JP3419176B2 - Vehicle drive system - Google Patents

Vehicle drive system

Info

Publication number
JP3419176B2
JP3419176B2 JP27765495A JP27765495A JP3419176B2 JP 3419176 B2 JP3419176 B2 JP 3419176B2 JP 27765495 A JP27765495 A JP 27765495A JP 27765495 A JP27765495 A JP 27765495A JP 3419176 B2 JP3419176 B2 JP 3419176B2
Authority
JP
Japan
Prior art keywords
rotor
vehicle
stator
torque
prime mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27765495A
Other languages
Japanese (ja)
Other versions
JPH09121404A (en
Inventor
彰男 安田
瀬口  正弘
慶一郎 伴在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27765495A priority Critical patent/JP3419176B2/en
Priority to US08/675,129 priority patent/US5744895A/en
Publication of JPH09121404A publication Critical patent/JPH09121404A/en
Application granted granted Critical
Publication of JP3419176B2 publication Critical patent/JP3419176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は車両用駆動装置に関
し、詳しくは原動機の発生動力で駆動されるとともに、
前記発生動力から転換された電力によっても車輪軸を駆
動するハイブリッド形式の車両の駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle drive device, and more specifically, it is driven by power generated by a prime mover.
The present invention relates to a hybrid-type vehicle drive device that drives a wheel shaft also by electric power converted from the generated power.

【0002】[0002]

【従来の技術】特開昭60−1069号公報は、原動機
の発生動力から転換された電力で車輪軸を駆動するハイ
ブリッド形式の車両用駆動装置を開示している。すなわ
ち、この車両用駆動装置は、車両に搭載される原動機の
駆動軸に機械的に連結される発電機と、車輪軸を駆動す
る電動機と、前記発電機及び電動機と電力授受する蓄電
手段とを有し、更に、電動機を制動時に発電制動させる
ものである。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 60-1069 discloses a hybrid type vehicle drive device for driving a wheel shaft by electric power converted from power generated by a prime mover. That is, the vehicle drive device includes a generator mechanically coupled to a drive shaft of a prime mover mounted on a vehicle, an electric motor that drives a wheel shaft, and a power storage unit that exchanges electric power with the generator and the electric motor. In addition, the electric motor is dynamically braked during braking.

【0003】しかしながら、この様なシステムでは駆動
用にかかるエネルギーを全て電力系と走行発電機及び駆
動用モータを介して出力するので、これらの各システム
要素の容量が大きくなり、システムが大型化となる。
又、各要素での変換効率が重複されていくのでシステム
効率が悪くなるという問題がある。そこで特開昭47−
31773号公報で述べられているように、原動機の出
力軸を発電機の回転子に機械的に連結するとともに、前
記発電機の固定子を回転自在に保持し、かつ前記発電機
の固定子を、他の電動機の回転子に機械的に連結し、か
つ前記回転子を車両の負荷側、すなわち駆動輪にいたる
動力伝達軸に機械的に連結するという構造により、車両
の駆動力の一部を直接駆動輪に伝えつつ内燃機関を略最
高効率点にて定常運転するという機構が提案されてい
る。
However, in such a system, all the energy for driving is output through the electric power system, the traveling generator and the driving motor, so that the capacity of each of these system elements becomes large and the system becomes large. Become.
Further, since the conversion efficiency of each element is duplicated, there is a problem that the system efficiency deteriorates. Therefore, JP-A-47-
As described in Japanese Patent No. 317773, the output shaft of a prime mover is mechanically connected to a rotor of a generator, the stator of the generator is rotatably held, and the stator of the generator is fixed. , A part of the driving force of the vehicle is mechanically connected to the rotor of another electric motor, and the rotor is mechanically connected to the load side of the vehicle, that is, to the power transmission shaft reaching the drive wheels. A mechanism has been proposed in which the internal combustion engine is steadily operated at approximately the highest efficiency point while being directly transmitted to the drive wheels.

【0004】また、本願出願人は、特願平7ー1417
44号に回転子と固定子との間に第2の回転子を設け、
第2の回転子の両側にそれぞれ磁気回路を形成すること
で、2つの電動機を構成し、内燃機関と駆動輪との間を
この2つの電動機を介して接続し、各電動機を適宜制御
して駆動輪のトルクと回転数を制御するものを提案して
いるが、第2の回転子には磁石を設け、第1の回転子に
は巻き線を施して、スリップリングを介して第1の回転
子に電力を授受可能な形に構成されている。
Further, the applicant of the present application filed Japanese Patent Application No. 7-1417.
No. 44 is equipped with a second rotor between the rotor and the stator,
By forming magnetic circuits on both sides of the second rotor, two electric motors are formed, the internal combustion engine and the drive wheels are connected via these two electric motors, and each electric motor is controlled appropriately. Although the one that controls the torque and the rotational speed of the drive wheel is proposed, the second rotor is provided with a magnet, the first rotor is wound, and the first rotor is provided with a slip ring. It is configured so that electric power can be transferred to and from the rotor.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような構
成では、第1の回転子の巻線からスリップリングまでの
配線をシャフト軸内を経由して第2の回転子の支持部の
外まで引き出し、かつ第2の回転子のハウジングの外側
にスリップリングを構成する必要があり、第1の回転子
のシャフト軸をある程度太くする必要があるとともに、
軸方向が長くなり装置全体が大型化してしまうといった
問題がある。
However, in such a configuration, the wiring from the winding of the first rotor to the slip ring is routed through the shaft axis to the outside of the support portion of the second rotor. It is necessary to form a slip ring on the outside of the housing of the second rotor, and to make the shaft axis of the first rotor thick to some extent, and
There is a problem that the axial direction becomes long and the entire device becomes large.

【0006】そこで本発明は内燃機関の駆動力を発電機
を介して電力に変換する時、全てを電力に変換しない
で、回転エネルギーを一部、ダイレクトに走行駆動側へ
伝達する駆動装置において、さらにその構造を小型、軽
量化する事を目的とする。
In view of the above, the present invention relates to a drive device for directly transmitting a part of rotational energy to a traveling drive side without converting all of the drive power of an internal combustion engine into electric power through a generator. Further, it aims to reduce the size and weight of the structure.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1乃至7記載の構成によれば、原動機
の出力を入力とし、連結される負荷出力に対し所定の駆
動トルク及び回転数を出力制御する車両用駆動装置にお
いて、第1の回転子の外周に前記第2の回転子を同心円
に配置し、第2の回転子の外周に固定子を配置し、第
1の回転子に永久磁石を設け、第2の回転子に巻き線を
施すことにより前記第1の磁気回路を構成し、前記巻線
に対しスリップリングを介して前記第2の回転子の巻き
線に給電、または受電し、第2の回転子の前記固定子に
対向する外周部に永久磁石を配置して前記固定子ととも
に前記第2の磁気回路を構成し、さらに、前記巻線と該
永久磁石との間に円環状の非磁性体が設けることを特徴
とするものであり、このような構成とすることにより、
原動機の駆動力による、第1及び第2の回転子は相対的
に回転駆動され、第2の回転子は、第1の磁気回路によ
り第1の回転子との間で相互電磁作用を発生させるとと
もにハウジングに固定された固定子との間で第2の磁気
回路により相互電磁作用を引き起こす。そして原動機の
回転力に対し、第1の回転電機で回転数を、第2の回転
電機でトルクを負荷側の要求値に対応させる様これらの
相互電磁作用により発生する駆動トルク、回転数を制御
して負荷出力を駆動制御する。
The present invention achieves the above object.
Therefore, according to the configuration of claims 1 to 7, in the vehicle drive device that receives the output of the prime mover as an input and controls the output of the predetermined drive torque and the rotational speed with respect to the connected load output, the first rotation is performed. The second rotor is concentrically arranged on the outer circumference of the child, the stator is arranged on the outer circumference of the second rotor, the permanent magnet is provided on the first rotor, and the second rotor is wound. The first magnetic circuit is configured by applying the electric current to the winding of the second rotor through a slip ring with respect to the winding to supply or receive power, and to the stator of the second rotor.
Permanent magnets are arranged on the opposite outer peripheral portions, and the stator and
The second magnetic circuit, and the winding and
An annular non-magnetic material is provided between the permanent magnet and the permanent magnet . With such a configuration ,
The first and second rotors are driven to rotate relative to each other by the driving force of the prime mover, and the second rotor causes mutual electromagnetic action with the first rotor by the first magnetic circuit. At the same time, a mutual electromagnetic action is caused between the stator fixed to the housing and the second magnetic circuit. Then, with respect to the rotational force of the prime mover, the drive torque and the rotational speed generated by these mutual electromagnetic actions are controlled so that the rotational speed of the first rotating electric machine and the torque of the second rotating electric machine correspond to the required values on the load side. Drive control of the load output.

【0008】このとき、第1の回転子は永久磁石により
構成されているため外部から電力を受けることなく界磁
が形成されるため第1の回転子軸にスリップリングを設
ける必要がなくなり、シャフト軸を小径化できるととも
に、軸方向の長さも最小限とすることができ、装置全体
を小型化することが可能となる。また、円環状の非磁性
体を前記巻線と該永久磁石との間に設けることで相互の
磁界の干渉を避けることができるので、永久磁石と巻線
との間を狭めることができ、回転子の外径を小さくする
ことで、装置全体を小型化することが可能となる。請求
項2の構成によれば、前記第1の回転子と前記ハウジン
グとの相対角度を検出する回転角度センサと前記第2の
回転子と前記ハウジングとの相対角度を検出する回転角
度センサを、前記第1の回転子の回転軸に同軸に縦列配
置し、かつ前記第2の回転子に前記両センサと対向する
側にスリップリングを形成することで、中心軸方向での
構成を簡素化することができる。
At this time, the first rotor is made of a permanent magnet.
Since it is configured, it does not receive electric power from the outside
Since a slip ring is formed on the first rotor shaft,
There is no need to screw it, and the shaft axis can be made smaller.
Also, the axial length can be minimized, and the entire device can be
Can be miniaturized. In addition, the annular non-magnetic
By providing a body between the winding and the permanent magnet,
Since magnetic field interference can be avoided, permanent magnets and windings
And the outer diameter of the rotor can be reduced.
As a result, the entire device can be downsized. According to the configuration of claim 2, a rotation angle sensor that detects a relative angle between the first rotor and the housing, and a rotation angle sensor that detects a relative angle between the second rotor and the housing, The configuration in the central axis direction is simplified by arranging the first rotor and the second rotor in a column coaxially in parallel with each other and forming a slip ring on the side facing the both sensors. be able to.

【0009】請求項3の構成によれば、蓄電池の残存エ
ネルギーがあらかじめ定めた下限値より小さい時は、原
動機を運転することで、適宜必要な時に蓄電池を充電す
ることが可能となる。請求項4の構成によれば、従来の
車両に不可欠であったリバースギヤを用いることなく駆
動装置の制御により車両を後進(後退)させることが可
能となる。
According to the third aspect of the present invention , when the residual energy of the storage battery is smaller than the predetermined lower limit value, the prime mover is operated so that the storage battery can be charged as needed. According to the configuration of claim 4 , the vehicle can be moved backward (backward) by the control of the drive device without using the reverse gear which is indispensable in the conventional vehicle.

【0010】請求項5の構成によれば、駆動装置により
車両を駆動させることにより、停止中の原動機の回転軸
を回転させて、いわゆる押しがけ始動を実現することが
可能であり、スタータモータを搭載する必要がなくなる
とともに、原動機の始動タイミングも適宜制御装置によ
り選択できるため、始動時の排ガスを最小にすることが
できる。
According to configuration of claim 5, by driving the vehicle by the drive unit to rotate the rotary shaft of the prime mover is stopped, it is possible to realize a so-called push start starter, the starter motor Since it is not necessary to mount the engine, and the start timing of the prime mover can be appropriately selected by the control device, exhaust gas at the start can be minimized.

【0011】請求項7の構成によれば、第1の回転子と
第2の回転子によって形成される回転電機をスタータモ
ータとして用いて駆動制御することができ、スタータモ
ータを不要とすることができる。さらに装置本体の前後
に同軸上に動力伝達軸を形成する事で、FR車に適した
配置構成を実現できるものである。
According to the structure of claim 7 , the rotary electric machine formed by the first rotor and the second rotor can be used as the starter motor for drive control, and the starter motor is not required. it can. Furthermore, by forming a power transmission shaft coaxially in front of and behind the main body of the apparatus, it is possible to realize an arrangement configuration suitable for FR vehicles.

【0012】また、トルク及び回転数が適宜連続的に可
変制御できるため従来の車両が必ず必要としていた車両
用発電機および変速装置を不要とすることが可能とな
る。
Further, since the torque and the rotational speed can be continuously and continuously variably controlled, it becomes possible to dispense with the vehicle generator and the transmission which are required in the conventional vehicle.

【0013】[0013]

【実施の形態】本発明の実施の形態を図に基づいて詳説
する。図1に車両全体のシステム図を示す。100はエ
ンジン(以下E/Gという)であり、1000はE/G
100の出力を入力として受け、駆動輪700等により
構成される負荷出力(走行駆動出力)に対応出来る様に
駆動トルク及び回転数の過不足分を調整して出力するト
ルク−回転数(speed)コンバータとして機能する
駆動装置であり、内部に入出力の回転数を調整する回転
数調整部1200、すなわち第1の磁気回路と、入出力
のトルクを調整するトルク調整部1400、すなわち第
2の磁気回路を有する。このトルク−回転数(spee
d)コンバータ1000を以下略してT−Sコンバータ
1000と呼ぶ。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a system diagram of the entire vehicle. 100 is an engine (hereinafter referred to as E / G), 1000 is E / G
Torque-rotation speed (speed) that receives the output of 100 as an input and adjusts and outputs the drive torque and the excess or deficiency of the rotation speed so as to correspond to the load output (travel drive output) configured by the drive wheels 700 and the like. A drive device that functions as a converter, and internally has a rotation speed adjustment unit 1200 that adjusts the input and output rotation speed, that is, a first magnetic circuit, and a torque adjustment unit 1400 that adjusts input and output torque, that is, a second magnetic circuit. It has a circuit. This torque-revolution (speed)
d) The converter 1000 is hereafter abbreviated as the TS converter 1000.

【0014】110はE/G100とT−Sコンバータ
1000間に設けられた、E/G100の出力軸とフラ
イホイールおよび回転ダンパーである。120は車両の
前輪側に取り付けられた車輪速度センサである。130
はシフトレバーの位置を検出するシフトレバー位置検出
センサである。140はアクセル踏量センサである。
Reference numeral 110 denotes an output shaft of the E / G 100, a flywheel, and a rotary damper provided between the E / G 100 and the TS converter 1000. Reference numeral 120 denotes a wheel speed sensor attached to the front wheel side of the vehicle. 130
Is a shift lever position detection sensor for detecting the position of the shift lever. 140 is an accelerator pedal sensor.

【0015】150はブレーキ踏量センサである200
はT−Sコンバータ1000の回転数調整部1200に
三相交流電力を印加するインバータ、400はT−Sコ
ンバータ1000のトルク調整部1400に三相交流電
力を印加するインバータであり、それぞれのインバータ
を制御し、かつ各センサ等からの信号を授受するエンジ
ン制御ECU500が搭載されている。600は車両用
化学バッテリー(蓄電池)である。バッテリ600に
は、その残存エネルギー状態を検知する検知手段610
が設けられており、その状態をエンジン制御ECU50
0に知らせる。、前記両インバータ200、400は三
相ブリッジ回路を有し、直流電力よりPWM制御などの
手法を用いて任意の周波数の交流電力を作ることが可能
である。
Reference numeral 150 is a brake pedal sensor 200
Is an inverter that applies three-phase AC power to the rotation speed adjustment unit 1200 of the T-S converter 1000, and 400 is an inverter that applies three-phase AC power to the torque adjustment unit 1400 of the T-S converter 1000. An engine control ECU 500 that controls and sends and receives signals from each sensor and the like is mounted. Reference numeral 600 is a vehicle chemical battery (storage battery). The battery 600 has a detecting means 610 for detecting the state of residual energy.
Is provided and the state thereof is controlled by the engine control ECU 50.
Inform 0. The inverters 200 and 400 each have a three-phase bridge circuit and can generate AC power of arbitrary frequency from DC power by using a method such as PWM control.

【0016】160は差動歯車機構であり、駆動力を左
右に分配する機能を有する。170は駆動輪である。
尚、この実施の形態においては本発明の駆動制御装置を
FR車に搭載した構成としている。T−Sコンバータ1
000の外観は通常のモータ同様、円筒形のハウジング
300により形成されており、両端面を構成するハウジ
ングプレート302、303、および回転電機を冷却す
る通路を形成するシリンダハウジング301、304か
ら構成される。ハウジングプレート302、303の中
央からは、回転駆動されるシャフトが突出している。各
シャフト1015、1050の先端はスプライン101
5a、1050aが施されており、回転ダンパー110
や車輪軸180に形成されたスプライン溝と結合される
ので、T−Sコンバータ1000はE/G100の回転
力を回転ダンパー110を介して伝達され、また車輪軸
180に回転力を伝達することが可能である。
Reference numeral 160 denotes a differential gear mechanism, which has a function of distributing the driving force to the left and right. 170 is a drive wheel.
In this embodiment, the drive control device of the present invention is mounted on an FR vehicle. TS converter 1
The external appearance of 000 is formed by a cylindrical housing 300 like a normal motor, and is composed of housing plates 302 and 303 forming both end surfaces and cylinder housings 301 and 304 forming passages for cooling the rotating electric machine. . A shaft driven to rotate projects from the center of the housing plates 302 and 303. The tip of each shaft 1015, 1050 is a spline 101.
5a and 1050a are applied to the rotary damper 110.
Since it is coupled with the spline groove formed in the wheel shaft 180, the TS converter 1000 can transmit the rotational force of the E / G 100 via the rotary damper 110 and also transmit the rotational force to the wheel shaft 180. It is possible.

【0017】T−Sコンバータ1000の特徴的な構造
は、図2に示すように、第1の回転子に相当する永久磁
石を装着した回転子1010と、電機子1020を備え
る第2の回転子が、回転子1010と回転軸を共通とし
て回転自在に配置され、さらに電機子1020の外周側
背厚の部分に永久磁石1030を装着し、この永久磁石
1030の作る磁界とT−Sコンバータ1000のハウ
ジングに固定された固定子である第2の電機子1040
の作る磁界との相互作用によって電機子1020を回転
子とした回転電機を形成するというものである。
The characteristic structure of the TS converter 1000 is, as shown in FIG. 2, a rotor 1010 equipped with a permanent magnet corresponding to the first rotor, and a second rotor having an armature 1020. However, the rotor 1010 is rotatably arranged with the same rotation axis as that of the rotor 1010. Further, a permanent magnet 1030 is attached to the outer peripheral back thickness portion of the armature 1020. Second armature 1040, which is a stator fixed to the housing
The rotating electric machine using the armature 1020 as a rotor is formed by the interaction with the magnetic field created by

【0018】電機子1020への給電は、電機子102
0と任意の結合手段により結合されたシャフト1050
上に形成されたスリップリング1060とブラシ107
0によって可能となっている。図2にT−Sコンバータ
1000の要部縦断面図を示す。図中、図1と番号が共
通なものは同じ要素を表わしている。
Power is supplied to the armature 1020 by the armature 102.
Shaft 1050 coupled to 0 by any coupling means
Slip ring 1060 and brush 107 formed on top
It is possible with 0. FIG. 2 shows a vertical sectional view of a main part of the TS converter 1000. In the figure, elements having the same numbers as those in FIG. 1 represent the same elements.

【0019】回転子1010は、積層ケイ素鋼板により
形成された円筒状の胴体の中心にセレーション溝101
0aを形成し、機械構造用炭素鋼のシャフト1015を
結合したものであり、特に円筒状胴体の断面に対する略
内接6角形の位置に沿って設けられた溝部に略直方体形
状の薄いネオジウム−鉄の永久磁石1011をはめ込ん
だいわゆるIPM式のモータにおける回転子を構成して
いる。
The rotor 1010 has a serration groove 101 at the center of a cylindrical body formed of laminated silicon steel plate.
0a is formed and a shaft 1015 of carbon steel for machine structure is connected, and in particular, a thin rectangular neodymium-iron in a groove provided along a position of a substantially inscribed hexagon with respect to a cross section of a cylindrical body. Of the so-called IPM type motor in which the permanent magnet 1011 of FIG.

【0020】電機子1020は、先にも述べたように、
積層ケイ素鋼板の芯に巻線を施したもので、特にその背
厚部に略直方体形状の、薄いネオジウム−鉄の永久磁石
1020を接着剤などで装着したものである。円筒状の
電機子1020は図2に示すように、回転子1010を
覆うように形成された左右のエンドプレート1021お
よびベアリング1022によって、回転子1010を同
心で回転自在に保持する。また電機子1020自身もベ
アリング310により、エンドプレート302、303
に回転自在に保持される。したがって本構造では、ハウ
ジング300内部に2個の永久磁石式回転電機が形成さ
れたことになり、特に電機子1020は第1の回転電機
の固定子側に相当すると同時に、第2の回転電機の回転
子に相当する構造となっている。
The armature 1020 is, as described above,
The core of a laminated silicon steel plate is wound, and in particular, a thin rectangular neodymium-iron permanent magnet 1020 having a substantially rectangular parallelepiped shape is attached to the back thickness portion with an adhesive or the like. As shown in FIG. 2, the cylindrical armature 1020 holds the rotor 1010 concentrically and rotatably by the left and right end plates 1021 and bearings 1022 formed so as to cover the rotor 1010. Further, the armature 1020 itself also uses the bearings 310 to make the end plates 302, 303.
It is rotatably held in. Therefore, in this structure, two permanent magnet type rotary electric machines are formed inside the housing 300, and in particular, the armature 1020 corresponds to the stator side of the first rotary electric machine and at the same time, the It has a structure equivalent to a rotor.

【0021】210は回転子1010と車両に固定され
るエンドプレート302(角度基準)との回転角度変位
を検知する回転角度センサ、220は電機子1020と
ハウジング300との回転角度変位を検知する回転角度
センサである。これらは回転子部分と固定子部分から成
る。固定子部分は特に図示しないが、図中ハウジング3
00の左側からエンドプレートをねじ止めし、その摩擦
力で固定する。回転子部分はキーもしくはスプラインで
回転を抑止し、C型止め輪で軸方向の動きを抑止すると
いう固定方法を用いる。
Reference numeral 210 is a rotation angle sensor for detecting a rotation angle displacement between the rotor 1010 and an end plate 302 (angle reference) fixed to the vehicle, and 220 is a rotation for detecting a rotation angle displacement between the armature 1020 and the housing 300. It is an angle sensor. These consist of a rotor part and a stator part. The stator portion is not particularly shown, but the housing 3 is shown in the figure.
The end plate is screwed from the left side of 00 and fixed by the frictional force. The rotor part uses a fixing method in which rotation is suppressed by a key or spline and axial movement is suppressed by a C-shaped retaining ring.

【0022】図3に第1の回転子1010、電機子10
20、固定子1040を軸方向より見た断面図を示す。
図中、図1と番号が共通なものは同じ要素を表わしてい
る。1011はネオジウム−鉄の永久磁石である。10
23は円環状の非磁性体である。400は巻線用導線で
ある。
FIG. 3 shows the first rotor 1010 and the armature 10.
20 shows a cross-sectional view of the stator 1040 as seen from the axial direction.
In the figure, elements having the same numbers as those in FIG. 1 represent the same elements. Reference numeral 1011 is a neodymium-iron permanent magnet. 10
Reference numeral 23 is an annular non-magnetic material. 400 is a conducting wire for winding.

【0023】ハウジング300およびその外側の部材は
省略する。上記構成の装置がどのように作用するかを図
1を用い、以下に述べる。まずE/G100を特性上最
もエネルギー効率の良い運転条件で定常運転するよう制
御することが考えられる。この条件はエンジンによって
異なるが、一般に排気量1500cc程度のガソリンエ
ンジンでは、3200rpm、40kW程度で運転する
とエネルギー効率が最も良くなるといわれている。この
時のエンジントルクは約120Nmである。
The housing 300 and members outside thereof are omitted. How the device having the above-described structure works will be described below with reference to FIG. First, it is conceivable to control the E / G 100 so as to perform a steady operation under operating conditions that are characteristically the most energy efficient. Although this condition varies depending on the engine, it is generally said that a gasoline engine with a displacement of about 1500 cc has the best energy efficiency when operated at 3200 rpm and about 40 kW. The engine torque at this time is about 120 Nm.

【0024】そこでエンジンを一旦起動したら、常に最
高効率点で運転するのがエネルギー効率上好ましい。し
かし、後に詳細に述べるが、騒音や余剰エネルギー貯蔵
の問題からエンジン停止も含めて複数の運転条件を選定
できるようにしておくのがより実際的である。E/G1
00が起動したらエンジン制御ECU500が、あらか
じめ定められていた複数の運転条件のうち、現在の車両
にとって最適なE/G運転条件のひとつを選択し、その
運転条件を実現するよう燃料の供給量を調節するなどし
てE/G100を制御する。
Therefore, once the engine is started, it is preferable in terms of energy efficiency to always operate at the highest efficiency point. However, as will be described in detail later, it is more practical to be able to select a plurality of operating conditions, including engine stop, due to problems of noise and excess energy storage. E / G1
When 00 is started, the engine control ECU 500 selects one of the E / G operating conditions that is optimal for the current vehicle from among a plurality of predetermined operating conditions, and sets the fuel supply amount so as to realize the operating condition. The E / G 100 is controlled by adjusting it.

【0025】したがってE/G100は一定回転数一定
トルクで回ろうとする。この回転数とトルクをここでは
目標回転数、および目標トルクと呼ぶ。ところが車両の
必要とするエンジン回転数やトルクは、車両速度や路面
負荷により、時々刻々と変化する。そこで目標回転数と
車両の必要とする回転数の差を回転数調整部1200に
より、目標トルクと車両の必要とするトルクとの差をト
ルク調整部1400により、それぞれ零となるように制
御するのである。
Therefore, the E / G 100 tries to rotate with a constant rotation speed and a constant torque. The rotation speed and the torque are called the target rotation speed and the target torque here. However, the engine speed and torque required by the vehicle vary from moment to moment depending on the vehicle speed and road load. Therefore, the difference between the target rotation speed and the rotation speed required by the vehicle is controlled by the rotation speed adjustment unit 1200, and the difference between the target torque and the torque required by the vehicle is controlled by the torque adjustment unit 1400 so as to be zero. is there.

【0026】本装置は通常の車両におけるイグニッショ
ンスイッチに相当するものを備えており、このスイッチ
が入れられるとエンジン制御ECU500は、ある時間
間隔で、車速センサ120、車両進行方向制御手段の操
作位置検知手段に相当するシフトレバーセンサ130、
車両加速減速量検知手段に相当するアクセルセンサ14
0、ブレーキセンサ150をモニターする。
This device is provided with an equivalent to an ignition switch in a normal vehicle, and when this switch is turned on, the engine control ECU 500 detects the operating position of the vehicle speed sensor 120 and the vehicle advancing direction control means at a certain time interval. Shift lever sensor 130 corresponding to the means,
Accelerator sensor 14 corresponding to vehicle acceleration / deceleration amount detection means
0, the brake sensor 150 is monitored.

【0027】車両停止時には車速は零である。このとき
エンジン制御ECU500は、車速センサ120により
車両が停止中であることを認知し、かつアクセルセンサ
140によってアクセルが踏まれていないことをセンサ
からの信号により認知する。この場合は車両停止を維持
しなくてはならないので、電機子1020の回転数を零
にしなくてはならない。このときエンジン制御ECU5
00は、電機子1020と回転子1010とから成る回
転数調整部1200を発電機として利用する。
When the vehicle is stopped, the vehicle speed is zero. At this time, the engine control ECU 500 recognizes that the vehicle is stopped by the vehicle speed sensor 120 and recognizes that the accelerator is not stepped on by the accelerator sensor 140 from a signal from the sensor. In this case, since the vehicle stop must be maintained, the rotation speed of the armature 1020 must be zero. At this time, the engine control ECU 5
00 uses the rotation speed adjustment unit 1200 including the armature 1020 and the rotor 1010 as a generator.

【0028】E/G100の目標回転数がNrpm、目
標トルクがT・Nmならば、前記発電機において回転数
Nrpmのとき負荷がT・Nmになるよう発電機制御を
行なう。運転者がブレーキを作用させていないと電機子
1020が受けるトルク反力により車両が動き出す恐れ
があるので(オートマチック車のクリープトルクに相当
する)、トルク調整部1400に逆方向のトルク−T・
Nmをかけて前記トルク反力を相殺することもできる。
When the target rotation speed of the E / G 100 is N rpm and the target torque is T · Nm, the generator is controlled so that the load becomes T · Nm when the rotation speed is N rpm. If the driver does not apply the brake, the vehicle may start to move due to the torque reaction force received by the armature 1020 (corresponding to the creep torque of the automatic vehicle).
The torque reaction force can be canceled by multiplying Nm.

【0029】またバッテリーが満充電状態であれば、E
/G100を停止させればよい。上記のように車両停止
状態においてもE/G100を効率良く定常運転できる
ので、走行中の任意の時期にバッテリの充電を行なうこ
とができ、したがってバッテリにとって充電に適切なタ
イミングを選択できる。いま運転者がアクセルを踏み込
んだとすると、エンジン制御ECU500はアクセルセ
ンサ140により、運転者が車両を加速させたいという
意志を持っていることを知る。さらにアクセルの踏み込
み量から、どの程度の加速度を車両に与えれば良いかを
知る。前後進はシフトレバー130の位置より判断され
る。
If the battery is fully charged, E
/ G100 should be stopped. As described above, the E / G 100 can be efficiently operated in a steady state even when the vehicle is in a stopped state, so that the battery can be charged at any time during traveling, and therefore, the appropriate timing for charging the battery can be selected. If the driver now depresses the accelerator, engine control ECU 500 learns from accelerator sensor 140 that the driver has the desire to accelerate the vehicle. Further, it is possible to know how much acceleration should be applied to the vehicle based on the accelerator depression amount. Forward / backward movement is determined based on the position of the shift lever 130.

【0030】そこで、前進の場合は回転数調整部120
0を発電機として用い、負荷をT・Nmに維持したまま
徐々に回転数を下げていく(回転子1010との相対回
転数)。するとハウジング300に対して電機子102
0の回転数が徐々に上がっていく。これは電機子102
0に連結された車輪170の回転が上がっていくことを
意味する。
Therefore, in the case of forward movement, the rotation speed adjusting section 120
0 is used as a generator, and the rotation speed is gradually reduced while maintaining the load at T · Nm (relative rotation speed with respect to the rotor 1010). Then, the armature 102 with respect to the housing 300
The rotation speed of 0 gradually increases. This is the armature 102
This means that the rotation of the wheel 170 connected to 0 increases.

【0031】力学的反作用の法則から、車輪軸180に
は常にT・Nmのトルクがかかっている。エンジン制御
ECUはアクセルの踏み込み量から判断した必要トルク
がTより少なければ、トルク調整部1400をモータと
して運転し、不足分のトルクを補う。逆にトルクが余剰
であれば、トルク調整部1400を発電機として運転
し、余剰のトルクを発電機の負荷として奪う。
Due to the law of mechanical reaction, the wheel shaft 180 is constantly subjected to a torque of T · Nm. If the required torque determined from the accelerator depression amount is less than T, the engine control ECU operates the torque adjusting unit 1400 as a motor to compensate for the insufficient torque. On the contrary, if the torque is excessive, the torque adjusting unit 1400 is operated as a generator, and the excessive torque is taken as the load of the generator.

【0032】アクセルが戻された場合は上記のプロセス
を車両を減速させる方向に作用さればよい。すなわちア
クセルのもどし量に応じてトルク調整部1400の負荷
トルクの大きさを調整し、同時に回転数調整部1200
において、回転子1010と電機子1020の相対回転
数を上げていく。これは車輪軸の回転速度を下げること
を意味するから、車速は下がる。
When the accelerator is returned, the above process may be applied in the direction of decelerating the vehicle. That is, the magnitude of the load torque of the torque adjusting unit 1400 is adjusted according to the accelerator return amount, and at the same time, the rotation speed adjusting unit 1200.
In, the relative rotation speed of the rotor 1010 and the armature 1020 is increased. This means that the rotation speed of the wheel shaft is reduced, so the vehicle speed is reduced.

【0033】しかし、車両の走行状態によっては、車両
が長時間にわたりエンジンの最高効率点における出力と
比べて小さな出力しか必要としない場合が考えられる。
例えば平坦な道路を低速で巡航する場合などである。本
発明になる装置においては、こういった条件下ではエン
ジンを停止し、トルク調整部1400を駆動モータとし
て用いてモータの駆動力のみで車両を走行させる。この
条件はバッテリー600の電圧を検知手段610により
モニターすることで容易に知ることができる。すなわち
バッテリー600の電圧がある閾値を越えており、かつ
速度調整部1200やトルク調整部1400を発電機と
して運転しなければならないようなときは、E/G10
0を停止するのである。
However, depending on the running condition of the vehicle, it may be considered that the vehicle requires a smaller output than the output at the maximum efficiency point of the engine for a long time.
For example, when traveling at low speed on a flat road. In the device according to the present invention, the engine is stopped under such a condition, and the vehicle is driven only by the driving force of the motor using the torque adjusting unit 1400 as the driving motor. This condition can be easily known by monitoring the voltage of the battery 600 with the detection means 610. That is, when the voltage of the battery 600 exceeds a certain threshold and the speed adjusting unit 1200 or the torque adjusting unit 1400 has to be operated as a generator, the E / G10
0 is stopped.

【0034】また後進(もしくは後退)の場合は電機子
1020に通電せず、トルク調整部1400をモーター
として前進とは逆方向に回転させて車両を駆動するが、
E/G100が運転されたままだと、その出力が無駄に
なるので、E/G100は後進時には停止しておく。こ
のことにより、従来の原動機駆動の車両にとって不可欠
であったリバースギヤを不要とすることも可能である。
In the case of backward (or backward) movement, the armature 1020 is not energized, and the vehicle is driven by rotating the torque adjusting section 1400 as a motor in the direction opposite to the forward direction.
If the E / G 100 is still in operation, its output is wasted, so the E / G 100 is stopped during reverse travel. As a result, it is possible to eliminate the need for the reverse gear, which was indispensable for the conventional motor-driven vehicle.

【0035】E/G100の始動は、回転数調整部12
00を電磁カップリングとして用いてE/G100と電
機子1020を磁気的に連結し、トルク調整部1400
を駆動モータとして用いて車両を駆動し、同時にE/G
100のシャフトを回転させ、適当な速度になったらE
/G100に燃料を供給して点火するという、いわゆる
「押しがけ」という方法で行なうこともできる。このよ
うな制御方法を用いればスタータモータが不要な上、E
/G100の始動タイミングを運転者の操作によらず、
制御装置側が最適に選べるので始動時の排ガスを最小に
することができる。
The E / G 100 is started by the rotation speed adjusting unit 12
00 is used as an electromagnetic coupling to magnetically connect the E / G 100 and the armature 1020, and the torque adjustment unit 1400
The vehicle is driven by using the
Rotate the shaft of 100, and when it reaches the proper speed, E
It is also possible to carry out a so-called "pushing" method of supplying fuel to / G100 and igniting it. If such a control method is used, a starter motor is unnecessary and E
/ G100 start timing, regardless of the driver's operation
Since the control device can select the optimum one, the exhaust gas at the time of starting can be minimized.

【0036】また、回転ダンパ110にクラッチを形成
し、E/G100とT−Sコンバータ1000を切り離
しておき、図示しないスタータモータによって行なうよ
うにするか、このようなクラッチを用いずに、回転数調
整部1200の回転子1010に通電しないでおく。こ
のような状態に設定すると、E/G100に連結した回
転子1010は電機子1020とは機械的に連結してい
ないので、これで駆動輪170とE/G100は切り離
される。ここにおいて前記スタータモータでE/G10
0を始動する。このようにすればE/G100の整備を
行なう場合など、ブレーキまたは他の構成要素の助けを
借りずにE/G100を回すことが可能となる。
A clutch may be formed on the rotary damper 110 so that the E / G 100 and the T-S converter 1000 are separated from each other, and the starter motor (not shown) may be used, or the rotational speed may be changed without using such a clutch. The rotor 1010 of the adjustment unit 1200 is not energized. In such a state, the rotor 1010 connected to the E / G 100 is not mechanically connected to the armature 1020, so that the drive wheel 170 and the E / G 100 are separated from each other. Here, the starter motor is used for E / G10.
Start 0. This allows the E / G 100 to be turned without the help of brakes or other components, such as when servicing the E / G 100.

【0037】またE/G100の起動をブレーキで駆動
輪を固定し、回転数調整部1200をスタータモータと
して用いて行なうようにしてもよい。このようにすれば
スタータモータが不要となり、その分だけシステムの簡
素化、低価格化が実現できる。本発明は特に電機子10
20にスリップリング1060を介して通電するという
構成をとることで、ハウジング300の前後に各1本の
動力伝達軸を形成することを容易にし、FR車に搭載す
るには最適の構造を実現している。
Alternatively, the E / G 100 may be started by fixing the drive wheels with a brake and using the rotation speed adjusting unit 1200 as a starter motor. In this way, the starter motor becomes unnecessary, and the system can be simplified and the price can be reduced accordingly. The present invention is particularly applicable to the armature 10
By adopting a configuration in which 20 is energized via a slip ring 1060, it becomes easy to form one power transmission shaft at each of the front and rear of the housing 300, and an optimal structure for mounting on an FR vehicle is realized. ing.

【0038】特に回転子1010に連結するシャフト側
に回転子1010とハウジング300、および電機子1
020とハウジング300の相対角度を検出する回転角
度センサを同軸に縦列配置し、かつ電機子1020に連
結するシャフト側にスリップリングを形成した構造を採
用することで装置の小型化を実現している。本構造にお
いて、ハウジング300に対し、軸線上回転角度センサ
とスリップリングを同じ方向に配置することも可能だ
が、その場合、電機子1020に連結するスリップリン
グは、内部に回転子1010に連結するシャフトを通さ
ねばならないので。重なった分だけ回転子1010に連
結するシャフト長が長くなり、かつスリップリングの径
も大きくなる。またシャフトの長さが長くなることによ
り、回転中のたわみやベアリングのがたによる軸変位が
大きくなるという事態も考えられる。
Particularly, the rotor 1010, the housing 300, and the armature 1 are provided on the shaft side connected to the rotor 1010.
The miniaturization of the device is realized by adopting the structure in which the rotation angle sensors for detecting the relative angle between the 020 and the housing 300 are coaxially arranged in a column and the slip ring is formed on the shaft side connected to the armature 1020. . In this structure, the axial rotation angle sensor and the slip ring may be arranged in the same direction with respect to the housing 300, but in that case, the slip ring connected to the armature 1020 is the shaft internally connected to the rotor 1010. I have to go through. The length of the shaft connected to the rotor 1010 is increased by the overlapping amount, and the diameter of the slip ring is increased. In addition, it is possible that the length of the shaft becomes long, and thus the axial displacement due to the deflection during rotation and the rattling of the bearing becomes large.

【0039】図3に示すように、円環状の非磁性体10
23を電機子1020の巻線スロットと永久磁石103
0の間に配置することによって、相互の磁界の干渉を避
けることができるので、電機子1020の巻線スロット
と永久磁石1030の距離を縮めることができ、結果と
して電機子1020の外径を小さくできるという効果が
得られる。
As shown in FIG. 3, an annular non-magnetic material 10 is formed.
23 is the winding slot of the armature 1020 and the permanent magnet 103.
By arranging them between 0, mutual interference of magnetic fields can be avoided, so that the distance between the winding slot of the armature 1020 and the permanent magnet 1030 can be shortened, and as a result, the outer diameter of the armature 1020 can be reduced. The effect of being able to be obtained is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の駆動制御装置を備えた車両の全体シス
テム図.
FIG. 1 is an overall system diagram of a vehicle equipped with a drive control device of the present invention.

【図2】本発明の駆動制御装置の要部縦断面図。FIG. 2 is a longitudinal sectional view of a main part of a drive control device according to the present invention.

【図3】本発明の駆動制御装置の要部横断面図。FIG. 3 is a lateral cross-sectional view of a main part of the drive control device of the present invention.

【符号の説明】 100 エンジン(E/G) 110 フライホイールおよび回転ダンパー 120 車輪速度センサ 130 シフトレバーの位置検出センサ 140 アクセルセンサ 150 ブレーキセンサ 160 差動歯車機構 170 駆動輪 200 インバータ 210 回転角度センサ 220 回転角度センサ 300 ハウジング 400 インバータ 600 バッテリ 1000 トルク−回転数コンバータ 1010 回転子 1020 電機子 1030 永久磁石 1040 第2の電機子 1050 シャフト 1060 スリップリング 1070 ブラシ 1200 回転数調整部 1400 トルク調整部[Explanation of symbols] 100 engine (E / G) 110 Flywheel and rotary damper 120 wheel speed sensor 130 Shift lever position detection sensor 140 accelerator sensor 150 brake sensor 160 differential gear mechanism 170 drive wheels 200 inverter 210 Rotation angle sensor 220 Rotation angle sensor 300 housing 400 inverter 600 battery 1000 torque-rotation speed converter 1010 rotor 1020 armature 1030 permanent magnet 1040 Second armature 1050 shaft 1060 slip ring 1070 brush 1200 rpm adjustment unit 1400 Torque adjuster

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H02K 16/02 H02K 16/02 21/24 21/24 M (56)参考文献 特開 平6−170675(JP,A) 特開 昭49−12518(JP,A) 特開 昭54−72808(JP,A) 特開 昭58−130704(JP,A) 特開 平4−183204(JP,A) 特開 平5−219698(JP,A) 特公 昭51−45738(JP,B1) 米国特許4532447(US,A) (58)調査した分野(Int.Cl.7,DB名) B60L 11/14 B60L 11/08 B60K 6/04 H02K 7/10 H02K 16/02 H02K 21/24 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H02K 16/02 H02K 16/02 21/24 21/24 M (56) Reference JP-A-6-170675 (JP, A) Kai 49-12518 (JP, A) JP 54-72808 (JP, A) JP 58-130704 (JP, A) JP 4-183204 (JP, A) JP 5-219698 ( JP, A) JP-B-51-45738 (JP, B1) US Patent 4532447 (US, A) (58) Fields investigated (Int.Cl. 7 , DB name) B60L 11/14 B60L 11/08 B60K 6 / 04 H02K 7/10 H02K 16/02 H02K 21/24

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原動機の出力を入力とし、連結される負
荷出力に対し所定の駆動トルク及び回転数を出力制御す
る車両用駆動装置において、 前記車両用駆動装置は、ハウジングと、前記ハウジング
に収容され、前記原動機から負荷出力に回転力を伝える
相対回転可能な第1及び第2の回転子と、前記ハウジン
グに固定される固定子とを備えるとともに、前記第2の
回転子には、前記第1の回転子と相対的に回転駆動する
ことにより相互電磁作用を行う第1の磁気回路と、前記
固定子と相対的に回転駆動することにより相互電磁作用
を行う第2の磁気回路とを備え、 前記第1の磁気回路では、この駆動装置の入出力の相対
角速度を制御するように回転子間の相対角速度及びトル
クを通電制御するとともに、前記第2の磁気回路では、
この駆動装置の入出力のトルクを制御するように回転子
と固定子間の相対角速度及びトルクを通電制御する制御
装置を備え、 前記第1の回転子の外周に前記第2の回転子を同心円状
に配置し、前記第2の回転子の外周に固定子を配置し、 前記第1の回転子に永久磁石を設け、前記第2の回転子
に巻き線を施すことにより前記第1の磁気回路を構成
し、前記巻線に対しスリップリングを介して前記第2の
回転子の巻き線に給電、または受電し、前記第2の回転子の前記固定子に対向する外周部に永久
磁石を配置して前記固定子とともに前記第2の磁気回路
を構成し、 さらに、前記巻線と該永久磁石との間に円環状の非磁性
体が設けられている ことを特徴とする車両用駆動装置。
1. A vehicle drive device, which receives an output of a prime mover as an input and controls output of a predetermined drive torque and a rotational speed with respect to a connected load output, wherein the vehicle drive device is housed in the housing. And a relatively rotatable first and second rotor for transmitting a rotational force from the prime mover to a load output, and a stator fixed to the housing, and the second rotor includes the first and second rotors. comprising a first magnetic circuit which performs mutual electromagnetic action by the relatively rotating driven first rotor and a second magnetic circuit which performs mutual electromagnetic action by the relatively rotating drive and the stator In the first magnetic circuit, energization control of the relative angular velocity and torque between the rotors is performed so as to control the input / output relative angular velocity of the drive device, and in the second magnetic circuit,
A control device for energizing the relative angular velocity and torque between the rotor and the stator to control the input / output torque of the drive device is provided, and the second rotor is concentric with the outer periphery of the first rotor. In a circular shape, the stator is arranged on the outer periphery of the second rotor , the first rotor is provided with a permanent magnet, and the second rotor is wound to form the first magnetic field. A circuit is configured to feed or receive power to or from the winding of the second rotor through a slip ring with respect to the winding, and to the outer periphery of the second rotor facing the stator.
A magnet is disposed and the second magnetic circuit is provided together with the stator.
Constitute further nonmagnetic annular between the winding and the permanent magnet
A vehicle drive device characterized in that a body is provided .
【請求項2】 前記第1の回転子と前記ハウジングとの
相対角度を検出する回転角度センサと前記第2の回転子
と前記ハウジングとの相対角度を検出する回転角度セン
サを、前記第1の回転子の回転軸に同軸に縦列配置し、
かつ前記第2の回転子に前記両センサと対向する側にシ
ャフトを設け、該シャフトにスリップリングを形成する
ことを特徴とする請求項1記載の車両用駆動装置。
2. A rotation angle sensor that detects a relative angle between the first rotor and the housing, and a rotation angle sensor that detects a relative angle between the second rotor and the housing. Arranged in tandem on the axis of rotation of the rotor,
The vehicle drive device according to claim 1, wherein a shaft is provided on the side of the second rotor facing the both sensors, and a slip ring is formed on the shaft.
【請求項3】 車両の加減速量を検知する車両加減速量
検知手段と、車両の前進、後退を制御する車両進行方向
制御手段と、車両速度検知手段と、車両搭載の蓄電池の
残存エネルギー検知手段とを備え、前記蓄電池の残存エ
ネルギーがあらかじめ定めた下限値より小さい時は、車
両停止状態時において前記原動機を運転し、前記制御装
置により前記第1および第2の回転子によって形成され
る回転電機を発電機として制御することにより、前記蓄
電池の充電を行なうことを特徴とする、請求項1または
2記載の車両用駆動装置。
3. A vehicle acceleration / deceleration amount detecting means for detecting an acceleration / deceleration amount of the vehicle, a vehicle traveling direction control means for controlling forward / backward movement of the vehicle, a vehicle speed detecting means, and a residual energy detection of a storage battery mounted on the vehicle. And a rotation speed formed by the first and second rotors by the control device when the remaining energy of the storage battery is smaller than a predetermined lower limit value when the vehicle is stopped. by controlling the electric as a generator, and performs the charging of the storage battery, according to claim 1 or
2. The vehicle drive device described in 2 .
【請求項4】 車両後退時には、前記原動機を停止し、
前記制御装置により前記第2の回転子と前記固定子によ
り形成される回転電機を駆動用電動機として制御し、車
両を駆動することを特徴とする、請求項1、2または3
記載の車両用電動機。
4. When the vehicle moves backward, the prime mover is stopped,
Controls the rotation electric machine is formed by the stator and the second rotor by the control device as a driving electric motor, and drives the vehicle, according to claim 1, 2 or 3
The vehicle electric motor described .
【請求項5】 前記原動機の始動は、前記制御装置によ
り停止中の車両を前記第2の回転子と前記固定子により
形成される回転電機を駆動用電動機として制御して車両
を駆動し、かつ前記第1の回転子と第2の回転子を電磁
カップリングとなるよう制御することにより、原動機の
出力軸を回転させて行なうことを特徴とする、請求項
1、2、3または4記載の車両用電動機。
Wherein starting of the prime mover, the control device by the control and drive the vehicle rotating electrical machine formed by the stator of the vehicle stopped and the second rotor as a driving motor, and by controlling so as to be electromagnetically coupled to the first rotor and the second rotor, and performing rotate the output shaft of the engine, according to claim
The electric motor for vehicle according to 1, 2, 3 or 4 .
【請求項6】 前記原動機の始動は、別途設けたスター
タモータによって行なうことを特徴とする請求項1、
2、3または4記載の車両用電動機。
Wherein starting of the prime mover is claim 1, wherein the performing by the separately provided starter motor,
The vehicle electric motor according to 2, 3, or 4 .
【請求項7】 前記原動機の始動は、車両のフットブレ
ーキもしくは他の制御手段により前記第2の回転子を抑
止し、前記第1の回転子と前記第2の回転子によって形
成される回転電機をスタータモータとして用いて行なわ
れることを特徴とする請求項1、2、3または4記載の
車両用電動機。
7. A rotating electric machine formed by the first rotor and the second rotor when the prime mover is started, the second rotor is restrained by a vehicle foot brake or other control means. The electric motor for a vehicle according to claim 1, 2, 3, or 4 , wherein the electric motor is used as a starter motor.
JP27765495A 1995-01-31 1995-10-25 Vehicle drive system Expired - Fee Related JP3419176B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27765495A JP3419176B2 (en) 1995-10-25 1995-10-25 Vehicle drive system
US08/675,129 US5744895A (en) 1995-01-31 1996-07-03 System for driving electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27765495A JP3419176B2 (en) 1995-10-25 1995-10-25 Vehicle drive system

Publications (2)

Publication Number Publication Date
JPH09121404A JPH09121404A (en) 1997-05-06
JP3419176B2 true JP3419176B2 (en) 2003-06-23

Family

ID=17586447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27765495A Expired - Fee Related JP3419176B2 (en) 1995-01-31 1995-10-25 Vehicle drive system

Country Status (1)

Country Link
JP (1) JP3419176B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939186A (en) 2008-02-14 2011-01-05 株式会社美姿把 Hybrid electric automobile
JP5299416B2 (en) * 2010-12-17 2013-09-25 アイシン精機株式会社 Multi-rotor motor
KR101376622B1 (en) * 2012-10-29 2014-04-02 엘지전자 주식회사 Electric motor and electric vehicle having the same
JP2014111432A (en) * 2012-11-05 2014-06-19 Tomio Kishida Apparatus for ev hybrid
CN105752075B (en) * 2016-03-21 2017-12-05 江苏大学 The energy control method of hybrid vehicle based on birotor flux switch motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532447A (en) 1981-11-25 1985-07-30 Pierre Cibie Rotary electric machine forming more especially a speed variator or a torque converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532447A (en) 1981-11-25 1985-07-30 Pierre Cibie Rotary electric machine forming more especially a speed variator or a torque converter

Also Published As

Publication number Publication date
JPH09121404A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
US6020697A (en) Hybrid vehicle
US10752104B2 (en) Bearing device for wheels with auxiliary power device
JP3855249B2 (en) Power transmission device for vehicle
JP3391750B2 (en) Vehicle accessory drive
EP0725474B1 (en) System and method for driving electric vehicle
US6555927B1 (en) Vehicular engine starting control apparatus and vehicular engine starting control method
US7195087B2 (en) Drive apparatus for vehicle
US8907601B2 (en) Braking apparatus for a vehicle
US7201690B2 (en) Drive unit for vehicle
JP3052802B2 (en) Power transmission device and control method thereof
CN101318460B (en) Power assembly of hybrid power automobile
WO2009102058A1 (en) Hybrid electric automobile
JP3292688B2 (en) Rotating electric machine, hybrid drive device including the same, and operation method thereof
JP3052820B2 (en) Vehicle drive device and drive control method thereof
US6707268B1 (en) Alternative drive power arrangement having an electric motor with multiple armatures
JP3052786B2 (en) Vehicle drive device and drive control method thereof
JP3419176B2 (en) Vehicle drive system
JP2005178479A (en) Vehicular power output device
JP2001231107A (en) Parallel hybrid vehicle
JP3180671B2 (en) Power output device
JP3047798B2 (en) Vehicle drive system
JP3490420B2 (en) Hybrid car
JP3171104B2 (en) Vehicle drive system
JPH07131961A (en) Motor and controller thereof
JP2000069608A (en) Driving unit for vehicle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees