
At 05, an ON signal is output to the power supply circuit 120. Accordingly, the electric pump P1 is driven, the electrode switch 110 is maintained in the solid line state, and the power supply circuit 120
Receives an ON signal, a predetermined DC voltage is applied and maintained between the negative electrode and the positive electrode, and the
The DC voltage is applied to and maintained in the positive and negative states 2 and 33, and the electrolyzed water generation state is maintained until the stop switch 102 is turned on. For this reason, the raw water in the water storage tank 10 is supplied to the electric pump P1, the connecting pipe 13, and the respective flow control valves V2, V3.
Is supplied to the electrode chambers 34 and 35 of the electrolytic cell 30, and the raw water is electrolyzed in the electrolytic cell 30, and from the electrode chamber 34 of the negative electrode 32, alkaline ions of a predetermined PH in which hydroxyl ions are increased The water is guided to the sink T through the drain pipe 37, and the electrode chamber 35 of the plus electrode 33.
From there, acidic ion water of a predetermined PH with increased hydrogen ions is led to the sink T through the discharge pipe 38. When the water level in the water storage tank 10 reaches the lower limit of the set range due to the above-described operation of generating ionic water by applying a positive voltage, the water level sensor 11 is activated, and based on this, the control device 100 opens the electromagnetic on-off valve V1. A signal is output, the electromagnetic switching valve V1 is opened, and tap water is supplied to the water storage tank 10 through the water supply pipe 19. When the water level in the water storage tank 10 reaches the upper limit of the set range due to the supply of tap water,
The water level sensor 11 operates, and the control device 100
Outputs a valve closing signal to the electromagnetic on-off valve V1, the electromagnetic on-off valve V1 is closed, and supply of tap water stops. This operation is obtained separately from the operation obtained by the microcomputer of the control device 100. When the stop switch 102 is turned on in the above-mentioned electrolyzed water generation state, the step 20 in FIG.
Steps 2 and 7 are performed until the current value A applied to the electrodes 32 and 33 is out of the set range (A1 to A2) after the processing of Steps 7 and 208 (processing for putting the apparatus in the reverse-current cleaning state) is performed.
Step 09 (processing to maintain the device in the reverse-current cleaning state)
Is repeatedly executed. Note that the above current value A is shown in FIG.
Are obtained based on a signal from a current detector 131 provided in a circuit for energizing the electrodes 32 and 33 shown in FIG. In step 207, an off signal is output to the electric pump P1, and in step 208, a reverse signal is output to the electrode switch 110. Therefore, while the electric pump P1 is stopped, the electrode switch 110 is switched from the solid line state to the virtual line state, and the electrode 32 of the electrolytic cell 30 is connected to the plus electrode of the power supply circuit 120, and the electrode 33 becomes the minus electrode. The electrodes 32 and 33 are maintained until the current value A applied to the electrodes 32 and 33 is out of the set range. Therefore, the water remaining in each of the discharge pipes 37, 38 immediately after the stop of the electric pump P1 is removed from the respective electrode chambers 34, 35.
During the backflow automatically supplied by the head, backwashing is performed in a state in which the electrodes 32 and 33 in the electrolytic cell 30 are entirely submerged, and deposits such as calcium and sodium are separated from the electrodes 32 and connected together with the backflow water. The water is discharged out of the electrolytic cell 30 toward the water storage tank 10 through the pipe 13 and the electric pump P1. By the way, the water level of the water remaining in the discharge pipes 37 and 38 in the above-described reverse electric cleaning state is lowered, and this water level is further lowered to expose the electrodes 32 and 33 in the electrolytic cell 30 to the air. When the electrode reaches the position where the operation starts, the resistance value increases due to the exposure of the electrodes 32 and 33, the current value A applied to the electrodes 32 and 33 decreases, and the current value A falls outside the set range. After executing the state termination processing), the processing of step 211 is executed. In step 210, an OFF signal is output to the power supply circuit 120, and the power supply circuit 120
The DC voltage between the negative electrode and the positive electrode is zero. In step 211, it is determined whether or not the main switch 103 has been turned off.
02, it is determined whether the execution of the program is repeated or the process proceeds to step 212 to terminate the execution of the program. In the above embodiment, when the power supply circuit 120 receives an ON signal from the control device 100, a DC voltage of a predetermined value is applied and maintained between the negative electrode and the positive electrode (constant voltage circuit configuration). The end timing of the backwashing is detected by a change in the current value applied to the electrodes 32 and 33. However, when the power supply circuit 120 receives an ON signal from the control device 100, the predetermined timing is set between the minus electrode and the plus electrode. When the DC voltage is applied and the supply current is maintained at a predetermined value (constant current circuit configuration),
The operation is performed such that the end timing of the backwashing is detected by a change in the voltage value applied to the electrodes 32 and 33 (the resistance value increases due to the exposure of the electrodes and the voltage value applied to the electrodes increases). The above-mentioned voltage value is supplied to the voltage detector 13 provided in the circuit for supplying electricity to the electrodes 32 and 33 shown in FIG.
2 to be obtained based on the signal. In the above embodiment, the present invention was carried out using tap water as raw water.
It is also possible to carry out the present invention using the saline obtained by the apparatus disclosed in Japanese Patent Publication No. 76 as raw water. In the above embodiment, the electrolytic cell 30 having the diaphragm 36 is employed as the electrolytic cell. However, the present invention can be similarly applied to an electrolyzed water generating apparatus employing an electrolytic cell without a diaphragm. If an electrolytic cell without a diaphragm is used,
Since the electrode chamber is single and there is no need to divide the raw water, the connection pipe and the discharge pipe have a single configuration. As is apparent from the above description, in the electrolyzed water generating apparatus according to the present invention, backwashing is performed when water remaining in the discharge pipe flows back to the water storage tank. Since the backwashing is performed in a state where the whole electrode in the electrolytic cell is submerged, the backwashing can be sufficiently performed. Further, in the electrolyzed water generating apparatus according to the present invention, the level of water remaining in the discharge pipe is reduced by the above-mentioned backflow, and this level is further reduced, so that the electrodes in the electrolytic cell begin to be exposed to the air. Since the electrical cleaning that occurs when reaching the position, that is, the backwashing state is terminated by a change in the current value or voltage value applied to the electrode, it is not necessary to set the backwashing time in advance, Even if there is a difference in the backflow time in the installation state based on a difference in installation conditions such as a variation between products of the apparatus or a length of a pipe, the apparatus can be implemented without any problem.

【図面の簡単な説明】 【図1】 本発明による電解水生成装置の一実施例を示
す全体構成図である。 【図2】 図1に示した電解水生成装置の使用状態を概
略的に示す図である。 【図3】 図1に示した電解水生成装置の制御装置が備
えるマイクロコンピュータにて実行されるプログラムの
一部を示すフローチャートである。 【図4】 同プログラムの残部を示すフローチャートで
ある。 【符号の説明】 10…貯水タンク、13…接続管、30…電解槽、31
a,31b…流入口、31c,31d…流出口、32,
33…電極、34,35…電極室、36…隔膜、37…
第1排出管、38…第2排出管、37a,38a…立上
部、110…電極切換器、120…電源回路、100…
制御装置、P1…電動ポンプ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram showing an embodiment of an electrolyzed water generation device according to the present invention. FIG. 2 is a view schematically showing a state of use of the electrolyzed water generating apparatus shown in FIG. FIG. 3 is a flowchart showing a part of a program executed by a microcomputer included in the control device of the electrolyzed water generating apparatus shown in FIG. FIG. 4 is a flowchart showing the rest of the program. [Description of Signs] 10: water storage tank, 13: connection pipe, 30: electrolytic cell, 31
a, 31b ... inlet, 31c, 31d ... outlet, 32,
33 ... electrode, 34, 35 ... electrode chamber, 36 ... diaphragm, 37 ...
1st discharge pipe, 38 ... 2nd discharge pipe, 37a, 38a ... rising part, 110 ... electrode switcher, 120 ... power supply circuit, 100 ...
Control device, P1 ... Electric pump.

フロントページの続き (56)参考文献 特開 平7−265857(JP,A) 特開 平7−256254(JP,A) 特開 平7−241563(JP,A) 特開 平7−236886(JP,A) 特開 平7−222976(JP,A) 特開 平7−155761(JP,A) 特開 平6−328072(JP,A) 特開 平6−304561(JP,A) 特開 平6−304560(JP,A) 特開 平6−57495(JP,A) 特開 平7−328625(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 Continuation of the front page (56) References JP-A-7-265857 (JP, A) JP-A-7-256254 (JP, A) JP-A-7-241563 (JP, A) JP-A-7-236886 (JP) JP-A-7-22976 (JP, A) JP-A-7-157561 (JP, A) JP-A-6-328072 (JP, A) JP-A-6-304561 (JP, A) 6-304560 (JP, A) JP-A-6-57495 (JP, A) JP-A-7-328625 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/46

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水または食塩水等の原水を貯溜する貯水
タンクと、下部に流入口を有し上部に流出口を有して内
部の電極への直流電圧の印加により内部の水を電解処理
する電解槽と、前記貯水タンクの原水を接続管を通して
前記電解槽の流入口に圧送する電動ポンプと、前記貯水
タンクの水面より上方に立ち上がる立上部と大気に連通
可能な開口を有して前記電解槽の流出口に接続される排
出管と、電源回路から前記電極に印加される直流電圧の
正逆を切り換える電極切換手段と、前記電動ポンプ及び
前記電極切換手段の作動を制御する制御装置を備えて、
前記電動ポンプの駆動により前記貯水タンクの原水が前
記電解槽及び前記排出管に向けて圧送され、また前記電
動ポンプの停止により前記排出管に残留する残留水が前
記電解槽を通して前記貯水タンクに向けて逆流するよう
にしてなり、また前記制御装置が、起動信号に基づいて
前記電動ポンプを駆動状態に維持するとともに前記電極
切換手段を正電状態に維持して電解水生成状態とする電
解生成維持手段と、停止信号に基づいて前記電動ポンプ
を停止させるとともに前記電極切換手段を逆電状態に切
り換えて逆電洗浄状態とする逆電洗浄維持手段と、前記
逆電洗浄状態にて前記電極に付与される電流値または電
圧値が設定範囲外となったとき前記逆電洗浄状態を終了
させる逆電洗浄終了手段を備えてなる電解水生成装置。
(57) [Claims 1] A storage tank for storing raw water such as water or saline, and a direct current voltage to internal electrodes having an inlet at the bottom and an outlet at the top An electrolytic cell for electrolytically treating the water inside by applying a pressure, an electric pump for pumping the raw water of the water storage tank to the inlet of the electrolytic tank through a connection pipe, a rising part rising above the water surface of the water storage tank and the atmosphere. A discharge pipe having an openable communication port connected to the outlet of the electrolytic cell, an electrode switching means for switching between forward and reverse DC voltage applied to the electrode from a power supply circuit, the electric pump and the electrode switching A control device for controlling the operation of the means,
By driving the electric pump, raw water in the water storage tank is pumped toward the electrolytic tank and the discharge pipe, and residual water remaining in the discharge pipe due to stoppage of the electric pump is directed toward the water storage tank through the electrolytic tank. The control device maintains the electric pump in a driving state based on a start signal, and maintains the electrode switching means in a positive state to generate an electrolyzed water. Means, reverse electric cleaning maintenance means for stopping the electric pump based on a stop signal and switching the electrode switching means to a reverse electric state to make a reverse electric cleaning state, and applying to the electrode in the reverse electric cleaning state An electrolyzed water generation device comprising: a reverse-current cleaning termination means for terminating the reverse-current cleaning state when a current value or a voltage value falls outside a set range.
JP12926294A 1994-06-10 1994-06-10 Electrolyzed water generator Expired - Fee Related JP3426344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12926294A JP3426344B2 (en) 1994-06-10 1994-06-10 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12926294A JP3426344B2 (en) 1994-06-10 1994-06-10 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH07328627A JPH07328627A (en) 1995-12-19
JP3426344B2 true JP3426344B2 (en) 2003-07-14

Family

ID=15005227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12926294A Expired - Fee Related JP3426344B2 (en) 1994-06-10 1994-06-10 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3426344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2601143A4 (en) 2010-08-06 2015-08-05 Miox Corp Electrolytic on-site generator

Also Published As

Publication number Publication date
JPH07328627A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP3468835B2 (en) Electrolyzed water generator
JP3426344B2 (en) Electrolyzed water generator
JP3373285B2 (en) Electrolytic ionic water generator
JP2698957B2 (en) Electrolytic ionic water generator
JP3421127B2 (en) Electrolytic ionic water generator
JP3513208B2 (en) Electrolytic ionic water generator
JP3426341B2 (en) Electrolytic ionic water generator
JP3411095B2 (en) Electrolytic ionic water generator
JP3653135B2 (en) Electrolyzed water generator
JPH0985244A (en) Electrolytic water preparation device
JP3694107B2 (en) Electrolyzed water generator
JP3426323B2 (en) Electrolytic ionic water generator
JP3432007B2 (en) Electrolyzed water generator
JP3431982B2 (en) Electrolytic ionic water generator
JP3432012B2 (en) Electrolyzed water generator
JP3601011B2 (en) Electrolyzed water generator
JPS637359Y2 (en)
JPH0810766A (en) Electrolytic water forming device with backwashing mechanism
KR100367895B1 (en) Electrolytic Water Generator
JPH026588B2 (en)
JPH0866681A (en) Electrolytic water generator
JPH06304561A (en) Device for producing electrolyzed ionized water
JP3537216B2 (en) Electrolyzed water generator
KR100395979B1 (en) Electrolytic water generating device
JPH08229559A (en) Electrolytic ionized water generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees