JP3415884B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP3415884B2
JP3415884B2 JP15753393A JP15753393A JP3415884B2 JP 3415884 B2 JP3415884 B2 JP 3415884B2 JP 15753393 A JP15753393 A JP 15753393A JP 15753393 A JP15753393 A JP 15753393A JP 3415884 B2 JP3415884 B2 JP 3415884B2
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic recording
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15753393A
Other languages
Japanese (ja)
Other versions
JPH0714144A (en
Inventor
正昭 二本
敦 中村
信幸 稲葉
義幸 平山
好文 松田
幹夫 鈴木
幸雄 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15753393A priority Critical patent/JP3415884B2/en
Priority to US08/207,609 priority patent/US5536585A/en
Publication of JPH0714144A publication Critical patent/JPH0714144A/en
Priority to US08/632,355 priority patent/US5599580A/en
Priority to US08/729,381 priority patent/US5685958A/en
Application granted granted Critical
Publication of JP3415884B2 publication Critical patent/JP3415884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体に関し、
特に磁性膜の結晶粒の結晶学的配向性が高密度磁気記録
に適するように改良された磁気記録媒体及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium,
In particular, the present invention relates to a magnetic recording medium in which the crystallographic orientation of crystal grains of a magnetic film is improved to be suitable for high density magnetic recording, and a method for manufacturing the same.

【0002】[0002]

【外1】 [Outer 1]

【0003】[0003]

【従来の技術】高密度磁気記録を実現するために、連続
磁性膜を磁気記録媒体に用いる研究開発が進められてい
る。これらの磁気記録媒体は、高分子フィルム、NiP
膜を被覆したアルミニウム、ガラスなどの非磁性材料よ
りなる基板上に、強磁性金属のCoやCo合金からなる
薄膜を、高周波スパッタリング法、イオンビームスパッ
タ法、真空蒸着法、電気メッキ法、あるいは化学メッキ
法などで形成して作製されている。このようにして作製
された磁気記録媒体において、磁性膜の微細構造と磁気
特性との間には密接な関係があり、磁気記録の記録密度
や再生出力を高めるために磁性膜の改良が種々試みられ
ている。
2. Description of the Related Art In order to realize high-density magnetic recording, research and development using a continuous magnetic film for a magnetic recording medium have been advanced. These magnetic recording media are polymer films, NiP
A thin film made of ferromagnetic metal Co or Co alloy is formed on a substrate made of a non-magnetic material such as aluminum or glass coated with a film by a high frequency sputtering method, an ion beam sputtering method, a vacuum deposition method, an electroplating method, or a chemical method. It is formed by a plating method or the like. In the magnetic recording medium thus manufactured, there is a close relationship between the fine structure of the magnetic film and the magnetic characteristics, and various attempts have been made to improve the magnetic film in order to increase the recording density and reproduction output of magnetic recording. Has been.

【0004】面内磁気異方性をもつ磁性膜の微細構造を
改良し記録再生特性を向上させるために、基板と磁性膜
の間に下地層を設ける方法が検討されており、例えば、
特開昭62−257617号公報にはCo−Pt系磁性
膜の下地層としてW,Mo,Nb又はVの膜を用いるこ
とが、特開昭62−257618号公報には下地層とし
てV−Cr又はFe−Cr合金材料を用いることが記載
され、特開昭63−106917号公報にはCo,N
i,Cr及びPtからなる磁性膜の下地層としてCr,
Ho,Ti,Ta等の非磁性材料の膜を形成する方法
が、特開昭63−187414号公報にはCo−Pt−
Cr磁性膜の下地層としてCr又はCr−V合金が有効
であることが記載されている。
In order to improve the fine structure of the magnetic film having in-plane magnetic anisotropy and improve the recording / reproducing characteristics, a method of providing an underlayer between the substrate and the magnetic film has been studied.
In Japanese Unexamined Patent Publication No. 62-257617, a W, Mo, Nb or V film is used as an underlayer of a Co-Pt magnetic film, and in Japanese Unexamined Patent Publication No. 62-257618, V-Cr is used as an underlayer. Alternatively, it is described that an Fe-Cr alloy material is used, and in JP-A-63-106917, Co, N is used.
i, Cr and Pt are used as an underlayer of a magnetic film, Cr,
A method for forming a film of a non-magnetic material such as Ho, Ti, Ta is disclosed in Japanese Patent Laid-Open No. 63-187414, Co-Pt-.
It is described that Cr or a Cr-V alloy is effective as the underlayer of the Cr magnetic film.

【0005】基板上に下地層としてCr又はCr合金を
スパッタ法等で形成すると(100)又は(110)配
向膜が得られ、Co合金磁性膜を(100)配向膜上に
形成すると磁化容易軸は基板と平行になり、一方、(1
10)配向膜上に形成すると磁化容易軸は基板表面から
約30度傾いてはいるが基板とほぼ平行になるため、面
内磁気記録媒体として望ましいことが知られている。
When a Cr or Cr alloy is formed as a base layer on the substrate by a sputtering method or the like, a (100) or (110) oriented film is obtained, and when a Co alloy magnetic film is formed on the (100) oriented film, an easy axis of magnetization is formed. Becomes parallel to the substrate, while (1
10) When formed on the orientation film, the easy axis of magnetization is approximately 30 degrees from the surface of the substrate, but is substantially parallel to the substrate, and it is known to be desirable as an in-plane magnetic recording medium.

【0006】[0006]

【発明が解決しようとする課題】高密度磁気記録が可能
で再生出力の大きい面内磁気記録媒体としては、磁性膜
の保磁力(Hc)、飽和磁化(Ms)が大きいことに加
えて、残留磁化率(Mr/Ms)が大きいこと、磁気異
方性の分散が小さいことが必要である。上記の公知技術
は、HcとMsが大きい磁気記録媒体を形成することは
ある程度可能であるが、残留磁化率が大きくてしかも磁
気異方性の分散が小さい媒体を形成するには不十分であ
る。
As an in-plane magnetic recording medium capable of high density magnetic recording and high reproduction output, in addition to the large coercive force (Hc) and saturation magnetization (Ms) of the magnetic film, It is necessary that the magnetic susceptibility (Mr / Ms) is large and the dispersion of magnetic anisotropy is small. The above-mentioned known technique can form a magnetic recording medium having a large Hc and Ms to some extent, but is insufficient to form a medium having a large residual magnetic susceptibility and a small dispersion of magnetic anisotropy. .

【0007】残留磁化率、磁気異方性の分散は磁性薄膜
を構成する結晶粒の粒径分布、磁化容易軸分布と相関が
あり、大きな残留磁化率及び小さな磁気異方性の分散を
実現するためには、結晶粒径が揃っていて、かつ、結晶
粒の磁化容易軸がほぼ面内方向に揃っていることが必要
である。さらに望ましくは磁化容易軸が記録再生の際に
用いられる磁気ヘッドの走行方向に揃っているほうが良
い。
The dispersion of the residual magnetic susceptibility and the magnetic anisotropy is correlated with the grain size distribution of the crystal grains forming the magnetic thin film and the distribution of the easy axis of magnetization, and realizes a large residual magnetic susceptibility and a small dispersion of the magnetic anisotropy. For this purpose, it is necessary that the crystal grain sizes are uniform and the easy axes of magnetization of the crystal grains are substantially aligned in the in-plane direction. More preferably, the axis of easy magnetization should be aligned with the running direction of the magnetic head used for recording and reproduction.

【0008】本発明は、磁性膜の磁化容易軸が面内を向
き、かつ磁気異方性の分散が小さい、高密度磁気記録に
適した面内磁気記録媒体及びその製造方法を提供するこ
とを目的とする。
The present invention provides an in-plane magnetic recording medium suitable for high-density magnetic recording, in which the easy axis of magnetization of the magnetic film faces in-plane and the dispersion of magnetic anisotropy is small, and a method for manufacturing the same. To aim.

【0009】[0009]

【課題を解決するための手段】上記目的は以下の方法に
より達成できることが、本発明者等の実験の結果明らか
になった。すなわち、基板もしくは下地層としてNaC
l型結晶構造を持つ(110)単結晶もしくは(11
0)配向膜を用いて、その上に体心立方構造(bcc)
を持つ下地層材料を形成すると、(211)面方位が基
板と平行な単結晶もしくは配向膜が得られる。この膜上
に六方最密構造(hcp)を持つCo基合金磁性膜を形
成すると、磁性膜は(1−100)面が基板と平行な単
結晶膜もしくは配向膜が得られる。この場合磁性膜の磁
化容易軸である[0001]軸は基板と平行になる。
As a result of experiments conducted by the present inventors, it was revealed that the above object can be achieved by the following method. That is, NaC as a substrate or a base layer
(110) single crystal or (11) with l-type crystal structure
0) An alignment film is used, and a body-centered cubic structure (bcc) is formed on the alignment film.
By forming the underlayer material having a single crystal or orientation film having a (211) plane orientation parallel to the substrate. When a Co-based alloy magnetic film having a hexagonal close-packed structure (hcp) is formed on this film, a single crystal film or an orientation film whose (1-100) plane is parallel to the substrate is obtained as the magnetic film. In this case, the [0001] axis, which is the easy axis of magnetization of the magnetic film, is parallel to the substrate.

【0010】また、NaCl型結晶構造を持つ(11
0)単結晶もしくは(110)配向膜の上に直接hcp
構造を持つCo基合金磁性膜を形成しても、磁性膜の磁
化容易軸である[0001]軸は基板と平行になる。b
cc構造の膜を用いた場合、成膜条件を制御することに
より(211)配向性を保った状態で結晶粒径や結晶粒
間の距離を調整できるので、磁気記録媒体の微細構造を
調整できるという特徴があるため、磁気記録媒体の使用
目的に応じて利用すれば良い。
Further, it has a NaCl type crystal structure (11
0) hcp directly on single crystal or (110) oriented film
Even if a Co-based alloy magnetic film having a structure is formed, the [0001] axis, which is the easy axis of magnetization of the magnetic film, is parallel to the substrate. b
When the film having the cc structure is used, the crystal grain size and the distance between the crystal grains can be adjusted while maintaining the (211) orientation by controlling the film forming conditions, and thus the fine structure of the magnetic recording medium can be adjusted. Therefore, the magnetic recording medium may be used depending on the purpose of use.

【0011】ベースとなる基板上にNaCl構造をもつ
材料の(110)配向膜を形成する方法として、例えば
基板上にグレーティングあるいはテクスチャと呼ばれる
微細な起伏を形成し、この上にグラフォエピタキシャル
成長を利用して(110)配向膜を成長させることが可
能である。グラフォエピタキシャル成長技術に関して
は、例えば、「固体物理」第20巻、第10号(198
5)、第815〜820頁に記載されている。グレーテ
ィングやテクスチャを円板状の基板の周方向に形成して
おけば、Co基合金磁性膜の磁化容易軸を周方向に揃え
ることが可能となる。
As a method of forming a (110) oriented film of a material having an NaCl structure on a base substrate, for example, a fine undulation called a grating or a texture is formed on the substrate, and graphoepitaxial growth is used on this. Then, it is possible to grow a (110) orientation film. Regarding the graphoepitaxial growth technique, for example, “Solid State Physics” Vol. 20, No. 10 (198)
5), pages 815-820. If the grating or texture is formed in the circumferential direction of the disk-shaped substrate, the easy axis of magnetization of the Co-based alloy magnetic film can be aligned in the circumferential direction.

【0012】上記の方法を用いれば、磁性膜の磁化容易
軸を基板と平行に制御でき、さらに円板状の基板では円
周方向に磁化容易軸を揃えることができるので、磁気記
録の際の磁気ヘッドの走行方向と同一にでき、この結
果、面内磁気記録媒体の性能が向上する。磁性膜の結晶
粒の分布を制御することもできるので、高密度磁気記録
に適した記録媒体を提供することができる。
When the above method is used, the easy axis of magnetization of the magnetic film can be controlled in parallel with the substrate, and the easy axis of magnetization can be aligned in the circumferential direction on a disk-shaped substrate. The running direction of the magnetic head can be made the same, and as a result, the performance of the in-plane magnetic recording medium is improved. Since the distribution of crystal grains in the magnetic film can be controlled, it is possible to provide a recording medium suitable for high density magnetic recording.

【0013】さらに磁気ヘッドと組み合わせて磁気記録
媒体を使用する場合、高いトラック密度を実現すること
を考慮して、上記方法で作製した磁気記録媒体に溝や窪
みを設けたり、非磁性領域や光反射率の異なる領域を設
けても良い。NaCl型結晶構造を持つ材料としては、
MgO,CaO,TiO,VO,MnO,CoO,Ni
Oのいずれか又はこれらを主成分とする混晶、あるいは
LiCl,NaCl,KClのいずれか又はこれらを主
成分とする混晶、あるいはLiF、あるいはTiC,Z
rC,HfC,NbC,TaCのいずれか又はこれらを
主成分とする混晶が適当である。膜厚は、10nm以上
100μm以下が望ましい。10nm以下になるとベー
ス基板がbcc構造を持つ膜の成長に及ぼす影響を遮断
し難くなり、100μm以上になると、膜形成に要する
時間が長くなり、さらに配向膜の結晶粒の粗大化などの
望ましくない現象が生ずる。
Further, when a magnetic recording medium is used in combination with a magnetic head, in consideration of realizing a high track density, the magnetic recording medium manufactured by the above method is provided with a groove or a dent, a nonmagnetic region or an optical region. Areas having different reflectances may be provided. As a material having a NaCl type crystal structure,
MgO, CaO, TiO, VO, MnO, CoO, Ni
Any one of O or a mixed crystal containing these as a main component, any one of LiCl, NaCl and KCl or a mixed crystal containing any of these as a main component, LiF, or TiC, Z
Any of rC, HfC, NbC, and TaC or a mixed crystal containing these as the main components is suitable. The film thickness is preferably 10 nm or more and 100 μm or less. When the thickness is 10 nm or less, it becomes difficult to block the influence of the base substrate on the growth of the film having the bcc structure, and when it is 100 μm or more, the time required for the film formation becomes long, and the crystal grains of the alignment film become coarser, which is not desirable. A phenomenon occurs.

【0014】bcc構造を持つ膜としては、Cr,V,
Nb,Moもしくはこれらの元素を主成分とする合金が
利用可能である。膜厚は1μm以下が望ましく、スパッ
タ法などの成膜法で形成することを考慮すると、経済的
かつ実用的には200nm以下がさらに望ましい。hc
p構造を持つCo基合金磁性膜としては、Coをベース
として、Cr,Ni,Fe,V,Ti,Zr,Hf,M
o,W,Ta,Re,Ru,Rh,Ir,Pt,Pd,
Au,Ag,Cu,B,Al,C,Si,P,Nの少な
くとも1元素を含んだ合金膜が利用可能である。例え
ば、Co−Cr,Co−Ni,Co−Fe,Co−V,
Co−Mo,Co−Ta,Co−Re,Co−Pt,C
o−Pd等の2元系合金、あるいはこれらの2元系合金
に第3元素を加えたCo−Cr−Ta,Co−Cr−P
t,Co−Cr−Mo,Co−Cr−W,Co−Cr−
Re,Co−Ni−Zr,Co−Pt−Ta,Co−P
t−B等の3元系合金、又は第4元素を加えたCo−C
r−Ta−B,Co−Cr−Ta−Si,Co−Cr−
Ta−C,Co−Cr−Ta−P,Co−Cr−Ta−
N,Co−Cr−Pt−B等である。Coの比率が最大
でしかも結晶構造がhcpとなるなら、本発明で対象と
するCo基合金磁性膜となりうる。また、磁性膜は単層
に限らず多層膜あるいは膜厚方向に組成傾斜を持たせた
膜でも利用可能である。膜厚は、2nm以上100nm
以下、望ましくは5nm以上50nm以下が良い。
As the film having the bcc structure, Cr, V,
Nb, Mo or an alloy containing these elements as the main components can be used. The film thickness is preferably 1 μm or less, and more preferably 200 nm or less economically and practically considering that the film is formed by a film forming method such as a sputtering method. hc
The Co-based alloy magnetic film having a p-structure is based on Co, and contains Cr, Ni, Fe, V, Ti, Zr, Hf, and M.
o, W, Ta, Re, Ru, Rh, Ir, Pt, Pd,
An alloy film containing at least one element of Au, Ag, Cu, B, Al, C, Si, P and N can be used. For example, Co-Cr, Co-Ni, Co-Fe, Co-V,
Co-Mo, Co-Ta, Co-Re, Co-Pt, C
Binary alloys such as o-Pd, or Co-Cr-Ta and Co-Cr-P obtained by adding a third element to these binary alloys.
t, Co-Cr-Mo, Co-Cr-W, Co-Cr-
Re, Co-Ni-Zr, Co-Pt-Ta, Co-P
ternary alloys such as t-B, or Co-C added with a fourth element
r-Ta-B, Co-Cr-Ta-Si, Co-Cr-
Ta-C, Co-Cr-Ta-P, Co-Cr-Ta-
N, Co-Cr-Pt-B and the like. If the ratio of Co is maximum and the crystal structure is hcp, the Co-based alloy magnetic film of the present invention can be obtained. Further, the magnetic film is not limited to a single layer, but can be a multilayer film or a film having a composition gradient in the film thickness direction. The film thickness is 2 nm or more and 100 nm
Hereafter, it is preferably 5 nm or more and 50 nm or less.

【0015】成膜法としては、高周波スパッタ法、高周
波マグネトロンスパッタ法、イオンビームスパッタ法、
イオンビームプレーティング法、真空蒸着法等の物理蒸
着法がいずれも利用可能である。
As a film forming method, a high frequency sputtering method, a high frequency magnetron sputtering method, an ion beam sputtering method,
Physical vapor deposition methods such as an ion beam plating method and a vacuum vapor deposition method can be used.

【0016】[0016]

【作用】図1は、本発明の一実施形態による円板状の磁
気ディスクの一部の断面斜視図である。この図を参照し
て説明する。外形が円板状の非磁性基板101の表面
に、例えば頂角θが約90度のグレーティングもしくは
テクスチャ102を設け、この上にNaCl型結晶構造
を持つ材料をグラフォエピタキシャル成長させると、表
面が(110)を持つ配向膜103が得られる。
1 is a sectional perspective view of a part of a disk-shaped magnetic disk according to an embodiment of the present invention. A description will be given with reference to this figure. For example, a grating or texture 102 having an apex angle θ of about 90 degrees is provided on the surface of a non-magnetic substrate 101 having an outer shape, and a surface having a NaCl-type crystal structure is formed by grapho-epitaxial growth on the surface. An alignment film 103 having 110) is obtained.

【0017】グレーティングもしくはテクスチャの方向
は、円板の周方向に揃えるのが有効である。この場合、
グレーティングもしくはテクスチャは全周連続している
必要性は必ずしもなく、断続していても良い。NaCl
型結晶構造を持つ材料は{100}面が発達する傾向が
あり、図1に示すような頂角がほぼ90度の起伏がある
と、斜面に{100}面が平行に成長することになり、
その結果、ベース基板と平行な膜の表面は(110)面
となる。頂角は90度を中心に30度程度のずれがあっ
ても、ほぼ(110)面をベース基板と平行に持つNa
Cl配向膜が得られる。個々の起伏の深さにも平均の深
さにたいして数十%の誤差があっても、(110)面が
優先的に配向したNaCl型結晶構造を持つ膜が得られ
る。この膜の表面を平坦にしたい場合は、グラフォエピ
タキシャル成長後、研磨するのが望ましい。
It is effective to align the grating or texture with the circumferential direction of the disk. in this case,
The grating or texture does not necessarily need to be continuous all around, and may be intermittent. NaCl
A material having a type crystal structure tends to develop the {100} plane, and if the apex angle is approximately 90 degrees as shown in Fig. 1, the {100} plane will grow parallel to the slope. ,
As a result, the surface of the film parallel to the base substrate becomes the (110) plane. Even if the apex angle is deviated by about 30 degrees around 90 degrees, Na having a (110) plane parallel to the base substrate is used.
A Cl orientation film is obtained. A film having a NaCl-type crystal structure in which the (110) plane is preferentially oriented can be obtained even if there is an error of several tens% in the depth of each undulation with respect to the average depth. When it is desired to make the surface of this film flat, it is desirable to carry out polishing after graphoepitaxial growth.

【0018】NaCl型結晶構造を持つ配向膜の個々の
結晶粒の[001]方向は、ほぼグレーティングもしく
はテクスチャの筋の方向と平行、すなわち円板状の基板
の周方向と平行になる。この膜の上に、bcc構造を持
つ膜を形成すると、エピタキシャル現象により、(21
1)面がベース基板と平行な配向膜104が成長する。
次いで、hcp構造を持つCo基合金磁性膜を形成する
と、エピタキシャル現象により、(1−100)面がベ
ース基板と平行な配向膜105が成長する。磁性膜の磁
化容易軸[0001]は基板と平行になり、しかもほぼ
グレーティングもしくはテクスチャの筋の方向と平行、
すなわち円板状の基板の周方向と平行になる。この上に
保護膜106を形成することにより、磁気記録媒体が得
られる。
The [001] direction of each crystal grain of the alignment film having the NaCl type crystal structure is substantially parallel to the direction of the grating or the texture stripe, that is, the circumferential direction of the disk-shaped substrate. When a film having a bcc structure is formed on this film, it becomes (21
1) The alignment film 104 whose surface is parallel to the base substrate is grown.
Next, when a Co-based alloy magnetic film having an hcp structure is formed, an alignment film 105 whose (1-100) plane is parallel to the base substrate grows due to an epitaxial phenomenon. The easy axis of magnetization [0001] of the magnetic film is parallel to the substrate, and is almost parallel to the direction of the grating or texture stripes.
That is, it is parallel to the circumferential direction of the disk-shaped substrate. A magnetic recording medium is obtained by forming the protective film 106 on this.

【0019】グレーティングもしくはテクスチャの深さ
は、その上に形成されるNaCl型結晶構造を持つ配向
膜の個々の結晶粒の大きさと関係があり、成膜条件が同
じ場合、深さが小さいほど小さな結晶粒が形成される。
磁性膜を構成するhcp構造を持つ材料の結晶粒の望ま
しい大きさの範囲は、2nm以上100nm以下であ
る。このような磁性膜を形成するためには、グレーティ
ングもしくはテクスチャの深さも1nm以上200nm
以下であるのが望ましい。また、テクスチャの山の平均
のピッチも、円板状の基板の半径方向で1nm以上50
0nm以下であることが望ましい。ピッチが1nm以下
になるとグラフォエピタキシャル成長が起こり難くな
り、500nm以上になると磁性膜の磁化容易軸が円板
の周方向に揃い難くなる。
The depth of the grating or texture is related to the size of individual crystal grains of the oriented film having a NaCl type crystal structure formed thereon, and the smaller the depth, the smaller the film forming conditions under the same conditions. Crystal grains are formed.
The desirable size range of the crystal grains of the material having the hcp structure forming the magnetic film is 2 nm or more and 100 nm or less. In order to form such a magnetic film, the depth of the grating or texture should be 1 nm or more and 200 nm.
The following is desirable. The average pitch of the texture peaks is also 1 nm or more in the radial direction of the disk-shaped substrate.
It is preferably 0 nm or less. If the pitch is 1 nm or less, grapho-epitaxial growth becomes difficult to occur, and if it is 500 nm or more, the easy axis of magnetization of the magnetic film is difficult to align in the circumferential direction of the disk.

【0020】図2は、bcc構造からなる材料膜を省い
て、(110)配向したNaCl型結晶構造を持つ膜の
上に直接hcp構造を持つCo基合金磁性膜を形成した
構成からなる磁気記録媒体の断面構造模式図である。こ
の場合も磁性膜の磁化容易軸は基板と平行になり、上記
と類似の効果が生ずる。図3は、非磁性基板301の表
面に離散的なグレーティングもしくはテクスチャを設け
た場合であり、起伏直上に形成されたbcc結晶構造を
持つ材料膜は(211)配向を、hcp結晶構造を持つ
Co基合金磁性膜は(1−100)配向を示す。さら
に、起伏直上に形成された磁性膜の磁化容易軸はテクス
チャもしくはグレーティングの方向に沿っており、さら
に基板上の結晶粒の分布もその方向に沿っているため、
磁気記録を行なう際には、前述のケースに準ずる望まし
い効果が生じる。なおこの場合、起伏間の距離は磁気ヘ
ッドのトラック幅で規定される磁気記録の幅の数分の1
以下にすることが必要であり、1Gb/in2以上の磁
気記録密度を達成するためには、100nm以下とする
ことが望ましい。
FIG. 2 shows a magnetic recording having a structure in which a material film having a bcc structure is omitted and a Co-based alloy magnetic film having an hcp structure is directly formed on a film having a (110) oriented NaCl type crystal structure. It is a cross-sectional structure schematic diagram of a medium. In this case as well, the easy axis of magnetization of the magnetic film is parallel to the substrate, and an effect similar to the above occurs. FIG. 3 shows a case where a discrete grating or texture is provided on the surface of the non-magnetic substrate 301, and the material film having a bcc crystal structure formed directly on the undulations has a (211) orientation and Co having an hcp crystal structure. The base alloy magnetic film exhibits a (1-100) orientation. Furthermore, the easy axis of magnetization of the magnetic film formed directly on the undulations is along the direction of the texture or grating, and the distribution of crystal grains on the substrate is also along that direction.
When performing magnetic recording, a desired effect similar to the above case is produced. In this case, the distance between the undulations is a fraction of the magnetic recording width defined by the track width of the magnetic head.
It is necessary to set it below, and in order to achieve a magnetic recording density of 1 Gb / in 2 or more, it is desirable to set it to 100 nm or less.

【0021】図4は、図3においてbcc構造からなる
材料膜を省いて、(110)配向したNaCl型結晶構
造を持つ膜の上に直接hcp構造を持つCo基合金磁性
膜を形成した構成からなる磁気記録媒体の断面構造模式
図である。この場合も、起伏直上に形成された磁性膜の
磁化容易軸は基板と平行になり、図3の場合と類似の効
果が生ずる。
FIG. 4 shows a structure in which the material film having the bcc structure in FIG. 3 is omitted and the Co-based alloy magnetic film having the hcp structure is directly formed on the film having the (110) -oriented NaCl type crystal structure. FIG. 3 is a schematic sectional view of a magnetic recording medium of Also in this case, the easy axis of magnetization of the magnetic film formed directly on the undulations is parallel to the substrate, and the same effect as in the case of FIG. 3 is produced.

【0022】図5は、(110)面を基板面に持つNa
Cl型結晶構造をもつ材料の単結晶基板を用いた場合で
ある。bcc構造の膜は(211)面がエピタキシャル
成長し、hcp構造の膜は(1−100)面がエピタキ
シャル成長するため、磁化容易軸は基板と平行になる。
基板とbcc結晶構造を持つ材料の間に通常格子定数の
ミスマッチがあるため、このミスマッチを緩和するため
bcc及びhcp結晶構造を持つ材料膜には亜粒界が形
成される。膜の形成条件、例えば基板温度や成膜速度を
調整することにより、この亜粒界で分割される結晶粒の
大きさを磁気記録に望ましい5〜100nmに制御する
ことができる。
FIG. 5 shows Na having a (110) plane as a substrate surface.
This is a case where a single crystal substrate of a material having a Cl type crystal structure is used. Since the (211) plane is epitaxially grown on the bcc structure film and the (1-100) plane is epitaxially grown on the hcp structure film, the easy axis of magnetization is parallel to the substrate.
Since there is usually a mismatch in the lattice constant between the substrate and the material having the bcc crystal structure, subgrain boundaries are formed in the material film having the bcc and hcp crystal structures in order to mitigate the mismatch. By adjusting the film forming conditions, such as the substrate temperature and the film forming rate, the size of the crystal grains divided at the sub-grain boundaries can be controlled to 5 to 100 nm which is desirable for magnetic recording.

【0023】図6は、図5においてbcc構造からなる
材料膜を省いて、(110)面からなるNaCl型結晶
構造を持つ単結晶基板の上に直接hcp構造を持つCo
基合金磁性膜を形成した構成からなる磁気記録媒体の断
面構造模式図である。この場合も、磁性膜の磁化容易軸
は基板と平行になり、図3の場合と類似の効果が生ず
る。
In FIG. 6, the material film having the bcc structure is omitted in FIG. 5, and the Co having the hcp structure is directly formed on the single crystal substrate having the NaCl type crystal structure having the (110) plane.
FIG. 3 is a schematic cross-sectional structure diagram of a magnetic recording medium having a structure in which a base alloy magnetic film is formed. Also in this case, the easy axis of magnetization of the magnetic film is parallel to the substrate, and an effect similar to the case of FIG. 3 is produced.

【0024】図5及び図6に示した単結晶基板を用いた
磁気記録媒体は、円板状の磁気ディスクとして磁気記録
に用いることができる。この場合、磁気記録媒体におけ
る磁化容易軸の磁気ヘッドに対する向きは円板の方向に
よって変化し、例えば再生出力に変化が生ずる。しか
し、この変化は円板の結晶方位に対して周期をもって生
ずる変化であり、記録再生の際に補正することは可能で
ある。また、矩形状の単結晶基板に形成した磁気記録媒
体と基板上で単振動運動をする磁気ヘッドとを組み合わ
せれば新しい磁気記録系として用いることができる。磁
気ヘッドの動きと直交する方向に磁気記録媒体を動かせ
ば、矩形状の磁気記録媒体に記録再生することができ
る。
The magnetic recording medium using the single crystal substrate shown in FIGS. 5 and 6 can be used for magnetic recording as a disk-shaped magnetic disk. In this case, the direction of the easy axis of magnetization in the magnetic recording medium with respect to the magnetic head changes depending on the direction of the disk, and, for example, the reproduction output changes. However, this change is a change that occurs periodically with respect to the crystal orientation of the disk, and can be corrected during recording and reproduction. Further, by combining a magnetic recording medium formed on a rectangular single crystal substrate with a magnetic head that makes a single oscillatory motion on the substrate, it can be used as a new magnetic recording system. By moving the magnetic recording medium in a direction orthogonal to the movement of the magnetic head, recording and reproduction can be performed on the rectangular magnetic recording medium.

【0025】[0025]

【実施例】以下、本発明を実施例により詳細に説明す
る。 〔実施例1〕直径1.8インチの石英ガラス基板101
の表面に、先端角90度のダイヤモンド端子を用いて、
深さ50nm、ピッチ100nmの同心円状のグレーテ
ィング102を形成した。この基板を用いて、図1に示
す構造を有する磁気記録媒体を以下の手順で作製した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 A quartz glass substrate 101 having a diameter of 1.8 inches
Using a diamond terminal with a tip angle of 90 degrees on the surface of
A concentric circular grating 102 having a depth of 50 nm and a pitch of 100 nm was formed. Using this substrate, a magnetic recording medium having the structure shown in FIG. 1 was manufactured by the following procedure.

【0026】高周波スパッタ法で基板101を高温度に
保って、NaCl構造を持つLiF膜103を100n
mの厚さに形成した。膜の形成後、不活性ガス雰囲気に
保った電気炉中で熱処理した。X線回折法でLiF膜を
調べた結果、LiF膜は、(110)面が基板とほぼ平
行になった配向多結晶膜であり、さらに結晶粒の[00
1]方向はほぼ同心円状に分布していることが分かっ
た。走査型電子顕微鏡でLiF膜の微細構造を調べたと
ころ、粒子径50〜100nmの結晶粒からなってお
り、さらに表面には30〜100nmの起伏が存在する
ことが確認された。
The substrate 101 is kept at a high temperature by the high frequency sputtering method, and the LiF film 103 having a NaCl structure is formed to 100 n.
It was formed to a thickness of m. After forming the film, heat treatment was performed in an electric furnace kept in an inert gas atmosphere. As a result of examining the LiF film by the X-ray diffraction method, the LiF film was an oriented polycrystalline film in which the (110) plane was substantially parallel to the substrate, and the crystal grain [00]
It was found that the [1] directions were distributed in almost concentric circles. When the fine structure of the LiF film was examined by a scanning electron microscope, it was confirmed that the LiF film was composed of crystal grains having a particle diameter of 50 to 100 nm and that undulations of 30 to 100 nm were present on the surface.

【0027】そこで表面を研磨して平坦化した後、高周
波マグネトロンスパッタ法によって、bcc結晶構造を
持つ厚さ50nmのCr膜104、厚さ30nmのhc
p結晶構造を持つCo−Cr−Pt膜105を形成し
た。磁性膜用にはCo−18at%Cr−6at%Pt
ターゲットを用いた。Cr膜形成時の基板温度は400
゜C、Co−Cr−Pt磁性膜形成時の基板温度は18
0゜Cとした。スパッタのArガス圧力は3〜10mT
orr、スパッタパワーは6〜10W/cm2とした。
さらに、保護膜106としてカーボン膜を10nmの厚
さに形成し、磁気記録媒体を作製した。X線回折で膜構
造を調べ、Cr膜は(211)配向を、Co−Cr−P
t膜は(1−100)配向をした多結晶膜であることを
確認した。
Then, after the surface is polished and flattened, a high-frequency magnetron sputtering method is used to form a Cr film 104 having a bcc crystal structure and having a thickness of 50 nm and an hc having a thickness of 30 nm.
A Co-Cr-Pt film 105 having a p crystal structure was formed. Co-18 at% Cr-6 at% Pt for magnetic film
A target was used. Substrate temperature during formation of Cr film is 400
The substrate temperature at the time of forming the magnetic film is 18 ° C.
It was set to 0 ° C. Ar gas pressure for sputtering is 3-10 mT
The orr and the sputter power were set to 6 to 10 W / cm 2 .
Further, a carbon film having a thickness of 10 nm was formed as the protective film 106 to manufacture a magnetic recording medium. The film structure was examined by X-ray diffraction, and the Cr film had a (211) orientation and Co-Cr-P
It was confirmed that the t film was a polycrystalline film having a (1-100) orientation.

【0028】上記と同様の条件で、Crの代わりにV,
Nb,Mo,Cr−5at%Ti,Cr−2at%Z
r,Cr−20at%V,Cr−1at%Bを用いた磁
気記録媒体を作製した。bcc構造を持つ下地膜、hc
p構造をもつ磁性膜ともに上記と類似の組織が実現され
ていることをX線回折法によって確認した。比較試料と
して、グレーティングを形成しない石英ガラス基板上に
直接Cr膜、Co−Cr−Pt磁性膜、C保護膜を上記
と同様な条件で形成した磁気記録媒体を作製した。X線
回折による分析の結果、Cr膜は(100)と(11
0)の2種類が混ざった配向を示し、磁性膜の磁化容易
軸は基板と平行な結晶粒と磁化容易軸が基板から約30
度傾いた結晶粒が混在しており、磁化容易軸の方向は基
板の面内で不規則に分布していることが分かった。
Under the same conditions as above, instead of Cr, V,
Nb, Mo, Cr-5 at% Ti, Cr-2 at% Z
A magnetic recording medium using r, Cr-20 at% V, Cr-1 at% B was produced. Base film with bcc structure, hc
It was confirmed by an X-ray diffraction method that a structure similar to the above was realized in the magnetic film having the p structure. As a comparative sample, a magnetic recording medium was prepared in which a Cr film, a Co—Cr—Pt magnetic film, and a C protective film were directly formed on a silica glass substrate without forming a grating under the same conditions as above. As a result of X-ray diffraction analysis, the Cr film was (100) and (11).
0) shows a mixed orientation, and the easy axis of magnetization of the magnetic film is parallel to the substrate and the easy axis of magnetization is about 30 from the substrate.
It was found that the crystal grains that were tilted were mixed and the direction of the easy axis was irregularly distributed in the plane of the substrate.

【0029】これらの磁気記録媒体の記録再生特性の評
価を薄膜磁気ヘッドを用いて行なった。磁気ヘッドトラ
ック幅は5μm、ギャップ長さは0.2μm、測定時の
磁気ヘッドと磁気記録媒体の距離は0.06μm、相対
速度は10m/sとした。評価項目として、記録密度特
性、シグナルとノイズの比率(S/N比)、オフトラッ
ク特性を選んだ。記録密度特性は低周波の再生出力の半
分になる出力半減記録密度(D50)、S/N比は比較試
料のS/N比を基準とした相対値、オフトラック特性は
トラックエッジ部の記録にじみの距離を比較試料と比べ
た相対値として測定した。S/N比は値が大きいほど、
オフトラック特性は値が小さいほど高密度磁気記録に適
することを示す。
The recording / reproducing characteristics of these magnetic recording media were evaluated using a thin film magnetic head. The magnetic head track width was 5 μm, the gap length was 0.2 μm, the distance between the magnetic head and the magnetic recording medium at the time of measurement was 0.06 μm, and the relative speed was 10 m / s. As evaluation items, recording density characteristics, signal-to-noise ratio (S / N ratio), and off-track characteristics were selected. The recording density characteristic is an output half recording density (D 50 ) that is half of the reproduction output at low frequency, the S / N ratio is a relative value based on the S / N ratio of the comparative sample, and the off-track characteristic is recording at the track edge portion. The bleed distance was measured as a relative value compared to the comparative sample. The larger the S / N ratio,
The smaller the off-track characteristic, the more suitable it is for high-density magnetic recording.

【0030】[0030]

【表1】 [Table 1]

【0031】本実施例の磁気記録媒体は、比較例に比べ
記録密度特性、S/N比及びオフトラック特性がいずれ
も改善されており、高密度磁気記録媒体として望ましい
特性を持つことが確認された。また、NaCl型結晶構
造を持つ材料としてLiFのかわりにLiCl,NaC
l,KCl,MgO,CaO,TiO,VO,MnO,
CoO,NiO,TiC,ZrC,HfC,NbC,T
aCのいずれかの材料からなる(110)配向膜を用い
た実験も行なった。材料が異なるとグラフォエピタキシ
成長の条件が変化し、材料に適した成膜法あるいは成膜
時の基板温度、成膜後の熱処理などの条件を選択する必
要があったが、いずれの(110)優先配向膜を用いた
場合も、上記と同様に高密度磁気記録媒体として望まし
い特性を持つことがわかった。
The magnetic recording medium of this example has improved recording density characteristics, S / N ratio and off-track characteristics as compared with the comparative example, and it is confirmed that the magnetic recording medium has desirable characteristics as a high density magnetic recording medium. It was Further, as a material having a NaCl-type crystal structure, LiCl or NaC is used instead of LiF.
1, KCl, MgO, CaO, TiO, VO, MnO,
CoO, NiO, TiC, ZrC, HfC, NbC, T
An experiment using a (110) orientation film made of any material of aC was also conducted. Different materials change the conditions of graphoepitaxy growth, and it is necessary to select a film forming method suitable for the material, a substrate temperature during film formation, a heat treatment after film formation, or the like. ) It was found that even when the preferential orientation film is used, it has desirable characteristics as a high density magnetic recording medium as described above.

【0032】〔参考例1〕 実施例1において、bcc結晶構造からなる材料の膜形
成を省いた以外は同様な手順で、深さ50nm、ピッチ
100nmの同心円状のグレーティング202を形成し
た直径1.8インチの石英ガラス基板201の表面上に
NaCl構造の(110)配向膜203、hcp構造の
配向磁性膜204及び保護膜205を順次形成して、図
2に示す構造を有する磁気記録媒体を作製した。
Reference Example 1 A concentric grating 202 having a depth of 50 nm and a pitch of 100 nm was formed by the same procedure as in Example 1 except that the film formation of the material having the bcc crystal structure was omitted. A (110) oriented film 203 having a NaCl structure, an oriented magnetic film 204 having an hcp structure, and a protective film 205 are sequentially formed on the surface of an 8-inch quartz glass substrate 201 to manufacture a magnetic recording medium having the structure shown in FIG. did.

【0033】磁性膜204としては、Co−18at%
Cr,Co−12at%Ni,Co−18at%Fe,
Co−20at%V,Co−20atMo,Co−16
at%Ta,Co−20at%Re,Co−16at%
Pt,Co−15at%Pdからなる2元合金、Co−
18at%Cr−2at%Ta,Co−21at%Cr
−3at%Mo,Co−19at%Cr−1.5at%
W,Co−15at%Cr−7at%Re,Co−14
at%Ni−1at%Zr,Co−16at%Pt−2
at%Ta,Co−18at%Pt−0.8at%Bか
らなる3元合金、Co−18at%Cr−2at%Ta
−2at%B,Co−20at%Cr−1.5at%T
a−0.3at%Si,Co−19at%Cr−2.5
at%Ta−0.8at%C,Co−22at%Cr−
1.6at%Ta−0.2at%P,Co−21at%
Cr−1at%Ta−0.2at%N,Co−12at
%Cr−8at%Pt−0.7at%Bからなる4元合
金を用いた。
As the magnetic film 204, Co-18 at%
Cr, Co-12 at% Ni, Co-18 at% Fe,
Co-20 at% V, Co-20 at Mo, Co-16
at% Ta, Co-20 at% Re, Co-16 at%
Pt, Co-15 at% Pd binary alloy, Co-
18 at% Cr-2 at% Ta, Co-21 at% Cr
-3 at% Mo, Co-19 at% Cr-1.5 at%
W, Co-15 at% Cr-7 at% Re, Co-14
at% Ni-1 at% Zr, Co-16 at% Pt-2
ternary alloy consisting of at% Ta, Co-18 at% Pt-0.8 at% B, Co-18 at% Cr-2 at% Ta
-2 at% B, Co-20 at% Cr-1.5 at% T
a-0.3 at% Si, Co-19 at% Cr-2.5
at% Ta-0.8 at% C, Co-22 at% Cr-
1.6 at% Ta-0.2 at% P, Co-21 at%
Cr-1 at% Ta-0.2 at% N, Co-12 at
A quaternary alloy composed of% Cr-8 at% Pt-0.7 at% B was used.

【0034】比較試料として、平坦な石英ガラス基板上
に下地膜として50nmのCr膜を形成した上に上記の
磁性膜を形成し、次いでC保護膜を形成した磁気記録媒
体をそれぞれ準備した。NaCl結晶構造をもつ材料と
してNiOの(110)配向膜を用いて得られた磁気記
録媒体の記録再生特性のうち線記録密度(D50:kFC
I)は、以下の通りであった。
As comparative samples, magnetic recording media were prepared in which a 50 nm thick Cr film was formed as a base film on a flat quartz glass substrate, the above magnetic film was formed thereon, and then a C protective film was formed. Among the recording / reproducing characteristics of the magnetic recording medium obtained by using the (110) oriented film of NiO as the material having the NaCl crystal structure, the linear recording density (D 50 : kFC
I) was as follows.

【0035】[0035]

【表2】 [Table 2]

【0036】線記録密度以外のS/N比、オフトラック
特性においても、本参考例に基づく磁気記録媒体は、従
来のCr下地を用いて形成した同じ組成の磁性膜を持つ
比較試料に比べて10%以上の改善が確認され、高密度
磁気記録媒体として優れていることが分かった。また、
NiO以外のNaCl結晶構造をもつ(110)配向膜
上に磁性膜を形成した場合にも同様の改善効果が認めら
れた。
Also in the S / N ratio and the off-track characteristics other than the linear recording density, the magnetic recording medium according to the present reference example is compared with a comparative sample having a magnetic film of the same composition formed using a conventional Cr underlayer. An improvement of 10% or more was confirmed, and it was found to be excellent as a high density magnetic recording medium. Also,
The same improvement effect was observed when the magnetic film was formed on the (110) oriented film having a NaCl crystal structure other than NiO.

【0037】〔実施例〕 直径1.8インチのガラス基板301の表面に先端角9
0度のダイヤモンド端子を用いて深さ20nmの溝30
2を、ピッチ75nmで同心円状に形成した。この基板
を用いて、図3に示す構造を持つ磁気記録媒体を以下の
手順で作製した。
Example 2 A glass substrate 301 having a diameter of 1.8 inches has a tip angle of 9 on the surface thereof.
Groove 30 with a depth of 20 nm using a 0 degree diamond terminal
2 were formed concentrically with a pitch of 75 nm. Using this substrate, a magnetic recording medium having the structure shown in FIG. 3 was manufactured by the following procedure.

【0038】高周波スパッタ法で基板301上にNaC
l構造を持つKCl膜303を50nmの厚さに形成し
た。膜の形成後、水蒸気を含むガス雰囲気に保った電気
炉中で熱処理した。X線回折法でKCl膜を調べた結
果、KCl膜は、(110)面と(100)面の2種類
の面が基板とほぼ平行になった配向多結晶膜であり、X
線回折では(110)面の強度が強く、(110)面の
優先配向膜であることが確認された。さらに結晶粒は、
ほぼ同心円状に分布していることが分かった。走査型電
子顕微鏡でKCl膜の微細構造を調べたところ、粒子径
30〜100nmの結晶粒からなっており、さらに表面
には20〜50nmの起伏が存在することが確認され
た。
NaC is formed on the substrate 301 by the high frequency sputtering method.
A KCl film 303 having an l structure was formed to a thickness of 50 nm. After forming the film, heat treatment was performed in an electric furnace maintained in a gas atmosphere containing water vapor. As a result of investigating the KCl film by the X-ray diffraction method, the KCl film is an oriented polycrystalline film in which two kinds of planes, the (110) plane and the (100) plane, are substantially parallel to the substrate.
It was confirmed by line diffraction that the intensity of the (110) plane was strong and that it was a preferential alignment film of the (110) plane. Furthermore, the crystal grains are
It was found that they were distributed almost concentrically. When the fine structure of the KCl film was examined by a scanning electron microscope, it was confirmed that the KCl film was composed of crystal grains having a particle diameter of 30 to 100 nm and that undulations of 20 to 50 nm were present on the surface.

【0039】表面を研磨して平坦化した後、高周波マグ
ネトロンスパッタ法によって、bcc結晶構造を持つ厚
さ50nmのCr−2at%Zr膜304、hcp結晶
構造を持つ厚さ20nmのCo−Cr−Ta膜305を
形成した。磁性膜用にはCo−18at%Cr−3at
%Taターゲットを用いた。Cr−Zr膜形成時の基板
温度は300゜C、Co−Cr−Ta磁性膜形成時の基
板温度は150゜Cとした。スパッタのArガス圧力は
3〜10mTorr、スパッタパワーは6〜10W/c
2とした。さらに、保護膜306としてカーボン膜を
10nmの厚さに形成し、磁気記録媒体を作製した。X
線回折で膜構造を調べ、Cr−Zr膜は(200)回折
が若干認められたが(211)回折線の強度が強く、
(211)優先配向膜であることを確認した。Co−C
r−Ta膜は(1−100)優先配向をした多結晶膜で
あることを確認した。
After the surface is polished and flattened, a Cr-2 at% Zr film 304 having a thickness of 50 nm having a bcc crystal structure and a Co-Cr-Ta film having a thickness of 20 nm having an hcp crystal structure are formed by a high frequency magnetron sputtering method. The film 305 was formed. Co-18 at% Cr-3 at for magnetic film
% Ta target was used. The substrate temperature during formation of the Cr-Zr film was 300 ° C, and the substrate temperature during formation of the Co-Cr-Ta magnetic film was 150 ° C. Ar gas pressure for sputtering is 3 to 10 mTorr, sputtering power is 6 to 10 W / c
It was set to m 2 . Further, a carbon film having a thickness of 10 nm was formed as the protective film 306 to manufacture a magnetic recording medium. X
The film structure was examined by line diffraction, and the (200) diffraction was slightly observed in the Cr-Zr film, but the intensity of the (211) diffraction line was strong,
It was confirmed to be a (211) preferential alignment film. Co-C
It was confirmed that the r-Ta film was a polycrystalline film having a (1-100) preferential orientation.

【0040】〔参考例2〕 実施例と同様な方法で、bcc結晶構造を持つCr−
Zr膜を形成しないで、溝402を設けたガラス基板4
01の上に形成したKCl膜403上に直接Co−Cr
−Ta磁性膜404を形成し、さらにC保護膜405を
設けた図4に示す構造を有する磁気記録媒体を作製し
た。
Reference Example 2 In the same manner as in Example 2 , Cr-having a bcc crystal structure was used.
Glass substrate 4 provided with groove 402 without forming a Zr film
01 directly on the KCl film 403 formed on
A -Ta magnetic film 404 was formed, and a C protective film 405 was further provided to manufacture a magnetic recording medium having the structure shown in FIG.

【0041】実施例及び参考例2に対する比較試料と
して、平坦なガラス基板上に直接Cr−Zr膜、Co−
Cr−Ta膜及びC膜を形成した磁気記録媒体を作製し
た。実施例1の場合と同様な条件で、記録再生特性を比
較した結果、(110)優先配向を示すKCl膜を設け
た実施例及び参考例2による磁気記録媒体は、いずれ
も線記録密度が20%、S/N比が45%、オフトラッ
ク特性が30%以上、比較試料に較べて優れていること
がわかった。また、KCl膜の代わりに別の材料とし
て、LiCl,NaCl又はLiFを用いた場合にも同
様の望ましい効果が確認された。
As a comparative sample to Example 2 and Reference Example 2, a Cr-Zr film and a Co- film were directly formed on a flat glass substrate.
A magnetic recording medium having a Cr-Ta film and a C film formed was produced. As a result of comparing the recording / reproducing characteristics under the same conditions as in Example 1, the magnetic recording media according to Example 2 and the reference example 2 provided with the KCl film exhibiting the (110) preferential orientation have linear recording densities. 20%, the S / N ratio was 45%, and the off-track characteristic was 30% or more, which was superior to the comparative sample. The same desirable effect was confirmed when LiCl, NaCl, or LiF was used as another material instead of the KCl film.

【0042】〔実施例〕 一辺が20mmの矩形状の(110)MgO単結晶を基
板501に用いて図5に示す構造を有する磁気記録媒体
を以下の手順で作製した。高周波マグネトロンスパッタ
法によって、bcc結晶構造を持つ厚さ30nmのV膜
502、hcp結晶構造を持つ厚さ15nmのCo−C
r−Ta−Si膜503を形成した。磁性膜用にはCo
−19at%Cr−2at%Ta−2at%Siターゲ
ットを用いた。V膜形成時の基板温度は450゜C、C
o−Cr−Ta−Si磁性膜形成時の基板温度は150
゜Cとした。スパッタのArガス圧力は3mTorr、
スパッタパワーは10W/cm2とした。さらに、保護
膜504としてボロン膜を10nmの厚さに形成し、磁
気記録媒体を作製した。
Example 3 A magnetic recording medium having a structure shown in FIG. 5 was manufactured by the following procedure using a rectangular (110) MgO single crystal having a side of 20 mm as a substrate 501. A 30 nm thick V film 502 having a bcc crystal structure and a 15 nm thick Co-C film having an hcp crystal structure were formed by a high frequency magnetron sputtering method.
An r-Ta-Si film 503 was formed. Co for magnetic film
A -19 at% Cr-2 at% Ta-2 at% Si target was used. The substrate temperature at the time of V film formation is 450 ° C, C
The substrate temperature during the formation of the o-Cr-Ta-Si magnetic film is 150.
It was set to ° C. Ar gas pressure for sputtering is 3 mTorr,
The sputtering power was 10 W / cm 2 . Further, a boron film having a thickness of 10 nm was formed as the protective film 504 to manufacture a magnetic recording medium.

【0043】X線回折で膜構造を調べ、V膜は(21
1)面を基板と平行にエピタキシャル成長し、Co−C
r−Ta−Si膜は(1−100)面を基板と平行にエ
ピタキシャル成長していることを確認した。透過電子顕
微鏡で磁気記録媒体の組織を調べたところ、磁性膜には
亜粒界が入っており、この亜粒界で隔てられた結晶粒は
0.3〜1度の傾きを持っていた。結晶粒の平均の大き
さは45nmであった。また、結晶粒内部の組成を調べ
たところ、Cr及びSiが亜粒界付近に偏析していた。
この磁気記録媒体の磁化容易軸は1つの方向に揃ってお
り、この方向は(110)MgO基板の[001]に該
当した。
The film structure was examined by X-ray diffraction, and the V film was (21
1) Epitaxially grow the plane parallel to the substrate, Co-C
It was confirmed that the r-Ta-Si film was epitaxially grown with the (1-100) plane parallel to the substrate. When the structure of the magnetic recording medium was examined with a transmission electron microscope, the magnetic film contained sub-grain boundaries, and the crystal grains separated by the sub-grain boundaries had an inclination of 0.3 to 1 degree. The average size of the crystal grains was 45 nm. In addition, when the composition inside the crystal grains was examined, Cr and Si were segregated near the subgrain boundaries.
The easy axis of magnetization of this magnetic recording medium is aligned in one direction, and this direction corresponds to [001] of the (110) MgO substrate.

【0044】〔参考例3〕 実施例と同様な方法で、bcc結晶構造を持つV膜を
形成しないで、直接(110)MgO基板601上にC
o−Cr−Ta−Si磁性膜602を形成し、さらにC
保護膜603を設けた図6に示す構造を持つ磁気記録媒
体を作製した。この磁気記録媒体でも磁化容易軸は一方
向に揃っていた。
Reference Example 3 In the same manner as in Example 3 , the C film was directly formed on the (110) MgO substrate 601 without forming the V film having the bcc crystal structure.
An o-Cr-Ta-Si magnetic film 602 is formed, and further C
A magnetic recording medium having the structure shown in FIG. 6 provided with the protective film 603 was manufactured. Also in this magnetic recording medium, the easy magnetization axis was aligned in one direction.

【0045】〔実施例〕 図7に示すように、実施例参考例3で作製した矩形
状の磁気記録媒体701と、磁気ヘッドを直線上に多数
並べたマルチヘッド702を組み合わせて磁気記録装置
を作製し、磁気記録再生特性を測定した。図7に示すマ
ルチヘッド702は、磁気記録媒体701と約0.05
μmの間隔を保って高速単振動運動をしており、磁気記
録媒体はこの単振動運動と直角方向に高速で任意の距離
移動できるように構成されている。この方法で測定した
磁気記録媒体の線記録密度特性は、V膜を設けた磁気記
録媒体ではD50=72kFCI、設けない磁気記録媒体
ではD50=65kFCIであった。
[Embodiment 4 ] As shown in FIG. 7, a rectangular magnetic recording medium 701 manufactured in Embodiment 3 or Reference Example 3 is combined with a multi-head 702 in which a large number of magnetic heads are arranged on a straight line to combine magnetic fields. A recording device was manufactured and the magnetic recording / reproducing characteristics were measured. The multi-head 702 shown in FIG.
High-speed single-oscillation motion is maintained at intervals of μm, and the magnetic recording medium is configured to be able to move at an arbitrary distance at a high speed in a direction perpendicular to the single-oscillation motion. Linear recording density characteristic of the magnetic recording medium measured by this method, a magnetic recording medium having a V film D 50 = 72kFCI, the magnetic recording medium not provided was D 50 = 65kFCI.

【0046】〔実施例〕 直径1.8インチの石英ガラス基板801表面に先端角
90度のダイヤモンド端子を用いて深さ50nm、ピッ
チ100nmの同心円状のグレーティングを形成した。
この基板を用いて、図8に示す構造を持つ磁気記録媒体
を以下の手順で作製した。
Example 5 A concentric grating having a depth of 50 nm and a pitch of 100 nm was formed on a surface of a quartz glass substrate 801 having a diameter of 1.8 inches by using a diamond terminal having a tip angle of 90 degrees.
Using this substrate, a magnetic recording medium having the structure shown in FIG. 8 was manufactured by the following procedure.

【0047】高周波スパッタ法で基板801を高温度に
保ってNaCl構造を持つMgO膜802を100nm
の厚さに形成した。膜の形成後、不活性ガス雰囲気に保
った電気炉中で熱処理した。X線回折法でMgO膜を調
べた結果、MgO膜は、(110)面が基板とほぼ平行
になった配向多結晶膜であり、さらに結晶粒の[00
1]方向はほぼ同心円状に分布していることが分かっ
た。走査型電子顕微鏡でMgO膜の微細構造を調べたと
ころ、粒子径20〜50nmの結晶粒からなっていた。
The substrate 801 is kept at a high temperature by the high frequency sputtering method and the MgO film 802 having the NaCl structure is formed to 100 nm.
Formed to a thickness of. After forming the film, heat treatment was performed in an electric furnace kept in an inert gas atmosphere. As a result of investigating the MgO film by the X-ray diffraction method, the MgO film is an oriented polycrystalline film in which the (110) plane is substantially parallel to the substrate, and the [00]
It was found that the [1] directions were distributed in almost concentric circles. When the fine structure of the MgO film was examined with a scanning electron microscope, it was found to consist of crystal grains with a particle diameter of 20 to 50 nm.

【0048】表面を研磨して平坦化した後、高周波マグ
ネトロンスパッタ法によって、bcc結晶構造を持つ厚
さ50nmのCr膜803、hcp結晶構造を持つ厚さ
15nmのCo−Cr−Pt膜804を形成した。磁性
膜用にはCo−21at%Cr−6at%Ptターゲッ
トを用いた。Cr膜形成時の基板温度は400゜C、C
o−Cr−Pt磁性膜形成時の基板温度は180゜Cと
した。スパッタのArガス圧力は10mTorr、スパ
ッタパワーは10W/cm2とした。この磁気記録媒体
上に、磁気ヘッドフォローイング用の凹状のパターン8
05をフォトリソグラフィ法によって形成した。すなわ
ち、フォトレジストを用いたパターンエッチング法で、
1.5μm×1.5μm×0.1μmの窪みを千鳥状に
形成した。ついで、保護膜としてカーボン膜806を1
0nmの厚さに形成した。
After polishing and flattening the surface, a 50 nm thick Cr film 803 having a bcc crystal structure and a 15 nm thick Co—Cr—Pt film 804 having an hcp crystal structure are formed by a high frequency magnetron sputtering method. did. A Co-21 at% Cr-6 at% Pt target was used for the magnetic film. Substrate temperature during formation of Cr film is 400 ° C, C
The substrate temperature during formation of the o-Cr-Pt magnetic film was 180 ° C. The Ar gas pressure for sputtering was 10 mTorr and the sputtering power was 10 W / cm 2 . On this magnetic recording medium, a concave pattern 8 for magnetic head following
05 was formed by the photolithography method. That is, by a pattern etching method using a photoresist,
The depressions of 1.5 μm × 1.5 μm × 0.1 μm were formed in a zigzag pattern. Then, a carbon film 806 is formed as a protective film.
It was formed to a thickness of 0 nm.

【0049】本実施例による磁気記録媒体は、磁気記録
再生特性が改良されているので原理的に面記録密度を向
上できる。これに加えて、媒体上に形成された一連の窪
みを磁気ヘッドの一部に搭載された半導体レーザ光の反
射率の変化をモニターするか、あるいは磁気ヘッドの出
力が窪み直上に磁気ヘッドが来た時に変化する現象を利
用して高精度トラッキングを行なうことができるので、
トラック方向の記録密度を大幅に向上でき、線記録密度
とトラック方向の密度の組合せを広範囲に選べ、この結
果、より容易に高密度磁気記録を行なうことができた。
Since the magnetic recording medium according to the present embodiment has improved magnetic recording / reproducing characteristics, the areal recording density can be improved in principle. In addition to this, a series of depressions formed on the medium is monitored for changes in the reflectance of the semiconductor laser light mounted in a part of the magnetic head, or the output of the magnetic head is directly above the depression. Since it is possible to perform high-precision tracking by using the phenomenon that changes when
The recording density in the track direction can be significantly improved, and a wide range of combinations of the linear recording density and the density in the track direction can be selected. As a result, high-density magnetic recording can be performed more easily.

【0050】[0050]

【発明の効果】本発明によれば、記録密度、記録再生時
のS/N比及びオフトラック特性の改善された磁気記録
媒体を提供できるので、磁気記録装置の高密度化を実現
でき、装置の小型化や大容量化が容易になる効果があ
る。
According to the present invention, it is possible to provide a magnetic recording medium having improved recording density, S / N ratio at the time of recording / reproducing, and off-track characteristics. This has the effect of making it easier to reduce the size and increase the capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による磁気記録媒体の断面構
成模式図。
FIG. 1 is a schematic cross-sectional configuration diagram of a magnetic recording medium according to a first embodiment of the invention.

【図2】本発明の参考例1による磁気記録媒体の断面構
成模式図。
FIG. 2 is a schematic cross-sectional configuration diagram of a magnetic recording medium according to Reference Example 1 of the present invention.

【図3】本発明の実施例による磁気記録媒体の断面
図。
FIG. 3 is a sectional view of a magnetic recording medium according to a second embodiment of the invention.

【図4】本発明の参考例2による磁気記録媒体の断面
図。
FIG. 4 is a sectional view of a magnetic recording medium according to Reference Example 2 of the present invention.

【図5】本発明の実施例による磁気記録媒体の断面
図。
FIG. 5 is a sectional view of a magnetic recording medium according to a third embodiment of the invention.

【図6】本発明の参考例3による磁気記録媒体の断面
図。
FIG. 6 is a sectional view of a magnetic recording medium according to Reference Example 3 of the present invention.

【図7】本発明の実施例による磁気記録装置の構成
図。
FIG. 7 is a configuration diagram of a magnetic recording device according to a fourth embodiment of the invention.

【図8】本発明の実施例による磁気記録媒体の断面構
成模式図。
FIG. 8 is a schematic cross-sectional configuration diagram of a magnetic recording medium according to Example 5 of the invention.

【符号の説明】[Explanation of symbols]

101,201,301,401,801…基板 102,202…グレーティング 103,203…(110)配向膜(NaCl構造) 104…(211)配向膜(bcc構造) 105…(1−100)配向膜(hcp構造) 106,205,306,405,504,603,8
06…保護膜 204…配向膜(hcp構造) 302,402…溝 303,403,802…NaCl構造を持つ膜 304,502,803…bcc構造を持つ膜 305,404,503,602,804…hcp構造
を持つ磁性膜 501,601…(110)単結晶基板(NaCl構
造) 701…磁気記録媒体 702…マルチヘッド 805…凹状パターン
101, 201, 301, 401, 801 ... Substrate 102, 202 ... Grating 103, 203 ... (110) Alignment film (NaCl structure) 104 ... (211) Alignment film (bcc structure) 105 ... (1-100) Alignment film ( hcp structure) 106,205,306,405,504,603,8
06 ... Protective film 204 ... Alignment film (hcp structure) 302, 402 ... Grooves 303, 403, 802 ... Films having NaCl structure 304, 502, 803 ... Films having bcc structure 305, 404, 503, 602, 804 ... hcp Structured magnetic films 501, 601 ... (110) Single crystal substrate (NaCl structure) 701 ... Magnetic recording medium 702 ... Multi-head 805 ... Recessed pattern

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01F 41/20 H01F 41/20 (72)発明者 平山 義幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (72)発明者 松田 好文 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (72)発明者 鈴木 幹夫 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (72)発明者 本多 幸雄 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平4−184710(JP,A) 特開 平4−291017(JP,A) 特開 平5−128481(JP,A) 特開 平5−36054(JP,A) 特開 平6−309647(JP,A) 特開 平6−259743(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/64 - 5/82 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01F 41/20 H01F 41/20 (72) Inventor Yoshiyuki Hirayama 1-280 Higashikoigakubo, Kokubunji, Tokyo Metropolitan Hitachi Research Laboratory ( 72) Inventor Yoshifumi Matsuda 1-280, Higashi Koigakubo, Kokubunji, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Mikio Suzuki 1-280, Higashi Koigakubo, Kokubunji, Tokyo (72) Inventor, Central Research Laboratory (72) Yukio Honda 1-280, Higashi Koigakubo, Kokubunji, Tokyo, Central Research Laboratory, Hitachi, Ltd. (56) Reference JP-A-4-184710 (JP, A) JP-A-4-291017 (JP, A) JP-A-5 -128481 (JP, A) JP-A-5-36054 (JP, A) JP-A-6-309647 (JP, A) JP-A-6-25 9743 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/64-5/82

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性基板上に、(211)配向した体
心立方構造を持つ下地膜、該下地膜上に形成された六方
最密構造を持つCo基合金を含む磁性膜を有することを
特徴とする磁気記録媒体。
1. A non-magnetic substrate having a base film having a (211) -oriented body-centered cubic structure and a magnetic film containing a Co-based alloy having a hexagonal close-packed structure formed on the base film. Characteristic magnetic recording medium.
【請求項2】 非磁性基板上に、NaCl型結晶構造を
持つ(110)配向した膜、該(110)配向した膜上
に形成された(211)配向した体心立方構造を持つ下
地膜、該下地膜上に形成された六方最密構造を持つCo
基合金を含む磁性膜を有することを特徴とする磁気記録
媒体。
2. A (110) oriented film having a NaCl type crystal structure on a non-magnetic substrate, and a base film having a (211) oriented body-centered cubic structure formed on the (110) oriented film, Co having a hexagonal close-packed structure formed on the base film
A magnetic recording medium having a magnetic film containing a base alloy.
【請求項3】 非磁性基板上に、(211)配向したC
r,V,Nb又はMoもしくはこれらの元素を主成分と
する合金からなる下地層、該下地層上に形成された六方
最密構造を持つCo基合金からなる磁性膜を有すること
を特徴とする磁気記録媒体。
3. A (211) -oriented C on a non-magnetic substrate.
An underlayer made of r, V, Nb or Mo or an alloy containing these elements as a main component, and a magnetic film made of a Co-based alloy having a hexagonal close-packed structure formed on the underlayer. Magnetic recording medium.
【請求項4】 非磁性基板上に、MgO,CaO,Ti
O,VO,MnO,CoO,NiOのいずれか又はこれ
らを主成分とする混晶、あるいはLiCl,NaCl,
KClのいずれか又はこれらを主成分とする混晶、ある
いはLiF、あるいはTiC,ZrC,HfC,Nb
C,TaCのいずれか又はこれらを主成分とする混晶か
らなる(110)配向した層、該(110)配向した層
上に形成された(211)配向したCr,V,Nb又は
Moもしくはこれらの元素を主成分とする合金からなる
下地層、該下地層上に形成された六方最密構造を持つC
o基合金からなる磁性膜を有することを特徴とする磁気
記録媒体。
4. MgO, CaO, Ti on a non-magnetic substrate
Any one of O, VO, MnO, CoO, and NiO, or a mixed crystal containing these as the main components, or LiCl, NaCl,
Any of KCl or a mixed crystal containing these as main components, LiF, or TiC, ZrC, HfC, Nb
A (110) -oriented layer made of any one of C and TaC or a mixed crystal containing these as the main components, and (211) -oriented Cr, V, Nb or Mo formed on the (110) -oriented layer or these. An underlayer made of an alloy whose main component is C and having a hexagonal close-packed structure formed on the underlayer
A magnetic recording medium having a magnetic film made of an o-based alloy.
【請求項5】 前記磁性膜は、磁化容易軸が基板に平行
な方向を向いた(1−100)配向することを特徴とす
る請求項1〜4のいずれか1項記載の磁気記録媒体。
Wherein said magnetic film, magnetization easy axis magnetic recording medium of any one of claims 1-4, characterized in that the orientation was (1-100) oriented parallel to the substrate.
【請求項6】 前記磁性膜は、Coを主成分として、C
r,Ni,Fe,V,Ti,Zr,Hf,Mo,W,T
a,Re,Ru,Rh,Ir,Pt,Pd,Au,A
g,Cu,B,Al,C,Si,P,Nからなる元素群
のうち少なくとも1元素を含むことを特徴とする請求項
〜5のいずれか1項記載の磁気記録媒体。
6. The magnetic film contains Co as a main component and C
r, Ni, Fe, V, Ti, Zr, Hf, Mo, W, T
a, Re, Ru, Rh, Ir, Pt, Pd, Au, A
g, Cu, B, Al, C, Si, P, a magnetic recording medium of any one of claims 1-5, characterized in that it comprises at least one element selected from the element group consisting of N.
JP15753393A 1993-03-10 1993-06-28 Magnetic recording media Expired - Fee Related JP3415884B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15753393A JP3415884B2 (en) 1993-06-28 1993-06-28 Magnetic recording media
US08/207,609 US5536585A (en) 1993-03-10 1994-03-09 Magnetic recording medium and fabrication method therefor
US08/632,355 US5599580A (en) 1993-03-10 1996-04-10 Method of fabricating a magnetic recording medium
US08/729,381 US5685958A (en) 1993-03-10 1996-10-17 Method of fabricating a magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15753393A JP3415884B2 (en) 1993-06-28 1993-06-28 Magnetic recording media

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22959299A Division JP3469512B2 (en) 1999-08-16 1999-08-16 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH0714144A JPH0714144A (en) 1995-01-17
JP3415884B2 true JP3415884B2 (en) 2003-06-09

Family

ID=15651761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15753393A Expired - Fee Related JP3415884B2 (en) 1993-03-10 1993-06-28 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP3415884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338019A (en) 2002-05-22 2003-11-28 Hitachi Ltd Magnetic recording medium and its manufacturing method

Also Published As

Publication number Publication date
JPH0714144A (en) 1995-01-17

Similar Documents

Publication Publication Date Title
US5685958A (en) Method of fabricating a magnetic recording medium
US6541125B2 (en) Magnetic recording medium
JPH07334832A (en) Perpendicular magnetic recording medium and magnetic recorder
KR100264484B1 (en) Thin film magnetic disk with chromium-titanium seed layer
US6692843B2 (en) Magnetic recording medium, method of fabricating magnetic recording medium, and magnetic storage
US5516547A (en) Method for fabricating magnetic recording medium
US5162158A (en) Low noise magnetic thin film longitudinal media
EP0140513A1 (en) Thin film magnetic recording structures
US5858566A (en) Seeded underlayer in magnetic thin films
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
US5830584A (en) Bicrystal cluster magnetic recording medium
US6077603A (en) Seeded underlayer in magnetic thin films
JP3469512B2 (en) Manufacturing method of magnetic recording medium
JP3415884B2 (en) Magnetic recording media
JP3018551B2 (en) In-plane magnetic recording media
JP3370720B2 (en) Magnetic recording medium and magnetic recording device
US6872478B2 (en) Magnetic thin film media with a pre-seed layer of CrTiAl
JP3639281B2 (en) Magnetic recording medium
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
US6858331B1 (en) Magnetic thin film media with a bi-layer structure of CrTi/Nip
US7026010B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
US20020150795A1 (en) Magnetic recording medium, its production process and magnetic recording device
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JP3075712B2 (en) Magnetic recording media
JPH0714143A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees