JP3422149B2 - Biological tissue oxygen monitor - Google Patents

Biological tissue oxygen monitor

Info

Publication number
JP3422149B2
JP3422149B2 JP28521295A JP28521295A JP3422149B2 JP 3422149 B2 JP3422149 B2 JP 3422149B2 JP 28521295 A JP28521295 A JP 28521295A JP 28521295 A JP28521295 A JP 28521295A JP 3422149 B2 JP3422149 B2 JP 3422149B2
Authority
JP
Japan
Prior art keywords
light
change
wavelength
hbo
living tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28521295A
Other languages
Japanese (ja)
Other versions
JPH09122105A (en
Inventor
利一 志賀
一久 田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP28521295A priority Critical patent/JP3422149B2/en
Publication of JPH09122105A publication Critical patent/JPH09122105A/en
Application granted granted Critical
Publication of JP3422149B2 publication Critical patent/JP3422149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、近赤外2波長光に
より無侵襲に生体組織中のヘモグロビンの酸化・還元状
態の変化及び血液量の変化を計測する生体組織酸素モニ
タに関する。 【0002】 【従来の技術】生体組織にレーザ光を照射し、生体組織
からの反射光を受光し、その受光量に基づいて、酸素変
化や血液量変化を求め、使用者に運動の指針を与えた
り、使用者に応じて運動負荷を制御したりする運動モニ
タ等の装置がある。この種の装置では、生体組織におい
て酸素を運搬するヘモグロビンの酸化・還元状態の変
化、血液量変化等に基づいて運動強度や運動効果を判定
している。 【0003】ところで、ヘモグロビンには酸素と結合し
た酸化ヘモグロビン(HbO2 )と、酸素が結合してい
ない還元ヘモグロビン(Hb)の2つの状態があり、従
来の装置は、このHbO2 とHb、及びBV(血液量)
を算出するのに、即ち3つのパラメータを求めるため
に、光源に3波長のレーザ光を用いている。一方、光源
に近赤外2波長の発光ダイオードを用い、生体組織から
の受光量に基づいてHbとBVの2つのパラメータを計
測・表示する装置もある。 【0004】 【発明が解決しようとする課題】しかしながら、3波長
のレーザ光を用いる装置は、光源がレーザ光であって大
型の据え置きタイプであるため、昨今の電子機器類の軽
薄短小化にはそぐわず、小型、軽量、電池駆動の携帯可
能な装置が待望されている。又、近赤外2波長の発光ダ
イオードを用いる装置では、HbO2 のパラメータは計
測・表示しておらず、しかもHbとBVのパラメータの
演算式に含まれる係数は特定していない。このため、よ
り的確に運動強度や運動効果等の判定を行うにはパラメ
ータの信頼性に難点がある。 【0005】従って、本発明は、このような従来の問題
点に着目してなされたものであり、携帯可能で信頼性の
高い生体組織酸素モニタを提供することを目的とする。 【0006】 【課題を解決するための手段】前記目的を達成するため
に、本発明の生体組織酸素モニタは、生体組織に発光波
長760nmの光を照射する発光ダイオード3個と生体
組織に発光波長840nmの光を照射する発光ダイオー
ド1個とが近接されて配置されている発光素子と、生体
組織からの反射光を受光する受光素子と、この受光素子
の受光量に基づいて、生体組織中の酸化ヘモグロビン
(HbO2 )と還元ヘモグロビン(Hb)の状態の変化
及び血液量(BV)の変化を、近赤外2波長吸光度変化
量の一次関数によって算出する演算手段と、算出された
酸化・還元状態の変化及び血液量の変化を表示する表示
手段とを備えることを特徴とする。 【0007】このモニタの演算手段は、受光素子の受光
量に基づいて、生体組織中の酸化ヘモグロビン(HbO
2 )と還元ヘモグロビン(Hb)の状態の変化及び血液
量(BV)の変化を、近赤外2波長吸光度変化量の一次
関数によって算出するので、光源は近赤外2波長の発光
ダイオード(発光波長760nmの発光ダイオード3個
と発光波長840nmの発光ダイオード1個)であるに
もかかわらず、HbO2 、Hb、及びBVの3つのパラ
メータを算出することができる。従って、小型、軽量、
電池駆動の携帯可能なモニタを提供できると共に、パラ
メータの信頼性が向上し、より精度の良い運動判定や指
針等を行うことができる。 【0008】 【発明の実施の形態】以下、本発明を実施形態に基づい
て説明する。その一実施形態に係る生体組織酸素モニタ
の構成ブロック図を図1に示す。このモニタは、生体の
任意の測定部位(組織)に光を照射する発光素子(近赤
外2波長の発光ダイオードLED1 ,LED2 )1と、
測定部位からの反射光を受光する受光素子(フォトダイ
オード等)2と、発光素子1の発光光量を制御する光量
制御回路(LED駆動回路)3と、受光素子2からの信
号を増幅するゲイン制御可能な増幅器4と、増幅器4の
出力を数値化するA/D変換回路5と、各部制御のため
のデータ、HbO2 、Hb、及びBVのパラメータ等の
記憶や演算処理等に使用されるメモリ6と、各部の制御
やパラメータの演算等を行うためのCPU(演算手段)
7と、パラメータの表示、各種指示等を表示する表示回
路(表示手段)8と、電源のON/OFF、計測開始指
示、その他の指示をモニタに伝えるためのスイッチ9と
を備える。 【0009】発光素子1と受光素子2は、図2に示すよ
うに、光センサ部10として一体に構成されている。こ
こでは、光センサ部10は、例えば生体部位に装着する
ことのできるフレキシブルベルト11を有し、このフレ
キシブルベルト11に発光素子1としてのLED1 とL
ED2 及び受光素子2が設けられたものである。LED
1 及びLED2 は、それぞれ図3(要部拡大平面図)に
示すような構造になっている。即ち、LED1 及びLE
2 には、それぞれ近赤外の発光波長760nm及び8
40nmの計4個の近赤外LEDチップ(760nmの
ものが3個、840nmのものが1個)が、生体組織中
での波長に依存する減衰を考慮し、受光光量がバランス
よく計測できるようになるべく近接して配置されてい
る。なお、図3において、符号12はガラスエポキシ基
板を、符号13はワイヤパターンを表している。このL
ED1 、LED2 は、共に光量制御回路3に接続されて
いる。受光素子2は生体組織20からの反射光を受光
し、受光信号は増幅器4で増幅される。 【0010】次に、このように構成したモニタの動作に
ついて図4及び図5のフロー図を参照して説明するが、
本発明のモニタの特徴はHbO2 、Hb、BVの3種の
パラメータを算出することに特徴があり、それ以外は従
来の装置と同様であるので、パラメータの算出を中心に
説明する。まず、ステップ(以下、STと略す)1で自
動ゲイン調整を行い、ST2で計測開始指示入力を行
う。 【0011】次いで、発光ダイオードによる近赤外2波
長光(760nm、840nm)のそれぞれに対する受
光素子の初期受光光量I0(760),I0(840)の計測、ダー
ク値(dark)の計測、基準レベルの算出、それらのデー
タの記録を行う(ST3)。その後、実際の受光光量の
計測、ダーク値の計測、それらのデータの記録を行う
(ST4)。ここで、ダーク値(dark)はLED1 ,L
ED2 等を全て消灯した時のバックグラウンド光量であ
る。 【0012】続くST5では、吸光度(O.D.)を算出す
る。発光波長760nm及び840nmの吸光度は、そ
れぞれST5に記載してあるような式で求められる。吸
光度を算出したなら、ST6で、HbO2 、Hb、BV
のパラメータを算出する。各パラメータは、 Δ[HbO2 ]:酸化ヘモグロビンの濃度変化量 Δ[Hb] :還元ヘモグロビンの濃度変化量 ΔBV :血液量の変化 ΔO.D.840 :波長840nmの吸光度変化量 ΔO.D.760 :波長760nmの吸光度変化量 とすると、次の演算式で与えられる。 【0013】 Δ[HbO2 ]=ΔO.D.840 −0.66ΔO.D.760 ・・・・・・・・(1) Δ[Hb] =0.58(1.37ΔO.D.760 −ΔO.D.840 )・・(2) ΔBV =0.42ΔO.D.840 +0.13ΔO.D.760 )・・・(3) このパラメータの算出において、Δ[HbO2 ]はこれ
までパラメータとして求められていなかったものであ
り、またΔ[Hb]とΔBVのパラメータの演算式にお
いて、0.58、1.37、0.42、0.13の係数
は、これまで例えばA,Bとして表していたが、Δ[H
bO2 ]の演算式の係数も含めて、これらの演算式
(1)〜(3)の全ての係数を実験的に求めたことが、
本発明の大きな特徴である。 【0014】ST6で3つのパラメータを算出したら、
それらのパラメータ、即ちHbO2、Hb、BVの変化
を表示し(ST7)、その後、このパラメータの算出処
理を終了するか否かを問い(ST8)、YESなら例え
ば適当なスイッチを操作することにより処理を終了し、
処理を続ける場合はスイッチを操作することで、ST4
に戻り、同様の処理を繰り返し、3種のパラメータを算
出・表示する。 【0015】ところで、前記したように、本発明はHb
2 、Hb、BVの3種のパラメータを算出・表示する
ことが特徴であるが、それらのパラメータを与える上記
演算式(1)〜(3)を得た過程について、以下に説明
する。近赤外2波長光によりHb、BVの2種のパラメ
ータを算出・出力する装置はあるが、理論的には近赤外
2波長光によりHbO2 、Hb、BVの3種のパラメー
タを算出することが可能であり、その具体的演算式を実
験により公知理論に基づいて求めた訳である。 【0016】まず、近赤外2波長光として波長λ1 =7
60nmのLEDと波長λ2 =840nmのLEDの波
長に対する光強度は、図6に示す通りである。この波長
λ1,λ2 のLEDを光源に使用する場合の光量計測の
直線性を、既知の吸光係数の吸収体としてインクを用い
て透過計測により求めた結果が図7である。図7は、イ
ンク濃度に対する波長760nmと840nmの吸光度
変化を示すもので、いずれも良好な直線性が得られてい
ることが分かる。又、これに併せて、電池動作時の計測
安定性を調べたが、計測6時間後の吸光度の変化は、波
長760nmで±0.22%、波長840nmで±0.
74%であり、計測は6時間後でも安定しており、計測
上の問題はない。 【0017】演算式のうち、BVはHbO2 とHbの和
により求めることができるので、求めるべき未知数はH
bO2 とHbの2つであり、これに2波長を適用すれば
方程式を解くことができる。即ち、方程式は次のように
なる。 ΔO.D.840 =k1 Δ[HbO2 ]+k1'Δ[Hb] ΔO.D.760 =k2 Δ[HbO2 ]+k2'Δ[Hb] ΔBV =Δ[HbO2 ]+Δ[Hb] これらの式から、次の式が導かれる。 Δ[HbO2 ]=k{ΔO.D.840 −(k1'/k2')ΔO.D.760 }・・・(4) Δ[Hb] =k(k2 /k2'){(k1 /k2 )ΔO.D.760 −ΔO.D.840 } ・・・(5) k=k2'/(k1 2'−k1'k2 )≡1 ここで、未知の係数はk1'/k2'、k1 /k2 、k2
2'となり、これらの係数は吸収係数、光路長が計算上
キャンセルされてディメンジョンを持たない意味のある
値となる。しかし、係数kは光路長の影響を受けるの
で、意味のある値を与えることはできず、便宜的に1と
する。 【0018】これらの未知の係数を実験的に求めるため
に、図8に示すような実験装置を使用した。この装置で
は、攪拌・加熱機41を有する直径9cmのポリエチレ
ン製の容器40に、図示のような条件でイースト菌を含
む溶液800mlを入れると共に、図示のような特性の
血液を入れた。又、容器40には、例えばバルブ43を
介して酸素ボンベ42により濃度100%の酸素O2
導入した。容器40の側面には、本発明のモニタ30の
プローブ31を取付け、モニタ30をパソコン44に接
続した。但し、プローブ31は、波長760nm及び波
長840nmのLED1 ,LED2 、及び受光素子2か
らなる光センサ部10をプローブとして構成したもので
ある。 【0019】この実験は、2種類の散乱強度で行い、散
乱強度は、予め既知の吸光係数の吸収体としてインクを
用いて、Lambert-Beer則に基づいた光路長測定を行い、
DPF(Differential Pathlength Factor)で3と6に
なるようにintralipid(milk)の濃度を決定することに
より設定した。これは、生体組織での散乱強度範囲をほ
ぼ包含する。この2種類の散乱体濃度で血液量を変化さ
せて、本発明のモニタによる拡散反射光量計測を行っ
た。但し、運動時のような血液量の変化が大きい場合で
の検討もする意味から、血液量変化幅は組織量に対する
ヘマトクリットで0〜2.5%程度とした。 【0020】この実験結果から血液濃度と各係数との関
係(intralipid,1%,30%)を図9のグラフに示
す。この図9からも明らかなように、各係数は必ずしも
一定値にはならず、吸収、散乱によって変動する結果が
得られた。そのため、安静時(全組織量に対するヘマト
クリット1%)を基準にして各係数を算出し、散乱強度
の強い場合と弱い場合の平均値として各係数を決定し
た。この結果を図10の表に示す。 【0021】図10の表によると、 k1'/k2'=0.66 k1 /k2 =1.37 k2 /k2'=0.58 であり、これらの係数を前記式(4),(5)に代入す
ると、HbO2 、Hb、BVのパラメータ演算式(1)
〜(3)が得られる。 【0022】得られた演算式(1)〜(3)を用いた本
発明のモニタによる計測例(intralipid,1%)の結果
を血液濃度と吸光度変化との関係で図11に示す。図1
1によると、クロストークも殆どなく、直線性良く計測
されている。又、腕でのオクルージョンテストの計測例
の結果を時間と吸光度変化との関係で図12に示す。静
脈閉塞(venous occlusion)では血液量(BV)が増加
し、またそれに伴い酸化ヘモグロビン(HbO2 )と還
元ヘモグロビン(Hb)の量も増加している。全閉塞
(occlusion )では血液量が変化せず、酸化ヘモグロビ
ンの減少、還元ヘモグロビンの増加が観測され、生体に
おいても酸化及び還元ヘモグロビンの状態変化、並びに
血液量の変化をそれぞれ分離して計測できることが確認
できる。 【0023】 【発明の効果】本発明の生体組織酸素モニタでは、以上
説明したように、受光素子の受光量に基づいて、生体組
織中の酸化ヘモグロビン(HbO2 )と還元ヘモグロビ
ン(Hb)の状態の変化及び血液量(BV)の変化を、
近赤外2波長吸光度変化量の一次関数によって算出する
ので、光源は近赤外2波長の発光ダイオード(発光波長
760nmの発光ダイオード3個と発光波長840nm
の発光ダイオード1個)であるにもかかわらず、HbO
2 、Hb、及びBVの3つのパラメータを算出すること
ができる。従って、小型、軽量、電池駆動の携帯可能な
モニタを提供できる。 【0024】又、生体組織モデルで生体での散乱を実際
に有り得る範囲で2種類に変動させると共に、血液量も
大きく変動させた実験からHbO2 、Hb、BVの各パ
ラメータの演算式を求めているので、散乱を変化させず
に血液量の変化幅も小さい状態で求めている従来と比べ
て、パラメータの信頼性が向上し、例えば運動モニタ装
置等ではより精度の良い運動判定や指針等を行うことが
できる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention non-invasively measures changes in the oxidation / reduction state of hemoglobin and changes in blood volume in living tissue using near-infrared two-wavelength light. The present invention relates to a biological tissue oxygen monitor. 2. Description of the Related Art A living tissue is irradiated with a laser beam, reflected light from the living tissue is received, a change in oxygen or a change in blood volume is obtained based on the amount of the received light, and a guide for exercise is given to a user. There are devices such as an exercise monitor for giving and controlling an exercise load according to a user. In this type of apparatus, exercise intensity and exercise effect are determined based on changes in the oxidation / reduction state of hemoglobin that transports oxygen in living tissue, changes in blood volume, and the like. [0003] The hemoglobin and oxidized hemoglobin combined with oxygen (HbO 2), there are two states of reduced hemoglobin oxygen is not bound (Hb), the conventional apparatus, the HbO 2 and Hb, and BV (blood volume)
Is calculated, that is, to obtain three parameters, laser light of three wavelengths is used as a light source. On the other hand, there is a device that uses a light emitting diode of near-infrared two wavelengths as a light source and measures and displays two parameters, Hb and BV, based on the amount of light received from a living tissue. [0004] However, an apparatus using three-wavelength laser light is a large stationary type light source using a laser light source. A compact, lightweight, battery-powered, portable device is desired. In an apparatus using a light emitting diode having two near-infrared wavelengths, the parameters of HbO 2 are not measured and displayed, and the coefficients included in the arithmetic expressions of the parameters of Hb and BV are not specified. For this reason, there is a problem in the reliability of the parameters in order to more accurately determine the exercise intensity, the exercise effect, and the like. Accordingly, the present invention has been made in view of such a conventional problem, and has as its object to provide a portable and highly reliable biological tissue oxygen monitor. [0006] [Means for Solving the Problems] To achieve the above object, the biological tissue oxygen monitor of the present invention, the light emitting wave to the living tissue
Three light emitting diodes irradiating light of 760 nm long and living body
Light-emitting diode for irradiating tissue with light of emission wavelength 840 nm
A light-emitting element in which one of them is arranged in close proximity, a light-receiving element for receiving light reflected from the living tissue, and oxyhemoglobin (HbO 2 ) in the living tissue based on the amount of light received by the light-receiving element. Calculating means for calculating a change in the state of reduced hemoglobin (Hb) and a change in blood volume (BV) by a linear function of the near-infrared two-wavelength absorbance change amount; Display means for displaying a change. [0007] The calculating means of the monitor uses the oxyhemoglobin (HbO) in the living tissue based on the amount of light received by the light receiving element.
Change and blood volume status 2) and reduced hemoglobin (Hb) the change in the (BV), so calculated by a linear function of the near-infrared two-wavelength absorbance change, the light source is near-infrared two-wavelength light-emitting diode (light-emitting Three light emitting diodes with a wavelength of 760 nm
And one light emitting diode having an emission wavelength of 840 nm) , three parameters of HbO 2 , Hb and BV can be calculated. Therefore, small, lightweight,
It is possible to provide a battery-powered portable monitor, improve the reliability of parameters, and perform more accurate motion determination and pointers. [0008] The present invention will be described below based on an embodiment. FIG. 1 shows a configuration block diagram of a biological tissue oxygen monitor according to the embodiment. This monitor includes a light-emitting element (light-emitting diodes LED 1 and LED 2 having two near-infrared wavelengths) 1 for irradiating light to an arbitrary measurement site (tissue) of a living body,
A light receiving element (such as a photodiode) 2 for receiving light reflected from the measurement site, a light amount control circuit (LED drive circuit) 3 for controlling the amount of light emitted from the light emitting element 1, and a gain control for amplifying a signal from the light receiving element 2 A possible amplifier 4, an A / D conversion circuit 5 for converting the output of the amplifier 4 into a numerical value, and a memory used for storing data for controlling various parts, parameters of HbO 2 , Hb, BV, etc., and arithmetic processing, etc. 6 and a CPU (arithmetic means) for controlling various parts, calculating parameters, and the like.
7, a display circuit (display means) 8 for displaying parameters, displaying various instructions, and the like, and a switch 9 for transmitting ON / OFF of a power supply, a measurement start instruction, and other instructions to a monitor. The light emitting element 1 and the light receiving element 2 are integrally formed as an optical sensor section 10, as shown in FIG. Here, the optical sensor unit 10 includes a flexible belt 11 which can be attached for example to the body part, LED 1 and L as a light emitting element 1 to the flexible belt 11
The ED 2 and the light receiving element 2 are provided. LED
Each of the LED 1 and the LED 2 has a structure as shown in FIG. 3 (an enlarged plan view of a main part). That is, LED 1 and LE
D 2 has near-infrared emission wavelengths of 760 nm and 8 nm, respectively.
A total of four near-infrared LED chips of 40 nm (three of 760 nm and one of 840 nm) can measure the amount of received light in a well-balanced manner in consideration of the wavelength-dependent attenuation in living tissue. It is arranged as close as possible. In FIG. 3, reference numeral 12 denotes a glass epoxy substrate, and reference numeral 13 denotes a wire pattern. This L
ED 1 and LED 2 are both connected to the light amount control circuit 3. The light receiving element 2 receives the reflected light from the living tissue 20, and the received light signal is amplified by the amplifier 4. Next, the operation of the monitor configured as described above will be described with reference to the flow charts of FIGS. 4 and 5.
The feature of the monitor of the present invention is that three types of parameters of HbO 2 , Hb and BV are calculated, and the other components are the same as those of the conventional device. Therefore, the description will be focused on the calculation of the parameters. First, automatic gain adjustment is performed in step (hereinafter abbreviated as ST) 1, and a measurement start instruction is input in ST 2. Next, measurement of the initial light receiving amounts I 0 (760) and I 0 (840) of the light receiving element for each of the near-infrared two-wavelength light (760 nm and 840 nm) by the light emitting diode, measurement of the dark value (dark), Calculation of the reference level and recording of the data are performed (ST3). Thereafter, measurement of the actual amount of received light, measurement of the dark value, and recording of the data are performed (ST4). Here, dark value (dark) are LED 1, L
This is the background light amount when all the EDs 2 and the like are turned off. In ST5, the absorbance (OD) is calculated. The absorbances at the emission wavelengths of 760 nm and 840 nm are obtained by the equations as described in ST5, respectively. After calculating the absorbance, in ST6, HbO 2 , Hb, BV
Is calculated. Each parameter, Δ [HbO 2]: concentration change of oxygenated hemoglobin delta [Hb]: the concentration variation ΔBV deoxyhemoglobin: blood volume change Derutao.D. 840: amount of change in absorbance wavelength 840nm ΔO.D. 760 : Assuming that the amount of change in absorbance at a wavelength of 760 nm is given by the following equation: Δ [HbO 2 ] = ΔO.D. 840 −0.66 ΔO.D. 760 (1) Δ [Hb] = 0.58 (1.37ΔO.D. 760 − ΔO.D. 840 )... (2) ΔBV = 0.42 ΔO.D. 840 +0.13 ΔO.D. 760 ) (3) In the calculation of this parameter, Δ [HbO 2 ] has been used as a parameter so far. The coefficients of 0.58, 1.37, 0.42, and 0.13 have been expressed as A and B, for example, in the arithmetic expressions of the parameters Δ [Hb] and ΔBV. But Δ [H
bO 2 ], including all the coefficients of the arithmetic expressions (1) to (3), including the coefficients of the arithmetic expressions,
This is a major feature of the present invention. After calculating the three parameters in ST6,
Changes in these parameters, that is, changes in HbO 2 , Hb, and BV are displayed (ST7). Thereafter, it is asked whether to end the calculation processing of these parameters (ST8). If YES, for example, an appropriate switch is operated. Finish the process,
When the process is continued, the switch is operated, and ST4 is performed.
And the same processing is repeated to calculate and display three types of parameters. By the way, as described above, the present invention
The feature is to calculate and display three kinds of parameters of O 2 , Hb, and BV. The process of obtaining the above-mentioned arithmetic expressions (1) to (3) for giving these parameters will be described below. There are devices that calculate and output two parameters of Hb and BV using near-infrared two-wavelength light, but theoretically calculate three kinds of parameters of HbO 2 , Hb, and BV using near-infrared two-wavelength light. That is, the specific arithmetic expression is obtained by experiments based on a known theory. First, wavelength λ 1 = 7 as near-infrared two-wavelength light
The light intensity with respect to the wavelength of the LED of 60 nm and the LED of wavelength λ 2 = 840 nm is as shown in FIG. FIG. 7 shows a result obtained by measuring the linearity of the amount of light when the LEDs having the wavelengths λ 1 and λ 2 are used as the light source by transmission measurement using ink as an absorber having a known absorption coefficient. FIG. 7 shows the change in absorbance at wavelengths of 760 nm and 840 nm with respect to the ink concentration. It can be seen that good linearity was obtained in each case. In addition, the measurement stability during the operation of the battery was examined. The change in absorbance after 6 hours of measurement was ± 0.22% at a wavelength of 760 nm and ± 0.2% at a wavelength of 840 nm.
It is 74%, the measurement is stable after 6 hours, and there is no problem in the measurement. Since BV can be obtained from the sum of HbO 2 and Hb, the unknown to be obtained is H
bO 2 and Hb. If two wavelengths are applied to this, the equation can be solved. That is, the equation is as follows. ΔO.D. 840 = k 1 Δ [HbO 2] + k 1 'Δ [Hb] ΔO.D. 760 = k 2 Δ [HbO 2] + k 2' Δ [Hb] ΔBV = Δ [HbO 2] + Δ [Hb From these equations, the following equations are derived. Δ [HbO 2 ] = k {ΔO.D. 840 − (k 1 ′ / k 2 ′) ΔO.D. 760 } (4) Δ [Hb] = k (k 2 / k 2 ′) { (K 1 / k 2 ) ΔO.D. 760 −ΔO.D. 840 } (5) k = k 2 ′ / (k 1 k 2 ′ −k 1 ′ k 2 ) ≡1 where unknown Are k 1 ′ / k 2 ′, k 1 / k 2 , k 2 /
k 2 ′, and these coefficients become meaningful values having no dimensions because the absorption coefficient and the optical path length are canceled in calculation. However, since the coefficient k is affected by the optical path length, a meaningful value cannot be given, and is set to 1 for convenience. An experimental apparatus as shown in FIG. 8 was used to experimentally determine these unknown coefficients. In this apparatus, a polyethylene container 40 having a diameter of 9 cm having a stirrer / heater 41 was charged with 800 ml of a solution containing yeast under the conditions shown in FIG. Further, oxygen O 2 having a concentration of 100% was introduced into the container 40 by an oxygen cylinder 42 via a valve 43, for example. The probe 31 of the monitor 30 of the present invention was attached to the side of the container 40, and the monitor 30 was connected to the personal computer 44. However, the probe 31 is configured such that the optical sensor unit 10 including the LED 1 , the LED 2 having the wavelength of 760 nm and the wavelength 840 nm, and the light receiving element 2 is a probe. This experiment was performed with two types of scattering intensity. The scattering intensity was measured by measuring the optical path length based on the Lambert-Beer rule using ink as an absorber having a known absorption coefficient.
It was set by determining the concentration of intralipid (milk) so that DPF (Differential Pathlength Factor) was 3 and 6. This substantially covers the range of scattering intensity in living tissue. The amount of blood was changed with these two scatterer concentrations, and the diffuse reflection light amount was measured by the monitor of the present invention. However, from the viewpoint of examining a case where the change in blood volume is large, such as during exercise, the blood volume change width is set to about 0 to 2.5% in hematocrit with respect to the tissue volume. FIG. 9 is a graph showing the relationship between the blood concentration and each coefficient (intralipid, 1%, 30%) based on the experimental results. As is clear from FIG. 9, each coefficient is not always a constant value, and a result varying by absorption and scattering was obtained. Therefore, each coefficient was calculated based on the time of rest (hematocrit 1% based on the total tissue amount), and each coefficient was determined as an average value when the scattering intensity was high and when the scattering intensity was low. The results are shown in the table of FIG. According to the table shown in FIG. 10, k 1 ′ / k 2 ′ = 0.66 k 1 / k 2 = 1.37 k 2 / k 2 ′ = 0.58. Substituting into 4) and (5), HbO 2 , Hb, BV parameter calculation formula (1)
To (3) are obtained. FIG. 11 shows the result of a measurement example (intralipid, 1%) by the monitor of the present invention using the obtained arithmetic expressions (1) to (3) in relation to blood concentration and change in absorbance. FIG.
According to No. 1, there is almost no crosstalk and the measurement is performed with good linearity. FIG. 12 shows the results of measurement examples of the occlusion test with the arm in relation to time and changes in absorbance. In venous occlusion, the blood volume (BV) increases, and the amount of oxyhemoglobin (HbO 2 ) and reduced hemoglobin (Hb) increases accordingly. In total occlusion, the blood volume does not change, a decrease in oxyhemoglobin and an increase in reduced hemoglobin are observed, and it is possible to separately measure changes in the state of oxidized and reduced hemoglobin and changes in blood volume in the living body. You can check. According to the biological tissue oxygen monitor of the present invention, as described above, the states of oxyhemoglobin (HbO 2 ) and reduced hemoglobin (Hb) in the biological tissue are based on the amount of light received by the light receiving element. Changes in blood volume and blood volume (BV)
The light source is a near-infrared two-wavelength light emitting diode (emission wavelength) because it is calculated by a linear function of the near-infrared two-wavelength absorbance change amount.
Three light emitting diodes of 760 nm and emission wavelength of 840 nm
Despite a light emitting diode 1), HbO
The three parameters of 2 , Hb and BV can be calculated. Therefore, a portable monitor that is small, light, and battery-driven can be provided. In addition, the calculation formula of each parameter of HbO 2 , Hb, and BV is obtained from an experiment in which scattering in a living body is varied to two types in a living tissue model within a range that can actually exist, and the blood volume is also greatly varied. Therefore, the reliability of parameters is improved as compared with the conventional method in which the change width of the blood volume is obtained without changing the scattering and the change width of the blood volume is small. It can be carried out.

【図面の簡単な説明】 【図1】一実施形態に係る生体組織酸素モニタの構成ブ
ロック図である。 【図2】同モニタにおける発光素子及び受光素子で構成
される光センサ部を示す図である。 【図3】同モニタにおける発光素子及び受光素子で構成
される光センサ部の要部拡大平面図である。 【図4】同モニタの動作(パラメータの算出処理)を示
すフロー図である。 【図5】図4に続くフロー図である。 【図6】近赤外2波長(760nm,840nm)の発
光ダイオードの波長と光強度との関係を示す図である。 【図7】近赤外2波長(760nm,840nm)の発
光ダイオードの発光に対するインク濃度と吸光度変化と
の関係を示す図である。 【図8】パラメータの演算式を求めるのに使用した実験
装置の概略構成図である。 【図9】同実験装置により得られた実験結果から血液濃
度とパラメータ演算式の各係数との関係を示す図であ
る。 【図10】同実験装置による実験結果から求まる各係数
の値を示す図である。 【図11】本発明のモニタを用いた計測例を血液濃度と
吸光度変化との関係で示す図である。 【図12】本発明のモニタを用いた腕でのオクルージョ
ンテストの結果を時間と吸光度変化との関係で示す図で
ある。 【符号の説明】 1 発光素子 2 受光素子 7 CPU(演算手段) 8 表示回路(表示手段) LED1 波長760nm,840nmのLEDチッ
プを配置したもの LED2 波長760nm,840nmのLEDチッ
プを配置したもの
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration block diagram of a biological tissue oxygen monitor according to one embodiment. FIG. 2 is a diagram showing an optical sensor unit including a light emitting element and a light receiving element in the monitor. FIG. 3 is an enlarged plan view of a main part of an optical sensor unit including a light emitting element and a light receiving element in the monitor. FIG. 4 is a flowchart showing the operation of the monitor (parameter calculation processing). FIG. 5 is a flowchart following FIG. 4; FIG. 6 is a diagram showing the relationship between the wavelength of a light-emitting diode having two near-infrared wavelengths (760 nm and 840 nm) and light intensity. FIG. 7 is a diagram illustrating a relationship between an ink concentration and a change in absorbance with respect to light emission of a light-emitting diode having two near-infrared wavelengths (760 nm and 840 nm). FIG. 8 is a schematic configuration diagram of an experimental apparatus used for obtaining an arithmetic expression of a parameter. FIG. 9 is a diagram showing the relationship between the blood concentration and each coefficient of the parameter calculation formula based on the test results obtained by the test device. FIG. 10 is a diagram showing values of respective coefficients obtained from an experiment result by the experiment apparatus. FIG. 11 is a diagram showing a measurement example using the monitor of the present invention in relation to a blood concentration and a change in absorbance. FIG. 12 is a diagram showing a result of an occlusion test on an arm using the monitor of the present invention in a relationship between time and a change in absorbance. [Description of Signs] 1 Light-emitting element 2 Light-receiving element 7 CPU (arithmetic means) 8 Display circuit (display means) LED 1 LED with a wavelength of 760 nm and 840 nm LED 2 LED with a wavelength of 760 nm and 840 nm

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−88340(JP,A) 特開 平6−38948(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 5/145 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-88340 (JP, A) JP-A-6-38948 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A61B 5/145

Claims (1)

(57)【特許請求の範囲】 【請求項1】生体組織に発光波長760nmの光を照射
する発光ダイオード3個と生体組織に発光波長840n
mの光を照射する発光ダイオード1個とが近接されて配
置されている発光素子と、生体組織からの反射光を受光
する受光素子と、この受光素子の受光量に基づいて、生
体組織中の酸化ヘモグロビン(HbO2 )と還元ヘモグ
ロビン(Hb)の状態の変化及び血液量(BV)の変化
を、近赤外2波長吸光度変化量の一次関数によって算出
する演算手段と、算出された酸化・還元状態の変化及び
血液量の変化を表示する表示手段とを備えることを特徴
とする生体組織酸素モニタ。
(57) [Claim 1] Irradiation of light having an emission wavelength of 760 nm to a living tissue
Light emitting diode and light emission wavelength 840n for living tissue
m and a single light emitting diode that emits light of
The light emitting element disposed, the light receiving element for receiving the reflected light from the living tissue, and the state of oxyhemoglobin (HbO 2 ) and reduced hemoglobin (Hb) in the living tissue based on the amount of light received by the light receiving element. Calculation means for calculating the change and the change in blood volume (BV) by a linear function of the near-infrared two-wavelength absorbance change amount, and display means for displaying the calculated change in the oxidation / reduction state and the change in the blood volume. A biological tissue oxygen monitor, comprising:
JP28521295A 1995-11-01 1995-11-01 Biological tissue oxygen monitor Expired - Fee Related JP3422149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28521295A JP3422149B2 (en) 1995-11-01 1995-11-01 Biological tissue oxygen monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28521295A JP3422149B2 (en) 1995-11-01 1995-11-01 Biological tissue oxygen monitor

Publications (2)

Publication Number Publication Date
JPH09122105A JPH09122105A (en) 1997-05-13
JP3422149B2 true JP3422149B2 (en) 2003-06-30

Family

ID=17688563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28521295A Expired - Fee Related JP3422149B2 (en) 1995-11-01 1995-11-01 Biological tissue oxygen monitor

Country Status (1)

Country Link
JP (1) JP3422149B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11006865B2 (en) 2015-12-08 2021-05-18 Anthony Filice Determining viability for resuscitation

Also Published As

Publication number Publication date
JPH09122105A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
KR100612827B1 (en) Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US4714080A (en) Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation
US7274955B2 (en) Parameter compensated pulse oximeter
US8078250B2 (en) Method for spectrophotometric blood oxygenation monitoring
US6801799B2 (en) Pulse oximeter and method of operation
US9480422B2 (en) Cyanotic infant sensor
US6671526B1 (en) Probe and apparatus for determining concentration of light-absorbing materials in living tissue
US6421549B1 (en) Adaptive calibration pulsed oximetry method and device
US5419321A (en) Non-invasive medical sensor
US6097975A (en) Apparatus and method for noninvasive glucose measurement
US20020133068A1 (en) Compensation of human variability in pulse oximetry
US20070073127A1 (en) Parameter compensated physiological monitor
JP2007509718A5 (en)
JP2004230000A (en) Instrument for measuring concentration of light absorptive substance in blood
US20140323879A1 (en) Systems, devices and methods for monitoring hemodynamics
JPH11510722A (en) Method, apparatus and sensor for measuring oxygen saturation
JP2008532680A5 (en)
JPH11506834A (en) Light source with adjustable wavelength for oximeter
Mignani et al. In-vivo biomedical monitoring by fiber-optic systems
AU716502B2 (en) Apparatus for determining spectral absorption
WO1998023916A1 (en) Method and apparatus for measuring concentration of light absorbing material in living tissue and thickness of intercalary tissue
EP0528938B1 (en) Non-invasive medical sensor
JP2008289807A (en) Sensing apparatus for biological surface tissue
JP3422149B2 (en) Biological tissue oxygen monitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees