JP3422647B2 - Method for obtaining dialkyl carbonate and bisphenol from polycarbonate - Google Patents

Method for obtaining dialkyl carbonate and bisphenol from polycarbonate

Info

Publication number
JP3422647B2
JP3422647B2 JP08561897A JP8561897A JP3422647B2 JP 3422647 B2 JP3422647 B2 JP 3422647B2 JP 08561897 A JP08561897 A JP 08561897A JP 8561897 A JP8561897 A JP 8561897A JP 3422647 B2 JP3422647 B2 JP 3422647B2
Authority
JP
Japan
Prior art keywords
reaction
toluene
bisphenol
polycarbonate
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08561897A
Other languages
Japanese (ja)
Other versions
JPH10259151A (en
Inventor
彬 奥
胡  連春
悦 山田
Original Assignee
財団法人生産開発科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人生産開発科学研究所 filed Critical 財団法人生産開発科学研究所
Priority to JP08561897A priority Critical patent/JP3422647B2/en
Publication of JPH10259151A publication Critical patent/JPH10259151A/en
Application granted granted Critical
Publication of JP3422647B2 publication Critical patent/JP3422647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】ポリカ−ボネ−ト(以下、PCと
略す)は優れた機械的性質、電気的性質、耐熱性、耐寒
性、透明性等を備えており、エンジニアリングプラスチ
ックスとして広範囲な用途に応用されている。使用済み
のPC廃棄材料を化学的に分解して、その原料モノマ−
のビスフェノ−ル−A(以下、BPAと略す)を回収す
ることができれば、有用な原料を得ることができ、且つ
廃棄物の減量も可能となる。
[Industrial application] Polycarbonate (hereinafter abbreviated as PC) has excellent mechanical properties, electrical properties, heat resistance, cold resistance, transparency, etc., and is widely used as engineering plastics. It is used for various purposes. The used PC waste material is chemically decomposed and the raw material monomer
If Bisphenol-A (hereinafter abbreviated as BPA) can be recovered, a useful raw material can be obtained and the amount of waste can be reduced.

【0002】[0002]

【従来の技術】一般に、高分子材料を回収し、再利用す
るとき、性能の劣化、汚れ等のため、非常に低い価値の
用途にしか向けるほかはなく、しかもこれらの加工は面
倒な手順を経、結局屡々焼却という処理手段に頼ること
になる。
2. Description of the Related Art Generally, when a polymer material is recovered and reused, it has no choice but to be used for very low-valued applications because of deterioration of performance, dirt, etc. After all, they often end up relying on the treatment method of incineration.

【0003】PCは、主鎖にエステル結合を持ち、その
安定性の研究結果から、PCのエステル結合は酸又は塩
基性触媒の存在下で容易に加水分解或いは加アルコ−ル
分解することが一般に知られている。しかし、PCは水
及びアルコ−ルに不溶であるため、モノマ−まで分解す
るには長い反応時間或いは高温高圧等過酷な条件を必要
とする。そこで水に代わって、アンモニア水溶液と塩化
メチレンとの混合溶媒を用いてPCを分解する研究が報
告されている[「Recovering bisphenols fromscrap po
lyesters」D.W.Fox他,U.S.Pat.No.4,885,407(198
9)]。また、アルカリ触媒存在下でPCをフェノ−ル溶
媒或いはクロロフェノ−ルと塩化メチレンの混合溶媒中
で分解し、BPAと炭酸ジアリ−ルを回収する研究が報
告されている[「Method for recovering bishydroxy a
romatic monomers and bisarylcarbo-nates from scrap
aromatic polycarbonates」S.J.Shafer,U.S.Pat.No.5,
336,814(1994)]が、その分離回収工程が煩雑であり、
回収率及びコストの面でも問題がある。更に、アルカリ
或いは金属酸化物触媒の存在下、PCを炭酸アリ−ル中
でオリゴマ−に解重合後再びPCを合成する方法も報告
されている[「Cyclic carbonates by the depropagati
on of polycarbonate」Q,Li, M.A.Buese, Polym.Mater.
Sci.Eng.67, pp.457,(1992)]。
PC has an ester bond in the main chain, and from the results of studies on its stability, it is generally found that the ester bond of PC is easily hydrolyzed or alcohol-decomposed in the presence of an acid or basic catalyst. Are known. However, since PC is insoluble in water and alcohol, a severe reaction condition such as a long reaction time or high temperature and high pressure is required to decompose it into a monomer. Therefore, a study has been reported that decomposes PC using a mixed solvent of an aqueous ammonia solution and methylene chloride instead of water [[Recovering bisphenols from scrap po
lyesters ”DWFox et al., US Pat. No. 4,885,407 (198
9)]. Also, a study has been reported in which PC is decomposed in a phenol solvent or a mixed solvent of chlorophenol and methylene chloride in the presence of an alkali catalyst to recover BPA and diaryl carbonate [[Method for recovering bishydroxy a
romatic monomers and bisarylcarbo-nates from scrap
`` aromatic crystals '' SJ Shafer, US Pat. No. 5,
336,814 (1994)], but the separation and recovery process is complicated,
There are also problems in terms of recovery rate and cost. Further, a method of depolymerizing PC into an oligomer in an aryl carbonate in the presence of an alkali or metal oxide catalyst and then synthesizing PC again has been reported [[Cyclic carbonates by the depropagati].
on of carbon '' Q, Li, MABuese, Polym. Mater.
Sci. Eng. 67, pp. 457, (1992)].

【0004】しかし、以上の何れの方法も大量に生産さ
れ、排出されるプラスチックスの中のPCを、安全に安
価に処理し、価値ある炭酸ジアルキルとビスフェノ−ル
とを得る工業的方法としては満足できるものでないこと
は、明らかである。
However, in any of the above-mentioned methods, as an industrial method for safely and inexpensively processing PC in plastics produced in large quantities and discharged, to obtain valuable dialkyl carbonate and bisphenol. It is clear that it is not satisfactory.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、上記問
題点を解決するため、低級アルコ−ル中での加アルカリ
分解に関する研究を行い、アルカリによるPCの効率的
なエステル交換反応方法につき、系統的な研究、実験を
重ねた結果、遂に、系に加えるアルコ−ルに対してベン
ゼン、トルエン、キシレン類或いはジオキサンを使用す
ることにより、PCを比較的緩和な条件下で短時間内に
炭酸ジアルキルにまで分解でき、ビスフェノ−ルと溶剤
との分離操作が簡単で、しかもそれらの回収率も高く、
連続的に分解回収することができるという新知見を得、
本発明を完成したのである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present inventors have conducted a study on alkaliolysis in lower alcohols, and found an efficient method for transesterification of PC with alkali. As a result of repeated systematic studies and experiments, finally, by using benzene, toluene, xylenes or dioxane for the alcohol added to the system, PC can be used within a short time under relatively mild conditions. It can be decomposed to dialkyl carbonate, the separation operation of bisphenol and solvent is easy, and their recovery rate is also high.
Acquired new knowledge that it can be continuously decomposed and recovered,
The present invention has been completed.

【0006】即ち、本発明は、PC及びPCの回収物等
に低級アルコ−ルとトルエン等の溶剤を加え、2乃至1
2mol%のアルカリの存在下でかき混ぜ、生成したビ
スフェノ−ルを(必要であれば水を加えて)結晶として
分離させ、一方の生成した炭酸ジアルキルは、分留によ
り回収する方法に関するものである。
That is, according to the present invention, a solvent such as lower alcohol and toluene is added to PC, a recovered product of PC, or the like, and 2 to 1 is added.
The present invention relates to a method in which bisphenol produced is agitated in the presence of 2 mol% alkali to separate the produced bisphenol as crystals (adding water if necessary), and one dialkyl carbonate produced is recovered by fractional distillation.

【0007】[0007]

【発明を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成することができる。つまり、
PCとしては、小粒、粉末、小片或いはこれらの集まっ
た塊状物、又はこれらの2つ以上の混合物を用いる。ア
ルコ−ルとしては、メタノ−ル、エタノ−ル、プロパノ
−ル類、ブタノ−ル類を挙げることができ、これらのア
ルコ−ルは少なくとも1つ或いは2つ以上の混合物とし
て用いることができる。
The above technical problems can be achieved by the present invention as follows. That is,
As the PC, a small particle, a powder, a small piece, an aggregate of these, or a mixture of two or more thereof is used. Examples of the alcohol include methanol, ethanol, propanols, and butanols, and at least one of these alcohols can be used as a mixture of two or more.

【0008】アルコ−ルに対して用いる溶剤類として
は、ベンゼン、トルエン、キシレン、ジオキサン等を挙
げることができ、これらの溶剤類は少なくとも1つ或い
は2つ以上の混合物として用いることができる。反応を
促進させるためにはアルコ−ルに対して溶剤を0.25
〜0.4容量比を添加すればよい。添加の容量比が0.
25未満の場合には分解に長時間を要し、0.4以上の
場合には分離に手間取る上、安全性・経済性の点で不利
益となる。使用するアルカリとしては、NaOH、KO
H、Na2CO3、K2CO3、CaO、BaO、ZuO、
SnO、PbO等を挙げることができる。
Examples of the solvent used for the alcohol include benzene, toluene, xylene, dioxane and the like, and these solvents can be used as at least one or a mixture of two or more. To accelerate the reaction, a solvent of 0.25 is added to the alcohol.
˜0.4 volume ratio may be added. The volume ratio of addition is 0.
If it is less than 25, it takes a long time to disassemble, and if it is 0.4 or more, it takes time to separate and it is disadvantageous in terms of safety and economy. As the alkali used, NaOH, KO
H, Na 2 CO 3 , K 2 CO 3 , CaO, BaO, ZuO,
Examples thereof include SnO and PbO.

【0009】次に、本発明の化学分解反応で機能してい
るPC分解機構は、極めて特異的であり、本発明を特色
づけるものである。その機構を説明する。
Next, the PC decomposition mechanism functioning in the chemical decomposition reaction of the present invention is extremely specific and characterizes the present invention. The mechanism will be described.

【0010】まずはじめに、同じエステル交換反応であ
っても、メタノ−ル溶媒のみを用いて反応させるとNa
2CO3の沈殿が生成するのに対して、混合溶媒中ではこ
のNa2CO3が生成しないことを観察している。その理
由は次のように説明できる。
First, even in the same transesterification reaction, if the reaction is carried out using only the methanol solvent, Na
Whereas precipitation of 2 CO 3 is produced, in a mixed solvent we have observed that we do not generate this Na 2 CO 3. The reason can be explained as follows.

【0011】主な理由は、炭酸(pKa1=6、pKa2
10.2)、フェノ−ル(pKa=10)、及び反応中
間体の酸性度の差にあると考えられる。はじめにPCは
アルカリと反応して、炭酸1塩1エステルとフェノ−ル
性水酸基を持つ中間体(以下、(1)という)に変換され
る。(1)は更にNaOHによって炭酸1塩(以下、(2)
という)とBPA1塩(以下、(3)という)に切断され
るが、(2)のpKaは(3)のそれよりも小さいので酸塩
基平衡によりNa2CO3となり、これが沈殿するために
平衡は更に移動して、遊離のBPAが生成する。NaO
Hの使用量は触媒量であり、これがすべてNa2CO3
変換された場合はBPAはフェノキシド基に変化される
ことはない。
The main reason is carbonic acid (pK a1 = 6, pK a2 =
10.2), phenol (pK a = 10), and the difference in acidity of the reaction intermediates. First, PC reacts with an alkali to be converted into an intermediate having carbonic acid monosalt 1 ester and phenolic hydroxyl group (hereinafter referred to as (1)). (1) is further carbonated with NaOH (hereinafter (2)
) And BPA1 salt (hereinafter, (3) referred to hereinafter) to is cleaved, pK a is (Na 2 CO 3 becomes the low since the acid-base balance than that of 3), for this to precipitation of (2) The equilibrium shifts further, producing free BPA. NaO
The amount of H used is a catalytic amount, and when all of this is converted to Na 2 CO 3 , BPA is not converted into a phenoxide group.

【0012】一方、トルエン或いはジオキサンを添加し
た混合溶媒中では、ペレットの表面が膨潤したり、或い
は部分的に溶解される。したがって、初期のアルカリ反
応に関与するエステル結合数はアルカリ触媒の量に対し
て、相対的に増加しているから、反応初期段階で多くの
アルカリ分子は、PCのエステル結合と反応して消費さ
れ(1)が生成する。しかし、過剰なアルカリが存在しな
いので、(1)はメタノ−と反応して炭酸モノメチルのN
a塩とBPAを生じ、前者は更にMeOHと反応して炭
酸ジメチル(以下、DMCと略す)を生成すると同時
に、アルカリが再生される。ここで再生したアルカリ
は、平衡反応的にDMCと反応するよりも速く、系中に
存在するPCと反応するから、触媒反応サイクルが成立
すると考えられる。
On the other hand, in the mixed solvent containing toluene or dioxane, the surface of the pellet swells or is partially dissolved. Therefore, since the number of ester bonds involved in the initial alkaline reaction is relatively increased with respect to the amount of the alkali catalyst, many alkaline molecules are consumed by reacting with the ester bonds of PC in the initial stage of the reaction. (1) is generated. However, since there is no excess alkali, (1) reacts with methano-and the N of monomethyl carbonate is reacted.
The a salt and BPA are produced, and the former further reacts with MeOH to produce dimethyl carbonate (hereinafter abbreviated as DMC), and at the same time, alkali is regenerated. Since the alkali regenerated here reacts with PC existing in the system faster than it reacts with DMC in an equilibrium reaction, it is considered that a catalytic reaction cycle is established.

【0013】[0013]

【実施例】次に、本発明の実施の態様を述べて、本発明
の有効性を一層明らかにする。しかし、本発明の主旨を
逸脱せざる限り、この説明のみに本発明の範囲が限定さ
れるものではない。
EXAMPLES Next, the embodiments of the present invention will be described to further clarify the effectiveness of the present invention. However, the scope of the present invention is not limited only to this description without departing from the gist of the present invention.

【0014】[実験の方法]PCには、分子量Mw=
2.2×104のペレット状試料[2.2mm×3mm
(直径×長さ)]を用いた。メタノ−ルとトルエン、或
いはメタノ−ルとジオキサンとの混合溶媒(0.6〜2
mL/0.5〜2mL)を試験管に採り、0.01〜
0.063g(2.4×10-4〜1.5×10-3mo
l)のNaOHを添加して溶解させてから、PCペレッ
トを1.27g(5×10-3mol)加え、40〜60
℃で攪拌してPCを完全に分解した後、試験管中の分解
物を40mLの蒸留水中(或いは5〜10mLのトルエ
ン)に投入し、室温で約1時間放置して完全にBPAを
晶出させた(完全に分解された場合は特にトルエン存在
下でのBPAの晶出速度が速く、数分間で完全に晶出す
る。)。その結晶は微細なものではないので、容易に濾
過できた。濾過後、室温で十分に乾燥してから、その重
量より収率を算出した。更に、得られたBPAをFT−
IR、1H NMR及び蛍光X線で解析した。
[Experimental method] PC has a molecular weight Mw =
2.2 × 10 4 pellet sample [2.2 mm × 3 mm
(Diameter x length)] was used. A mixed solvent of methanol and toluene, or methanol and dioxane (0.6 to 2)
(mL / 0.5-2 mL) into a test tube, and 0.01-
0.063 g (2.4 × 10 −4 to 1.5 × 10 −3 mo)
1) NaOH was added and dissolved, and then 1.27 g (5 × 10 −3 mol) of PC pellet was added, and 40 to 60
After the PC was completely decomposed by stirring at ℃, the decomposed product in the test tube was put into 40 mL of distilled water (or 5 to 10 mL of toluene) and left at room temperature for about 1 hour to completely crystallize BPA. (In the case of complete decomposition, the crystallization rate of BPA is high especially in the presence of toluene, and complete crystallization takes place within a few minutes). The crystals were not fine and could easily be filtered. After filtration, the product was thoroughly dried at room temperature, and the yield was calculated from its weight. Further, the obtained BPA was FT-
It was analyzed by IR, 1 H NMR and fluorescent X-ray.

【0015】一方、PCの分解によって生成したDMC
を、ガスクロマトグラフィ−(以下、GCと略す)で分
析した。一定時間反応後、分解液の50μLを採取して
これに10mLのn−ペンタンを添加し、分解液中のB
PA(分解が完全に進行していない場合には、PCのオ
リゴマーが含まれる)を沈殿させた後、上澄液の1μL
をマイクロシリンジでGCに注入した。DMC標準液を
用いて作成した検量線によってDMCの生成量を求め
た。
On the other hand, DMC produced by decomposition of PC
Was analyzed by gas chromatography (hereinafter abbreviated as GC). After reacting for a certain period of time, 50 μL of the decomposition solution was sampled, 10 mL of n-pentane was added thereto, and B in the decomposition solution was added.
After precipitating PA (in the case where decomposition has not progressed completely, PC oligomers are included), 1 μL of the supernatant liquid
Was injected into the GC with a microsyringe. The amount of DMC produced was determined by a calibration curve prepared using a DMC standard solution.

【0016】このPC分解法は、メタノ−ルによるエス
テル交換反応であるため、モノマ−に完全分解させるた
めには、PCのエステル結合に対して等モル量以上のメ
タノ−ルを必要とする。そこで、トルエンとの混合溶媒
中でメタノ−ルの添加量を変化させて、PCの分解効率
との関係を検討した。
Since this PC decomposition method is a transesterification reaction with methanol, in order to completely decompose it into a monomer, an equimolar amount of methanol or more relative to the ester bond of PC is required. Therefore, the relationship with the decomposition efficiency of PC was examined by changing the amount of methanol added in a mixed solvent with toluene.

【0017】PC(1.27g)のエステル結合に対し
て添加したメタノ−ルのモル量が1.0のとき(1.0
mLのトルエン中にMeOH 0.4mL)、60℃で
330分反応させると、PCペレットは溶解して消失し
た。しかし、GCで分析すると、DMCの量は理論値の
80%しか生成しておらず、その反応液を水中に投入し
てもきれいな結晶は晶出せずに、粘性のある個体物が得
られ、PCはモノマ−に完全分解できていないことが示
された。モル量が1.5(MeOH 0.6mL)の場
合は、60分間の反応でPCペレットがほぼ溶解して9
5%のDMCが生成した。更に60分反応させると、D
MCの生成量は100%に達し、完全分解された。この
反応液を水に投入して晶出させると、96%のBPAが
得られた。
When the molar amount of methanol added to the ester bond of PC (1.27 g) is 1.0 (1.0
Upon reaction with MeOH (0.4 mL in mL mL) at 60 ° C. for 330 minutes, the PC pellets dissolved and disappeared. However, when analyzed by GC, the amount of DMC produced was only 80% of the theoretical value, and even if the reaction solution was put into water, clean crystals did not crystallize, and a viscous solid substance was obtained. It was shown that PC could not be completely decomposed into monomers. When the molar amount is 1.5 (0.6 mL of MeOH), the PC pellets are almost dissolved in the reaction for 60 minutes.
5% DMC was produced. After reacting for another 60 minutes, D
The amount of MC produced reached 100% and was completely decomposed. When this reaction solution was poured into water and crystallized, 96% of BPA was obtained.

【0018】これらの結果から、PCを完全にモノマ−
まで分解するには、PCのエステル結合1モル単位に対
してメタノ−ルを1.5モル以上必要とすることが示さ
れた。しかし、BPAはアルコ−ルによく溶解するた
め、メタノ−ル量が多すぎると分解後水中で晶出させる
ときの晶出率が低下したり、多量の水が必要となる。た
とえば、MeOH添加量を0.6mLから2.5mL
(PCのエステル結合1モルに対して6.3モル)に増
加させたとき、BPAの晶出収率は91%に低下した。
これらの実験結果から、PCのカ−ボネ−トのエステル
結合1モル単位に対して1.5〜2.5モルのメタノ−
ルの添加が適当であると考えられる。分解後水中に投じ
てBPAを晶出させる代わりに、分解後に5〜10mL
のトルエンを追加すると、BPAを迅速に晶出分離でき
る。この操作で濾過分離したBPAにはNaOH個体が
混合しているので、水で洗浄する。
From these results, the PC is completely monomeric.
It was shown that 1.5 mol or more of methanol was required for 1 mol unit of the ester bond of PC in order to decompose up to. However, since BPA dissolves well in alcohol, if the amount of methanol is too large, the crystallization rate when crystallized in water after decomposition is lowered and a large amount of water is required. For example, add MeOH from 0.6mL to 2.5mL
When it was increased to (6.3 mols per 1 mol of ester bond of PC), the crystallization yield of BPA decreased to 91%.
From the results of these experiments, 1.5 to 2.5 mol of methanol was used per 1 mol of ester bond of carbonic acid of PC.
It is believed that the addition of a ruthenium is appropriate. After decomposition, instead of throwing into water to crystallize BPA, 5-10 mL after decomposition
BPA can be rapidly crystallized and separated by adding toluene. Since NaOH solids are mixed in the BPA separated by filtration by this operation, it is washed with water.

【0019】[NaOH添加量の影響]NaOH触媒の
添加量を変化させてPCの分解に及ぼす触媒濃度の影響
を検討した。種々の濃度のNaOHとPC1.27gを
メタノ−ルとトルエンの1mL/1mL混合溶媒中に入
れ、60℃で反応させ、30分後に生成したDMCの
量、及びPCペレットが完全分解するのに要した時間を
求めた。これらの結果を図1に示す。PCのエステル結
合1モル単位に対してNaOHの量を2.5〜10mo
l%の範囲内で変化させた場合は、添加量の増加につれ
てDMCは直線的に増加することが分かった。また、N
aOH添加量を2.5、5.0、7.5、8.2及び1
0mol%と増加させると、PCペレットの完全分解に
要する時間はそれぞれ250、180、140、70及
び30分となった。即ち、PCの完全分解に必要な時間
も直線的に減少した。NaOH添加量が増加すると、P
Cの分解速度は速くなるが、添加量が多すぎると、表1
に示すごとく、晶出収率が低下する。よって、最適比
は、PCの−O−CO−結合モル1単位に対して、5〜
10%である。
[Effect of NaOH Addition] The effect of catalyst concentration on the decomposition of PC was examined by changing the addition amount of NaOH catalyst. Various concentrations of NaOH and 1.27 g of PC were put into 1 mL / 1 mL mixed solvent of methanol and toluene and reacted at 60 ° C., and after 30 minutes, the amount of DMC produced and the amount of PC pellet required for complete decomposition. I asked for the time. The results are shown in FIG. The amount of NaOH is 2.5 to 10 mo for 1 mol unit of ester bond of PC.
It was found that the DMC increased linearly with the increase of the addition amount when it was changed within the range of 1%. Also, N
Addition of aOH is 2.5, 5.0, 7.5, 8.2 and 1
When it was increased to 0 mol%, the time required for complete decomposition of PC pellets was 250, 180, 140, 70 and 30 minutes, respectively. That is, the time required for the complete disassembly of PC also decreased linearly. If the amount of added NaOH increases, P
Although the decomposition rate of C increases, if the addition amount is too large,
As shown in, the crystallization yield decreases. Therefore, the optimum ratio is 5 to 1 unit of —O—CO— bond mole of PC.
It is 10%.

【0020】[0020]

【表1】 [Table 1]

【0021】[トルエン或いはジオキサンの添加効果]
まず、メタノ−ルのみの溶媒中でPCの分解について検
討した。メタノ−ル2mLを試験管に採り、NaOHを
0.034g溶解した後、1.27gのPCペレットを
加え、60℃で攪拌しながら反応させた。反応が進むに
つれてPCペレットの重量が少し減少し、白い沈殿が生
成した。しかし、途中からPCペレットの重量はほとん
ど減少しなくなる。この分解液に少量の酸溶液を加える
と、沈殿物を溶解して気泡が発生するので、この沈殿物
はNa2CO3であることが分かる。しかし、メタノ−ル
中にトルエン或いは1,4−ジオキサンを0.5mL加
えた混合溶媒系中で、上記と同じ条件下にPCを分解し
たところ、反応につれてPCペレットの重量は速やかに
減少し、240分後には溶媒中で完全に溶解した。ま
た、トルエンの添加量を増加させると、PCの分解速度
も速くなり、ペレットがなくなるまでの時間は短縮され
た。1mLのメタノ−ルに対して0.5mL、1mL、
1.5mL及び2mLのトルエンを添加した場合には、
それぞれ230分、70分、40分及び15分でPCペ
レットは溶媒に完全溶解した。
[Additional effect of toluene or dioxane]
First, the decomposition of PC was examined in a solvent containing only methanol. After taking 2 mL of methanol into a test tube and dissolving 0.034 g of NaOH, 1.27 g of PC pellet was added and reacted at 60 ° C. while stirring. As the reaction proceeded, the weight of the PC pellet was slightly reduced, and a white precipitate was formed. However, the weight of the PC pellets hardly decreases from the middle. When a small amount of an acid solution is added to this decomposed solution, the precipitate is dissolved and bubbles are generated, so it can be seen that the precipitate is Na 2 CO 3 . However, when PC was decomposed under the same conditions as described above in a mixed solvent system in which 0.5 mL of toluene or 1,4-dioxane was added to methanol, the weight of PC pellets was rapidly reduced with the reaction, It completely dissolved in the solvent after 240 minutes. Moreover, when the amount of toluene added was increased, the decomposition rate of PC also increased, and the time until pellets disappeared was shortened. 0.5 mL for 1 mL of methanol, 1 mL,
If 1.5 mL and 2 mL of toluene were added,
The PC pellets were completely dissolved in the solvent at 230 minutes, 70 minutes, 40 minutes and 15 minutes, respectively.

【0022】トルエン或いは1,4ージオキサンを添加
した場合には、生成したBPAが塩基性条件下で酸化さ
れ、反応液は着色しやすいが、酸化防止剤としてPCに
対して0.2〜1wt%のNaHSO3を添加すること
により、この着色を十分に防止できる。
When toluene or 1,4-dioxane is added, the produced BPA is oxidized under basic conditions and the reaction solution is easily colored, but 0.2 to 1 wt% of PC is used as an antioxidant. This coloring can be sufficiently prevented by adding NaHSO 3 .

【0023】PCペレットが完全に溶解した後、更に3
0分以上反応させ、その分解液を約40mLの水中に投
入すると、BPAの白い結晶が速やかに晶出した。メタ
ノ−ル(2mL)中だけで330分反応した場合は、P
Cペレットの減少量はわずかに9%であり、分解液の酸
性水溶液中からは、わずか7%のBPA結晶しか得られ
なかった。しかし、0.5mLのトルエン或いはジオキ
サンを添加した分解では、270分反応させた後に蒸留
水中で結晶化させると約95%のBPAが得られた。ま
た、1mLのメタノ−ルに対して0.5mL、1mL、
1.5mL及び2mLのトルエンを添加して260分、
100分、70分及び45分反応させた場合は、94〜
96%のBPAを得た。更にこれ以上長時間反応させて
もBPAの収率は変化しなかったことから、晶出したも
のにはPCの低量体オリゴマ−はほとんど含まれないと
推測される。
After the PC pellet was completely dissolved, another 3
The reaction was allowed to proceed for 0 minutes or longer, and the decomposed solution was put into about 40 mL of water, whereupon white crystals of BPA were crystallized rapidly. If the reaction was carried out for 330 minutes only in methanol (2 mL), P
The reduction amount of C pellets was only 9%, and only 7% BPA crystals were obtained from the acidic aqueous solution of the decomposition solution. However, in the decomposition in which 0.5 mL of toluene or dioxane was added, about 195% of BPA was obtained by reacting for 270 minutes and then crystallizing in distilled water. Also, 0.5 mL, 1 mL, for 1 mL of methanol,
260 minutes after adding 1.5 mL and 2 mL of toluene
When reacted for 100 minutes, 70 minutes and 45 minutes, 94-
96% BPA was obtained. Further, since the BPA yield did not change even if the reaction was continued for a longer time, it is presumed that the crystallized product contained almost no low-molecular weight oligomer of PC.

【0024】[炭酸ジメチルの生成]このPC分解法で
は、アルカリ添加量がPCのエステル結合に対して、等
モル量を必要とせず、上述のようにNaOH/PC=
0.034g/1.27g(カ−ボネ−トのエステル結
合1モル単位に対してNaOHは8mol%)で十分分
解が進行する。その分解反応は、アルコ−ルによるエス
テル交換反応であり、PCを分解するときに、BPAの
生成に伴ってDMCも生成する。そこで、この生成した
DMCをGCで分析した。
[Production of Dimethyl Carbonate] In this PC decomposition method, an alkali addition amount does not require an equimolar amount to the ester bond of PC, and NaOH / PC =
The decomposition proceeds sufficiently with 0.034 g / 1.27 g (1 mol unit of ester bond of carbonate to 8 mol% of NaOH). The decomposition reaction is an ester exchange reaction with alcohol, and when PC is decomposed, DMC is also formed along with the formation of BPA. Therefore, the generated DMC was analyzed by GC.

【0025】種々の混合比の溶媒中で0.034gのN
aOHを溶解した後、PCを1.27g加えて60℃で
分解したときのDMCの生成量と分解時間の関係を図2
に示す。メタノ−ル2mLのみの中で5分間反応したと
き、約4%のDMCが生成したが、その後はほとんど増
加せず、300分間反応してもDMCの生成量はわずか
6%であった。しかし、同様な条件下で0.5mLのト
ルエン或いは1,4−ジオキサンを添加すると、240
分でPCペレットが溶媒に完全溶解し、100%のDM
Cが生成した。また、1mLのメタノ−ルに対して0.
5mL、1mL、1.5mL及び2mLのトルエンを添
加した場合には、それぞれ230分、70分、40分及
び15分でPCペレットは溶媒に完全溶解して100%
のDMCが生成した。
0.034 g of N in various mixing ratios of solvent
Fig. 2 shows the relationship between the amount of DMC produced and the decomposition time when 1.27 g of PC was added after decomposition of aOH and decomposition was carried out at 60 ° C.
Shown in. When the reaction was carried out in 2 mL of methanol alone for 5 minutes, about 4% of DMC was produced, but thereafter it hardly increased, and even after reacting for 300 minutes, the production amount of DMC was only 6%. However, if 0.5 mL of toluene or 1,4-dioxane was added under similar conditions,
PC pellet completely dissolved in the solvent in 100 minutes, 100% DM
C generated. Further, it is 0.
When 5 mL, 1 mL, 1.5 mL, and 2 mL of toluene were added, the PC pellet was completely dissolved in the solvent in 230 minutes, 70 minutes, 40 minutes, and 15 minutes, respectively, and was 100%.
Of DMC was produced.

【0026】[分解温度の影響]PCの分解に及ぼす反
応温度の影響としては、トルエンとメタノールの混合溶
媒中(1.5mL/1mL)で0.034gのNaOH
を溶解した後、PCを1.27g入れ、40〜60℃で
反応させて、PCの分解に及ぼす反応温度の効果を調べ
た。各反応温度下で分解したときのDMCの生成量の変
化を図3に示す。分解温度の上昇に対応して、分解速度
は速やかに増加し、PCが完全に分解してDMC100
%を生成するのに要した時間は、40℃、50℃及び6
0℃でそれぞれ約350分、約140分及び約40分で
あった。完全に分解した後、水中で晶出させて得られた
BPAの収率は、それぞれ96%、95%及び96%で
あった。
[Effect of decomposition temperature] The effect of the reaction temperature on the decomposition of PC is 0.034 g of NaOH in a mixed solvent of toluene and methanol (1.5 mL / 1 mL).
Was dissolved, and then 1.27 g of PC was added and reacted at 40 to 60 ° C. to examine the effect of the reaction temperature on the decomposition of PC. Changes in the amount of DMC produced when decomposed at each reaction temperature are shown in FIG. Corresponding to the increase of decomposition temperature, the decomposition rate rapidly increases, PC is completely decomposed and DMC100
% To produce 40%, 50 ° C and 6%
It was about 350 minutes, about 140 minutes and about 40 minutes at 0 ° C., respectively. After complete decomposition, the yields of BPA obtained by crystallization in water were 96%, 95% and 96%, respectively.

【0027】[0027]

【発明の効果】本発明により、PCは、アルコ−ルとト
ルエン或いはアルコ−ルとジオキサン等の混合溶媒中
で、少量のアルカリ触媒を用いて穏和な条件下で迅速に
モノマ−に分解できる。分解後、水中に投じて晶出させ
たBPAは容易に分離でき、高収率で回収できる。トル
エンのような水に不溶の共溶媒を使用する場合は、溶媒
を簡単に分離回収できるので、PCの分解に再使用でき
る利点がある。また、BPAの晶出分離はトルエン中で
もできる。この後者の方法では、BPA分離後の濾液を
蒸留すれば、アルコ−ル、トルエン及び炭酸ジメチルを
それぞれ分離回収できるので、これらをすべて再使用で
きる。つまり、本発明の特徴は、穏和な条件下で簡単且
つ高効率に、PCからその構成モノマ−のBPAとDM
Cを回収できる点にある。また、BPAとDMCはいず
れもPCのモノマ−としてのみならず、工業的用途の広
い化学原料であるので、本発明が使用済みのPCの工業
的リサイクル方法として大変有効に活用でき、産業上の
利用性は、非常に高いといえる。
INDUSTRIAL APPLICABILITY According to the present invention, PC can be rapidly decomposed into a monomer in a mixed solvent of alcohol and toluene or alcohol and dioxane using a small amount of an alkaline catalyst under mild conditions. After decomposition, BPA crystallized by throwing in water can be easily separated and recovered in high yield. When a water-insoluble co-solvent such as toluene is used, the solvent can be easily separated and recovered, and there is an advantage that it can be reused for the decomposition of PC. Also, BPA can be separated by crystallization in toluene. In this latter method, alcohol, toluene, and dimethyl carbonate can be separated and recovered by distilling the filtrate after BPA separation, so that they can all be reused. In other words, the feature of the present invention is that, under mild conditions, the BPA and DM of the constituent monomers can be easily and efficiently obtained from a PC.
The point is that C can be collected. Further, since both BPA and DMC are not only used as PC monomers but also as chemical raw materials with wide industrial applications, the present invention can be effectively utilized as an industrial recycling method of used PCs, and is industrially useful. It can be said that the availability is very high.

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】メタノ−ルとトルエンとの混合溶媒(1mL/
1mL)中におけるPC(1.27g)の分解速度に及
ぼすNaOH濃度の効果(分解温度60℃)を示す図で
ある。
FIG. 1 A mixed solvent of methanol and toluene (1 mL /
It is a figure which shows the effect (decomposition temperature 60 degreeC) of NaOH concentration on the decomposition rate of PC (1.27g) in 1 mL).

【図2】PC(1.27g)の分解におけるDMCの生
成速度に及ぼすメタノ−ルへのトルエン或いはジオキサ
ンの添加効果(分解温度60℃、NaOH0.034
g)を示す図である。
FIG. 2 Effect of adding toluene or dioxane to methanol on the formation rate of DMC in the decomposition of PC (1.27 g) (decomposition temperature 60 ° C., NaOH 0.034
It is a figure which shows g).

【図3】メタノ−ルとトルエン混合溶媒中(1mL/
1.5mL)でのPC(1.27g)の分解におけるD
MCの生成速度に及ぼす分解温度の影響(NaOH0.
034g)を示す図である。
FIG. 3 In a mixed solvent of methanol and toluene (1 mL /
D in the decomposition of PC (1.27 g) in 1.5 mL)
Effect of decomposition temperature on the formation rate of MC (NaOH0.
It is a figure which shows 034g).

【符号の説明】[Explanation of symbols]

[図1における符号] ○ 30分間分解したときのDMCの生成量 ● PCが完全に分解される時間 [図2における符号] ○ メタノ−ル2mLのみを用いたとき × トルエン/メタノ−ル混合溶媒(0.5mL/2m
L)を用いたとき ▽ トルエン/メタノ−ル混合溶媒(0.5mL/1m
L)を用いたとき □ トルエン/メタノ−ル混合溶媒(1mL/1mL)
を用いたとき ● トルエン/メタノ−ル混合溶媒(1.5mL/1m
L)を用いたとき △ メタノ−ル/ジオキサン混合溶媒(2mL/0.5
mL)を用いたとき [図3における符号] ○ 40℃ △ 50℃ ● 60℃
[Symbol in FIG. 1] Amount of DMC produced when decomposed for 30 minutes ● Time for complete decomposition of PC [Symbol in FIG. 2] ○ When only 2 mL of methanol was used × Toluene / methanol mixed solvent (0.5mL / 2m
L) Toluene / Methanol mixed solvent (0.5 mL / 1 m
L) □ Toluene / methanol mixed solvent (1 mL / 1 mL)
● Toluene / methanol mixed solvent (1.5 mL / 1 m
When L) is used: ΔMethanol / dioxane mixed solvent (2 mL / 0.5
mL) [reference numeral in FIG. 3] ○ 40 ° C △ 50 ° C ● 60 ° C

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C07B 61/00 300 C07B 61/00 300 (58)調査した分野(Int.Cl.7,DB名) C07C 27/02 C07C 37/01 C07C 39/16 C07C 68/06 C07C 69/96 C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 identification code FI // C07B 61/00 300 C07B 61/00 300 (58) Fields investigated (Int.Cl. 7 , DB name) C07C 27/02 C07C 37/01 C07C 39/16 C07C 68/06 C07C 69/96 C07B 61/00 300

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリカーボネートと低級アルコールとを
少量のアルカリを触媒としてエステル交換反応を行い、
ポリカーボネートの出発原料であるビスフェノールと炭
酸ジアルキルとを得る方法において、 (1).反応系にベンゼン、トルエン、キシレン及びジオキ
サンよりなる群から選ばれた少なくとも1つの溶媒を混
合し、混合物の沸点以下でかき混ぜ、反応終了後に混合
物を水に投入して反応生成物であるビスフェノールを析
出させて回収するか、または、 (2).反応系にトルエンを溶媒として混合し、混合物の沸
点以下でかき混ぜ、反応終了後に更に追加量のトルエン
を加え、混合物を冷却して反応生成物であるビスフェノ
ールを析出させて回収し、一方、 (3).反応生成物である炭酸ジアルキルを分留により回収
すること、 を特徴とするポリカーボネートより出発材料であるビス
フェノールと炭酸ジアルキルとを得る方法。
1. A transesterification reaction of polycarbonate and lower alcohol with a small amount of alkali as a catalyst,
In the method for obtaining bisphenol and dialkyl carbonate, which are starting materials for polycarbonate, (1). At least one solvent selected from the group consisting of benzene, toluene, xylene and dioxane is mixed in the reaction system, and the mixture is heated at a temperature not higher than the boiling point of the mixture. After stirring, after the reaction is complete, the mixture is poured into water to precipitate bisphenol as a reaction product for recovery, or (2). Toluene is mixed in the reaction system as a solvent and stirred at a temperature not higher than the boiling point of the reaction to react. After completion, an additional amount of toluene was added, and the mixture was cooled to precipitate bisphenol as a reaction product for recovery, while (3). Dialkyl carbonate as a reaction product was recovered by fractional distillation. A method for obtaining bisphenol and dialkyl carbonate as starting materials from a characteristic polycarbonate.
【請求項2】 低級アルコールが、メタノール、エタノ
ール、プロパノールブタノールなる群から選ばれる少な
くとも1つ或いは2つ以上の混合物であることを特徴と
する、請求項1記載のポリカーボネートより出発原料で
あるビスフェノールと炭酸ジアルキルとを得る方法。
2. The bisphenol starting material from the polycarbonate according to claim 1, wherein the lower alcohol is at least one selected from the group consisting of methanol, ethanol and propanol butanol, or a mixture of two or more thereof. Method for obtaining dialkyl carbonate.
【請求項3】 少量のアルカリが苛性ソーダ、苛性カ
リ、酸化カルシウム、酸化バリウム、酸化亜鉛、酸化
錫、酸化鉛なる群から選ばれる少なくとも一つ或いは二
つ以上の混合物で、ポリカーボネートのエステル結合1
モル単位に対して、2乃至12mol%の範囲であるこ
とを特徴とする、請求項1記載のポリカーボネートより
出発材料であるビスフェノールと炭酸ジアルキルとを得
る方法。
3. A small amount of alkali, sodium hydroxide, potassium hydroxide, calcium oxide, barium oxide, zinc oxide, tin oxide, at least one or a mixture of two or more selected from the group consisting of lead oxide, polycarbonate ester bond 1
The method for obtaining bisphenol and dialkyl carbonate as starting materials from the polycarbonate according to claim 1, characterized in that the amount is in the range of 2 to 12 mol% with respect to the molar unit.
JP08561897A 1997-03-18 1997-03-18 Method for obtaining dialkyl carbonate and bisphenol from polycarbonate Expired - Fee Related JP3422647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08561897A JP3422647B2 (en) 1997-03-18 1997-03-18 Method for obtaining dialkyl carbonate and bisphenol from polycarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08561897A JP3422647B2 (en) 1997-03-18 1997-03-18 Method for obtaining dialkyl carbonate and bisphenol from polycarbonate

Publications (2)

Publication Number Publication Date
JPH10259151A JPH10259151A (en) 1998-09-29
JP3422647B2 true JP3422647B2 (en) 2003-06-30

Family

ID=13863842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08561897A Expired - Fee Related JP3422647B2 (en) 1997-03-18 1997-03-18 Method for obtaining dialkyl carbonate and bisphenol from polycarbonate

Country Status (1)

Country Link
JP (1) JP3422647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879444A (en) * 2010-06-07 2010-11-10 湖南大学 Preparation and application of stannate solid alkali catalyst
WO2023038267A1 (en) * 2021-09-13 2023-03-16 주식회사 엘지화학 Monomer composition for synthesis of recycled plastic, method for preparing same, and recycled plastic and molded product using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302573A (en) * 2000-04-27 2001-10-31 Victor Co Of Japan Ltd Method for recovering useful substance from waste plastic containing substantially polycarbonate resin
JP4575051B2 (en) * 2004-07-07 2010-11-04 帝人化成株式会社 Process for obtaining aromatic dihydroxy compounds from waste aromatic polycarbonates
KR101166005B1 (en) 2005-04-20 2012-07-18 테이진 카세이 가부시키가이샤 Method for producing aqueous solution of alkali metal salt of aromatic dihydroxy compound from waste aromatic polycarbonate
JP5704736B1 (en) * 2013-10-07 2015-04-22 田岡化学工業株式会社 Method for depolymerizing polycarbonate resin having fluorene structure
JP6442352B2 (en) * 2015-04-15 2018-12-19 帝人株式会社 Monomer production method
EP4183823A4 (en) * 2020-09-18 2024-09-25 Korea Res Inst Chemical Tech Depolymerization catalyst of polymer comprising ester functional group, and depolymerization method using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879444A (en) * 2010-06-07 2010-11-10 湖南大学 Preparation and application of stannate solid alkali catalyst
CN101879444B (en) * 2010-06-07 2013-05-01 湖南大学 Preparation and application of stannate solid alkali catalyst
WO2023038267A1 (en) * 2021-09-13 2023-03-16 주식회사 엘지화학 Monomer composition for synthesis of recycled plastic, method for preparing same, and recycled plastic and molded product using same
WO2023038266A1 (en) * 2021-09-13 2023-03-16 주식회사 엘지화학 Monomer composition for sythesizing recycled plastic, method for preparing same, recycled plastic using same, and molded product

Also Published As

Publication number Publication date
JPH10259151A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US4153780A (en) Process for the preparation of polycarbonate with weatherproof property
JP3422647B2 (en) Method for obtaining dialkyl carbonate and bisphenol from polycarbonate
JPS59492B2 (en) Manufacturing method of diaryl carbonate
JP3174435B2 (en) Method for cleaving polycarbonates to form bisphenols and diaryl carbonates
JPH0662753B2 (en) Hydroquinone-bisphenol cyclic copolycarbonate and process for producing the same
CA1127795A (en) Method for manufacture of aromatic polyester-polycarbonate
US20110218321A1 (en) Processes for producing polyalkylene carbonates
US4413103A (en) Halogen-containing polycarbonate resin and process for producing same
JPH072738A (en) Separation and recovery dimethyl naphthalenedicarboxylate and dimethyl terephthalate
JPS63156823A (en) Polymerization of cyclic polycarbonate oligomer
JP2004277396A (en) Method for obtaining aromatic dihydroxy compound and dialkyl carbonate from aromatic polycarbonate
US4324926A (en) Process for the purification of 4,4' dihydroxydiphenyl
EP0058938A1 (en) Polyesteramide and process for preparing the same
JPH02169531A (en) Production of dihydroxydiarylalkane
US4308373A (en) Halogen-containing polycarbonate resin and process for producing same
JP3162544B2 (en) Method for producing polyhydroxycarboxylic acid
JP2897850B2 (en) Method for producing high-purity tetrakisphenolethane
JPH11152240A (en) Production of bisphenols
JP3350696B2 (en) Method for recovering terephthalic acid and ethylene glycol from polyethylene terephthalate
JP3319884B2 (en) Purification method of aliphatic polyester
JPH04233938A (en) Manufacture of polycarbonate from bischloroformate in one step
JP2000297178A (en) Method for recovering dimethyl terephthalate
JPH0118939B2 (en)
DE2503150C2 (en) Process for the production of polycarbonates
JPH1087537A (en) Production of tetrakisphenolethane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees