JP3420869B2 - Advanced treatment method and treatment equipment for human wastewater - Google Patents

Advanced treatment method and treatment equipment for human wastewater

Info

Publication number
JP3420869B2
JP3420869B2 JP33706395A JP33706395A JP3420869B2 JP 3420869 B2 JP3420869 B2 JP 3420869B2 JP 33706395 A JP33706395 A JP 33706395A JP 33706395 A JP33706395 A JP 33706395A JP 3420869 B2 JP3420869 B2 JP 3420869B2
Authority
JP
Japan
Prior art keywords
treatment
activated carbon
water
tank
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33706395A
Other languages
Japanese (ja)
Other versions
JPH09174096A (en
Inventor
克之 片岡
千秋 五十嵐
知佳子 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18305086&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3420869(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP33706395A priority Critical patent/JP3420869B2/en
Publication of JPH09174096A publication Critical patent/JPH09174096A/en
Application granted granted Critical
Publication of JP3420869B2 publication Critical patent/JP3420869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、し尿、浄化槽汚
泥、ごみ埋め立て滲出汚水、それらの混合物などのし尿
系汚水の処理方法及び処理装置に関し、特に光触媒の存
在において光照射する光照射処理を併用して、COD及
び色度成分を完全に除去可能なし尿系汚水の処理方法及
び該処理方法が効率良く適用できる処理装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating night soil-based wastewater such as night soil, septic tank sludge, landfill leachate wastewater, and a mixture thereof, and in particular, a light irradiation treatment for light irradiation in the presence of a photocatalyst is used in combination. The present invention also relates to a method for treating human waste sewage capable of completely removing COD and chromaticity components, and a treatment apparatus to which the method can be applied efficiently.

【0002】[0002]

【従来の技術】現在、最も進歩したし尿系汚水の処理方
法は、し尿系汚水を無希釈で生物学的硝化脱窒素処理し
た後UF膜で膜分離し、膜透過水に硫酸アルミニウムや
塩化第2鉄などのような無機凝集剤を添加してリン酸イ
オンとCODを凝集させ、その凝集フロックをさらにU
F膜で膜分離し、膜透過水に残留するCODを最終工程
の粒状活性炭で吸着除去して高度処理水とする処理方法
である。この高度処理方法は膜分離プロセスと呼ばれ、
最終工程に活性炭処理工程を有するのが特徴の一つとな
っている。
2. Description of the Related Art At present, the most advanced treatment method for human sewage wastewater is biological nitriding and denitrification treatment of human waste sewage undiluted, followed by membrane separation with a UF membrane, and aluminum permeation water or chloride chloride. 2 Inorganic coagulant such as iron is added to coagulate phosphate ions and COD, and the coagulated flocs are further U
This is a treatment method in which COD remaining in the membrane-permeated water is separated by the F membrane and adsorbed and removed by the granular activated carbon in the final step to obtain highly treated water. This advanced treatment method is called the membrane separation process,
One of the features is that it has an activated carbon treatment step in the final step.

【0003】し尿系汚水の処理施設からの処理水は、流
水量の少ない、清浄な小河川に直接放流されることが多
いため、極力良好な水質にまで処理することが要求され
るが、従来のし尿の膜分離プロセスでは、活性炭処理で
も吸着除去できない有機物が存在するため、放流水のC
OD及び色度成分を完全に除去することは不可能であっ
た。また、最終工程の活性炭処理工程処理水のCOD
が、通常10〜15mg/リットルである放流水質基準
値を越えると、活性炭を再生処理しなければならないた
め、再生頻度が多く、その維持管理が煩雑で処理コスト
も多額にのぼるので従来のし尿の膜分離プロセスには問
題点があった。
The treated water from the treatment facility for human waste water is often discharged directly to a clean small river with a small amount of flowing water, so that it is required to treat the water to a quality as good as possible. In the membrane separation process of night soil, there are organic substances that cannot be adsorbed and removed by the treatment with activated carbon.
It was not possible to completely remove the OD and chromaticity components. In addition, the final process of activated carbon treatment process treated water COD
However, if the discharged water quality standard value, which is usually 10 to 15 mg / liter, is exceeded, the activated carbon must be regenerated, so the regeneration frequency is high, maintenance is complicated, and the treatment cost is large. There were problems with the membrane separation process.

【0004】[0004]

【発明が解決しようとする課題】従来のし尿の膜分離プ
ロセスの前記問題点を解決し、維持管理し易く、処理コ
ストのかからないし尿系汚水処理法と効率良くその方法
を適用できる処理装置を提供することが本発明の課題で
ある。
[Problems to be Solved by the Invention] [Problems to be Solved by the Invention] The above-mentioned problems of the conventional membrane separation process of human urine are solved, a maintenance apparatus is easily provided, a treatment cost is low, and a urinary wastewater treatment method and a treatment apparatus capable of efficiently applying the method are provided. This is the subject of the present invention.

【0005】[0005]

【課題を解決するための手段】本発明の上記課題は、
(1)し尿系汚水を生物学的硝化脱窒素処理し、無機凝
集剤により凝集分離した後分離水を活性炭処理し、該活
性炭処理水を光触媒と接触させながら光照射することを
特徴とするし尿系汚水の高度処理方法を提供すること、
及び(2)少なくとも、脱窒素槽及び硝化槽よりなる生
物学的硝化脱窒素処理装置、凝集分離槽及び活性炭処理
槽を配備してなるし尿系汚水処理装置において、活性炭
処理槽の後に、光触媒の存在において光照射する光触媒
酸化部を配備することを特徴とするし尿系汚水処理装置
を提供することにより解決するこができる。
The above-mentioned problems of the present invention are as follows.
(1) Human urine characterized by biologically nitrifying and denitrifying human waste sewage, coagulating and separating it with an inorganic coagulant, treating the separated water with activated carbon, and irradiating the activated carbon-treated water with light while contacting it with a photocatalyst. To provide an advanced treatment method for system wastewater,
And (2) at least a biological nitrification and denitrification treatment device including a denitrification tank and a nitrification tank, a coagulation separation tank and an activated carbon treatment tank is provided, and after the activated carbon treatment tank, a photocatalyst It is possible to solve the problem by providing a human waste sewage treatment apparatus, which is characterized in that a photocatalytic oxidation unit that irradiates light in the presence is provided.

【0006】本発明の技術思想の骨子は、生物学的硝化
脱窒素処理し、無機凝集剤により凝集分離した後活性炭
処理する従来の膜分離プロセスにより処理した処理水を
光触媒の存在下で光照射して酸化するこにより処理水の
COD及び色度成分を完全に除去すること、及びその目
的のために活性炭処理槽の後に光触媒を処理水中に分散
させたものを充満する槽とその槽に活性光線を照射する
光源からなる光触媒酸化部を配備することにある。し尿
系汚水処理において、活性炭処理の後に光触媒の存在下
に光照射して処理水のCOD及び色度成分を酸化分解す
るという概念は従来全くなかった。
The essence of the technical idea of the present invention is to irradiate the treated water treated by the conventional membrane separation process of biological nitrification and denitrification treatment, coagulation separation with an inorganic coagulant and then activated carbon treatment in the presence of a photocatalyst. To completely remove the COD and chromaticity components of the treated water by oxidizing it, and for that purpose, the activated carbon treatment tank and the tank filled with the photocatalyst dispersed in the treated water and the active tank The purpose is to provide a photocatalytic oxidation part consisting of a light source for irradiating light rays. In the treatment of night soil sewage, there has been no concept of oxidative decomposition of COD and chromaticity components of treated water by irradiation with light in the presence of a photocatalyst after treatment with activated carbon.

【0007】[0007]

【発明の実施の形態】本発明の実施工程の1例を図1に
示し、図1を用いて本発明を説明する。図1において本
発明のし尿系汚水の処理装置は、脱窒素槽1及び硝化槽
2よりなる生物学的硝化脱窒素処理装置、膜分離器3、
凝集分離槽4、膜分離器5、活性炭処理槽6及び光酸化
槽7を有する光触媒酸化部よりなり、し尿系汚水8は無
希釈のまま、あるいは適当な希釈倍率に希釈された状態
で脱窒素槽1に流入し、脱窒素槽1及び硝化槽2の間を
循環して嫌気的に硝化脱窒素処理される。硝化脱窒素処
理された汚水は膜分離器3により固液分離され、生物処
理分離水9は凝集分離槽4に移送される。凝集分離槽4
において生物処理分離水9に硫酸アルミニウムあるいは
塩化第2鉄などのような無機凝集剤11を添加してリン
酸イオンとCODを含むSSを凝集させ、その凝集フロ
ックを膜分離器5により固液分離し、凝集分離水10を
活性炭を充填した活性炭処理槽6に移送しCOD及び色
度成分を吸着除去させる。活性炭処理水は次に光酸化槽
7に移送されここで光触媒の存在下に光照射して残存し
ていたCOD及び色度成分を酸化分解して除去する。以
上本発明のし尿系汚水の処理装置によって処理された処
理水は放流水12として系外に放流される。
BEST MODE FOR CARRYING OUT THE INVENTION One example of steps for carrying out the present invention is shown in FIG. 1, and the present invention will be described with reference to FIG. In FIG. 1, the treatment apparatus for night soil-type wastewater of the present invention comprises a biological nitrification denitrification treatment apparatus comprising a denitrification tank 1 and a nitrification tank 2, a membrane separator 3,
It consists of a photocatalytic oxidation part having a coagulation separation tank 4, a membrane separator 5, an activated carbon treatment tank 6 and a photooxidation tank 7. The human waste water 8 is denitrified in the state of being undiluted or diluted to an appropriate dilution ratio. It flows into the tank 1 and circulates between the denitrification tank 1 and the nitrification tank 2 for anaerobic nitrification and denitrification. The nitrification-denitrification treated wastewater is subjected to solid-liquid separation by the membrane separator 3, and the biological treatment separated water 9 is transferred to the coagulation separation tank 4. Coagulation separation tank 4
In the biological treatment separated water 9, an inorganic flocculant 11 such as aluminum sulfate or ferric chloride is added to flocculate SS containing phosphate ions and COD, and the flocculated flocs are subjected to solid-liquid separation by the membrane separator 5. Then, the coagulated separated water 10 is transferred to the activated carbon treatment tank 6 filled with activated carbon to adsorb and remove COD and chromaticity components. The activated carbon-treated water is then transferred to the photooxidation tank 7 where it is irradiated with light in the presence of a photocatalyst to oxidize and remove the remaining COD and chromaticity components. The treated water treated by the treatment apparatus for human waste system wastewater of the present invention is discharged outside the system as discharged water 12.

【0008】本発明の前記光酸化槽7を有する光触媒酸
化部は、光触媒を懸濁分散している被処理水を溜めた
槽の自由表面から光照射するという方式、光に透明な
管中を流れる光触媒を懸濁分散している被処理水に管の
周りから光照射するという方式、あるいは光触媒を懸
濁分散している被処理水を溜めた槽中に光源を入れて光
照射するという方式のいずれの方式でも良い。
The photocatalytic oxidation section having the photooxidation tank 7 of the present invention is a method of irradiating light from the free surface of the tank in which the water to be treated in which the photocatalyst is suspended and dispersed is stored. A method of irradiating the water to be treated in which the flowing photocatalyst is suspended and dispersed with light from around the pipe, or a method of irradiating the water to be treated in a tank containing the water to be treated in which the photocatalyst is suspended and dispersed. Either method may be used.

【0009】前記したように、本発明の活性炭処理水を
さらに光触媒の存在で光照射して、残存していたCOD
及び色度成分を酸化分解して完全に除去するという処理
方法では、以下のような大きな利点がある。すなわち、
従来の膜分離プロセスにおけるように、活性炭処理が最
終処理である場合には、活性炭になおCOD処理能力が
残存していても、処理水のCODが、放流水質基準値を
越えると、活性炭を再生処理しなければならず、活性炭
の吸着能力を十分使い切る前に再生処理しなければなら
なくなるという不利益があった。しかし本発明では、活
性炭処理水に光触媒の存在で光照射すると、活性炭処理
水に残存するCOD及び色度成分を光酸化処理するので
活性炭処理水が放流水質基準値を越えていても活性炭を
再生処理することなく活性炭への通水を続けることがで
きる。この結果、活性炭のCOD処理能力を最大限に使
い切ることができ、活性炭の再生処理頻度が大幅に減少
する。
As described above, the activated carbon-treated water of the present invention is further irradiated with light in the presence of a photocatalyst, and the remaining COD
The treatment method of oxidizing and decomposing the chromaticity component to completely remove it has the following great advantages. That is,
When the activated carbon treatment is the final treatment as in the conventional membrane separation process, the activated carbon is regenerated when the COD of the treated water exceeds the discharge water quality standard value even if the activated carbon still has the COD treatment capacity. It had to be treated, and had the disadvantage that it had to be regenerated before the adsorption capacity of the activated carbon was fully used up. However, in the present invention, when the activated carbon-treated water is irradiated with light in the presence of a photocatalyst, COD and chromaticity components remaining in the activated carbon-treated water are photooxidized, so that the activated carbon is regenerated even if the activated carbon-treated water exceeds the discharge water quality standard value. Water can be continuously passed through the activated carbon without treatment. As a result, the COD treatment capacity of activated carbon can be used up to the maximum, and the frequency of regeneration treatment of activated carbon is greatly reduced.

【0010】本発明者らの実験によれば、し尿系汚水か
ら通常の活性汚泥処理法によってBODを除去した後、
窒素成分は除去することなく、無機凝集剤を添加してリ
ン酸イオンとCODを含むSSを凝集させた凝集処理水
について光触媒の存在で活性光で照射すると、凝集処理
水中には多量のアンモニア性窒素が残留しているため光
触媒酸化反応がアンモニア性窒素の硝酸化反応を優先的
に生起させるため、COD除去効果が著しく阻害される
ことが認められた。
According to the experiments conducted by the present inventors, after removing BOD from the night soil sewage by a usual activated sludge treatment method,
When the aggregated water obtained by adding an inorganic aggregating agent and aggregating SS containing phosphate ions and COD without irradiating nitrogen components is irradiated with active light in the presence of a photocatalyst, a large amount of ammoniacal It was found that the photocatalytic oxidation reaction preferentially causes the nitrification reaction of ammoniacal nitrogen due to the residual nitrogen, and thus the COD removal effect is significantly impaired.

【0011】また、し尿系汚水を生物学的硝化脱窒素処
理した処理水に対して、直ちに光触媒の存在で光酸化処
理すると、生物処理水中のなんらかの物質が光触媒の存
在での光酸化作用を著しく妨害するため光酸化作用が著
しく阻害される。これに対して生物学的硝化脱窒素処理
した処理水に無機凝集剤を添加して凝集させた凝集処理
水をさらに活性炭処理すると前記光酸化作用を著しく妨
害した阻害因子が除去され、所期のCOD除去効果が得
られることが見出された。恐らく生物処理水中の(光触
媒の存在下の光酸化に対する)阻害物質が無機凝集剤に
より凝集除去されるリン酸イオン、重炭酸イオンである
か、活性炭処理によって吸着除去される高分子量有機物
質と推定される。以上の知見から、光触媒の存在で光照
射して行う光酸化作用を効果的に行うには、し尿系汚水
を生物学的硝化脱窒素処理により脱窒素してアンモニア
性窒素を除去し、さらに凝集処理と活性炭吸着処理した
処理水とすることが重要であることが判明した。
Further, when treated water obtained by biologically nitrifying and denitrifying biological wastewater is immediately photooxidized in the presence of a photocatalyst, some substance in the biologically treated water remarkably exerts a photooxidation action in the presence of the photocatalyst. Since it interferes, the photo-oxidation effect is significantly inhibited. On the other hand, when the aggregated treated water obtained by adding an inorganic flocculant to the treated water subjected to biological nitrification and denitrification is further treated with activated carbon, the inhibitor that significantly interferes with the photooxidation action is removed, and It was found that a COD removing effect was obtained. Probably the inhibitor in photo-treated water (for photooxidation in the presence of photocatalyst) is phosphate ion or bicarbonate ion that is aggregated and removed by the inorganic coagulant, or high molecular weight organic substance that is adsorbed and removed by activated carbon treatment. To be done. From the above findings, in order to effectively perform the photooxidation effect of irradiating with light in the presence of a photocatalyst, human wastewater is denitrified by biological nitrification and denitrification to remove ammoniacal nitrogen, and then aggregated. It has been found that it is important to use treated water that has been treated and treated with activated carbon adsorption.

【0012】さらに、本発明者らの実験によれば、し尿
系汚水を生物学的硝化脱窒素処理により脱窒素してアン
モニア性窒素を除去し、さらに凝集処理と活性炭吸着処
理した処理水に残留するCOD成分の光触媒の存在で光
照射して行う光酸化作用によるCODの除去速度はかな
り速く、数時間の接触時間でCODは完全に除去される
ことが判明した。光照射のための光源としては紫外線照
射ランプが適しているが、消費電力、ランプ交換費用な
どのコストが多額になるので、この処理を極力低コスト
で行うために光酸化槽に被処理水を注入し、日中は被処
理水の表面に太陽光線を照射し、夜間のみ人工光線を照
射する方法が好ましい。例えば、し尿処理施設の屋上、
または屋外に水路を設け、太陽光を照射しながら活性炭
処理水が数時間滞留できるようにし、光触媒反応を進行
させるようにする。池の水深はあまり深くすると太陽光
の照射不足を招くので50cm以下とする。また、し尿
系汚水に多量の希釈水を添加して生物処理すると光触媒
反応槽の容量が大きくなりすぎ実施困難になるので無希
釈生物処理することが望ましい。
Further, according to the experiments conducted by the present inventors, the human wastewater was denitrified by biological nitrification and denitrification to remove ammoniacal nitrogen, and was further retained in the treated water after coagulation and activated carbon adsorption. It was found that the COD removal rate by photooxidation effected by irradiation with light in the presence of a photocatalyst of the COD component was considerably high, and that the COD was completely removed by a contact time of several hours. An ultraviolet irradiation lamp is suitable as a light source for light irradiation, but since the cost such as power consumption and lamp replacement cost is large, in order to perform this treatment at the lowest possible cost, the water to be treated is placed in the photooxidation tank. A method of injecting, irradiating the surface of the water to be treated with sun rays during the day, and irradiating with artificial rays only at night is preferable. For example, on the roof of a night soil treatment facility,
Alternatively, a water channel is provided outdoors so that the activated carbon-treated water can stay for several hours while irradiating sunlight to allow the photocatalytic reaction to proceed. If the water depth of the pond is too deep, the irradiation of sunlight will be insufficient. Further, if a large amount of dilution water is added to human waste-based wastewater for biological treatment, the capacity of the photocatalytic reaction tank becomes too large and it becomes difficult to carry out the biological treatment.

【0013】光触媒の形状としては微粒子状、粒状担体
に光触媒を付着させたもの、板状もしくは棒状物の表面
に光触媒を付着させたものなど公知のものが利用でき
る。光触媒を担体に固定化すると、光触媒の表面積が減
少し、反応速度が減少することがあるので、その場合は
光触媒を粒径が0.1〜3μmの範囲の微粒子のまま水
中に懸濁して使用するのが良い。光触媒微粒子は、凝集
沈殿、ろ過、UF膜などによるろ過などの固液分離手段
により分離回収して再使用するのが良い。微粒子状光触
媒の懸濁濃度は、1000〜5000mg/リットル程
度で良い。光触媒の経時的劣化はほとんど認められない
が、安全のために年間10%程度の補給ができるように
しておくのが好ましい。
As the shape of the photocatalyst, there can be used known ones such as fine particles, those having a photocatalyst attached to a granular carrier, and those having a photocatalyst attached to the surface of a plate-like or rod-like material. When the photocatalyst is immobilized on the carrier, the surface area of the photocatalyst may be reduced and the reaction rate may be reduced. In that case, use the photocatalyst as it is suspended in water as fine particles having a particle size of 0.1 to 3 μm. Good to do. It is preferable that the photocatalyst fine particles are separated and collected by a solid-liquid separation means such as aggregation / precipitation, filtration, or filtration with a UF membrane, and reused. The suspension concentration of the particulate photocatalyst may be about 1000 to 5000 mg / liter. Almost no deterioration of the photocatalyst with time is observed, but for safety, it is preferable to be able to supply about 10% per year.

【0014】[0014]

【実施例】【Example】

実施例1 し尿を無希釈で生物学的硝化脱窒素した処理水(以下単
に生物処理水という。)を静岡県F市の実施設から採取
し、本発明の処理装置を用い本発明の処理法に従って試
験をおこない、本発明の効果を検証した。すなわち、C
OD330mg/リットル、色度1800の水質の生物
処理水に塩化第2鉄を1500mg/リットル添加して
凝集分離してCOD値62mg/リットルの凝集分離水
を得た。さらに前記凝集分離水を活性炭処理してCOD
値12mg/リットルの活性炭処理水を得た。この活性
炭処理水に酸化チタン光触媒〔富士チタン(株)製品〕
を3000mg/リットル添加し、活性炭処理水中に懸
濁させ、夏期の晴天時、屋外に設置した水深50cmの
槽に曝気しながら3時間滞留させた後、公称分画分子量
10000のUF膜〔日東電工(株)製〕で酸化チタン
光触媒微粒子を分離した。この膜透過水の水質は、CO
D値で0mg/リットル、色度ゼロであった。
Example 1 Treated water obtained by biologically nitrifying and denitrifying human sewage undiluted (hereinafter simply referred to as “biological treated water”) was collected from a facility in F City, Shizuoka Prefecture, and the treatment method of the present invention was performed using the treatment apparatus of the present invention. According to the test, the effect of the present invention was verified. That is, C
Ferric chloride (1500 mg / liter) was added to water-treated biologically-treated water having an OD of 330 mg / liter and a chromaticity of 1800 to perform coagulation separation to obtain coagulation-separated water having a COD value of 62 mg / liter. Further, the coagulated and separated water is treated with activated carbon to obtain COD.
Activated carbon-treated water having a value of 12 mg / liter was obtained. Titanium oxide photocatalyst [Product of Fuji Titanium Co., Ltd.]
3000 mg / liter was added and suspended in activated carbon-treated water and allowed to stay for 3 hours while aerating in a tank with a water depth of 50 cm installed outdoors during fine weather in summer, and then a UF membrane with a nominal molecular weight cutoff of 10000 [Nitto Denko Titanium oxide photocatalyst fine particles were separated according to the method of manufactured by K.K. The quality of this membrane permeate is CO
The D value was 0 mg / liter and the chromaticity was zero.

【0015】また、前記凝集分離水を粒状活性炭吸着塔
によりSV2で通水し処理したところ20日経過後の活
性炭処理水はCODが18mg/リットルに悪化した。
このCODは放流水質基準CODの15mg/リットル
以下より悪化しているので、活性炭は20日間毎に再生
する必要があるということである。一方、活性炭処理水
を前記光触媒酸化処理したところ粒状活性炭吸着塔に通
水日数55日間後、この時点で活性炭処理水のCODは
31mg/リットルであったが、光触媒酸化処理水のC
ODは12mg/リットルであり、放流水質基準以下の
値であった。従って、本発明によれば活性炭の再生頻度
を約1/3に減少することが可能である。
Further, when the coagulated and separated water was treated with SV2 through a granular activated carbon adsorption tower for treatment, COD of the activated carbon treated water after 20 days deteriorated to 18 mg / liter.
Since this COD is worse than the standard COD of discharged water of 15 mg / liter or less, it means that the activated carbon needs to be regenerated every 20 days. On the other hand, when the activated carbon-treated water was subjected to the photocatalytic oxidation treatment, after passing through the granular activated carbon adsorption tower for 55 days, the COD of the activated carbon-treated water was 31 mg / liter at this point.
The OD was 12 mg / liter, which was a value equal to or lower than the discharged water quality standard. Therefore, according to the present invention, the regeneration frequency of activated carbon can be reduced to about 1/3.

【0016】比較例1 前記実施例1のCOD330mg/リットル、リン酸イ
オン濃度432mg/リットルの水質の生物処理水に直
接酸化チタン光触媒を3000mg/リットル添加し、
夏期の晴天時、屋外に設置した水深50cmの槽に曝気
しながら3日間滞留させた後膜分離した膜透過水のCO
Dを測定した。膜透過水のCOD値は195mg/リッ
トルであり、COD除去率は少なかった。前記生物処理
水は光酸化処理する前に、凝集剤を添加し凝集分離処理
し、活性炭吸着処理した後光酸化処理することが重要で
あることがわかる。
Comparative Example 1 A titanium oxide photocatalyst was added at 3000 mg / liter directly to the water-treated biologically treated water having a COD of 330 mg / liter and a phosphate ion concentration of 432 mg / liter as in Example 1,
When the weather is fine in the summer, the CO of the membrane permeated water that has been separated by membrane after aeration for 3 days while aerating in a tank with a water depth of 50 cm installed outdoors
D was measured. The COD value of the membrane permeated water was 195 mg / liter, and the COD removal rate was small. It can be seen that it is important to add a flocculant to the biologically treated water before the photooxidation treatment, to perform the coagulation separation treatment, the activated carbon adsorption treatment, and then the photooxidation treatment.

【0017】比較例2 前記実施例1のCOD330mg/リットル、リン酸イ
オン濃度432mg/リットルの水質の生物処理水に無
機凝集剤を添加し、凝集フロックを生成させ、それを膜
分離した凝集処理水に酸化チタン光触媒を3000mg
/リットル添加し、夏期の晴天時、屋外に設置した水深
50cmの槽に曝気しながら1日間滞留させた後膜分離
した膜透過水のCODは15mg/リットルとなり放流
水質基準CODにかろうじて満足する値であったが、光
触媒酸化槽における滞留時間が長すぎて実用的でなかっ
た。従って、前記凝集処理水を活性炭吸着処理し活性炭
処理水を光酸化処理することが重要であると認められ
る。
Comparative Example 2 Inorganic flocculant was added to biologically treated water of water quality of COD of 330 mg / liter and phosphate ion concentration of 432 mg / liter of Example 1 to produce floc, and the flocculated water was subjected to membrane separation. 3000mg of titanium oxide photocatalyst
The COD of the membrane permeated water after addition of 1 / liter of the permeated water was 15 mg / liter after being allowed to stay for 1 day while aerating in a tank with a water depth of 50 cm installed outdoors during fine weather in the summer, a value that is barely satisfying the COD standard for discharged water. However, the residence time in the photocatalytic oxidation tank was too long to be practical. Therefore, it is recognized that it is important to subject the coagulated treated water to the activated carbon adsorption treatment and the activated carbon treated water to the photooxidation treatment.

【0018】[0018]

【発明の効果】【The invention's effect】

1.従来は不可能であったCODがゼロかゼロに近い、
COD成分の極めて少ない放流水を得ることができる。 2.活性炭吸着処理に使用する活性炭の再生頻度を大幅
に減少させることができる。 3.生物処理水を無機凝集剤による凝集処理、活性炭に
よる吸着処理をすることにより、光触媒酸化作用を妨害
する物質を除去することができ、光触媒酸化作用を効率
的に発揮させることが可能である。
1. COD, which was impossible in the past, is zero or close to zero,
It is possible to obtain discharged water with a very small amount of COD components. 2. The regeneration frequency of the activated carbon used for the activated carbon adsorption treatment can be greatly reduced. 3. By subjecting the biologically treated water to an aggregating treatment with an inorganic aggregating agent and an adsorbing treatment with an activated carbon, it is possible to remove a substance that interferes with the photocatalytic oxidation action, and it is possible to efficiently exhibit the photocatalytic oxidation action.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のし尿系汚水処理の装置構成及び処理工
程の1例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a device configuration and a treatment process of human waste system wastewater treatment of the present invention.

【符号の説明】[Explanation of symbols]

1 脱窒素槽 2 硝化槽 3 膜分離器 4 凝集分離槽 5 膜分離器 6 活性炭処理槽 7 光酸化槽 8 し尿系汚水 9 生物処理分離水 10 凝集分離水 11 凝集剤 12 放流水 1 denitrification tank 2 Nitrification tank 3 membrane separator 4 coagulation separation tank 5 membrane separator 6 Activated carbon treatment tank 7 Photo-oxidation tank 8 night soil sewage 9 Biologically treated separated water 10 Coagulation separation water 11 Flocculant 12 Discharged water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 9/00 504 C02F 9/00 504A 1/28 ZAB 1/28 ZABD 1/32 ZAB 1/32 ZAB 1/52 ZAB 1/52 ZABE 3/34 101 3/34 101A 101B (56)参考文献 特開 平9−10799(JP,A) 特開 平9−10797(JP,A) 特開 平2−172597(JP,A) 特開 昭63−214398(JP,A) 特開 昭57−10393(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 9/00 502 C02F 3/34 101 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C02F 9/00 504 C02F 9/00 504A 1/28 ZAB 1/28 ZABD 1/32 ZAB 1/32 ZAB 1/52 ZAB 1 / 52 ZABE 3/34 101 3/34 101A 101B (56) Reference JP-A-9-10799 (JP, A) JP-A-9-10797 (JP, A) JP-A-2-172597 (JP, A) Kai 63-214398 (JP, A) JP-A-57-10393 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 9/00 502 C02F 3/34 101

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 し尿系汚水を生物学的硝化脱窒素処理
し、無機凝集剤により凝集分離した後分離水を活性炭処
理し、該活性炭処理水を光触媒と接触させながら光照射
することを特徴とするし尿系汚水の高度処理方法。
1. A method of biologically nitrifying and denitrifying human waste sewage, coagulating and separating it with an inorganic coagulant, treating the separated water with activated carbon, and irradiating the activated carbon-treated water with a photocatalyst for irradiation. Advanced treatment method for sewage system wastewater.
【請求項2】 少なくとも、脱窒素槽及び硝化槽よりな
る生物学的硝化脱窒素処理装置、凝集分離槽及び活性炭
処理槽を配備してなるし尿系汚水処理装置において、活
性炭処理槽の後に、光触媒の存在において光照射する光
触媒酸化部を配備することを特徴とするし尿系汚水処理
装置。
2. A biological sewage treatment apparatus comprising at least a biological nitrification denitrification treatment device comprising a denitrification tank and a nitrification tank, a coagulation separation tank and an activated carbon treatment tank, wherein a photocatalyst is provided after the activated carbon treatment tank. The human waste sewage treatment apparatus, which is provided with a photocatalytic oxidation unit that irradiates light in the presence of the.
JP33706395A 1995-12-25 1995-12-25 Advanced treatment method and treatment equipment for human wastewater Expired - Fee Related JP3420869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33706395A JP3420869B2 (en) 1995-12-25 1995-12-25 Advanced treatment method and treatment equipment for human wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33706395A JP3420869B2 (en) 1995-12-25 1995-12-25 Advanced treatment method and treatment equipment for human wastewater

Publications (2)

Publication Number Publication Date
JPH09174096A JPH09174096A (en) 1997-07-08
JP3420869B2 true JP3420869B2 (en) 2003-06-30

Family

ID=18305086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33706395A Expired - Fee Related JP3420869B2 (en) 1995-12-25 1995-12-25 Advanced treatment method and treatment equipment for human wastewater

Country Status (1)

Country Link
JP (1) JP3420869B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782576B2 (en) * 2005-03-25 2011-09-28 シャープ株式会社 Wastewater treatment equipment
EP2784031A1 (en) * 2013-03-25 2014-10-01 Efacec Engenharia E Sistemas, S.A. Method of treating leachate, phototreatment reactors and respective use
CN115259502A (en) * 2022-08-26 2022-11-01 江苏连昌环保设备有限公司 Fecal sewage treatment system and treatment method thereof

Also Published As

Publication number Publication date
JPH09174096A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP3267459B2 (en) Organic wastewater treatment method
CN1931750B (en) Petrochemical effluent treating and reusing process
JP3420869B2 (en) Advanced treatment method and treatment equipment for human wastewater
JP3801004B2 (en) Method and apparatus for treating organic wastewater
JPH10277568A (en) Treatment of organic matter-containing waste water
JP3410865B2 (en) Treatment method of human wastewater
JPH06134469A (en) Method for treating silicon cutting waste liquid
JP3410866B2 (en) Treatment method of human wastewater
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPH0687942B2 (en) Biological deodorization method for odorous components
JPH03270800A (en) Treatment of organic sewage
JP4620302B2 (en) Organic wastewater treatment method
JPH1066997A (en) Treating device for high concentration chlorine-containing waste water
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH0651199B2 (en) Organic wastewater treatment method
JP3392298B2 (en) Wastewater treatment method
JPH0729115B2 (en) Treatment method for human waste
JP3178975B2 (en) Water treatment method
JP2554687B2 (en) Biological nitrogen removal method
JPH05277475A (en) Treatment method for water containing organic substance
JP3139337B2 (en) Method and apparatus for treating liquid waste containing high COD and high nitrogen compounds
JPH0729117B2 (en) Treatment method for human waste
JPH0567359B2 (en)
JPH0471699A (en) Method for purifying water
JPH10180298A (en) Treatment of waste water and waste water treating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees