JP3426161B2 - Linear drive for driven body - Google Patents

Linear drive for driven body

Info

Publication number
JP3426161B2
JP3426161B2 JP17153899A JP17153899A JP3426161B2 JP 3426161 B2 JP3426161 B2 JP 3426161B2 JP 17153899 A JP17153899 A JP 17153899A JP 17153899 A JP17153899 A JP 17153899A JP 3426161 B2 JP3426161 B2 JP 3426161B2
Authority
JP
Japan
Prior art keywords
magnet
driven
electromagnet
magnets
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17153899A
Other languages
Japanese (ja)
Other versions
JP2001006929A (en
Inventor
時夫 杉
邦夫 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP17153899A priority Critical patent/JP3426161B2/en
Publication of JP2001006929A publication Critical patent/JP2001006929A/en
Application granted granted Critical
Publication of JP3426161B2 publication Critical patent/JP3426161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は流量調節弁等に好適
な新規な直線駆動装置に関する。 【0002】 【従来技術とその問題点】コイルに電流を供給して磁力
を発生させ、この磁力を磁性体からなる被駆動体に作用
させて可動部を駆動するいわゆる電磁式の直線駆動装置
がさまざまな用途に利用されており、その代表的な例に
ソレノイド(電磁石)がある。 【0003】ソレノイドは、図6のようにコイル54、
鉄心(ヨーク)51、被駆動体52および復帰バネ(リ
ターンスプリング)53によって構成され、コイル54
に直流電流を流すと鉄心51に磁力が発生し、磁性体で
作られた被駆動体が磁気吸引力によって駆動される。コ
イル54の直流電流をOFFにすると鉄心51の磁力が
無くなり、被駆動体52は復帰バネ53の復元力によっ
て元の位置に戻る。 【0005】通常のソレノイドの被駆動体は、コイルに
電流が流れているとき、流れていないときの二つの安定
位置の何れかで静止するように作られ、被駆動体の位置
を連続的に制御することはできないが、鉄心が発生する
磁力と復帰バネの復元力を釣り合わせることによって、
被駆動体の位置を限られた範囲内において連続的に制御
することも可能である。 【0006】図7はこの連続的に位置制御のできるソレ
ノイドの適用例で、コイルの電流値を増減させることに
よってバルブ55の流路の間隙を変え、通過する流体の
流量を制御する流量調節弁である。 【0007】同図において、コイル54に電流を流さな
いときには、被駆動体である弁棒56の弁体57は皿バ
ネ(ダイヤフラム)58の力で流路を塞いでおり、流量
は0であるが、コイル54に電流を流すと、コイルと鉄
心51よりなるソレノイドの吸引力によって弁体57に
上向きの力が作用し、弁体が上方に変位して弁坐59と
弁体の間が開き、流体が流れる。このときの流量は弁体
の変位が大きくなるにつれて増加する。 【0008】一方、弁体が上方に変位すると、弁体には
皿バネ58による下向きの復元力が働き、この復元力は
弁体の変位量にほぼ比例して大きくなる。したがって弁
体57はソレノイドの吸引力と皿バネの復元力が釣り合
う位置で静止し、コイルの電流が大きくなるにつれて弁
体の変位は大きくなり、弁坐と弁体の間を流れる流体の
流量もコイルの電流とともに増加する。したがってコイ
ルの電流を調節することによって流量を制御することが
できる。 【0009】しかしながら、ソレノイドの吸引力が図8
に示されるように吸引される磁性体(被駆動体)との距
離の二乗に反比例するのに対し、皿バネの復元力は変位
の一乗に比例するので、両者が安定的に釣合う弁体の位
置は狭い範囲に限定され、弁体の可動範囲(ストロー
ク)の大きい流量調節弁を実現することは困難である。 【0010】一般にストロークの小さい流量調節弁にお
いては、流体が弁坐と弁体の間を流れる際に生じる圧力
損失が大きく、流量調節弁に流入する流体の圧力(供給
圧)が十分高くないと必要な流量を得ることができな
い。通常圧力損失は流量の二乗に比例して増大するの
で、圧力損失が供給圧に達すると、それ以上の流量を得
ることは物理的に不可能になるからである。 【0011】このことは流体が気体の場合よりも、圧縮
性がなく、供給圧を高くしにくい液体の場合に特に問題
となる。前述のソレノイドを用いた流量調節弁も、実用
例の殆どは気体用であり、液体に使用されているケース
は極めて少ない。 【0012】ストロークの大きい流量調節弁を実現する
手段の代表例には図9のようなモータ式がある。同図は
モータMでネジ軸60を回転させてめねじ体61を上下
動させ、めねじ体と一体に設けた弁棒62の下端弁体6
3を上下に駆動する方式で、平板を上下させるゲート弁
や、図7のような弁体が円錐状のニードル弁などに適用
される。また、貫通孔のある球を回転させるいわゆるボ
ール弁には回転式の駆動装置が使用されるなど、各種の
弁がモータと組合わされて流量調節弁として実用に供せ
られている。 【0013】モータ式は十分なストロークが得られる
が、前述のソレノイド式と比較すると弁の開度を変える
のに時間がかかるため、流量制御に使用する場合は応答
が遅いという問題があり、また、一般に構造が複雑でコ
ストも高く、耐用年数も比較的短い。 【0014】これらの他に、図10のような空心コイル
・アンド・マグネット式も小流量用の流量調節弁に使用
されている。この方式は鉄心のないコイル64(空心コ
イル)の内部に、長さ方向に着磁されたマグネット65
を内蔵する弁棒66を長さ方向に可動に支持し、コイル
に電流を流してマグネットに駆動力を与え、弁棒66を
上下動させて、弁体67により弁孔68の開度を調節す
るもので、 (a) 全長の長いコイルを用いればマグネットのストロー
クを大きくできる (b) 応答が速く、かつ構造が簡単でコストが安い (c) 電流にほぼ比例した駆動力が得られるため板バネと
の組合せによる位置制御が易しい など多くの長所を備えている。 【0015】しかし、ソレノイドに比べて同じ駆動力を
得るのに要する電流が著しく大きく、用途は駆動力の小
さい小流量用の流量調節弁に限られるというデメリット
がある。 【0016】以上のような現状において、特に液体の流
量調節弁用として、ソレノイド式に比べて大きなストロ
ークが得られ、モータ式に比べて応答が速くかつ構造が
簡単でコストが安く、空心コイル・アンド・マグネット
式に比べて駆動力が大きい直線駆動装置の実現が望まれ
ている。 【0017】 【本発明の目的】本発明は、ソレノイド式に比べて大き
なストロークが得られて制御範囲が大であり、しかもモ
ータ式に比べて応答が速く、かつ構造が簡単でコストが
安く、また駆動力が大きく、かつ制御範囲の大なる直線
駆動装置を実現することを目的とする。 【0018】 【本発明の構成】本発明に係る被駆動体の直線駆動装置
は、両端部に第1電磁石、第2電磁石を備える支持体の
両端部内側に、互いに相対する面が異極となるよう着磁
された第1不動磁石第2不動磁石を設け、前記第1、
第2電磁石の中心部及び第1、第2不動磁石の中心部の
ガイド孔にフリーに挿通した被駆動体たる棒体の第1、
第2不動磁石間に当たる部位に、第1、第2の不動磁石
と相対する面がそれぞれ各不動磁石の対向面と同極とな
るよう着磁された従動磁石を固定してなり、前記第1及
び第2の電磁石に電流を供給していないときには従動磁
石に第1、第2の不動磁石からの磁気的反発力が作用し
て従動磁石が可動範囲の中間位置に保持されるが、第1
及び第2の電磁石もしくは一方の電磁石へ任意の極性及
び強さの直流電流を供給すると、従動磁石に第1、第2
の電磁石からの磁力が作用して前記棒体が軸線方向に所
要量正逆移動させられる構成のものとしてある。 【0019】 【実施例】以下、本発明の直線駆動装置を図1〜4に示
す実施例により説明する。図1のように、上下両端部に
フランジ1a、1bを有する筒状等の支持体1の前記上
下のフランジ1a、1bに、中心にそれぞれ縦ガイド孔
3a、3bを有する空心ヨーク(鉄心)3A、3Bのま
わりにコイル2A、2Bを有する上下一対の第1電磁石
4Aと第2電磁石4Bを設けてある。 【0020】支持体1の上下両端部の内側には、前記空
心ヨークの縦ガイド孔3a、3bと一致する縦ガイド孔
5a、5bをそれぞれ中心に有し、各縦ガイド孔を通る
軸線方向に着磁された上下一対の第1不動磁石5Aと第
2不動磁石5Bを異極どうしが相対するように固定す
る。 【0021】しかして上下の電磁石のヨークの中心及び
上下の第1、第2不動磁石の中心へフリーに上下動でき
る被駆動体たる棒体6を挿通し、この棒体6は上下の第
1、第2不動磁石の間に位置する箇所に従動磁石5Cを
固定してあり、しかも従動磁石5Cは上下の第1、第2
不動磁石と相反発するよう上下の第1、第2不動磁石と
互いに同極が向き合うように着磁されて弁棒に固定され
ていて、従動磁石5Cが上下の第1、第2不動磁石間の
中点付近の位置に保持されるようにしてある。 【0022】このように構成された駆動装置の第1、第
2の電磁石の各コイルに、正逆の切替えが可能な直流電
源7A、7Bを接続して適当な電流を供給することによ
り、被駆動体たる棒体6に以下のような動作をさせるこ
とができる。 【0023】まず、電流を全く流さないときには、従動
磁石5Cには第1、第2の不動磁石5A、5Bからの反
発力が作用し、図1のように従動磁石5Cは可動範囲の
中間の位置に保持される。 【0024】つぎに一方の第1電磁石4Aのコイル2A
に従動磁石5Cと反発する磁力を発生する電流を、他方
の第2電磁石4Bのコイル2Bに従動磁石5Cと吸引し
合う磁力を発生する電流を同時に供給すると、従動磁石
5Cには下向きの力が働き、第2不動磁石5Bの反発力
に打ち勝って従動磁石5Cは図2のように可動範囲の下
方に移動する。 【0025】このときの第2不動磁石5Bの反発力は従
動磁石5Cが下方に移動するにつれて大きくなるので、
2つのコイル2A、2Bの電流の大きさを加減すること
によって従動磁石5Cが下方に移動する量を調節するこ
とができる。なお、以上の動作は磁石の反発、吸引力に
よるものであるから、応答速度はソレノイドと同様に高
速である。 【0026】電流の向きを逆にし、第1電磁石4Aのコ
イル2Aには従動磁石5Cと吸引し合う磁力を発生さ
せ、第2電磁石4Bのコイル2Bには従動磁石5Cと反
発する磁力を発生させると、従動磁石5Cには上向きの
力が働き、第1不動磁石5Aの反発力に打ち勝って従動
磁石5Cは図3のように可動範囲の上方に移動する。こ
の場合も電流の大きさを加減することによって従動磁石
5Cが上方に移動する量を調節することができる。 【0027】第1、第2の電磁石に上記のような互いに
逆向きの磁力を発生させるには、2個の電源を用い、電
磁石4A、4Bにそれぞれ独立に電流を供給すればよい
が、図4のように電磁石4A、4Bのコイル2A、2B
を磁力が互いに逆向きになるように直列に接続し、切換
スイッチ8を有する一個の電源7で上記の動作をさせる
ことも可能である。 【0028】但しこの場合はコストは安くなるが、2個
のコイルを流れる電流の強さは常に等しく、それぞれの
コイルに互いに強さの異なる電流を流すことはできない
ので、使用条件に応じた最適な制御を行う上では制約が
多い。 【0029】なお、従動磁石5Cと電磁石のヨークの間
に働く吸引力によって従動磁石5Cと不動磁石5A、5
Bが密着状態にならないように、不動磁石にはこの吸引
力より大きい反発力を発生するものを使用する。 【0030】図5は本発明を採用した直線駆動装置の実
験データの一例であるが、直径40mm、厚さ6mmの
従動磁石を用い、最大駆動力2kg以上(電流1.5
A)、ストローク7mm以上の性能が得られている。 【0031】この実験データに示されるように、電磁石
4A、4Bに十分大きな磁力を出し得るものを用いれ
ば、上記の動作において、被駆動体に十分な移動量と大
きな駆動力を与えることが可能であり、本発明の目的に
適う、流量調節弁等に好適な直線駆動装置が実現でき
る。 【0032】以上、本装置によれば、電磁石4A、4B
のいずれかもしくは両方に所要の強さの電流を供給する
ことにより、従動磁石5Cにより被駆動体たる棒体6を
その軸線方向へ正逆所要量移動させることができる。 【0033】 【発明の効果】上述のように、本発明の直線駆動装置で
は被駆動体たる棒体が、大きな移動範囲(ストローク)
と大きな駆動力を得ることができ、かつ電流に比例した
駆動力がほぼ瞬時に発生するので、高速応答できる利点
がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel linear drive device suitable for a flow control valve or the like. 2. Description of the Related Art There is known a so-called electromagnetic linear drive device which supplies a current to a coil to generate a magnetic force and applies the magnetic force to a driven body made of a magnetic material to drive a movable portion. It is used for various purposes, and a typical example is a solenoid (electromagnet). [0003] As shown in FIG.
A coil 54 includes an iron core (yoke) 51, a driven body 52, and a return spring (return spring) 53.
When a DC current is applied to the iron core 51, a magnetic force is generated in the iron core 51, and the driven body made of a magnetic material is driven by the magnetic attractive force. When the DC current of the coil 54 is turned off, the magnetic force of the iron core 51 is lost, and the driven body 52 returns to the original position by the restoring force of the return spring 53. [0005] A driven body of a normal solenoid is made to be stationary at one of two stable positions when current is flowing through the coil and when no current is flowing, and the position of the driven body is continuously changed. Although it cannot be controlled, by balancing the magnetic force generated by the iron core and the restoring force of the return spring,
It is also possible to continuously control the position of the driven body within a limited range. FIG. 7 shows an application example of a solenoid capable of continuously controlling the position. A flow control valve for controlling a flow rate of a passing fluid by changing a gap of a flow path of a valve 55 by increasing or decreasing a current value of a coil. It is. In FIG. 1, when no current is supplied to the coil 54, the valve body 57 of the valve rod 56, which is the driven body, closes the flow path by the force of the disc spring (diaphragm) 58, and the flow rate is zero. However, when an electric current is applied to the coil 54, an upward force acts on the valve body 57 by the attraction force of the solenoid composed of the coil and the iron core 51, the valve body is displaced upward, and the space between the valve seat 59 and the valve body opens. , Fluid flows. The flow rate at this time increases as the displacement of the valve element increases. On the other hand, when the valve element is displaced upward, a downward restoring force is exerted on the valve element by the disc spring 58, and this restoring force increases substantially in proportion to the amount of displacement of the valve element. Therefore, the valve body 57 stops at a position where the suction force of the solenoid and the restoring force of the disc spring balance, and the displacement of the valve body increases as the coil current increases, and the flow rate of the fluid flowing between the valve seat and the valve body also increases. Increases with coil current. Therefore, the flow rate can be controlled by adjusting the coil current. [0009] However, the suction force of the solenoid increases as shown in FIG.
As shown in the figure, the restoring force of the disc spring is proportional to the first power of the displacement, while the restoring force of the disc spring is proportional to the square of the distance from the magnetic body (driven body) to be attracted. Is limited to a narrow range, and it is difficult to realize a flow control valve having a large movable range (stroke) of the valve element. Generally, in a flow control valve having a small stroke, a large pressure loss occurs when a fluid flows between a valve seat and a valve body, and unless the pressure (supply pressure) of the fluid flowing into the flow control valve is sufficiently high. The required flow rate cannot be obtained. Normally, the pressure loss increases in proportion to the square of the flow rate, so that when the pressure loss reaches the supply pressure, it is physically impossible to obtain a higher flow rate. This is particularly problematic when the fluid is less compressible and the supply pressure is less likely to be higher than when the fluid is a gas. Most of the practical examples of the flow control valve using the above-mentioned solenoid are for gas, and there are very few cases in which they are used for liquid. As a typical example of a means for realizing a flow control valve having a large stroke, there is a motor type as shown in FIG. In the figure, the screw shaft 60 is rotated by the motor M to move the female screw body 61 up and down, and the lower end valve body 6 of the valve rod 62 provided integrally with the female screw body is shown.
3 is driven up and down, and is applied to a gate valve for moving a flat plate up and down, and a valve element as shown in FIG. 7 having a conical needle valve. In addition, various types of valves are put into practical use as flow control valves in combination with a motor, for example, a rotary driving device is used for a so-called ball valve that rotates a ball having a through hole. Although the motor type can provide a sufficient stroke, it takes a longer time to change the opening degree of the valve as compared with the above-mentioned solenoid type, so that when used for flow rate control, there is a problem that the response is slow. In general, the structure is complicated, the cost is high, and the service life is relatively short. In addition to these, an air-core coil and magnet type as shown in FIG. 10 is also used for a flow rate control valve for a small flow rate. In this method, a magnet 65 magnetized in the longitudinal direction is provided inside a coil 64 (air-core coil) having no iron core.
Is movably supported in the longitudinal direction, a current is applied to the coil to apply a driving force to the magnet, the valve stem 66 is moved up and down, and the opening of the valve hole 68 is adjusted by the valve body 67. (A) The magnet stroke can be increased by using a coil with a long overall length. (B) The response is fast, the structure is simple and the cost is low. (C) A driving force almost proportional to the current can be obtained. It has many advantages such as easy position control by combination with a spring. However, compared to a solenoid, the current required to obtain the same driving force is extremely large, and there is a demerit that the application is limited to a flow control valve for a small flow rate having a small driving force. Under the above circumstances, particularly for a liquid flow control valve, a large stroke can be obtained as compared with the solenoid type, and the response is faster, the structure is simpler and the cost is lower than that of the motor type. It is desired to realize a linear driving device having a larger driving force than the AND magnet type. An object of the present invention is to provide a large stroke and a large control range as compared with a solenoid type, and a quick response, a simple structure and a low cost as compared with a motor type. It is another object of the present invention to realize a linear drive device having a large driving force and a large control range. According to the present invention, there is provided a linear driving apparatus for a driven body according to the present invention, wherein opposite surfaces of opposite sides are formed inside both ends of a support having a first electromagnet and a second electromagnet at both ends. A first fixed magnet and a second fixed magnet, which are magnetized so that
First and second rods as driven bodies, which are freely inserted into the guide holes at the center of the second electromagnet and the center of the first and second immobile magnets.
A driven magnet, which is magnetized so that a surface facing the first and second immovable magnets has the same polarity as an opposing surface of each immovable magnet, is fixed to a portion between the second immovable magnets . Passing
And when no current is supplied to the second electromagnet,
The magnetic repulsion from the first and second fixed magnets acts on the stone
Thus, the driven magnet is held at the middle position of the movable range .
When a DC current of any polarity and strength is supplied to the second and / or second electromagnets , the first and second
The rod body is moved in the axial direction by a required amount in the forward and reverse directions by the magnetic force from the electromagnet . DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a linear drive device according to the present invention will be described with reference to FIGS. As shown in FIG. 1, an air-core yoke (iron core) 3A having longitudinal guide holes 3a, 3b at the center of the upper and lower flanges 1a, 1b of a cylindrical support body 1 having flanges 1a, 1b at both upper and lower ends. A pair of upper and lower first and second electromagnets 4A and 4B having coils 2A and 2B are provided around 3B. Inside the upper and lower ends of the support 1, longitudinal guide holes 5a and 5b corresponding to the longitudinal guide holes 3a and 3b of the air-core yoke are provided at the center, respectively, in the axial direction passing through the longitudinal guide holes. A pair of upper and lower magnetized first and second immobile magnets 5A and 5B are fixed so that the opposite poles face each other. Thus, a rod 6 which is a driven body that can freely move up and down is inserted into the center of the yoke of the upper and lower electromagnets and the center of the upper and lower first and second immovable magnets. The driven magnet 5C is fixed at a location located between the second immobile magnets, and the driven magnet 5C is
The upper and lower first and second immovable magnets are magnetized so that they have the same polarity so as to repel each other, and are fixed to the valve stem. The driven magnet 5C is located between the upper and lower first and second immovable magnets. It is held at a position near the midpoint. By connecting the DC power supplies 7A and 7B capable of switching between normal and reverse directions to each of the coils of the first and second electromagnets of the driving device having the above-described configuration, an appropriate current is supplied to the coils. The following operation can be performed on the rod 6 as a driving body. First, when no current flows at all, the repulsive force from the first and second immobile magnets 5A and 5B acts on the driven magnet 5C, and as shown in FIG. Held in position. Next, the coil 2A of the first electromagnet 4A
When a current generating a magnetic force repelling the driven magnet 5C and a current generating a magnetic force attracting the driven magnet 5C to the coil 2B of the other second electromagnet 4B are simultaneously supplied, a downward force is applied to the driven magnet 5C. In operation, the driven magnet 5C moves below the movable range as shown in FIG. 2 by overcoming the repulsive force of the second immobile magnet 5B. At this time, the repulsive force of the second immobile magnet 5B increases as the driven magnet 5C moves downward.
The amount by which the driven magnet 5C moves downward can be adjusted by adjusting the magnitudes of the currents of the two coils 2A and 2B. Since the above operation is based on the repulsion and attractive force of the magnet, the response speed is as fast as the solenoid. The direction of the current is reversed, and a magnetic force attracting the driven magnet 5C is generated in the coil 2A of the first electromagnet 4A, and a magnetic force repelling the driven magnet 5C is generated in the coil 2B of the second electromagnet 4B. Then, an upward force acts on the driven magnet 5C, and overcomes the repulsive force of the first immobile magnet 5A, so that the driven magnet 5C moves above the movable range as shown in FIG. Also in this case, the amount by which the driven magnet 5C moves upward can be adjusted by adjusting the magnitude of the current. In order to generate the above-mentioned magnetic forces in the first and second electromagnets in opposite directions, it is sufficient to use two power supplies and supply currents to the electromagnets 4A and 4B independently. 4, coils 2A and 2B of electromagnets 4A and 4B
Can be connected in series so that the magnetic forces are opposite to each other, and the above operation can be performed by one power supply 7 having a changeover switch 8. However, in this case, the cost is reduced, but the currents flowing through the two coils are always equal in intensity, and currents having different intensities cannot be passed through each coil. There are many restrictions in performing effective control. The driven magnet 5C and the stationary magnets 5A, 5A, 5A
In order to prevent B from coming into close contact, a stationary magnet that generates a repulsive force greater than this attractive force is used. FIG. 5 shows an example of experimental data of a linear drive device employing the present invention. A driven magnet having a diameter of 40 mm and a thickness of 6 mm was used, and the maximum drive force was 2 kg or more (current 1.5
A), a performance of a stroke of 7 mm or more is obtained. As shown in the experimental data, if the electromagnets 4A and 4B are capable of generating a sufficiently large magnetic force, it is possible to apply a sufficient amount of movement and a large driving force to the driven body in the above operation. Thus, it is possible to realize a linear drive device suitable for a flow control valve or the like, which meets the object of the present invention. As described above, according to the present apparatus, the electromagnets 4A, 4B
By supplying a current of a required strength to one or both of them, the driven body 5C can be moved in the axial direction by a required amount in the forward and reverse directions by the driven magnet 5C. As described above, in the linear drive device of the present invention, the rod as the driven body has a large moving range (stroke).
Therefore, there is an advantage that a high-speed response can be obtained since a large driving force can be obtained and a driving force proportional to the current is generated almost instantaneously.

【図面の簡単な説明】 【図1】本発明に係る被駆動体の直線駆動装置の一例を
示す縦断面図。 【図2】同直線駆動装置の作動状態の一例を示す縦断面
図。 【図3】同直線駆動装置の作動状態の他の例を示す縦断
面図。 【図4】同直線駆動装置の他の例を示す縦断面図。 【図5】電磁石への供給電流と従動磁石の駆動力及び変
位の関係を示す図。 【図6】従来の直線駆動装置の一例を示す縦断面図。 【図7】同直線駆動装置を備える従来の流量調節弁の縦
断面図。 【図8】電磁石の供給電流と被駆動体の変位及び力の関
係、及び皿ばねの変位と復元力の関係を示す図。 【図9】ゲート弁の従来の直線駆動装置を示す図。 【図10】従来の流量調節弁の縦断面図。 【符号の説明】 1・・・支持体 1a、1b・・・フランジ 2A、2B・・・コイル 3A、3B・・・空心ヨーク(鉄心) 3a、3b・・・縦ガイド孔 4A・・・第1電磁石 4B・・・第2電磁石 5A・・・第1不動磁石 5B・・・第2不動磁石 5C・・・従動磁石 6・・・棒体 7A、7B・・・直流電源 8・・・切換スイッチ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing an example of a driven body linear driving device according to the present invention. FIG. 2 is a longitudinal sectional view showing an example of an operation state of the linear drive device. FIG. 3 is a longitudinal sectional view showing another example of the operating state of the linear drive device. FIG. 4 is a longitudinal sectional view showing another example of the linear drive device. FIG. 5 is a diagram illustrating a relationship between a current supplied to an electromagnet and a driving force and displacement of a driven magnet. FIG. 6 is a longitudinal sectional view showing an example of a conventional linear drive device. FIG. 7 is a vertical sectional view of a conventional flow control valve provided with the linear drive device. FIG. 8 is a diagram showing a relationship between a supply current of an electromagnet and a displacement and a force of a driven body, and a relationship between a displacement of a disc spring and a restoring force. FIG. 9 is a diagram showing a conventional linear drive device for a gate valve. FIG. 10 is a longitudinal sectional view of a conventional flow control valve. [Description of Signs] 1 ... Supports 1a, 1b ... Flanges 2A, 2B ... Coil 3A, 3B ... Air core yoke (iron core) 3a, 3b ... Vertical guide hole 4A ... 1 electromagnet 4B 2nd electromagnet 5A 1st stationary magnet 5B 2nd stationary magnet 5C driven magnet 6 rod 7A, 7B DC power supply 8 switching switch

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−177510(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 7/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-177510 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01F 7/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】両端部に第1電磁石、第2電磁石を備える
支持体の両端部内側に、互いに相対する面が異極となる
よう着磁された第1不動磁石第2不動磁石を設け、前
記第1、第2電磁石の中心部及び第1、第2不動磁石の
中心部のガイド孔にフリーに挿通した被駆動体たる棒体
の第1、第2不動磁石間に当たる部位に、第1、第2の
不動磁石と相対する面がそれぞれ各不動磁石の対向面と
同極となるよう着磁された従動磁石を固定してなり、
記第1及び第2の電磁石に電流を供給していないときに
は従動磁石に第1、第2の不動磁石からの磁気的反発力
が作用して従動磁石が可動範囲の中間位置に保持される
が、第1及び第2の電磁石もしくは一方の電磁石へ任意
の極性及び強さの直流電流を供給すると、従動磁石に第
1、第2の電磁石からの磁力が作用して前記棒体が軸線
方向に所要量正逆移動させられる被駆動体の直線駆動装
置。
(57) Claims 1. A first magnet which is magnetized inside both ends of a support body having a first electromagnet and a second electromagnet at both ends so that surfaces facing each other have different polarities. immobility magnet and second stationary magnets provided, the first, central portion and the first second electromagnet, the first driven member serving rod inserted through the access into the guide hole of the central portion of the second stationary magnets, the A driven magnet which is magnetized such that a surface facing the first and second immovable magnets has the same polarity as the opposing surface of each immovable magnet is fixed to a portion corresponding to between the two immovable magnets, Previous
When no current is supplied to the first and second electromagnets
Is the magnetic repulsion from the first and second immobile magnets on the driven magnet
Acts to keep the driven magnet in the middle position of the movable range.
But a supply DC current of any polarity and intensity to the first and second electromagnets or one electromagnet, the the driven magnets
1. A linear driving device for a driven body in which a magnetic force from a second electromagnet acts to move the rod body forward and backward in a required amount in the axial direction.
JP17153899A 1999-06-17 1999-06-17 Linear drive for driven body Expired - Fee Related JP3426161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17153899A JP3426161B2 (en) 1999-06-17 1999-06-17 Linear drive for driven body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17153899A JP3426161B2 (en) 1999-06-17 1999-06-17 Linear drive for driven body

Publications (2)

Publication Number Publication Date
JP2001006929A JP2001006929A (en) 2001-01-12
JP3426161B2 true JP3426161B2 (en) 2003-07-14

Family

ID=15924992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17153899A Expired - Fee Related JP3426161B2 (en) 1999-06-17 1999-06-17 Linear drive for driven body

Country Status (1)

Country Link
JP (1) JP3426161B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170712B2 (en) * 2013-04-12 2017-07-26 アズビル株式会社 Bistable moving device
CN105900193B (en) * 2014-01-21 2017-11-21 本田技研工业株式会社 Electromagnetic actuators and electromagnetic valve device
CN114508600A (en) * 2022-01-13 2022-05-17 中科首望无水染色智能装备(苏州)有限公司 Electromagnetic strong-sealing flash explosion device and working method
CN114526342B (en) * 2022-01-13 2023-09-08 中科首望无水染色智能装备(苏州)有限公司 Long-range electromagnetic sealing flash explosion device and working method

Also Published As

Publication number Publication date
JP2001006929A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
TW526629B (en) Magnet movable electromagnetic actuator
JP2011513979A (en) Electromagnetic operation mechanism
US20050279415A1 (en) Servo valve with miniature embedded force motor with stiffened armature
EP0198085A1 (en) Electromagnetic actuator
US7142078B2 (en) Magnetic levitation actuator
JP3426160B2 (en) Flow control valve
JP3426161B2 (en) Linear drive for driven body
JPH03178747A (en) Two-dimensional motor type stage device
US3784943A (en) Solenoid actuator
US4959629A (en) High torque rotary solenoid
JPH0529133A (en) Electromagnet
KR100407897B1 (en) A Fine Actuator Stage Using Moving Magnet Type Of VCM
JPH0379854B2 (en)
US11118702B2 (en) Valve with energy-saving electrodynamic actuator
JPS6240593B2 (en)
JPS61200386A (en) Electromagnetic pump
WO2022173061A1 (en) On-off valve
CN117316573A (en) Disc type double-holding electromagnet
JP2004015997A (en) Electromagnetic control type linear actuators
JP3251085B2 (en) solenoid valve
JPS6046307B2 (en) fluid flow control valve
JPH0510331Y2 (en)
KR100428051B1 (en) 6-axis positioning system
JPH0828703A (en) Energizing controller for moving body
KR200322083Y1 (en) all-purpose solenoid valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees