JP3414849B2 - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JP3414849B2
JP3414849B2 JP15720794A JP15720794A JP3414849B2 JP 3414849 B2 JP3414849 B2 JP 3414849B2 JP 15720794 A JP15720794 A JP 15720794A JP 15720794 A JP15720794 A JP 15720794A JP 3414849 B2 JP3414849 B2 JP 3414849B2
Authority
JP
Japan
Prior art keywords
heat
instantaneous
heat source
calculating
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15720794A
Other languages
Japanese (ja)
Other versions
JPH0828931A (en
Inventor
謙司 広瀬
皓三 鈴木
吉秀 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP15720794A priority Critical patent/JP3414849B2/en
Publication of JPH0828931A publication Critical patent/JPH0828931A/en
Application granted granted Critical
Publication of JP3414849B2 publication Critical patent/JP3414849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱機能、
及び制御機能を備えた蓄熱式空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source, and has a heat storage function for utilizing nighttime electric power.
And a heat storage type air conditioner having a control function.

【0002】[0002]

【従来の技術】蓄熱式空気調和機については、既にさま
ざまな開発がなされており、例えば、特開平1−285
732号公報に示されているような蓄熱式空気調和機が
ある。
2. Description of the Related Art Various developments have already been made for a heat storage type air conditioner, for example, JP-A-1-285.
There is a heat storage type air conditioner as disclosed in Japanese Patent No.732.

【0003】以下に、図面を参照しながら従来の基本的
な技術について説明する。図6において、空冷ヒ−トポ
ンプ1は、圧縮機,熱交換器,膨張弁等を内蔵した複数
台の熱源機2と、蓄熱槽3及び冷媒熱交換器4を環状に
接続して冷凍サイクルAを形成し、一方、負荷側につい
ては蓄熱槽3,冷媒熱交換器4,冷媒循環ポンプ5,複
数台の室内機6を環状に順次接続して冷媒循環サイクル
Bを形成している。
The conventional basic technique will be described below with reference to the drawings. In FIG. 6, an air-cooling heat pump 1 has a plurality of heat source units 2 having a compressor, a heat exchanger, an expansion valve and the like, a heat storage tank 3 and a refrigerant heat exchanger 4 connected in an annular shape to form a refrigeration cycle A. On the other hand, on the load side, the heat storage tank 3, the refrigerant heat exchanger 4, the refrigerant circulation pump 5, and a plurality of indoor units 6 are sequentially connected in an annular shape to form a refrigerant circulation cycle B.

【0004】また、7は現在蓄熱量算出手段、8はスケ
ジュール運転時間設定手段、9は負荷パターン記憶手
段、10は瞬時負荷量予測手段、11は負荷パターン検
出手段である。
Reference numeral 7 is a current heat storage amount calculating means, 8 is a schedule operation time setting means, 9 is a load pattern storing means, 10 is an instantaneous load amount predicting means, and 11 is a load pattern detecting means.

【0005】次に、この蓄熱式空気調和機の動作につい
て説明する。室内機6の1日の負荷パターンを決めるに
あたっては、外部気温等を瞬時負荷量予測手段10へ入
力し、室内機6の負荷状態を判定し、その負荷状態を補
うべき熱源機2の運転台数を決定する。決定された運転
台数データは、負荷状態判定時の外気温度をパラメータ
として負荷パターン記憶手段9へ記憶される。このよう
にして、負荷パターンが決まった後は、負荷パターン検
出手段11は外気温度をパラメータとした熱源機2の運
転台数を検出する。その結果、室内機6の運転時刻には
蓄熱槽3に最大蓄熱がされているような時刻より熱源機
2が運転台数分稼働される。
Next, the operation of this heat storage type air conditioner will be described. In determining the daily load pattern of the indoor unit 6, the external air temperature and the like are input to the instantaneous load amount prediction means 10, the load state of the indoor unit 6 is determined, and the number of operating heat source units 2 that should supplement the load state. To decide. The determined operating vehicle number data is stored in the load pattern storage means 9 using the outside air temperature at the time of load state determination as a parameter. After the load pattern is determined in this way, the load pattern detection means 11 detects the number of operating heat source units 2 using the outside air temperature as a parameter. As a result, at the operating time of the indoor unit 6, the heat source devices 2 are operated for the number of operating units from the time when maximum heat is stored in the heat storage tank 3.

【0006】また、空気調和機の停止に際しては、スケ
ジュール運転時間設定手段8より室内機6の停止時刻を
判定すると共に、停止時刻には蓄熱槽3の蓄熱残量を使
いきるように、熱源機2の運転を空気調和機の停止時刻
よりさかのぼった時刻で停止させ、蓄熱槽3の蓄熱残量
を調整する。熱源機2の運転停止時刻は室内機6の運転
時点における熱量消費量と蓄熱残量とを基にして決め
る。
Further, when the air conditioner is stopped, the schedule operation time setting means 8 determines the stop time of the indoor unit 6, and at the stop time, the remaining heat storage capacity of the heat storage tank 3 is used up so that the heat source device is used. The operation of No. 2 is stopped at a time retroactive to the stop time of the air conditioner, and the remaining heat storage amount in the heat storage tank 3 is adjusted. The operation stop time of the heat source unit 2 is determined based on the amount of heat consumption and the remaining heat storage amount at the time of operating the indoor unit 6.

【0007】また、室内機6の運転中に、最大負荷が予
測される場合は、最大負荷時に蓄熱量不足が起こり室内
機6の動作不良とならないよう、最大負荷に充分対応で
きるよう追加の熱源機2を起動させるというものであ
る。
Further, when the maximum load is predicted during the operation of the indoor unit 6, an additional heat source is provided so as to sufficiently cope with the maximum load so that the heat storage amount becomes insufficient at the maximum load and the indoor unit 6 does not malfunction. The machine 2 is activated.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、最適台数決定手段の詳細な動作内容の記述
がないため、熱源装置の効果的な台数制御方法が不明で
あり、最大負荷時に蓄熱量を最大に利用する事による最
大負荷の平準化についても考慮されていない。また、熱
源機2の運転を蓄熱槽3の停止時刻よりさかのぼった時
刻で停止させるため、蓄熱残量が完全に使いきれない可
能性が高い。
However, in the above-mentioned conventional example, since there is no description of the detailed operation contents of the optimum number determining means, the effective number control method of the heat source device is unknown, and the heat accumulation at the maximum load is not possible. The leveling of the maximum load by maximizing the use of quantity is not considered. Further, since the operation of the heat source device 2 is stopped at a time retroactive to the stop time of the heat storage tank 3, there is a high possibility that the remaining heat storage amount cannot be completely used up.

【0009】本発明は上記課題に鑑み、蓄熱槽に蓄熱し
た熱量を有効に放熱し、かつ熱源機の運転台数を最適に
制御する事により、最大負荷の平準化、ランニングコス
トの低減が可能な蓄熱式空気調和機を提供することを目
的とするものである。
In view of the above problems, the present invention effectively radiates the amount of heat stored in the heat storage tank and optimally controls the number of operating heat source units, so that the maximum load can be leveled and the running cost can be reduced. It is intended to provide a heat storage type air conditioner.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明の蓄熱式空気調和機は、最大負荷量から蓄熱
槽の最大取りだし能力を減じる最大負荷時熱源機能力算
出手段と、最大負荷時熱源機能力値に室内機の稼動時間
を乗じた結果を全日負荷量から減じる熱量算出第1手段
と、現在蓄熱量から熱量算出第1手段で算出された値を
減じ最大負荷時を中心に熱量を2等分する熱量算出第2
手段と、熱量算出第2手段で算出された値から一次式を
算出する瞬時熱源機能力算出第1手段と、瞬時熱源機能
力値を熱源機1台の能力で除し四捨五入する瞬時熱源機
運転台数算出第1手段と、瞬時負荷量予測値から瞬時熱
源機能力値を減じる瞬時蓄熱槽能力算出手段とから成る
スケジュール運転設定装置を設けたものである。
In order to solve the above-mentioned problems, the heat storage type air conditioner of the present invention comprises a maximum load heat source functional force calculation means for reducing the maximum extraction capacity of the heat storage tank from the maximum load amount, and a maximum load Mainly at maximum load by subtracting the value calculated by the calorific value calculation first means from the current heat storage amount by subtracting the result of multiplying the heat source functional value at load by the operating time of the indoor unit from the total daily load Second calorific value calculation that divides the calorific value into two
Means, and an instantaneous heat source functional force calculation first means for calculating a linear expression from the value calculated by the heat amount calculation second means, and an instantaneous heat source machine operation for dividing the instantaneous heat source functional force value by the capacity of one heat source machine and rounding off. A schedule operation setting device is provided, which comprises first unit number calculation means and instantaneous heat storage tank capacity calculation means for subtracting the instantaneous heat source functional force value from the instantaneous load amount predicted value.

【0011】また、最大負荷時を中心に使用蓄熱量が同
等になるようなるよう分割する熱量算出第3手段を設け
たものである。
Further, the present invention is provided with a third calorific value calculating means for dividing so that the amount of heat storage used becomes equal mainly at the time of maximum load.

【0012】また、負荷最大時より以前では切り上げ、
以降では切り捨てにより熱源機の運転台数を算出する瞬
時熱源機運転台数算出第2手段を設けたものである。
[0012] Further, before the maximum load is rounded up,
In the following, a second means for calculating the number of operating heat source units by calculating the number of operating heat source units by rounding down is provided.

【0013】また、熱量算出第2手段で算出した面積と
同等面積の四角形を演算し、最大負荷時に近い方を最大
負荷時熱源機能力と同一とする瞬時熱源機能力算出第2
手段を設けたものである。
In addition, a quadrangle having the same area as the area calculated by the calorific value calculating second means is calculated, and the one closer to the maximum load is made the same as the heat source functional power at the maximum load.
Means are provided.

【0014】[0014]

【作用】本発明の蓄熱式空気調和機は、最大負荷時熱源
機能力算出手段で最大負荷時の熱源機能力を演算し、熱
量算出第2手段で最大負荷時を中心に熱量算出第1手段
で得た熱量を2等分するするため、最大負荷負荷の平準
化及び蓄熱不足の防止が出来、また蓄熱量を全て使用す
べく熱源機の使用能力を決定しているため、蓄熱量を使
いきる事が出来る。
In the heat storage type air conditioner of the present invention, the heat source functional force calculating means for maximum load calculates the heat source functional force at maximum load, and the heat quantity calculating second means mainly calculates heat quantity mainly at maximum load. Since the amount of heat obtained in 2 is divided into two equal parts, the maximum load load can be leveled and insufficient heat storage can be prevented. Also, since the capacity of the heat source machine is determined to use all the heat storage amount, the heat storage amount is used. You can do what you can.

【0015】また、熱量算出第3手段を設けたため、最
大負荷時を中心に蓄熱量の使用量が等分となり、蓄熱量
の使いきる精度が更に向上する。
Further, since the third means for calculating the amount of heat is provided, the amount of heat storage used is divided into equal parts mainly at the time of maximum load, and the accuracy of using up the amount of heat storage is further improved.

【0016】また、瞬時熱源機運転台数算出第2手段を
設けたため、最大負荷時より以前に熱源機の台数が多
め、即ち熱源機能力が大きくなり、蓄熱量が最大負荷よ
り以降に多く残り、蓄熱不足を防止できる効果がある。
Further, since the second means for calculating the number of operating instantaneous heat source machines is provided, the number of heat source machines is large before the maximum load, that is, the heat source functional capacity is large, and the heat storage amount remains after the maximum load. It has the effect of preventing insufficient heat storage.

【0017】また、瞬時熱源機能力算出第2手段を設け
たため、最大負荷時付近に熱源機の台数が多め、即ち熱
源機能力が大きくなり、最大負荷負荷の平準化が更に図
れる効果がある。
Since the second means for calculating the instantaneous heat source functional force is provided, the number of heat source machines is increased near the maximum load, that is, the heat source functional force is increased, and the maximum load load can be further leveled.

【0018】[0018]

【実施例】以下本発明の一実施例の蓄熱式空気調和機に
ついて、図面を参照しながら説明を行なうが、従来例と
同じ構成のものは同一符号を付し、その詳細な説明は省
略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat storage type air conditioner according to an embodiment of the present invention will be described below with reference to the drawings. The same components as those in the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. .

【0019】図1は本発明の第1の実施例における蓄熱
式空気調和機の放熱制御装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a heat radiation control device for a heat storage type air conditioner in a first embodiment of the present invention.

【0020】12は全日負荷量算出手段、13は最大負
荷量算出手段であり、これらと瞬時負荷量予測手段10
により負荷量演算装置14を構成している。
Reference numeral 12 is an all-day load amount calculation means, and 13 is a maximum load amount calculation means.
The load amount calculation device 14 is configured by the above.

【0021】15は最大負荷量算出手段13で算出され
た値から蓄熱槽3の最大取りだし能力を減じる最大負荷
時熱源機能力算出手段、16は最大負荷時熱源機能力算
出手段15で算出された値に室内機6の稼動時間を乗じ
た結果を全日負荷量算出手段12で算出された値から減
じる熱量算出第1手段、17は現在蓄熱量算出手段7で
算出された値から熱量算出第1手段16で算出された値
を減じ最大負荷時を中心に熱量を2等分する熱量算出第
2手段、18は熱量算出第2手段17で算出された値か
ら一次式を算出する瞬時熱源機能力算出第1手段、19
は瞬時熱源機能力算出第1手段18の出力値を熱源機1
台の能力で除し四捨五入する瞬時熱源機運転台数算出第
1手段、20は瞬時負荷量予測手段10の出力値から瞬
時熱源機能力算出第1手段18の出力値を減じる瞬時蓄
熱槽能力算出手段であり、これらによりスケジュール運
転設定装置21を構成している。
Reference numeral 15 is a maximum load heat source functional force calculating means for subtracting the maximum extraction capacity of the heat storage tank 3 from the value calculated by the maximum load amount calculating means 13, and 16 is a maximum load heat source functional force calculating means 15. A heat quantity calculation first means for subtracting the result of multiplying the operating time of the indoor unit 6 from the value calculated by the all-day load calculation means 12, and 17 is a heat quantity calculation first from the value currently calculated by the heat storage quantity calculation means 7. A heat quantity calculation second means for reducing the value calculated by the means 16 to divide the heat quantity into two equal to the maximum load, and 18 is an instantaneous heat source functional force for calculating a linear expression from the value calculated by the heat quantity calculation second means 17. First calculation means, 19
Is the output value of the instantaneous heat source functional force calculation first means 18
Instantaneous heat source unit operation number calculating means for dividing by the capacity of a unit and rounding off, 20 is an instantaneous heat storage tank capacity calculating means for subtracting the output value of the instantaneous heat source functional force calculating first means 18 from the output value of the instantaneous load amount predicting means 10. And these constitute the schedule operation setting device 21.

【0022】以上のように構成された本実施例の蓄熱式
空気調和機の放熱制御装置について、動作の説明をする
が、ここにおいても、前記従来例と同じ動作のものはそ
の詳細な説明は省略する。
The operation of the heat dissipation control device for the heat storage type air conditioner of the present embodiment having the above-described configuration will be described. Here, the same operation as that of the conventional example will not be described in detail. Omit it.

【0023】図2は本発明の第1の実施例における蓄熱
式空気調和機の放熱制御装置の動作を説明するための特
性図である。
FIG. 2 is a characteristic diagram for explaining the operation of the heat radiation control device for the heat storage type air conditioner in the first embodiment of the present invention.

【0024】負荷量演算装置14では、この中の瞬時負
荷量予測手段10で曲線Aを予測し、全日負荷量算出手
段12で点BCDEで囲まれる面積を求めている。最大
負荷量算出手段13では点Fを求めている。
In the load amount calculating device 14, the instantaneous load amount predicting means 10 therein predicts the curve A, and the all-day load amount calculating means 12 calculates the area surrounded by the points BCDE. The maximum load amount calculation means 13 finds the point F.

【0025】スケジュール運転設定装置21では、この
中の最大負荷時熱源機能力算出手段15で点Gを求め、
熱量算出第1手段16では点BGHEで囲まれる面積を
求めている。熱量算出第2手段17では点GIJと点H
KJで囲まれる2つの三角形の面積を求め、この両者の
三角形の面積が等しくなるように点I及び点Jを算出し
ている。瞬時熱源機能力算出第1手段18は線分IJ及
び線分JKを一次式で表すものである。瞬時熱源機運転
台数算出第1手段19はこの一次式が採り得る値を熱源
機1台の能力で除し四捨五入して熱源機2の運転台数を
決定し、瞬時蓄熱槽能力算出手段20では瞬時負荷量予
測手段10の出力値から瞬時熱源機能力算出第1手段1
8の出力値を減じることにより、蓄熱槽の能力が算出で
きるものである。
In the schedule operation setting device 21, the point G is calculated by the heat source functional force calculating means 15 at maximum load among them,
The calorific value calculation first means 16 calculates the area surrounded by the points BGHE. In the calorie calculation second means 17, point GIJ and point H
The areas of two triangles surrounded by KJ are calculated, and points I and J are calculated so that the areas of the two triangles are equal. The instantaneous heat source functional force calculation first means 18 represents the line segment IJ and the line segment JK by a linear expression. The instantaneous heat source device operating number calculation first means 19 determines the operating number of the heat source device 2 by dividing the value that can be taken by this linear expression by the capacity of one heat source device and rounding it off, and the instantaneous heat storage tank capacity calculating means 20 instantaneously First heat source functional force calculation means 1 from the output value of the load amount prediction means 10
By reducing the output value of 8, the capacity of the heat storage tank can be calculated.

【0026】以上のように、第1の実施例によれば、最
大負荷時熱源機能力算出手段15、熱量算出第2手段1
7を設けたものであるため、最大負荷負荷の平準化及び
蓄熱不足の防止が出来、また蓄熱量を使いきる事が出来
る。
As described above, according to the first embodiment, the maximum load heat source functional force calculating means 15 and the heat quantity calculating second means 1
Since 7 is provided, it is possible to level the maximum load load, prevent insufficient heat storage, and use up the amount of heat storage.

【0027】次に第2、第3、第4の実施例について、
説明を行なうが、第1の実施例と同一構成のものについ
ては、同一符号を付し、説明を省略する。
Next, regarding the second, third and fourth embodiments,
Although the description will be given, the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0028】本発明の第2の実施例の構成については、
熱量算出第3手段22を熱量算出第2手段17と置換し
たものである。
Regarding the configuration of the second embodiment of the present invention,
The calorie calculation third means 22 is replaced with the calorie calculation second means 17.

【0029】図3は本発明の第2の実施例における蓄熱
式空気調和機の放熱制御装置の動作を説明するための特
性図である。
FIG. 3 is a characteristic diagram for explaining the operation of the heat dissipation control device of the heat storage type air conditioner in the second embodiment of the present invention.

【0030】ここで、熱量算出第3手段22は点FBI
Jと点FEKJで囲まれる2つの面積を求め、この両者
の面積が等しくなるように点I及びJを算出している。
Here, the calorific value calculation third means 22 is set to the point FBI.
Two areas surrounded by J and the point FEKJ are obtained, and the points I and J are calculated so that the areas are equal.

【0031】このため、第2の実施例によれば、熱量算
出第3手段22を設けたため、最大負荷時を中心に蓄熱
量の使用量が等分となり、蓄熱量の使いきる精度が更に
向上する。
For this reason, according to the second embodiment, since the heat quantity calculating third means 22 is provided, the usage quantity of the heat storage quantity is divided into equal parts mainly at the maximum load, and the accuracy of using up the heat storage quantity is further improved. To do.

【0032】本発明の第3の実施例の構成については、
瞬時熱源機運転台数算出第2手段23を瞬時熱源機運転
台数算出第1手段19と置換したものである。
Regarding the configuration of the third embodiment of the present invention,
The instantaneous heat source device operating number calculation second means 23 is replaced with the instantaneous heat source device operating number calculation first means 19.

【0033】図4は本発明の第3の実施例における蓄熱
式空気調和機の放熱制御装置の動作を説明するための特
性図である。
FIG. 4 is a characteristic diagram for explaining the operation of the heat dissipation control device of the heat storage type air conditioner in the third embodiment of the present invention.

【0034】ここで、瞬時熱源機運転台数算出第2手段
23では線分IJにおいては熱源機1台の能力で除した
結果の端数を切り上げ、線分JKにおいては熱源機1台
の能力で除した結果の端数を切り捨てる演算を行ってい
る。
Here, in the instantaneous heat source unit operating number calculating second means 23, the line segment IJ is divided by the ability of one heat source unit to round up the fraction, and the line segment JK is divided by the ability of one heat source unit. The result is rounded down.

【0035】このため、第3の実施例によれば、瞬時熱
源機運転台数算出第2手段23を設けたため、最大負荷
時より以前に熱源機の台数が多くなり、蓄熱量が最大負
荷より以降に多く残り、蓄熱不足を防止できる効果があ
る。
For this reason, according to the third embodiment, since the instantaneous heat source unit operating number calculating second means 23 is provided, the number of heat source units increases before the maximum load, and the heat storage amount becomes larger than the maximum load. A large amount remains, which has the effect of preventing heat storage shortage.

【0036】本発明の第4の実施例の構成については、
瞬時熱源機能力算出第2手段24を瞬時熱源機能力算出
第1手段18に置き換えたものである。
Regarding the configuration of the fourth embodiment of the present invention,
The instantaneous heat source functional force calculation second means 24 is replaced with the instantaneous heat source functional force calculation first means 18.

【0037】図5は本発明の第4の実施例における蓄熱
式空気調和機の放熱制御装置の動作を説明するための特
性図である。
FIG. 5 is a characteristic diagram for explaining the operation of the heat dissipation control device for the heat storage type air conditioner in the fourth embodiment of the present invention.

【0038】瞬時熱源機能力算出第2手段24では瞬時
熱源機能力算出第1手段18で得られた面積、例えば、
最大負荷時以前では点GIJで囲まれる面積と同等面積
の四角形LMNJを求め、負荷最大時側を最大負荷時熱
源機能力と同一とする、即ち熱源機の能力として、線分
IM及び線分LJを算出する。
In the instantaneous heat source functional force calculation second means 24, the area obtained by the instantaneous heat source functional force calculation first means 18, for example,
Before the maximum load, a quadrangle LMNJ having the same area as the area surrounded by the point GIJ is obtained, and the maximum load side is made equal to the heat source functional force at the maximum load, that is, the heat source machine's capability is the line segment IM and the line segment LJ. To calculate.

【0039】このため、第4の実施例によれば、瞬時熱
源機能力算出第2手段24を設けたため、最大負荷時付
近に熱源機の台数が多くなり、最大負荷負荷の平準化が
更に図れるという効果がある。
Therefore, according to the fourth embodiment, since the instantaneous heat source functional force calculation second means 24 is provided, the number of heat source machines increases near the maximum load, and the maximum load load can be further leveled. There is an effect.

【0040】[0040]

【発明の効果】以上、実施例からも明らかなように本発
明は、最大負荷量から蓄熱槽の最大取りだし能力を減じ
る最大負荷時熱源機能力算出手段と、最大負荷時熱源機
能力値に室内機の稼動時間を乗じた結果を全日負荷量か
ら減じる熱量算出第1手段と、現在蓄熱量から熱量算出
第1手段で算出された値を減じ最大負荷時を中心に熱量
を2等分する熱量算出第2手段と、熱量算出第2手段で
算出された値から一次式を算出する瞬時熱源機能力算出
第1手段と、瞬時熱源機能力値を熱源機1台の能力で除
し四捨五入する瞬時熱源機運転台数算出第1手段と、瞬
時負荷量予測値から瞬時熱源機能力値を減じる瞬時蓄熱
槽能力算出手段とから成るスケジュール運転設定装置を
設けたものであるため、最大負荷負荷の平準化及び蓄熱
不足の防止が出来、また蓄熱量を使いきる事が出来る。
As is apparent from the embodiments described above, the present invention provides a maximum load heat source functional force calculating means for reducing the maximum extraction capacity of the heat storage tank from the maximum load amount, and a maximum load heat source functional force value for the indoor unit. A calorific value calculation first means for subtracting the result of multiplying the operating time of the machine from the total daily load, and a calorific value that divides the calorific value into two equal parts centering on the maximum load by subtracting the value calculated by the calorific value calculation first means from the current heat storage amount Calculation second means, instantaneous heat source functional force calculation first means for calculating a linear expression from the value calculated by the calorific value calculation second means, and instantaneous heat source functional force value divided by the capacity of one heat source machine and rounded off. Since the schedule operation setting device including the first means for calculating the number of operating heat source machines and the instantaneous heat storage tank capacity calculating means for subtracting the instantaneous heat source functional force value from the instantaneous load amount predicted value is provided, the maximum load load is leveled. And prevent shortage of heat storage In addition it is possible to use up the heat storage amount.

【0041】また、最大負荷時を中心に使用蓄熱量が同
等になるようなるよう分割する熱量算出第3手段を設け
たものであるため、最大負荷時を中心に蓄熱量の使用量
が等分となり、蓄熱量の使いきる精度が更に向上する。
Further, since the third means for calculating the amount of heat is provided so that the amount of heat storage used becomes equal mainly at the time of maximum load, the amount of heat storage used is divided equally around the time of maximum load. Therefore, the accuracy of using up the heat storage amount is further improved.

【0042】また、負荷最大時より以前では切り上げ、
以降では切り捨てにより熱源機の運転台数を算出する瞬
時熱源機運転台数算出第2手段を設けたものであるた
め、最大負荷時より以前に熱源機の台数が多くなり、蓄
熱量が最大負荷より以降に多く残り、蓄熱不足を防止で
きる効果がある。
Also, rounding up before the maximum load,
Since the second means for calculating the number of operating heat source units by rounding down the heat source units is provided after that, the number of heat source units increases before the maximum load, and the heat storage amount becomes greater than the maximum load. A large amount remains, which has the effect of preventing heat storage shortage.

【0043】また、熱量算出第2手段で算出した面積と
同等面積の四角形を演算し、最大負荷時側を最大負荷時
熱源機能力と同一とする瞬時熱源機能力算出第2手段を
設けたものであるため、最大負荷時付近に熱源機の台数
が多くなり、最大負荷負荷の平準化が更に図れる効果が
ある。
Further, a second means for calculating instantaneous heat source functional force for calculating a quadrangle having the same area as the area calculated by the heat amount calculating second means and making the maximum load side equal to the maximum load heat source functional force is provided. Therefore, the number of heat source machines increases near the time of maximum load, and there is an effect that the maximum load load can be further leveled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における蓄熱式空気調和
機の放熱制御装置の概略構成図
FIG. 1 is a schematic configuration diagram of a heat dissipation control device for a heat storage type air conditioner according to a first embodiment of the present invention.

【図2】同実施例の蓄熱式空気調和機の動作を説明する
ための特性図
FIG. 2 is a characteristic diagram for explaining the operation of the heat storage type air conditioner of the same embodiment.

【図3】本発明の第2の実施例における蓄熱式空気調和
機の動作を説明するための特性図
FIG. 3 is a characteristic diagram for explaining the operation of the heat storage type air conditioner in the second embodiment of the present invention.

【図4】本発明の第3の実施例における蓄熱式空気調和
機の動作を説明するための特性図
FIG. 4 is a characteristic diagram for explaining the operation of the heat storage type air conditioner in the third embodiment of the present invention.

【図5】本発明の第4の実施例における蓄熱式空気調和
機の動作を説明するための特性図
FIG. 5 is a characteristic diagram for explaining the operation of the heat storage type air conditioner in the fourth example of the present invention.

【図6】従来の蓄熱式空気調和機の放熱制御装置の概略
構成図
FIG. 6 is a schematic configuration diagram of a heat radiation control device for a conventional heat storage type air conditioner.

【符号の説明】[Explanation of symbols]

2 熱源機 3 蓄熱槽 5 冷媒搬送ポンプ 6 室内機 7 現在蓄熱量算出手段 10 瞬時負荷量予測手段 12 全日負荷量算出手段 13 最大負荷量算出手段 14 負荷量演算装置 15 最大負荷時熱源機能力算出手段 16 熱量算出第1手段 17 熱量算出第2手段 18 瞬時熱源機能力算出第1手段 19 瞬時熱源機運転台数算出第1手段 20 瞬時蓄熱槽能力算出手段 21 スケジュール運転設定装置 2 heat source machine 3 heat storage tank 5 Refrigerant transfer pump 6 indoor units 7 present heat storage amount calculation means 10 Instantaneous load prediction means 12 All-day load calculation means 13 Maximum load calculation means 14 Load amount calculation device 15 Heat source functional power calculation means at maximum load 16 First means of calorific value calculation 17 calorie calculation second means 18 Instantaneous heat source functional force calculation first means 19 First means for calculating the number of operating instantaneous heat source units 20 Instantaneous heat storage tank capacity calculation means 21 Schedule operation setting device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉田 吉秀 東京都千代田区神田神保町2丁目2番30 号 東京電力株式会社開発研究所内 (56)参考文献 特開 昭57−210230(JP,A) 特開 平3−91658(JP,A) 特開 平5−196277(JP,A) 特開 平6−81599(JP,A) 特開 平1−285732(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshihide Sugita 2-30 Kanda Jinbocho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. Research Laboratory (56) Reference JP-A-57-210230 (JP, A) Kaihei 3-91658 (JP, A) JP 5-196277 (JP, A) JP 6-81599 (JP, A) JP 1-285732 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) F24F 11/02 102

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数台の熱源機と、これら熱源機と蓄熱
槽を直列に配置した1次側冷凍サイクルと、 前記蓄熱槽内の2次側熱交換部,冷媒搬送ポンプ,複数
の室内機とを環状に接続した2次側冷凍サイクルとから
なる蓄熱システムと、 外気温等をパラメータとして、前記室内機の負荷パター
ンを予測して負荷量の瞬時値を算出する瞬時負荷量予測
手段と、前記瞬時負荷量予測手段で算出された値を室内
機の全稼動時間で総和をとる全日負荷量算出手段と、前
記瞬時負荷量予測手段で算出された値の最大値を算出す
る最大負荷量算出手段とから成る負荷量演算装置と、 現時点での蓄熱量を算出する現在蓄熱量算出手段と、前
記最大負荷量算出手段で算出された値から蓄熱槽の最大
取りだし能力を減じる最大負荷時熱源機能力算出手段
と、前記最大負荷時熱源機能力算出手段で算出された値
に室内機の稼動時間を乗じた結果を前記全日負荷量算出
手段で算出された値から減じる熱量算出第1手段と、前
記現在蓄熱量算出手段で算出された値から前記熱量算出
第1手段で算出された値を減じ最大負荷時を中心に熱量
を2等分する熱量算出第2手段と、現時点と前記最大負
荷量算出手段で算出された値で囲まれる角度が直角とな
る直角三角形の面積と前記熱量算出第2手段で算出され
た値とが等しくなる直角三角形の斜辺でかつ最大負荷点
を通る一次式を算出する瞬時熱源機能力算出第1手段
と、瞬時熱源機能力算出手段の出力値を熱源機1台の能
力で除し小数点以下を四捨五入する瞬時熱源機運転台数
算出第1手段と、瞬時負荷量予測手段の出力値から瞬時
熱源機能力算出手段の出力値を減じる瞬時蓄熱槽能力算
出手段とから成るスケジュール運転設定装置を設けたこ
とを特徴とする蓄熱式空気調和機。
1. A plurality of heat source units, a primary side refrigeration cycle in which the heat source units and a heat storage tank are arranged in series, a secondary side heat exchange section in the heat storage tank, a refrigerant transfer pump, and a plurality of indoor units. A heat storage system consisting of a secondary side refrigeration cycle in which and are connected in an annular manner, and an instantaneous load amount prediction means for predicting the load pattern of the indoor unit and calculating an instantaneous value of the load amount using the outside air temperature and the like as parameters. All-day load amount calculating means for summing the values calculated by the instantaneous load amount predicting means over all operating hours of the indoor unit, and maximum load amount calculating for calculating the maximum value of the values calculated by the instantaneous load amount predicting means Means for calculating the amount of heat stored at present, and a heat source function at maximum load for subtracting the maximum extraction capacity of the heat storage tank from the value calculated by the maximum load amount calculating means. Force calculation means, Heat quantity calculation first means for subtracting the result of multiplying the value calculated by the heat source functional power calculation means under heavy load by the operating time of the indoor unit from the value calculated by the all-day load quantity calculation means, and the current heat storage quantity calculation means Calculated by the heat quantity calculation second means for subtracting the value calculated by the heat quantity calculation first means from the value calculated in 1. to divide the heat quantity into two equal parts around the maximum load, and the present time and the maximum load quantity calculation means. Instantaneous heat source functional force calculation for calculating a linear expression that passes through the maximum load point on the hypotenuse of a right-angled triangle in which the area enclosed by the values has a right angle and the area calculated by the heat amount calculation second means is equal Instantaneous heat source device operating number calculation for dividing the output value of the first means and the instantaneous heat source functional force calculation means by the capacity of one heat source machine and rounding off the decimal point. Instantaneous from the output value of the instantaneous load amount prediction means. The output value of the heat source functional force calculation means Thermal storage type air conditioner which is characterized in that a scheduled operation setting device comprising a Jill instantaneous heat storage tank capacity calculating means.
【請求項2】 複数台の熱源機と、これら熱源機と蓄熱
槽を直列に配置した1次側冷凍サイクルと、 前記蓄熱槽内の2次側熱交換部,冷媒搬送ポンプ,複数
の室内機とを環状に接続した2次側冷凍サイクルとから
なる蓄熱システムと、 外気温等をパラメータとして、前記室内機の負荷パター
ンを予測して負荷量の瞬時値を算出する瞬時負荷量予測
手段と、前記瞬時負荷量予測手段で算出された値を室内
機の全稼動時間で総和をとる全日負荷量算出手段と、前
記瞬時負荷量予測手段で算出された値の最大値を算出す
る最大負荷量算出手段とから成る負荷量演算装置と、 現時点での蓄熱量を算出する現在蓄熱量算出手段と、前
記最大負荷量算出手段で算出された値から蓄熱槽の最大
取りだし能力を減じる最大負荷時熱源機能力算出手段
と、前記最大負荷時熱源機能力算出手段で算出された値
に室内機の稼動時間を乗じた結果を前記全日負荷量算出
手段で算出された値から減じる熱量算出第1手段と、前
記現在蓄熱量算出手段で算出された値から前記熱量算出
第1手段で算出された値を減じ最大負荷時を中心に使用
蓄熱量が同等になるよう分割する熱量算出第3手段と、
現時点と前記最大負荷量算出手段で算出された値で囲ま
れる角度が直角となる直角三角形の面積と前記熱量算出
第2手段で算出された値とが等しくなる直角三角形の斜
辺でかつ最大負荷点を通る一次式を算出する瞬時熱源機
能力算出第1手段と、瞬時熱源機能力算出手段の出力値
を熱源機1台の能力で除し小数点以下を四捨五入する瞬
時熱源機運転台数算出第1手段と、瞬時負荷量予測手段
の出力値から瞬時熱源機能力算出手段の出力値を減じる
瞬時蓄熱槽能力算出手段とから成るスケジュール運転設
定装置を設けたことを特徴とする蓄熱式空気調和機。
2. A plurality of heat source units, a primary side refrigeration cycle in which the heat source units and a heat storage tank are arranged in series, a secondary side heat exchange section in the heat storage tank, a refrigerant transfer pump, and a plurality of indoor units. A heat storage system consisting of a secondary side refrigeration cycle in which and are connected in an annular manner, and an instantaneous load amount prediction means for predicting the load pattern of the indoor unit and calculating an instantaneous value of the load amount using the outside air temperature and the like as parameters. All-day load amount calculating means for summing the values calculated by the instantaneous load amount predicting means over all operating hours of the indoor unit, and maximum load amount calculating for calculating the maximum value of the values calculated by the instantaneous load amount predicting means Means for calculating the amount of heat stored at present, and a heat source function at maximum load for subtracting the maximum extraction capacity of the heat storage tank from the value calculated by the maximum load amount calculating means. Force calculation means, Heat quantity calculation first means for subtracting the result of multiplying the value calculated by the heat source functional power calculation means under heavy load by the operating time of the indoor unit from the value calculated by the all-day load quantity calculation means, and the current heat storage quantity calculation means A calorific value calculating third means for subtracting the value calculated by the calorific value calculating first means from the value calculated in step 1 and dividing the value so that the amount of heat storage used becomes equal around the maximum load,
The maximum load point is the hypotenuse of a right triangle in which the area of a right triangle whose angle is a right angle surrounded by the value calculated by the maximum load calculation means and the value calculated by the heat calculation second means are equal. The first means for calculating the instantaneous heat source functional force for calculating a linear equation passing through and the first means for calculating the operating number of instantaneous heat source devices by dividing the output value of the instantaneous heat source functional force calculating means by the capacity of one heat source machine and rounding off to the nearest whole number. A heat storage type air conditioner comprising a schedule operation setting device comprising: an instantaneous heat storage tank capacity calculation means for subtracting an output value of the instantaneous heat source functional force calculation means from an output value of the instantaneous load amount prediction means.
【請求項3】 複数台の熱源機と、これら熱源機と蓄熱
槽を直列に配置した1次側冷凍サイクルと、 前記蓄熱槽内の2次側熱交換部,冷媒搬送ポンプ,複数
の室内機とを環状に接続した2次側冷凍サイクルとから
なる蓄熱システムと、 外気温等をパラメータとして、前記室内機の負荷パター
ンを予測して負荷量の瞬時値を算出する瞬時負荷量予測
手段と、前記瞬時負荷量予測手段で算出された値を室内
機の全稼動時間で総和をとる全日負荷量算出手段と、前
記瞬時負荷量予測手段で算出された値の最大値を算出す
る最大負荷量算出手段とから成る負荷量演算装置と、 現時点での蓄熱量を算出する現在蓄熱量算出手段と、前
記最大負荷量算出手段で算出された値から蓄熱槽の最大
取りだし能力を減じる最大負荷時熱源機能力算出手段
と、前記最大負荷時熱源機能力算出手段で算出された値
に室内機の稼動時間を乗じた結果を前記全日負荷量算出
手段で算出された値から減じる熱量算出第1手段と、前
記現在蓄熱量算出手段で算出された値から前記熱量算出
第1手段で算出された値を減じ最大負荷時を中心に熱量
を2等分する熱量算出第2手段と、現時点と前記最大負
荷量算出手段で算出された値で囲まれる角度が直角とな
る直角三角形の面積と前記熱量算出第2手段で算出され
た値とが等しくなる直角三角形の斜辺でかつ最大負荷点
を通る一次式を算出する瞬時熱源機能力算出第1手段
と、負荷最大時より以前では小数点以下を切り上げ、以
降では小数点以下を切り捨てにより熱源機の運転台数を
算出する瞬時熱源機運転台数算出第2手段と、瞬時負荷
量予測手段の出力値から瞬時熱源機能力算出手段の出力
値を減じる瞬時蓄熱槽能力算出手段とから成るスケジュ
ール運転設定装置を設けたことを特徴とする蓄熱式空気
調和機。
3. A plurality of heat source units, a primary side refrigeration cycle in which the heat source units and a heat storage tank are arranged in series, a secondary side heat exchange section in the heat storage tank, a refrigerant transfer pump, and a plurality of indoor units. A heat storage system consisting of a secondary side refrigeration cycle in which and are connected in an annular manner, and an instantaneous load amount prediction means for predicting the load pattern of the indoor unit and calculating an instantaneous value of the load amount using the outside air temperature and the like as parameters. All-day load amount calculating means for summing the values calculated by the instantaneous load amount predicting means over all operating hours of the indoor unit, and maximum load amount calculating for calculating the maximum value of the values calculated by the instantaneous load amount predicting means Means for calculating the amount of heat stored at present, and a heat source function at maximum load for subtracting the maximum extraction capacity of the heat storage tank from the value calculated by the maximum load amount calculating means. Force calculation means, Heat quantity calculation first means for subtracting the result of multiplying the value calculated by the heat source functional power calculation means under heavy load by the operating time of the indoor unit from the value calculated by the all-day load quantity calculation means, and the current heat storage quantity calculation means Calculated by the heat quantity calculation second means for subtracting the value calculated by the heat quantity calculation first means from the value calculated in 1. to divide the heat quantity into two equal parts around the maximum load, and the present time and the maximum load quantity calculation means. Instantaneous heat source functional force calculation for calculating a linear expression that passes through the maximum load point on the hypotenuse of a right-angled triangle in which the area enclosed by the values has a right angle and the area calculated by the heat amount calculation second means is equal Output value of the first means, instantaneous heat source machine operation number calculation means for rounding up the decimal point before the maximum load, and rounding down the decimal point for the second time, and the instantaneous load amount predicting means Instant heat from Thermal storage type air conditioner which is characterized in that a scheduled operation setting device consisting of an instantaneous heat storage tank capacity calculating means for subtracting the output value of the function force calculation means.
【請求項4】 複数台の熱源機と、これら熱源機と蓄熱
槽を直列に配置した1次側冷凍サイクルと、 前記蓄熱槽内の2次側熱交換部,冷媒搬送ポンプ,複数
の室内機とを環状に接続した2次側冷凍サイクルとから
なる蓄熱システムと、 外気温等をパラメータとして、前記室内機の負荷パター
ンを予測して負荷量の瞬時値を算出する瞬時負荷量予測
手段と、前記瞬時負荷量予測手段で算出された値を室内
機の全稼動時間で総和をとる全日負荷量算出手段と、前
記瞬時負荷量予測手段で算出された値の最大値を算出す
る最大負荷量算出手段とから成る負荷量演算装置と、 現時点での蓄熱量を算出する現在蓄熱量算出手段と、前
記最大負荷量算出手段で算出された値から蓄熱槽の最大
取りだし能力を減じる最大負荷時熱源機能力算出手段
と、前記最大負荷時熱源機能力算出手段で算出された値
に室内機の稼動時間を乗じた結果を前記全日負荷量算出
手段で算出された値から減じる熱量算出第1手段と、前
記現在蓄熱量算出手段で算出された値から、現時点と前
記最大負荷量算出手段で算出された値で囲まれる角度が
直角となる直角三角形の面積と前記熱量算出第2手段で
算出された値とが等しくなる直角三角形の斜辺でかつ最
大負荷点を通る一次式を算出する瞬時熱源機能力算出第
1手段で算出された値を減じ最大負荷時を中心に熱量を
2等分する熱量算出第2手段と、前記瞬時熱源機能力算
出第1手段で得られた面積を同等としかつ最大負荷点を
通る辺を一辺とする長方形とし、負荷最大時に近い方を
最大負荷時熱源機能力と同一とするよう熱源機能力を算
出する瞬時熱源機能力算出第2手段と、瞬時熱源機能力
算出手段の出力値を熱源機1台の能力で除し小数点以下
を四捨五入する瞬時熱源機運転台数算出第1手段と、瞬
時負荷量予測手段の出力値から瞬時熱源機能力算出手段
の出力値を減じる瞬時蓄熱槽能力算出手段とから成るス
ケジュール運転設定装置を設けたことを特徴とする蓄熱
式空気調和機。
4. A plurality of heat source units, a primary side refrigeration cycle in which the heat source units and a heat storage tank are arranged in series, a secondary side heat exchange section in the heat storage tank, a refrigerant transfer pump, and a plurality of indoor units. A heat storage system consisting of a secondary side refrigeration cycle in which and are connected in an annular manner, and an instantaneous load amount prediction means for predicting the load pattern of the indoor unit and calculating an instantaneous value of the load amount using the outside air temperature and the like as parameters. All-day load amount calculating means for summing the values calculated by the instantaneous load amount predicting means over all operating hours of the indoor unit, and maximum load amount calculating for calculating the maximum value of the values calculated by the instantaneous load amount predicting means Means for calculating the amount of heat stored at present, and a heat source function at maximum load for subtracting the maximum extraction capacity of the heat storage tank from the value calculated by the maximum load amount calculating means. Force calculation means, Heat quantity calculation first means for subtracting the result of multiplying the value calculated by the heat source functional power calculation means under heavy load by the operating time of the indoor unit from the value calculated by the all-day load quantity calculation means, and the current heat storage quantity calculation means From the value calculated in, the area of a right-angled triangle having a right angle between the present time and the value calculated by the maximum load amount calculation means is equal to the right-angled triangle in which the value calculated by the heat amount calculation second means is equal. A heat quantity calculation second means for dividing a heat quantity into two equal parts centered at the time of maximum load by subtracting the value calculated by the instantaneous heat source functional force calculation first means for calculating a linear expression on the hypotenuse and passing through the maximum load point; Heat source functional force calculation The area obtained by the first means is made equal, and the side that passes through the maximum load point is made a rectangle, and the heat source functional force is set so that the side closer to the maximum load is the same as the heat source functional force at maximum load. Instantaneous heat source functional force calculation Means and the instantaneous heat source functional force calculating means, the output value of the instantaneous heat source functional force calculating means is divided by the capacity of one heat source machine, and the decimal point is rounded off. A heat storage type air conditioner comprising a schedule operation setting device comprising an instantaneous heat storage tank capacity calculation means for reducing the output value of the force calculation means.
JP15720794A 1994-07-08 1994-07-08 Thermal storage type air conditioner Expired - Fee Related JP3414849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15720794A JP3414849B2 (en) 1994-07-08 1994-07-08 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15720794A JP3414849B2 (en) 1994-07-08 1994-07-08 Thermal storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH0828931A JPH0828931A (en) 1996-02-02
JP3414849B2 true JP3414849B2 (en) 2003-06-09

Family

ID=15644553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15720794A Expired - Fee Related JP3414849B2 (en) 1994-07-08 1994-07-08 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP3414849B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261360A1 (en) * 2019-06-25 2020-12-30 日立ジョンソンコントロールズ空調株式会社 Air conditioning device, operation control method, and program

Also Published As

Publication number Publication date
JPH0828931A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
US4266599A (en) Method and apparatus for controlling comfort conditions including setback
CN112519635A (en) Control method and related device for battery thermal management
CN112797684B (en) Air conditioner control method of data center and terminal equipment
US11801765B2 (en) Charging pile and charging pile control method
US6437460B1 (en) Low power supervisor controller
CN109899935A (en) A kind of rail traffic refrigeration system and its intelligent adjusting method, device
CN114216216A (en) Control method and device for air conditioner operation
JP3414849B2 (en) Thermal storage type air conditioner
CN113091234B (en) Method and system for selecting on-off state of refrigeration host
EP1953473B1 (en) Demand control system and method for multi-type air conditioner
EP4344911A1 (en) Vehicle heating control method and apparatus, device, medium, and program product
CN114216217A (en) Method and device for adjusting power supply of air conditioner and air conditioner
JPH0544980A (en) Controlling method for air conditioner
JPH09264583A (en) Heat storage air conditioning system and its residual storage amount determining method
CN110864417A (en) Energy-saving control method, device and system for air conditioning system
CN113776161B (en) Air conditioner operation control method and device, air conditioner and readable storage medium
JPH05340570A (en) Designing method of air-conditioning system equipped with heat accumulating tank
JP6964041B2 (en) Control method of turbo chiller and heat recovery heat source system using it
JP2509618B2 (en) Operation control method for heat storage air conditioner
JPH0830621B2 (en) Device for controlling the number of operating air-cooled refrigerators
JP2921667B2 (en) Ice heat storage control device
JP2574536B2 (en) Ice storage device
JP2528823B2 (en) Operation control device for heat storage air conditioner
JPS62131844A (en) Charge and discharge control device for vehicle
JPS6343810A (en) Controller for compressor of air conditioner for automobile

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees