JP3424545B2 - Transpiration gas measuring device - Google Patents
Transpiration gas measuring deviceInfo
- Publication number
- JP3424545B2 JP3424545B2 JP03690898A JP3690898A JP3424545B2 JP 3424545 B2 JP3424545 B2 JP 3424545B2 JP 03690898 A JP03690898 A JP 03690898A JP 3690898 A JP3690898 A JP 3690898A JP 3424545 B2 JP3424545 B2 JP 3424545B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- closed chamber
- valve
- measurement
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、駐車中の車両の燃
料タンクやエンジン本体から蒸散するガスの蒸散ガス成
分、例えば、炭化水素(HC)の計測を行う蒸散ガス計測装
置に関する。
【0002】
【従来の技術】近年、走行中の燃焼ガスから排出される
成分、例えば、炭化水素(HC)に止まらず、駐車中の車両
の燃料タンクやエンジン本体から蒸散するガスのHCも排
出ガス規制の規制対象とされている。このため、屋外で
車両を長時間駐車させた際に蒸散するHC濃度を評価する
必要があり、従来から、屋外で車両を長時間駐車させた
状況を再現した蒸散ガス計測装置により蒸散されるHC濃
度を検出している。
【0003】図4に基づいて従来の蒸散ガス計測装置を
説明する。図4には従来の蒸散ガス計測装置の全体構成
を示してある。図に示すように、計測対象車両(車両)
7が収容される密閉室1の内部は空調機2により一定温
度(例えば20℃から30℃の間の所定温度) に保持されて
いる。サンプリングポイント3から密閉室1の内部の気
体が送給パイプ4により分析計5に送られ、分析計5で
分析が完了した気体が戻りパイプ6により密閉室1の内
部に戻される。
【0004】従来の蒸散ガス計測装置では、空調機2に
より密閉室1の内部を一定温度に保持し、計測開始時に
送給パイプ4により密閉室1の内部の気体が分析計5に
送られてHC濃度が分析された後、経時的に送給パイプ4
により密閉室1の内部の気体が分析計5に送られてHC濃
度が分析される。そして、計測開始時の密閉室内のガス
のHC濃度と、経時的にサンプリングした密閉室内のガス
のHC濃度とに基づいて、車両7から蒸散するHCの量を計
測し、屋外で車両を長時間駐車させた際に蒸散されるHC
の量を推定している。
【0005】
【発明が解決しようとする課題】しかし、実際の屋外の
温度は1日のうちで差があるため、密閉室内を一定温度
に保持して計測を行う従来の蒸散ガス計測装置では、実
際の状況に沿ったHC濃度の検出が不可能であり、蒸散さ
れるHCの量を正確に推定することができなかった。
【0006】そこで、1日の温度変化に合わせて密閉室
内の温度を変更することが考えられる。しかし、密閉室
内の温度を変更すると密閉室内の圧力が変化するため、
密閉室内の空気の膨張・収縮を吸収して圧力を一定に保
持するコントロール装置が必要となり、大がかりな装置
になってしまう。また、HC濃度を評価する際の制御も複
雑になる。このため、密閉室内の温度を変化させる蒸散
ガス計測装置は、既存の蒸散ガス計測装置の改造が不可
能であり、高価な装置となってしまう。
【0007】本発明は上記状況に鑑みてなされたもの
で、温度変化に対応して駐車中の車両から蒸散するガス
の蒸散ガス成分を安価で精度良く推定できる蒸散ガス計
測装置を提供することを目的とする。
【0008】
【課題を解決するための手段】上記目的を達成するため
本発明では、計測対象車両を収容する密閉室内の雰囲気
環境を環境設定手段により計測条件に適した環境に設定
し、連通管により密閉室と外気側とを連通する。密閉室
の内部の蒸散ガス成分を検出する第1検出手段を設ける
と共に連通管の内部の蒸散ガス成分を検出する第2検出
手段を連通管に設ける。そして、第1検出手段により密
閉室の内部の蒸散ガス成分を検出すると共に遮断弁によ
り連通管を閉じた状態で第2検出手段により蒸散ガス成
分を検出し、第1検出手段の検出情報と第2検出手段の
検出情報とに基づいて分析手段により蒸散ガス成分を分
析する。遮断弁により連通管が閉じられた状態で第2検
出手段の検出が行われるため、第2検出手段の検出結果
は密閉室内部と外部との温度差による気体の混入が遮断
され、検出が的確に行われる。
【0009】第1検出手段及び第2検出手段は、蒸散ガ
ス成分を含む気体を取り出して分析手段に送る系統が用
いられ、第1検出手段で分析手段に送られた気体は分析
後に密閉室内に戻される。密閉室から外気側に気体の流
れが生じた際に第2検出手段で分析手段に送られた気体
は分析後に密閉室内に戻され、外気側から密閉室に気体
の流れが生じた際に第2検出手段で分析手段に送られた
気体は分析後に外気側に戻される。上述の切り換えは、
温度センサ及び給排気弁を制御することにより実施され
る。
【0010】
【発明の実施の形態】図1には本発明の一実施形態例に
係る蒸散ガス計測装置の全体構成、図2には密閉室内の
温度状況を表すグラフ、図3には計測時の弁の動作状況
の表を示してある。
【0011】図1に示すように、計測対象車両(車両)
11を収容する密閉室12には空調機13及び温度セン
サ14が設けられ、温度センサ14の検知情報は温度コ
ントローラ15に送られる。温度センサ14の検知情報
に基づいて空調機13が温度コントローラ15を介して
作動され、密閉室12内の温度が所定状態に維持され
る。温度コントローラ15には設定コントローラ16か
らの信号が入力され、密閉室12内が時間の経過と共に
設定された温度となるように空調機13が作動される。
【0012】即ち、図2に示すように、計測開始から1
2時間で最高温度T℃(例えば40℃)となり、24時
間で計測開始と同温度の最低温度t℃(例えば18℃)
となるように経過時間に対する温度が設定されており、
72時間で1サイクルの計測時間となっている。空調機
13、温度センサ14、温度コントローラ15及び設定
コントローラ16により密閉室12内の雰囲気環境を計
測条件に適した環境に設定する環境設定手段が構成され
ている。
【0013】図1に示すように、密閉室12には連通管
としての給排気管17の基端が接続され、給排気管17
の先端はフィルタ18を介して外気側に臨んでいる。給
排気管17には遮断弁19が設けられ、遮断弁19はバ
ルブコントローラ20により給排気管17を閉じて密閉
室12の内部と外部側とを遮断する。バルブコントロー
ラ20には設定コントローラ16からの信号が入力され
る。
【0014】密閉室12には内部の気体を抽出する第1
サンプリングポイント21が設けられ、遮断弁19とフ
ィルタ18の間における給排気管17には給排気管17
内の気体を抽出する第2サンプリングポイント22が設
けられている。第2サンプリングポイント22は第1送
りパイプ23によって分析計24につながり、第1サン
プリングポイント21は第2送りパイプ25によって第
1送りパイプ23の途中部につながっている。第1サン
プリングポイント21及び第2サンプリングポイント2
2から抽出される気体が分析計24に送られ、HC濃度が
分析される。分析計24で分析された気体は、戻りパイ
プ26により密閉室12もしくは大気中に戻される。
【0015】第1送りパイプ23には第1開閉弁27
が、第2送りパイプ25には第2開閉弁28が、戻りパ
イプ26には第3開閉弁29がそれぞれ設けられ、分析
計24と第3開閉弁29の間の戻りパイプ26には流路
を大気側に切り換える切換弁30が設けられている。第
1開閉弁27、第2開閉弁28、第3開閉弁29及び切
換弁30は、バルブコントローラ20により図2のサイ
クルに連動して個別に動作される。
【0016】上記構成の蒸散ガス計測装置では、密閉室
12内に車両11を配置し、温度コントローラ15によ
り密閉室12内を72時間の間、図2に示した温度環境
に制御する。その間、計測開始から計測終了まで、所定
のサンプル時間毎に密閉室12内もしくは給排気管17
内の気体を分析計24に送り、分析計24でHC濃度を分
析する。計測開始から計測終了までの間のHC濃度の状況
により、車両11から蒸散するHC濃度の経時変化を評価
する。つまり、計測開始時のHC濃度と計測終了時のHC濃
度及び密閉室12内の体積によりHCの蒸散量を求めると
共に、途中でサンプリングした気体のHC濃度分を補正し
て最終的にHCの蒸散量を求める。これにより、屋外で車
両を長時間(72時間)駐車させた際に蒸散されるHCの
量を推定し、車両11のHCの蒸散量を計測する。
【0017】以下、上述した蒸散ガス計測装置の作用を
詳細に説明する。
【0018】計測開始時は、第1サンプリングポイント
21から密閉室12内の気体を抽出し、分析計24でHC
濃度を分析し、分析後の気体を密閉室12に戻す。即
ち、図3に示すように、遮断弁19及び第1開閉弁27
を閉じ、第2開閉弁28及び第3開閉弁29を開き、切
換弁30を戻りパイプ26側に切り換える。この状態
で、第1サンプリングポイント21から抽出された気体
は、第2送りパイプ25を通って分析計24に送られ、
分析計24でHC濃度が分析された後戻りパイプ26から
密閉室12に戻される。
【0019】計測が開始されると、遮断弁19を開いて
密閉室12と外気側とを連通させることにより、密閉室
12内の温度変化による圧力変動を吸収する。
【0020】所定のサンプル時間毎の計測時における温
度上昇時は、給排気管17では外気側に気体が排気され
る。このため、第1サンプリングポイント21から密閉
室12内の気体を抽出し、分析計24でHC濃度を分析
し、分析後の気体を密閉室12に戻す。即ち、図3に示
すように、遮断弁19及び第1開閉弁27を閉じ、第2
開閉弁28及び第3開閉弁29を開き、切換弁30を戻
りパイプ26側に切り換える。この状態で、第1サンプ
リングポイント21から抽出された気体は、第2送りパ
イプ25及び第1送りパイプ23を通って分析計24に
送られ、分析計24でHC濃度が分析された後戻りパイプ
26から密閉室12に戻される。
【0021】所定のサンプル時間毎の計測時における温
度下降時は、給排気管17では外気側から気体が吸気さ
れる。このため、第2サンプリングポイント22から給
排気管17内の気体を抽出し、分析計24でHC濃度を分
析し、分析後の気体を外部側に放出する。即ち、図3に
示すように、遮断弁19、第2開閉弁28及び第3開閉
弁29を閉じ、第1開閉弁27を開き、切換弁30を外
気側に切り換える。この状態で、第2サンプリングポイ
ント22から抽出された気体は、第1送りパイプ23を
通って分析計24に送られ、分析計24でHC濃度が分析
された後外気側に放出される。
【0022】計測終了時は、第1サンプリングポイント
21から密閉室12内の気体を抽出し、分析計24でHC
濃度を分析し、分析後の気体を密閉室12に戻す。即
ち、図3に示すように、遮断弁19、第1開閉弁27及
び第3開閉弁29を閉じ、第2開閉弁28を開き、切換
弁30を外気側に切り換える。この状態で、第1サンプ
リングポイント21から抽出された気体は、第2送りパ
イプ25を通って分析計24に送られ、分析計24でHC
濃度が分析された後外気側に放出される。
【0023】上述したように計測した計測開始時のHC濃
度と計測終了時のHC濃度及び密閉室12内の体積により
HCの蒸散量を求めると共に、途中でサンプリングした気
体のHC濃度分を補正して最終的にHCの蒸散量を求めるこ
とで、車両11から蒸散するHC濃度の経時変化が評価さ
れる。これにより、屋外で車両11を長時間(72時
間)駐車させた際に蒸散されるHCの量が推定され、車両
11のHCの蒸散量が計測される。
【0024】上述した蒸散ガス計測装置は、所定のサン
プル時間毎の計測時に遮断弁19を閉じることにより、
サンプリングポイントに、温度上昇時は大気側のHC濃度
の低い気体が混入することがなく、温度下降時は密閉室
12側のHC濃度の高い気体が混入することがない。この
ため、計測精度が悪化する虞がない。特に、温度が上昇
から下降に転じる変極点や下降から上昇に転じる変極点
では、温度差がほとんどなく気体の流れが少ないため
に、異なるHC濃度の気体が混入しやすいが、遮断弁19
を設けたことにより気体の混入がなく計測精度の悪化を
防止することができる。
【0025】また、第1サンプリングポイント21から
密閉室12内の気体を抽出した場合には戻りパイプ26
から密閉室12に気体を戻し、第2サンプリングポイン
ト22から給排気管17内の気体を抽出した場合には外
気側に気体を放出するようにしている。このため、計測
後であっても計測前の気体の状態を保つことができ、こ
の点においても計測精度が悪化する虞がない。尚、戻り
パイプ26による計測後の気体の戻し及び外気側への放
出は、場合によっては実施しなくてもよい。
【0026】従って、特別な圧力コントロールを行わず
に密閉室12内の圧力を一定に保って屋外に放置した環
境と同じ環境の車両11から蒸散するHC濃度を正確に計
測することができる。また、大がかりな圧力コントロー
ル装置が不要で、圧力変動に伴う特別な制御も不要なた
め、既存の設備(例えば図4に示した従来設備)を一部
改修することで、上述した蒸散ガス計測装置を構築する
ことが可能となる。このため、温度変化に対応して駐車
中の車両から蒸散するHC濃度を安価で精度よく推定でき
る蒸散ガス計測装置とすることが可能となる。
【0027】
【発明の効果】本発明の蒸散ガス計測装置は、温度変化
に拘らず密閉室内の圧力を一定に保って屋外に放置した
環境と同じ環境の計測車両から蒸散する蒸散ガス成分を
正確に計測することができる。また、大がかりな圧力コ
ントロール装置が不要で、圧力変動に伴う特別な制御も
不要なため、既存の設備を一部改修することで蒸散ガス
計測装置を構築することが可能となる。このため、温度
変化に対応して駐車中の車両から蒸散する蒸散ガス成分
を安価で精度よく推定できる蒸散ガス計測装置とするこ
とが可能となる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of a vaporized gas component, for example, a hydrocarbon (HC) of a gas vaporized from a fuel tank or an engine body of a parked vehicle. The present invention relates to an evaporative gas measurement device. 2. Description of the Related Art In recent years, not only hydrocarbons (HC) but also HC evaporating from a fuel tank or an engine body of a parked vehicle are emitted not only from hydrocarbons (HC) but also components emitted from a combustion gas during traveling. It is subject to gas regulations. For this reason, it is necessary to evaluate the HC concentration that evaporates when the vehicle is parked outdoors for a long period of time.Conventionally, HC vaporized by the evaporation gas measurement device that reproduces the situation where the vehicle has been parked outdoors for a long period of time is required. The concentration has been detected. A conventional vaporized gas measuring device will be described with reference to FIG. FIG. 4 shows the overall configuration of a conventional vaporized gas measuring device. As shown in the figure, the measurement target vehicle (vehicle)
The inside of the closed chamber 1 in which the chamber 7 is accommodated is maintained at a constant temperature (for example, a predetermined temperature between 20 ° C. and 30 ° C.) by the air conditioner 2. The gas inside the closed chamber 1 is sent from the sampling point 3 to the analyzer 5 by the supply pipe 4, and the gas that has been analyzed by the analyzer 5 is returned to the inside of the closed chamber 1 by the return pipe 6. In the conventional vaporized gas measuring apparatus, the inside of the closed chamber 1 is maintained at a constant temperature by the air conditioner 2, and the gas inside the closed chamber 1 is sent to the analyzer 5 by the feed pipe 4 at the start of measurement. After the HC concentration has been analyzed, the feed pipe 4
Thus, the gas inside the closed chamber 1 is sent to the analyzer 5 to analyze the HC concentration. Then, based on the HC concentration of the gas in the closed chamber at the start of the measurement and the HC concentration of the gas in the closed chamber sampled with time, the amount of HC evaporating from the vehicle 7 is measured, and the vehicle is kept outdoors for a long time. HC that evaporates when parked
The amount of is estimated. [0005] However, since the actual outdoor temperature varies within a day, a conventional vaporized gas measuring apparatus that measures while maintaining a constant temperature in a closed room is not used. It was impossible to detect the HC concentration according to the actual situation, and it was not possible to accurately estimate the amount of HC to be evaporated. [0006] Therefore, it is conceivable to change the temperature in the closed room in accordance with the temperature change of the day. However, changing the temperature in the closed chamber changes the pressure in the closed chamber,
A control device that absorbs the expansion and contraction of the air in the closed chamber and maintains the pressure at a constant level is required, resulting in a large-scale device. In addition, the control for evaluating the HC concentration becomes complicated. For this reason, the vaporized gas measuring device that changes the temperature in the closed room cannot be modified from the existing vaporized gas measuring device, and becomes an expensive device. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a vaporized gas measuring apparatus capable of inexpensively and accurately estimating a vaporized gas component of gas vaporized from a parked vehicle in response to a temperature change. Aim. [0008] In order to achieve the above object, according to the present invention, an atmosphere environment in a closed room accommodating a vehicle to be measured is set to an environment suitable for measurement conditions by environment setting means, and a communication pipe is provided. Communicates between the closed chamber and the outside air. A first detecting means for detecting a vaporized gas component in the closed chamber is provided, and a second detecting means for detecting a vaporized gas component in the communication pipe is provided in the communication pipe. The first detecting means detects the vaporized gas component inside the closed chamber, and the second detecting means detects the vaporized gas component in a state where the communication pipe is closed by the shut-off valve. (2) Analyzing the vaporized gas component by the analyzing means based on the detection information of the detecting means. Since the detection by the second detection means is performed in a state where the communication pipe is closed by the shut-off valve, the detection result of the second detection means is prevented from being mixed with gas due to a temperature difference between the inside of the closed chamber and the outside, and the detection is accurate. Done in As the first detecting means and the second detecting means, a system for taking out a gas containing a vaporized gas component and sending it to the analyzing means is used, and the gas sent to the analyzing means by the first detecting means is placed in a closed chamber after the analysis. Will be returned. The gas sent to the analysis means by the second detection means when the gas flows from the closed chamber to the outside air is returned to the closed chamber after the analysis, and the gas is returned to the closed chamber from the outside air when the gas flows to the closed chamber. 2 The gas sent to the analysis means by the detection means is returned to the outside air after the analysis. The above switching is
This is performed by controlling the temperature sensor and the supply / exhaust valve. FIG. 1 is an overall configuration of a vaporized gas measuring apparatus according to an embodiment of the present invention, FIG. 2 is a graph showing a temperature state in a closed chamber, and FIG. 3 shows a table of the operation status of the valve. As shown in FIG. 1, a vehicle to be measured (vehicle)
An air conditioner 13 and a temperature sensor 14 are provided in a sealed room 12 that accommodates 11, and detection information of the temperature sensor 14 is sent to a temperature controller 15. The air conditioner 13 is operated via the temperature controller 15 based on the detection information of the temperature sensor 14, and the temperature in the closed chamber 12 is maintained at a predetermined state. A signal from the setting controller 16 is input to the temperature controller 15, and the air conditioner 13 is operated so that the temperature inside the closed chamber 12 becomes the set temperature with the passage of time. That is, as shown in FIG.
The maximum temperature T ° C (eg, 40 ° C) is reached in 2 hours, and the minimum temperature t ° C (eg, 18 ° C) is the same temperature as the measurement started in 24 hours.
The temperature for the elapsed time is set so that
One cycle of measurement time is 72 hours. The air conditioner 13, the temperature sensor 14, the temperature controller 15 and the setting controller 16 constitute an environment setting means for setting the atmosphere environment in the closed room 12 to an environment suitable for the measurement conditions. As shown in FIG. 1, a base end of a supply / exhaust pipe 17 as a communication pipe is connected to the closed chamber 12.
The front end faces the outside air through the filter 18. The supply / exhaust pipe 17 is provided with a shutoff valve 19, and the shutoff valve 19 closes the supply / exhaust pipe 17 by a valve controller 20 to shut off the inside and the outside of the sealed chamber 12. A signal from the setting controller 16 is input to the valve controller 20. A first chamber for extracting gas inside the closed chamber 12 is provided.
A sampling point 21 is provided, and a supply / exhaust pipe 17 between the shutoff valve 19 and the filter 18 is provided.
A second sampling point 22 is provided for extracting the gas inside. The second sampling point 22 is connected to the analyzer 24 by a first feed pipe 23, and the first sampling point 21 is connected to an intermediate portion of the first feed pipe 23 by a second feed pipe 25. First sampling point 21 and second sampling point 2
The gas extracted from 2 is sent to the analyzer 24, where the HC concentration is analyzed. The gas analyzed by the analyzer 24 is returned to the closed chamber 12 or the atmosphere by the return pipe 26. The first feed pipe 23 has a first on-off valve 27
The second feed pipe 25 is provided with a second on-off valve 28, the return pipe 26 is provided with a third on-off valve 29, and the return pipe 26 between the analyzer 24 and the third on-off valve 29 is provided with a flow path. A switching valve 30 for switching the pressure to the atmosphere side is provided. The first on-off valve 27, the second on-off valve 28, the third on-off valve 29, and the switching valve 30 are individually operated by the valve controller 20 in conjunction with the cycle of FIG. In the vaporized gas measuring device having the above-described configuration, the vehicle 11 is disposed in the closed chamber 12, and the temperature controller 15 controls the inside of the closed chamber 12 to the temperature environment shown in FIG. 2 for 72 hours. Meanwhile, from the start of measurement to the end of measurement, the inside of the closed chamber 12 or the supply / exhaust pipe 17
The gas inside is sent to the analyzer 24, and the analyzer 24 analyzes the HC concentration. The change with time in the concentration of HC evaporating from the vehicle 11 is evaluated based on the state of the HC concentration from the start of measurement to the end of measurement. That is, the amount of HC transpiration is determined from the HC concentration at the start of measurement, the HC concentration at the end of measurement, and the volume in the closed chamber 12, and the HC concentration of the gas sampled in the middle is corrected to finally evaporate HC. Find the quantity. Thus, the amount of HC evaporated when the vehicle is parked outdoors for a long time (72 hours) is estimated, and the amount of HC evaporated in the vehicle 11 is measured. Hereinafter, the operation of the above-described vaporized gas measuring device will be described in detail. At the start of measurement, gas in the closed chamber 12 is extracted from the first sampling point 21 and the
The concentration is analyzed, and the analyzed gas is returned to the closed chamber 12. That is, as shown in FIG. 3, the shutoff valve 19 and the first on-off valve 27
Is closed, the second on-off valve 28 and the third on-off valve 29 are opened, and the switching valve 30 is switched to the return pipe 26 side. In this state, the gas extracted from the first sampling point 21 is sent to the analyzer 24 through the second feed pipe 25,
After the HC concentration is analyzed by the analyzer 24, the HC concentration is returned to the closed chamber 12 from the return pipe 26. When the measurement is started, the shut-off valve 19 is opened to allow the closed chamber 12 to communicate with the outside air, thereby absorbing the pressure fluctuation due to the temperature change in the closed chamber 12. When the temperature rises at the time of measurement every predetermined sample time, gas is exhausted to the outside air in the supply / exhaust pipe 17. Therefore, the gas in the closed chamber 12 is extracted from the first sampling point 21, the HC concentration is analyzed by the analyzer 24, and the analyzed gas is returned to the closed chamber 12. That is, as shown in FIG. 3, the shutoff valve 19 and the first on-off valve 27 are closed, and the second
The on-off valve 28 and the third on-off valve 29 are opened, and the switching valve 30 is switched to the return pipe 26 side. In this state, the gas extracted from the first sampling point 21 is sent to the analyzer 24 through the second feed pipe 25 and the first feed pipe 23, and the return pipe 26 after the HC concentration is analyzed by the analyzer 24. From the closed chamber 12. When the temperature drops at the time of measurement at every predetermined sample time, gas is sucked from the outside air into the supply / exhaust pipe 17. For this reason, the gas in the supply / exhaust pipe 17 is extracted from the second sampling point 22, the HC concentration is analyzed by the analyzer 24, and the analyzed gas is released to the outside. That is, as shown in FIG. 3, the shutoff valve 19, the second on-off valve 28, and the third on-off valve 29 are closed, the first on-off valve 27 is opened, and the switching valve 30 is switched to the outside air side. In this state, the gas extracted from the second sampling point 22 is sent to the analyzer 24 through the first feed pipe 23, and is discharged to the outside air after the HC concentration is analyzed by the analyzer 24. At the end of the measurement, the gas in the closed chamber 12 is extracted from the first sampling point 21 and the
The concentration is analyzed, and the analyzed gas is returned to the closed chamber 12. That is, as shown in FIG. 3, the shutoff valve 19, the first on-off valve 27, and the third on-off valve 29 are closed, the second on-off valve 28 is opened, and the switching valve 30 is switched to the outside air side. In this state, the gas extracted from the first sampling point 21 is sent to the analyzer 24 through the second feed pipe 25, and the analyzer 24
After the concentration is analyzed, it is released to the outside air. The HC concentration at the start of the measurement, the HC concentration at the end of the measurement, and the volume in the closed chamber 12 measured as described above.
By calculating the amount of HC transpiration and correcting the HC concentration of the gas sampled on the way to finally obtain the amount of HC transpiration, the temporal change in the concentration of HC transpired from the vehicle 11 is evaluated. Accordingly, the amount of HC evaporated when the vehicle 11 is parked outdoors for a long time (72 hours) is estimated, and the amount of HC evaporated of the vehicle 11 is measured. The above-mentioned vaporized gas measuring device closes the shut-off valve 19 at the time of measurement every predetermined sample time,
When the temperature rises, gas with a low HC concentration on the atmosphere side does not enter the sampling point, and when the temperature decreases, gas with a high HC concentration on the closed chamber 12 side does not enter. For this reason, there is no possibility that the measurement accuracy is deteriorated. In particular, at the inflection point where the temperature changes from rising to falling or the temperature changes from falling to rising, there is almost no temperature difference and there is little gas flow.
Is provided, there is no mixing of gas and deterioration of measurement accuracy can be prevented. When the gas in the closed chamber 12 is extracted from the first sampling point 21, the return pipe 26
When the gas in the supply / exhaust pipe 17 is extracted from the second sampling point 22, the gas is released to the outside air. For this reason, even before the measurement, the state of the gas before the measurement can be maintained, and in this respect, there is no possibility that the measurement accuracy is deteriorated. The return of the gas after measurement by the return pipe 26 and the release to the outside air may not be performed in some cases. Therefore, it is possible to accurately measure the concentration of HC evaporating from the vehicle 11 in the same environment as the environment left outdoors by keeping the pressure in the closed chamber 12 constant without performing any special pressure control. In addition, since a large-scale pressure control device is not required, and special control according to pressure fluctuation is not required, the above-mentioned evaporative gas measurement device can be modified by partially modifying existing equipment (for example, the conventional equipment shown in FIG. 4). Can be constructed. For this reason, it becomes possible to provide a transpired gas measuring device that can estimate the concentration of HC evaporating from a parked vehicle inexpensively and accurately in response to a temperature change. The vaporized gas measuring apparatus according to the present invention can accurately measure the vaporized gas component vaporized from a measurement vehicle in the same environment as an environment left outdoors while keeping the pressure in the closed chamber constant irrespective of the temperature change. Can be measured. In addition, a large-scale pressure control device is not required, and special control according to pressure fluctuation is not required. Therefore, it is possible to construct a vaporized gas measurement device by partially modifying existing equipment. For this reason, it becomes possible to provide a transpired gas measuring device that can estimate the transpired gas component evaporating from the parked vehicle inexpensively and accurately in response to the temperature change.
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る蒸散ガス計測装置
の全体構成図。
【図2】密閉室内の温度状況を表すグラフ。
【図3】計測時の弁の動作状況を表す表図。
【図4】従来の蒸散ガス計測装置の全体構成図。
【符号の説明】
11 計測対象車両(車両)
12 密閉室
13 空調機
14 温度センサ
15 温度コントローラ
16 設定コントローラ
17 給排気管
19 遮断弁
20 バルブコントローラ
21 第1サンプルポイント
22 第2サンプルポイント
24 分析計BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram of a vaporized gas measuring device according to an embodiment of the present invention. FIG. 2 is a graph showing a temperature state in a closed room. FIG. 3 is a table showing an operation state of a valve at the time of measurement. FIG. 4 is an overall configuration diagram of a conventional evaporated gas measuring device. [Description of Signs] 11 Measurement target vehicle (vehicle) 12 Closed room 13 Air conditioner 14 Temperature sensor 15 Temperature controller 16 Setting controller 17 Supply / exhaust pipe 19 Shutoff valve 20 Valve controller 21 First sample point 22 Second sample point 24 Analyzer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01M 17/007 G01N 1/22 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01M 17/007 G01N 1/22
Claims (1)
密閉室内の雰囲気環境を計測条件に適した環境に設定す
る環境設定手段と、前記密閉室と外気側とを連通する連
通管と、前記密閉室の内部の蒸散ガス成分を検出する第
1検出手段と、前記連通管の内部の蒸散ガス成分を検出
する第2検出手段と、前記第2検出手段と前記密閉室と
の間の前記連通管に設けられ前記第2検出手段による検
出時に前記連通管を閉じる遮断弁と、前記第1検出手段
及び前記第2検出手段の検出情報に基づいて蒸散ガス成
分を分析する分析手段とを備えたことを特徴とする蒸散
ガス計測装置。(57) [Claim 1] A sealed room for accommodating a vehicle to be measured, environment setting means for setting an atmosphere environment in the sealed room to an environment suitable for measurement conditions, and the closed room and outside air. A first communicating means for detecting a vaporized gas component inside the closed chamber; a second detecting means for detecting a vaporized gas component inside the communication pipe; and a second detecting means. A shutoff valve provided in the communication pipe between the airtight chamber and the closed chamber to close the communication pipe at the time of detection by the second detection means, and a vaporized gas based on information detected by the first detection means and the second detection means. An evaporative gas measurement device, comprising: analysis means for analyzing a component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03690898A JP3424545B2 (en) | 1998-02-19 | 1998-02-19 | Transpiration gas measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03690898A JP3424545B2 (en) | 1998-02-19 | 1998-02-19 | Transpiration gas measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11237317A JPH11237317A (en) | 1999-08-31 |
JP3424545B2 true JP3424545B2 (en) | 2003-07-07 |
Family
ID=12482888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03690898A Expired - Fee Related JP3424545B2 (en) | 1998-02-19 | 1998-02-19 | Transpiration gas measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3424545B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023098A (en) * | 2010-12-30 | 2011-04-20 | 芜湖博耐尔汽车电气系统有限公司 | Test device and test method thereof for automobile air-conditioning system |
WO2019025906A1 (en) * | 2017-07-29 | 2019-02-07 | 山东诺方电子科技有限公司 | Method and system for improving objectivity of atmospheric pollutant monitoring data |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007108038A (en) * | 2005-10-14 | 2007-04-26 | Espec Corp | Vehicle test device |
CN105987832B (en) * | 2016-05-23 | 2018-09-18 | 陶元 | Vehicle exhaust is tested to be connected trolley between vehicle and Tail gas measuring collection apparatus |
CN112946183A (en) * | 2019-12-10 | 2021-06-11 | 堀场仪器(上海)有限公司 | Closed evaporation test bin |
CN111060361A (en) * | 2019-12-17 | 2020-04-24 | 英杰维特功能材料(珠海)有限公司 | Fuel system detection device and detection method thereof |
-
1998
- 1998-02-19 JP JP03690898A patent/JP3424545B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023098A (en) * | 2010-12-30 | 2011-04-20 | 芜湖博耐尔汽车电气系统有限公司 | Test device and test method thereof for automobile air-conditioning system |
CN102023098B (en) * | 2010-12-30 | 2012-11-21 | 芜湖博耐尔汽车电气系统有限公司 | Test device and test method thereof for automobile air-conditioning system |
WO2019025906A1 (en) * | 2017-07-29 | 2019-02-07 | 山东诺方电子科技有限公司 | Method and system for improving objectivity of atmospheric pollutant monitoring data |
Also Published As
Publication number | Publication date |
---|---|
JPH11237317A (en) | 1999-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10156213B2 (en) | Humidity sensor diagnostic method using condensation clearing heater | |
KR100237817B1 (en) | Method and device for detecting the fluid level in a tank | |
US7281440B2 (en) | Particulate sampling system having flow check device | |
KR101512531B1 (en) | Method for detecting leaks in a tank system | |
JP3253994B2 (en) | Tank ventilation device and method of checking its airtightness | |
JP2007218122A (en) | Leakage diagnosis device | |
JP2007231814A (en) | Leak diagnosis device | |
JPH04283644A (en) | Method for monitoring emission of nitrogen oxide from internal combustion engine | |
US20080140301A1 (en) | System and Method for Improving Accuracy of a Gas Sensor | |
CN110531036A (en) | Motor-vehicle tail-gas real-time detecting system | |
JP3424545B2 (en) | Transpiration gas measuring device | |
US20090090171A1 (en) | Method for Verifying the Tightness of a Tank Bleeding System without Using a Pressure Sensor | |
US7954361B2 (en) | Method and apparatus for detecting tank leaks | |
RU2559211C2 (en) | Method and device for detection of gasoline vapor filter discharge valve interlocking | |
US9638647B2 (en) | Method for determining the retention capacity of fuel vapor filters | |
KR100794905B1 (en) | Leak test system of purge control solenoid valve for EVAP control system on the vehicle | |
JP2002161814A (en) | Anomaly diagnosing device for evaporated gas purge system | |
US20040121479A1 (en) | Automatic portable formaldehyde analyzer | |
CN105241781A (en) | Detection device and detection method for car carbon tank butane working capacity | |
JPH11230869A (en) | Exhaust gas analyzing device and modal mass analytical method by gas trace method using the same | |
JP2002310910A (en) | Gas concentration measuring instrument | |
KR100645305B1 (en) | Method for detecting leak of fuel system | |
US7043963B2 (en) | Apparatus and method for determining evaporative emissions | |
US4308846A (en) | Method for measuring the rate of recirculation of exhaust gases in an internal combustion engine and device for putting said method into practice | |
CN111458374B (en) | Dilution passage in-water condensation monitoring system and method for vehicle emission testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030401 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080502 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100502 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |