JP3418652B2 - Ultrasonic device - Google Patents
Ultrasonic deviceInfo
- Publication number
- JP3418652B2 JP3418652B2 JP18243595A JP18243595A JP3418652B2 JP 3418652 B2 JP3418652 B2 JP 3418652B2 JP 18243595 A JP18243595 A JP 18243595A JP 18243595 A JP18243595 A JP 18243595A JP 3418652 B2 JP3418652 B2 JP 3418652B2
- Authority
- JP
- Japan
- Prior art keywords
- phase difference
- measuring
- ultrasonic device
- equation
- time delay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は超音波装置に関し、とく
に高精度な脈波伝搬速度の計測を可能な超音波装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic device, and more particularly to an ultrasonic device capable of measuring a pulse wave propagation velocity with high accuracy.
【0002】[0002]
【従来の技術】動脈硬化症は、血管内壁の狭小化や閉塞
を発生し、虚血性心疾患や脳血管障害などの重篤な疾患
を招く恐れがあり、高齢化社会を迎えて重要な問題とな
りつつある。このため、早期段階での動脈硬化度の診
断、重症度の判定および治療後の定量的経過観察などが
必要となる。更に、動脈硬化症は、全身血管で一様に進
展するのではなく主要な臓器動脈に比較的よく見られ、
局所で病変の程度に差があることも知られている。この
ため、血管局所で、且つ深部における計測の重要性が強
く指摘されている。2. Description of the Related Art Arteriosclerosis causes narrowing or blockage of the inner wall of blood vessels, which may lead to serious diseases such as ischemic heart disease and cerebrovascular accident. Is becoming. Therefore, it is necessary to diagnose the degree of arteriosclerosis at an early stage, determine the degree of severity, and perform quantitative follow-up after treatment. Moreover, arteriosclerosis is relatively common in major organ arteries, rather than developing uniformly in systemic blood vessels.
It is also known that the degree of lesion locally varies. Therefore, it is strongly pointed out that the measurement at the deep part of the blood vessel is important.
【0003】一方、現在臨床における動脈硬化症の診断
法としては、(a)カテーテルを用いて造影剤を血管に
注入して、X線撮影する血管造影法が一般的であるが、
これは侵襲的な方法である。また、(b)単純X線、超
音波、X線CTや核磁気共鳴断層法による形態情報や血
管壁の石灰化の評価、光学的な眼底検査による脳内血管
の硬化度の判定などがあるが、いずれも形態情報を抽出
しているため、早期診断は困難な場合が多い。On the other hand, as a method for diagnosing arteriosclerosis in clinical practice at present, (a) an angiography method in which a contrast medium is injected into a blood vessel and an X-ray is taken is generally used.
This is an invasive method. Further, (b) evaluation of morphological information and calcification of blood vessel wall by simple X-ray, ultrasonic wave, X-ray CT and nuclear magnetic resonance tomography, and determination of degree of hardening of cerebral blood vessel by optical fundus examination. However, since morphological information is extracted in each case, early diagnosis is often difficult.
【0004】これらに対し、非侵襲的に血管特性を定量
的に評価するために、(c)脈波(心臓から駆出される
血液の圧力に基づく血管壁の変形が、血管に沿って伝わ
る波動(圧脈波形))の伝搬速度(以下、脈波速度と記
す)を計測し、これを動脈硬化度の指標とする検討がな
されている。ここで、最も基本的な脈波速度計測法で
は、頚動脈位置と股動脈位置のように遠く離れた体表面
2点において圧脈波を記録し、その間の圧脈波形の伝搬
時間により、平均的な脈波伝搬速度を計測している。し
かしこの方式で計測される平均的な脈波伝搬速度は、長
い区間での平均速度であることから局所計測が不可能で
あり、更に圧脈波形の検出可能な深度が浅いことから深
部計測も困難となる。On the other hand, in order to non-invasively quantitatively evaluate the blood vessel characteristics, (c) pulse wave (deformation of the blood vessel wall due to the pressure of blood ejected from the heart is transmitted along the blood vessel. (Pressure pulse waveform)) propagation velocity (hereinafter referred to as pulse wave velocity) is measured, and it is studied to use this as an index of arteriosclerosis degree. Here, in the most basic pulse wave velocity measuring method, the pressure pulse wave is recorded at two points on the body surface that are far apart from each other, such as the carotid artery position and the hip artery position, and the average value is obtained by the propagation time of the pressure pulse waveform between them. The pulse wave velocity is measured. However, the average pulse wave velocity measured by this method cannot be locally measured because it is an average velocity in a long section, and since the detectable depth of the pressure pulse waveform is shallow, deep measurement is also possible. It will be difficult.
【0005】そこで本発明者は、2点において計測した
血流ドプラ信号同士の、複素相互相関処理により、脈波
の伝搬時間計測を行う方式を考案した(特願平4ー26
1111号、特願平5ー51669号)。この処理は血
流ドプラ信号同士を、流速波形に変換することなくその
まま、相関処理する手法である。Therefore, the present inventor has devised a method for measuring the propagation time of a pulse wave by complex cross-correlation processing of blood flow Doppler signals measured at two points (Japanese Patent Application No. 4-26).
1111, Japanese Patent Application No. 5-51669). This processing is a method of performing correlation processing on blood flow Doppler signals without converting them into a flow velocity waveform.
【0006】[0006]
【発明が解決しようとする課題】上記の血流ドプラ信号
同士の遅延時間計測により、脈波の伝搬速度計測を行う
方式においては、血流ドプラ信号同士の相関度の低下対
策のための信号処理が必要になる。この方式の一つとし
て、位相差の移動平均を行う構成が提案されているが、
計測精度が不十分である。本発明の目的は、高精度な血
管内の脈波伝搬速度計測を可能とする超音波装置を提供
することにある。In the method of measuring the propagation velocity of the pulse wave by measuring the delay time between the blood flow Doppler signals, the signal processing for reducing the correlation between the blood flow Doppler signals is performed. Will be required. As one of the methods, a configuration for performing a moving average of phase differences has been proposed.
The measurement accuracy is insufficient. An object of the present invention is to provide an ultrasonic device that enables highly accurate pulse wave velocity measurement in blood vessels.
【0007】[0007]
【課題を解決するための手段】本発明は、新規な構成に
より信号処理を行ない、計測精度を向上する。即ち、検
査対象の複数の位置からの対象物体のドプラ信号を受信
する受信器と、受信器による各受信信号の位相を計測す
る手段と、受信信号のそれぞれの位相差を計測する手段
と、位相差の時間変化を近似する近似位相差関数を導出
する手段と、近似位相差関数の相互の時間遅れを計測す
る手段と、2つの受信点間の距離を計測する手段と、時
間遅れと距離とから2つの受信点間における脈波の伝搬
速度を計測することに特徴がある。According to the present invention, signal processing is performed by a novel structure to improve measurement accuracy. That is, a receiver for receiving the Doppler signals of the target object from a plurality of positions of the inspection target, a means for measuring the phase of each received signal by the receiver, a means for measuring the phase difference of each received signal, A means for deriving an approximate phase difference function that approximates a time change of the phase difference, a means for measuring a mutual time delay of the approximate phase difference function, a means for measuring a distance between two receiving points, a time delay and a distance. Is characterized in that the pulse wave propagation velocity between the two receiving points is measured.
【0008】[0008]
【作用】本発明の超音波装置では、2ヶ所で計測したド
プラ信号それぞれの位相差を最小2乗法により近似する
関数を求めて、それら近似関数の間の時間遅れを計測す
るので高精度の脈波伝搬速度の計測ができる。In the ultrasonic device of the present invention, a function approximating the phase difference of each Doppler signal measured at two points is obtained by the least square method, and the time delay between the approximating functions is measured. Can measure the wave propagation velocity.
【0009】[0009]
【実施例】まず、本発明の超音波装置に用いられる信号
処理方式について、詳細に説明する。図1に示す2個の
送受波器TD1、TD2を使用し、パルスドプラ法によ
り、サンプルボリュームSV1、SV2内の血球A、Bか
らの反射ドプラ信号a(t)、b(t)を得る。ここ
で、U1(t)、U2(t)を血球A、Bの移動速度(ビームの
法線方向の血流速度成分)とし、これを流速波形と呼
ぶ。また、vを流速波形の伝搬速度、LをSV1とSV2
間の距離とすると、流速波形の伝搬時間TpはL/vで
あり、DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the signal processing method used in the ultrasonic device of the present invention will be described in detail. Using the two transducers TD1 and TD2 shown in FIG. 1, the reflected Doppler signals a (t) and b (t) from the blood cells A and B in the sample volumes SV1 and SV2 are obtained by the pulse Doppler method. Here, U1 (t) and U2 (t) are the moving velocities of blood cells A and B (blood flow velocity components in the normal direction of the beam), and this is called a flow velocity waveform. In addition, v is the propagation velocity of the flow velocity waveform, L is SV1 and SV2
If the distance is between, the propagation time Tp of the flow velocity waveform is L / v,
【0010】[0010]
【数1】
U2(t)=U1(t-Tp)=U1(t-L/v) …(数1)
である。さらに、k(=2π/λ)を血液中超音波の波
数、λを超音波の波長、また、Θa、Θbを、反射ドプラ
信号の初期位相とすると、反射ドプラ信号a(t)、b
(t)はそれぞれ、(数2)、(数3)により示され
る。(数3)は(数4)から(数7)に示すように変形
される。## EQU1 ## U2 (t) = U1 (t-Tp) = U1 (tL / v) (Equation 1). Furthermore, when k (= 2π / λ) is the wave number of the ultrasonic wave in blood, λ is the wavelength of the ultrasonic wave, and Θa and Θb are the initial phases of the reflected Doppler signals, the reflected Doppler signals a (t), b
(T) is shown by (Equation 2) and (Equation 3), respectively. (Equation 3) is transformed from (Equation 4) to (Equation 7).
【0011】[0011]
【数2】 a(t)=exp{jΘa+2jk∫U1(τ)dτ} …(数2) (数2)における積分∫の範囲は0からtである。[Equation 2] a (t) = exp {jΘa + 2jk∫U1 (τ) dτ}… (Equation 2) The range of integral ∫ in (Equation 2) is 0 to t.
【0012】[0012]
【数3】
b(t)=exp{jΘb+2jk∫U2(τ)dτ} …(数3)
b(t)=exp{jΘb+2jk∫U1(τ-Tp)dτ} …(数4)
b(t)=exp{jΘb+2jk∫U1(τ)dτ} …(数5)
b(t)=exp{jΘb+2jk∫U1(τ)dτ+2jk∫U1(τ)dτ} …(数6)
b(t)=exp(jΘ)exp{2jk∫U1(τ)dτ}=exp(jΘ)a(t-Tp) …(数7)
(数3)、(数4)における積分∫の範囲は0からt、
(数5)における積分∫の範囲は-Tpからt-Tp、(数
6)における第1項積分∫の範囲は-Tpから0、第2項
積分∫の範囲は0からt-Tp、(数7)における積分∫の
範囲は0からt-Tpである。ここで、[Equation 3] b (t) = exp {jΘb + 2jk∫U2 (τ) dτ}… (Equation 3) b (t) = exp {jΘb + 2jk∫U1 (τ-Tp) dτ}… (Equation 4) b (t) = exp {jΘb + 2jk∫U1 (τ) dτ}… (Equation 5) b (t) = exp {jΘb + 2jk∫U1 (τ) dτ + 2jk∫U1 (τ) dτ}… (Equation) 6) b (t) = exp (jΘ) exp {2jk∫U1 (τ) dτ} = exp (jΘ) a (t-Tp) (Equation 7) Integral ∫ in (Equation 3) and (Equation 4) Range is 0 to t,
The range of integral ∫ in (Equation 5) is -Tp to t-Tp, the range of first term integral ∫ in (Equation 6) is -Tp to 0, the range of second term integral ∫ is 0 to t-Tp, ( The range of integral ∫ in equation 7) is from 0 to t-Tp. here,
【0013】[0013]
【数8】
Θ=Θb-Θa+2jk∫U1(τ)dτ …(数8)
であり、位相角Θa、ΘbおよびΘはいずれも一定であ
る。(数8)における積分∫の範囲は-Tpから0であ
る。このように、両波形間の時間差が、流速波形の伝搬
時間Tp(=L/v)を示す。ここでは、簡単のため
に、超音波のサンプルボリュームSV1、SV2が大き
く、血球がビーム内に存在する時間T1、T2が、血球が
加速される時間T0よりも長いとしている。サンプルボ
リュームが小さい場合については後に述べる。一方、流
速波形U1(t)、U2(t)が圧脈波波形に対応することは公知
であり、ドプラ信号の直接相関が、圧脈波の伝搬時間を
示すこととなる。## EQU8 ## Θ = Θb−Θa + 2jk∫U1 (τ) dτ (Equation 8), and the phase angles Θa, Θb and Θ are all constant. The range of integral ∫ in (Equation 8) is from -Tp to 0. Thus, the time difference between the two waveforms indicates the propagation time Tp (= L / v) of the flow velocity waveform. Here, for simplification, the sample volumes SV1 and SV2 of the ultrasonic waves are large, and the times T1 and T2 during which the blood cells are present in the beam are longer than the time T0 during which the blood cells are accelerated. The case where the sample volume is small will be described later. On the other hand, it is well known that the flow velocity waveforms U1 (t) and U2 (t) correspond to the pressure pulse wave waveform, and the direct correlation of the Doppler signal indicates the propagation time of the pressure pulse wave.
【0014】この血流ドプラ信号波形により、脈波の伝
搬時間計測を行う方式では、サンプルボリュームが小さ
い場合に、血流ドプラ信号同士の相関度低下対策のため
の信号処理が必要になる。この問題点を以下に詳細に説
明する。時刻t=0に存在する3個の血球位置をそれぞ
れ図2におけるa、b、cとする。パルスドプラにおい
ては、時間間隔t0毎に反射信号を計測するが、それぞ
れの計測時刻における血球位置を、図2では丸印により
示し、丸印に併記する数字は、計測時刻に対応する。こ
こでは、収縮期(血球が加速される時相)を想定してい
るため、図2では丸印の間隔が順次拡大している。反射
信号は、それぞれの血球がビーム内に存在する期間に対
応して発生し、各血球それぞれからの反射ドプラ信号
(部分信号と呼ぶ)は図3(a)、図3(b)、図3
(c)に示すようになる。これら部分信号の、周波数
は、血球の加速に伴い単調に上昇するが、相互の位相関
係は独立である。このため、これら部分信号の重ね合わ
せとして得られる、パルスドプラ血流計における受信ド
プラ信号は、図3(d)に示す不規則な波形となる。こ
のような、波形同士の相関関数は多峰性を示し、精密な
時間計測は不可能である。In the method of measuring the propagation time of the pulse wave using the blood flow Doppler signal waveform, when the sample volume is small, it is necessary to perform signal processing as a measure for reducing the degree of correlation between blood flow Doppler signals. This problem will be described in detail below. It is assumed that the three blood cell positions existing at time t = 0 are a, b, and c in FIG. 2, respectively. In pulse Doppler, the reflection signal is measured at each time interval t0, but the blood cell position at each measurement time is indicated by a circle in FIG. 2, and the number written together with the circle corresponds to the measurement time. Here, since the systole (a time phase in which blood cells are accelerated) is assumed, the intervals indicated by circles in FIG. 2 are gradually expanded. The reflected signal is generated corresponding to the period during which each blood cell is present in the beam, and the reflected Doppler signal (referred to as a partial signal) from each blood cell is shown in FIG. 3 (a), FIG. 3 (b), and FIG.
As shown in (c). The frequencies of these partial signals monotonically increase with the acceleration of blood cells, but their phase relationships are independent. Therefore, the received Doppler signal in the pulse Doppler blood flow meter obtained as a superposition of these partial signals has an irregular waveform shown in FIG. Such a correlation function between waveforms shows multimodality, and precise time measurement is impossible.
【0015】以上のように、各部分信号は、それぞれの
血球がビーム内に存在する時間に対応して出現してい
る。そこで、時刻tに存在する部分信号に対応する血球
が、超音波ビーム内に到達した時刻における位相である
初期位相をn(t)、その位置からの血球移動による位相変
化をs(t)とすると、受信信号の位相φ(t)は、As described above, each partial signal appears corresponding to the time when each blood cell is present in the beam. Therefore, the initial phase, which is the phase at the time when the blood cell corresponding to the partial signal existing at time t reaches the ultrasonic beam, is n (t), and the phase change due to the blood cell movement from that position is s (t). Then, the phase φ (t) of the received signal is
【0016】[0016]
【数9】
φ(t)=n(t)+s(t) …(数9)
である。ここで初期位相n(t)は、各血球が超音波ビーム
に進入する初期位置により定まり血球相互間において独
立である。このため、最初の部分信号が超音波ビームか
ら出て、他の部分信号が超音波ビームに進入することに
よる部分信号の交代時点に信号位相φ(t)が不連続に跳
躍し、波形が不規則に変化する(図3)。このような受
信信号の隣接する時刻間での位相差Δφ(t)は、## EQU00009 ## .phi. (T) = n (t) + s (t) (Equation 9). Here, the initial phase n (t) is determined by the initial position where each blood cell enters the ultrasonic beam, and is independent among blood cells. Therefore, the signal phase φ (t) jumps discontinuously when the first partial signal comes out of the ultrasonic beam and another partial signal enters the ultrasonic beam, and the waveform is not continuous. Change to rules (Figure 3). The phase difference Δφ (t) between adjacent times of such a received signal is
【0017】[0017]
【数10】
Δφ(t)=φ(t+t0)−φ(t)=n(t+t0)−n(t)+s(t+t0)−s(t)=Δn(t)+Δs(t)
…(数10)
ここで、Δn(t) は差分の状況により異なり、同一血球
部分信号内ではΔn(t)=0、別の血球部分信号間ではΔ
n(t)≠0である。ここで、位相差Δφ(t)を関数c(t)に
より、最小2乗近似することを考える。ここで、[Formula 10] Δφ (t) = φ (t + t0) −φ (t) = n (t + t0) −n (t) + s (t + t0) −s (t) = Δn (t) + Δs ( t) (Equation 10) Here, Δn (t) differs depending on the situation of the difference, Δn (t) = 0 in the same blood cell partial signal, and Δn (t) between different blood cell partial signals.
n (t) ≠ 0. Here, it is considered that the phase difference Δφ (t) is approximated to the least square by the function c (t). here,
【0018】[0018]
【数11】
c(t)=c0+c1t+c2t2+… …(数11)
である。離散的時刻をtm=m×t0とすると、Δφ(t)と任
意関数c(t)との差の2乗平均値Qは、(Equation 11) c (t) = c0 + c1t + c2t2 + ... (Equation 11) If the discrete time is tm = m × t0, the mean square value Q of the difference between Δφ (t) and arbitrary function c (t) is
【0019】[0019]
【数12】 Q=Σ{Δφ(tm)-c(tm)}2/M=Σ{Δn(tm)+Δs(tm)-c(tm)}2/M …(数12) である。ここで、d(t)=Δs(t)-c(t)とすると、[Equation 12] Q = Σ {Δφ (tm) -c (tm)} 2 / M = Σ {Δn (tm) + Δs (tm) -c (tm)} 2 / M (Equation 12) Here, if d (t) = Δs (t) -c (t),
【0020】[0020]
【数13】
Q=Σ{Δn(tm)+d(tm)}2/M=Σ{(Δn(tm))2+(d(tm))2+2Δn(tm)d(tm)}/M
…(数13)
である。なお、(数12)、(数13)において、加算
Σはm=1、…、Mについて行う。ここで、Δn(t)とd(t)
は無相関であるため、右辺第3項は0となる。このた
め、[Equation 13] Q = Σ {Δn (tm) + d (tm)} 2 / M = Σ {(Δn (tm)) 2 + (d (tm)) 2 + 2Δn (tm) d (tm)} / M ... (Equation 13) In addition, in (Equation 12) and (Equation 13), addition Σ is performed for m = 1, ..., M. Where Δn (t) and d (t)
Has no correlation, the third term on the right side is zero. For this reason,
【0021】[0021]
【数14】
Q=Σ{(Δn(tm))2+(d(tm))2}/M …(数14)
である。このQを最小にする位相差関数c(t)をcsq(t)と
すると、csq(t)は位相差Δφ(t)の最小2乗近似関数で
あり、Qの最小値Qminは、[Expression 14] Q = Σ {(Δn (tm)) 2 + (d (tm)) 2 } / M (Expression 14). When the phase difference function c (t) that minimizes this Q is csq (t), csq (t) is a least-squares approximation function of the phase difference Δφ (t), and the minimum value Qmin of Q is
【0022】[0022]
【数15】
Qmin=Σ{(Δn(tm))2}/M=<(Δn(t))2> …(数15)
である。なお、(数14)、(数15)において、加算
Σはm=1、…、Mについて行う。ここで、< >は平均化
処理を意味する。この(数15)の関係は、d(t)≡0に
おいて成立することから、[Equation 15] Qmin = Σ {(Δn (tm)) 2 } / M = <(Δn (t)) 2 > ... (Equation 15) In addition, in (Equation 14) and (Equation 15), addition Σ is performed for m = 1, ..., M. Here, <> means averaging processing. Since the relation of this (Equation 15) is established in d (t) ≡0,
【0023】[0023]
【数16】
d(t)=Δs(t)-csq(t)≡0 …(数16)
である。このため、最小2乗近似位相差関数であるcsq
(t)は、正しい位相差情報Δs(t)を与える。従って、こ
のcsq(t)を積分すると、## EQU16 ## d (t) = Δs (t) -csq (t) ≡0 (Equation 16) Therefore, csq, which is the least-squares approximate phase difference function
(t) gives correct phase difference information Δs (t). Therefore, integrating this csq (t),
【0024】[0024]
【数17】
Csq(t)=∫csq(t)dt=∫Δs(t)dt=s(t) …(数17)
と、正しい位相信号s(t)が求まり、不規則な位相変動を
補正した信号波形h(t)がCsq(t)により、[Equation 17] Csq (t) = ∫csq (t) dt = ∫Δs (t) dt = s (t) (Equation 17) and the correct phase signal s (t) is obtained, and the irregular phase fluctuation is obtained. The corrected signal waveform h (t) is calculated by Csq (t),
【0025】[0025]
【数18】
h(t)=exp{jCsq(t)}=exp{js(t)} …(数18)
と求まる。なお、(数17)における各辺の積分∫の範
囲は0からtである。[Expression 18] h (t) = exp {jCsq (t)} = exp {js (t)} (Expression 18) The range of the integral ∫ on each side in (Equation 17) is from 0 to t.
【0026】本発明においては2ヶ所のドプラ信号a
(t)、b(t)についてそれぞれ最小2乗近似位相差関数csq
(t)を求め、これらをca(t)、cb(t)とする。これら位相
差関数は、In the present invention, there are two Doppler signals a
Least-squares approximate phase difference function csq for (t) and b (t) respectively
Find (t) and call these ca (t) and cb (t). These phase difference functions are
【0027】[0027]
【数19】 ca(t)=a0+a1t+a2t2+… …(数19)[Formula 19] ca (t) = a0 + a1t + a2t2 + ... (Equation 19)
【0028】[0028]
【数20】 cb(t)=b0+b1t+b2t2+… …(数20) と得られる。[Equation 20] cb (t) = b0 + b1t + b2t2 + ... (Equation 20) Is obtained.
【0029】本発明における、第一の構成においては、
この最小2乗近似位相差関数ca(t)、cb(t)から、信号波
形h(t)に相当する2個の信号波形ha(t)、hb(t)を求め
る。ついで、それら信号波形ha(t)、hb(t)の複素相関処
理により時間遅れを計測する。ここで、複素相関関数R
(τ)は、In the first configuration of the present invention,
Two signal waveforms ha (t) and hb (t) corresponding to the signal waveform h (t) are obtained from the least-squares approximated phase difference functions ca (t) and cb (t). Then, the time delay is measured by complex correlation processing of those signal waveforms ha (t) and hb (t). Where the complex correlation function R
(Τ) is
【0030】[0030]
【数21】
R(τ)=|∫ha(t)[hb(t+τ)]dt| …(数21)
である。(数17)において、[ ]は共役複素数を表
し、積分∫の範囲は0からT0であり、T0は、図1にお
いて周波数が大きく変化する広帯域信号部分の時間長で
ある。このR(τ)は、位相の不連続性が補正されてい
るため、単峰性となり、τ=Tpに最大値を示すことか
ら、正確な遅れ時間の計測が可能となる。(21) R (τ) = | ∫ha (t) [hb (t + τ)] dt | ... (Equation 21) In (Equation 17), [] represents a conjugate complex number, the range of the integral ∫ is from 0 to T0, and T0 is the time length of the wideband signal portion in which the frequency greatly changes in FIG. This R (τ) is unimodal because the phase discontinuity has been corrected, and since τ = Tp has the maximum value, accurate delay time measurement is possible.
【0031】本発明における第2の構成においては、2
ヶ所のドプラ信号a(t)、b(t)について求めた最小2乗近
似位相差関数ca(t)、cb(t)から、直接時間遅れを計測す
る。通常の動脈血流においてはca(t)、cb(t)は直線的に
変化するため、以下においてはca(t)、cb(t)をtに関す
る一次関数と仮定し、ca(t)=a0+a1t、cb(t)=b0+b1tとす
る。In the second configuration of the present invention, 2
The time delay is directly measured from the least-squares approximated phase difference functions ca (t) and cb (t) obtained for the Doppler signals a (t) and b (t) at various locations. Since ca (t) and cb (t) change linearly in normal arterial blood flow, in the following, ca (t) and cb (t) are assumed to be linear functions of t, and ca (t) = Let a0 + a1t and cb (t) = b0 + b1t.
【0032】ここで最小2乗近似位相差関数ca(t)とcb
(t)とから時間遅れを直接計測する第一の方法として、
再度最小2乗法を使用する構成を説明する。関数ca(t)
とcb(t)の差の2乗平均値をQQとすると、Here, the least-squares approximation phase difference functions ca (t) and cb
As the first method to directly measure the time delay from (t),
The configuration using the least squares method will be described again. Function ca (t)
QQ is the mean squared value of the difference between cb (t) and
【0033】[0033]
【数22】
QQ(τ)=∫{ca(t)-cb(t-τ)}2dt/T0=∫{(a0-b0+b1τ)+(a1-b1)t}2dt/T0
=∫{x+yt}2dt/T0=∫{x2+2xyt+y2t2}dt/T0=x2+y2T02/3+xyT0 …(数22)
(数22)において各辺の積分∫の範囲は0からT0であ
る。ここで、最小値はdQQ/dτ=0により与えられるた
め、[Equation 22] QQ (τ) = ∫ {ca (t) -cb (t-τ)} 2 dt / T0 = ∫ {(a0-b0 + b1τ) + (a1-b1) t} 2 dt / T0 = ∫ {x + yt} 2 dt / T0 = ∫ {x 2 + 2xyt + y 2 t 2} dt / T0 = x 2 + y 2 T0 2/3 + xyT0 ... ( Equation 22) sides in equation (22) The integral ∫ of is in the range 0 to T0. Here, the minimum value is given by dQQ / dτ = 0, so
【0034】[0034]
【数23】
dQQ/dτ=2b1(a0-b0)+(a1-b1)b1T0+2b12τ=0 …(数23)
である。ここで、関数ca(t)とcb(t)を一致させる時間差
τはTpであることから、DQQ / dτ = 2b1 (a0-b0) + (a1-b1) b1T0 + 2b1 2 τ = 0 (Equation 23) Here, since the time difference τ for matching the functions ca (t) and cb (t) is Tp,
【0035】[0035]
【数24】
Tp={(b0-a0)+(b1-a1)T0/2}/b1 …(数24)
により脈波の伝搬時間Tpが知られる。ここで、信号a(t)
とb(t)を入れ替えても時間差計測が可能であることか
ら、The propagation time Tp of the pulse wave is known from Tp = {(b0-a0) + (b1-a1) T0 / 2} / b1 (Equation 24). Where the signal a (t)
Since it is possible to measure the time difference even if the b and t are exchanged,
【0036】[0036]
【数25】
Tp'={(b0-a0)+(b1-a1)T0/2}/a1 …(数25)
により、同様に脈波の伝搬時間が計測される。このTpと
Tp’は本来は一致するはずであるが、2ヶ所における脈
波状況に差がある場合にはa1とb1とが完全には一致
しない。そこで、平均勾配(a1+b1)/2により、[Equation 25] Tp ′ = {(b0-a0) + (b1-a1) T0 / 2} / a1 (Equation 25) similarly measures the propagation time of the pulse wave. With this Tp
Originally, Tp 'should match, but a1 and b1 do not completely match when there are differences in the pulse wave conditions at the two locations. Therefore, by the average gradient (a1 + b1) / 2,
【0037】[0037]
【数26】 Tp"={2(b0-a0)+(b1-a1)T0}/(a1+b1) …(数26) により脈波の伝搬時間が同様に計測される。[Equation 26] Tp "= {2 (b0-a0) + (b1-a1) T0} / (a1 + b1) (Equation 26) Thus, the pulse wave propagation time is similarly measured.
【0038】次に、最小2乗近似位相差関数ca(t)、cb
(t)から時間遅れを直接計測する第2の方法として、誤
差の平均値を0にすることによる遅延時間の計測方式を
説明する。最小2乗近似位相差関数ca(t)とcb(t)の差の
平均値をQMとすると、Next, the least-squares approximation phase difference function ca (t), cb
As a second method of directly measuring the time delay from (t), a method of measuring the delay time by setting the average value of the errors to 0 will be described. If QM is the average value of the difference between the least squares approximate phase difference function ca (t) and cb (t),
【0039】[0039]
【数27】
QM(τ)=∫{ca(t)-cb(t-τ)}dt/T0=∫{(a0-b0+b1τ)+(a1-b1)t}dt/T0
=(a0-b0+b1τ)T0+(a1-b1)T02/2 …(数27)
(数27)において各辺の積分∫の範囲は0からT0であ
る。ここで、QM=0により遅延時間が与えられるため、[Equation 27] QM (τ) = ∫ {ca (t) -cb (t-τ)} dt / T0 = ∫ {(a0-b0 + b1τ) + (a1-b1) t} dt / T0 = (a0 -b0 + b1τ) T0 + (a1 -b1) T0 2/2 ... ( number 27) (the range of the integral ∫ of each side in the number 27) is from 0 T0. Here, since QM = 0 gives the delay time,
【0040】[0040]
【数28】 (a0-b0+b1τ)T0+(a1-b1)T02/2=0 …(数28) であり、この時間差τが伝搬時間差Tpであることから、[Number 28] is a (a0-b0 + b1τ) T0 + (a1-b1) T0 2/2 = 0 ... ( number 28), from the time difference τ is the propagation time difference Tp,
【0041】[0041]
【数29】
Tp={(b0-a0)+(b1-a1)T0/2}/b1 …(数29)
により脈波の伝搬時間Tpが得られる。この関係は、最小
2乗法による第一の直接計測法の結果である(数24)と
一致している。The propagation time Tp of the pulse wave can be obtained by Tp = {(b0-a0) + (b1-a1) T0 / 2} / b1 (Equation 29). This relationship is consistent with the result of the first direct measurement method using the least square method (Equation 24).
【0042】以上は、心拍動毎にそれぞれ単独に時間差
を計測することとして説明してきたが、時間遅れTpは各
心拍動について一定であることから、各心拍動によるR
(τ)、(b0-a0)、(b1-a1)、(a1+b1)、等を平均化し、そ
れら平均化された計測値から高精度のTpを求める構成も
可能である。The above description has been made by measuring the time difference independently for each heartbeat, but since the time delay Tp is constant for each heartbeat, the R due to each heartbeat is
A configuration is also possible in which (τ), (b0-a0), (b1-a1), (a1 + b1), etc. are averaged and a highly accurate Tp is obtained from the averaged measurement values.
【0043】本発明の一実施例の超音波装置の具体的な
構成例を図4に示す。TXに示す送信部により配列形超
音波送受波器TDを駆動する(送波くり返し周期をt0
とする)。この送受波器による超音波ビームB1とB2に
より、該当する領域内の血球のそれぞれからの反射信号
を得る。この反射信号から、ドプラ計測部DDにより、
ドプラ信号成分を抽出する。このようにして得られた、
各観測点のドプラ信号は、波形記憶部M1、M2に記憶
される。信号処理部SPは、M1、M2に記憶した波形
に対する後述する内容の信号処理と、血球の加速時相に
ある領域などの広帯域信号部分の選択抽出を行う。遅延
時間演算部TEは、信号間の遅延時間を計算する。速度
計算部VEは、この遅延時間と、距離判定部REにより
求める観測点間の距離Lとから速度v(=L/Tp)を
演算する。信号処理部SPの構成を図5に示すが、a(t)
とb(t)とから最小2乗近似によりca(t)とcb(t)を決定す
る。遅延時間演算部TEの各種構成を図6に示す。図6
(a)においては、最小2乗近似位相差関数ca(t)、cb(t)
から、位相積分器PIにより信号波形h(t)に相当する2
個の信号波形ha(t)、hb(t)を求め、ついで複素相関器C
Cによりそれら信号波形ha(t)、hb(t)の複素相関処理に
より時間遅れを計測する。図6(b)においては、最小2
乗演算部LSQにより、関数ca(t)とcb(t)の差の2乗平
均値QQを求め、次いでQQを最小にする条件により脈波の
伝搬時間Tpを計測する。図6(c)においては、平均差
分計算部DMにより、位相差関数ca(t)とcb(t)とからQ
Mを計算し、このQMを0とする条件から脈波の伝搬時間
Tpを求める。FIG. 4 shows a specific structural example of the ultrasonic device according to one embodiment of the present invention. The array-type ultrasonic wave transmitter / receiver TD is driven by the transmitting unit indicated by TX (transmission repetition period is t0
And). By using the ultrasonic beams B1 and B2 by the transmitter / receiver, the reflected signals from the blood cells in the corresponding region are obtained. From this reflected signal, the Doppler measurement unit DD
Extract the Doppler signal component. Thus obtained,
The Doppler signal at each observation point is stored in the waveform storage units M1 and M2. The signal processing unit SP performs signal processing of the contents described below for the waveforms stored in M1 and M2, and selectively extracts a wideband signal portion such as a region in the acceleration time phase of blood cells. The delay time calculator TE calculates the delay time between signals. The velocity calculation unit VE calculates the velocity v (= L / Tp) from this delay time and the distance L between the observation points obtained by the distance determination unit RE. The configuration of the signal processing unit SP is shown in FIG. 5, where a (t)
And b (t), ca (t) and cb (t) are determined by least-squares approximation. Various configurations of the delay time calculation unit TE are shown in FIG. Figure 6
In (a), the least-squares approximation phase difference functions ca (t), cb (t)
From the phase integrator PI corresponding to the signal waveform h (t)
Signal waveforms ha (t) and hb (t) are obtained, and then the complex correlator C
The time delay is measured by C by complex correlation processing of those signal waveforms ha (t) and hb (t). In FIG. 6 (b), a minimum of 2
The square calculation value QQ of the difference between the functions ca (t) and cb (t) is obtained by the multiplication calculator LSQ, and then the pulse wave propagation time Tp is measured under the condition of minimizing QQ. In FIG. 6C, the average difference calculation unit DM calculates Q from the phase difference functions ca (t) and cb (t).
M is calculated, and the pulse wave propagation time Tp is obtained from the condition that QM is 0.
【0044】[0044]
【発明の効果】本発明の超音波装置では、2ヶ所におい
て計測したドプラ信号それぞれの位相差を最小2乗法に
より近似する関数を求め、それら近似関数の間の時間遅
れを計測することにより高精度な脈波伝搬速度計測を可
能とする。With the ultrasonic device of the present invention, a function that approximates the phase difference of each Doppler signal measured at two points by the least squares method is obtained, and the time delay between these approximate functions is measured to achieve high accuracy. Enables pulse wave velocity measurement.
【図1】本発明における反射信号の計測位置と脈波の時
間関係を説明する図。FIG. 1 is a diagram illustrating a time relationship between a measurement position of a reflected signal and a pulse wave according to the present invention.
【図2】本発明で計測される血球の位置の変化を示す説
明図。FIG. 2 is an explanatory diagram showing changes in the position of blood cells measured by the present invention.
【図3】本発明における各血球からの反射ドプラ信号と
受信ドプラ信号の関係を説明する図。FIG. 3 is a diagram illustrating a relationship between a reflected Doppler signal from each blood cell and a received Doppler signal in the present invention.
【図4】本発明の超音波装置の構成例を説明する図。FIG. 4 is a diagram illustrating a configuration example of an ultrasonic device according to the present invention.
【図5】本発明の超音波装置の信号処理部の構成例を説
明する図。FIG. 5 is a diagram illustrating a configuration example of a signal processing unit of the ultrasonic apparatus of the present invention.
【図6】本発明の超音波装置の遅延時間演算部の各種の
構成例を説明する図。FIG. 6 is a diagram illustrating various configuration examples of a delay time calculation unit of the ultrasonic device of the present invention.
TX…送信部、TD…列形超音波送受波器、B1、B2…
超音波ビーム、DD…ドプラ計測部、M1、M2…波形
記憶部、SP…信号処理部、TE…遅延時間演算部、V
E…速度計算部、RE…距離判定部、PI…位相積分器、
CC…複素相関器、LSQ…最小2乗計算部、DM…平
均差分計算部。TX ... Transmitter, TD ... Linear ultrasonic transducers, B1, B2 ...
Ultrasonic beam, DD ... Doppler measurement unit, M1, M2 ... Waveform storage unit, SP ... Signal processing unit, TE ... Delay time calculation unit, V
E ... Velocity calculation unit, RE ... Distance determination unit, PI ... Phase integrator,
CC ... Complex correlator, LSQ ... Least squares calculator, DM ... Average difference calculator.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 千田 彰一 香川県高松市木太町8区3738−36 (72)発明者 松尾 裕英 香川県木田郡庵治町5319−70 (56)参考文献 特開 平6−261899(JP,A) 特開 昭62−26050(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 8/00 - 8/15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoichi Senda 3738-36, 8 wards, Kita-cho, Takamatsu-shi, Kagawa (72) Inventor Hirohide Matsuo 5319-70, Anji-cho, Kida-gun, Kagawa (56) References 6-261899 (JP, A) JP 6226050 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A61B 8 / 00-8 / 15
Claims (6)
対象からの反射信号を受信する超音波装置において、前
記検査対象の複数の位置からの対象物体のドプラ信号を
受信する受信器と、該受信器による各受信信号の位相を
計測する手段と、前記受信信号のそれぞれの位相差を計
測する手段と、該位相差の時間変化を近似する近似位相
差関数を導出する手段と、該近似位相差関数の相互の時
間遅れを計測する手段と、2つの受信点間の距離を計測
する手段と、前記時間遅れと前記距離とから前記の2つ
の受信点間における脈波の伝搬速度を計測することを特
徴とする超音波装置。1. An ultrasonic device for transmitting an ultrasonic signal to an inspection target and receiving a reflection signal from the inspection target, wherein the receiver receives Doppler signals of a target object from a plurality of positions of the inspection target. A means for measuring the phase of each received signal by the receiver, a means for measuring each phase difference of the received signals, a means for deriving an approximate phase difference function approximating a time change of the phase difference, A means for measuring the mutual time delay of the approximate phase difference functions, a means for measuring the distance between the two receiving points, and a pulse wave propagation velocity between the two receiving points from the time delay and the distance. An ultrasonic device characterized by measuring.
似位相差関数の相互の時間遅れを計測する手段が、前記
近似位相差関数を積分する手段と、該積分の結果の相互
相関を求める演算手段とを含むことを特徴とする超音波
装置。2. The ultrasonic device according to claim 1, wherein the means for measuring the mutual time delay of the approximate phase difference function and the means for integrating the approximate phase difference function and the cross-correlation of the result of the integration. An ultrasonic device, comprising: a calculating unit for calculating.
似位相差関数の相互の時間遅れを計測する手段は、前記
近似位相差関数の差を最小2乗近似により関数近似する
ことを特徴とする超音波装置。3. The ultrasonic device according to claim 1, wherein the means for measuring the mutual time delay of the approximate phase difference functions approximates the difference between the approximate phase difference functions by least square approximation. And ultrasonic equipment.
似位相差関数の相互の時間遅れを計測する手段は、前記
近似位相差関数の差の平均値を最小にすることを特徴と
する超音波装置。4. The ultrasonic device according to claim 1, wherein the means for measuring the mutual time delay of the approximate phase difference functions minimizes the average value of the differences of the approximate phase difference functions. Ultrasonic device.
似位相差関数の次数が1次であることを特徴とする超音
波装置。5. The ultrasonic device according to claim 1, wherein the order of the approximate phase difference function is first order.
似位相差関数相互の時間遅れを計測する手段は、心拍動
毎に前記時間遅れを計測し、各心拍動による計測値を平
均化し、平均化された計測値から脈波の伝搬速度を求め
ることを特徴とする超音波装置。6. The ultrasonic device according to claim 1, wherein the means for measuring the time delay between the approximate phase difference functions measures the time delay for each heartbeat and averages the measured values by each heartbeat. An ultrasonic device characterized by obtaining a pulse wave propagation velocity from an averaged measured value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18243595A JP3418652B2 (en) | 1995-07-19 | 1995-07-19 | Ultrasonic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18243595A JP3418652B2 (en) | 1995-07-19 | 1995-07-19 | Ultrasonic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0928709A JPH0928709A (en) | 1997-02-04 |
JP3418652B2 true JP3418652B2 (en) | 2003-06-23 |
Family
ID=16118225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18243595A Expired - Fee Related JP3418652B2 (en) | 1995-07-19 | 1995-07-19 | Ultrasonic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3418652B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101336830B (en) | 2007-07-03 | 2012-07-04 | 深圳迈瑞生物医疗电子股份有限公司 | Orthogonal Doppler signal gap filling method and device for ultrasonic dignosis imaging |
US10842464B2 (en) * | 2015-05-28 | 2020-11-24 | Koninklijke Philips N.V. | Apparatus and method for determining blood flow velocity |
EP3613350A1 (en) * | 2018-08-21 | 2020-02-26 | Koninklijke Philips N.V. | Systems and method for performing pulse wave velocity measurements |
-
1995
- 1995-07-19 JP JP18243595A patent/JP3418652B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0928709A (en) | 1997-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jensen et al. | Ultrasound vector flow imaging—Part I: Sequential systems | |
US5840028A (en) | Ultrasonic diagnostic equipment | |
EP1273267B1 (en) | Ultrasonic diagnostic apparatus | |
US6544181B1 (en) | Method and apparatus for measuring volume flow and area for a dynamic orifice | |
Tortoli et al. | Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries | |
US7422561B2 (en) | Ultrasonographic system and ultrasonography | |
JP2000229078A (en) | Vascular lesion diagnositic system and diagnostic program memory storage medium | |
Nagaoka et al. | Measurement of regional pulse-wave velocity using spatial compound imaging of the common carotid artery in vivo | |
Fekkes et al. | 2-D versus 3-D cross-correlation-based radial and circumferential strain estimation using multiplane 2-D ultrafast ultrasound in a 3-D atherosclerotic carotid artery model | |
Bambi et al. | A novel ultrasound instrument for investigation of arterial mechanics | |
Perrot et al. | Translation of simultaneous vessel wall motion and vectorial blood flow imaging in healthy and diseased carotids to the clinic: A pilot study | |
Avasthi et al. | A comparison of echo‐Doppler and electromagnetic renal blood flow measurements. | |
JP3418652B2 (en) | Ultrasonic device | |
Hasegawa et al. | Modified phased tracking method for measurement of change in thickness of arterial wall | |
US11918413B2 (en) | Ultrasound probe, system and method for measuring arterial parameters using non-imaging ultrasound | |
JP2004159672A (en) | Ultrasonograph and ultrasonic measuring method | |
WO2007011000A1 (en) | Ultrasonographic device | |
Van Bortel et al. | Direct measurement of local arterial stiffness and pulse pressure | |
JP4627220B2 (en) | Ultrasonic diagnostic equipment | |
RU2695925C1 (en) | Method for assessing human blood pressure (versions) | |
Haji et al. | Evaluation of local changes in radio-frequency signal waveform and brightness caused by vessel dilatation for ascertaining reliability of elasticity estimation inside heterogeneous plaque: a preliminary study | |
Richards et al. | Mitral inflow and pulmonary venous Doppler measurements do not predict pulmonary capillary wedge pressure in heart transplant recipients | |
Nguyen et al. | Myocardial Strain Measured by Epicardial Transducers—Comparison Between Velocity Estimators | |
Mo et al. | Signal processing for local pulse wave velocity estimation based on Fourier decomposition | |
Sugimoto et al. | Change in Elasticity Caused by Flow-Mediated Dilation Measured Only for Intima–Media Region of Brachial Artery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100411 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |