JP3413779B2 - FM stereo receiver - Google Patents

FM stereo receiver

Info

Publication number
JP3413779B2
JP3413779B2 JP23874693A JP23874693A JP3413779B2 JP 3413779 B2 JP3413779 B2 JP 3413779B2 JP 23874693 A JP23874693 A JP 23874693A JP 23874693 A JP23874693 A JP 23874693A JP 3413779 B2 JP3413779 B2 JP 3413779B2
Authority
JP
Japan
Prior art keywords
signal
sub
output
addition
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23874693A
Other languages
Japanese (ja)
Other versions
JPH0774715A (en
Inventor
庸裕 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP23874693A priority Critical patent/JP3413779B2/en
Publication of JPH0774715A publication Critical patent/JPH0774715A/en
Application granted granted Critical
Publication of JP3413779B2 publication Critical patent/JP3413779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はFMステレオ受信機に係
り、特にそのステレオサブ信号のS/Nの改善を図るた
めの改良に関する。 【0002】 【従来の技術】FMステレオ受信機において、S/Nの
点でメイン信号(EL+ER)/2に対し不利となるサブ
信号(EL−ER)/2のS/N改善方法としてサブ信号
を狭帯域BPF群により帯域分割し、瞬時、瞬時にサブ
信号の周波数スペクトルを分析して伝送されていない周
波数帯域成分をカットした後に、残りの各周波数帯域成
分を合成するものがある。しかし、サブ信号の周波数ス
ペクトルの分析をサブ信号自身で行うと、弱電界時等に
おいてS/Nの劣化している場合、ノイズ検出による誤
動作が発生するおそれがある。 【0003】 【発明が解決しようとする課題】そこで本発明者は先に
サブ信号と周波数相関を有するメイン信号によってサブ
信号の周波数スペクトルの分析を行う方式の特願平3−
349005号(特開平5−160799号)を出願し
た。図5は上記先願の方式の基本的構成を示しており、
同図において、1はIF増幅及びFM復調器、2はバン
ドパスフィルタ、BPF(19kHz)、3はサブキャリ
ア信号発生器(fp(38kHz))、4は同期検波回
路、5は第1のBPF群で、5−1〜5−nのBPFか
ら成る。6は第2のBPF群で、6−1〜6−nのBP
Fから成る。7及び10は第1及び第2の構成回路、8
は信号処理回路、9はマトリクス回路である。 【0004】図5において、まずIF増幅及びFM復調
器1にIF信号が入力され、FM復調される。IF増幅
及びFM復調器1の出力にはBPF2(19kHz)、同
期検波回路4、第1のBPF群5が接続されている。B
PF2(19kHz)ではパイロット信号(19kHz)を
抽出し、サブキャリア信号発生器3へパイロット信号を
供給する。パイロット信号発生器3ではパイロット信号
に同期したサブキャリア信号(38kHz)を発生させ、
同期検波回路4のもう一方の入力へ供給する。同期検波
回路4ではサブキャリア信号(38kHz)によってFM
復調出力信号を同期検波して、FM復調出力信号中のサ
ブ信号(38kHz±15kHz)を低域の信号に変換す
る。 【0005】第1のBPF群5ではFM復調出力信号中
のメイン信号(15kHz以下)をn個の周波数領域のチ
ャンネルに区分する各BPF5−1〜5−nによって周
波数的に分離されたn個のメイン信号成分を出力する。
第2のBPF群6では同期検波回路4の出力信号中のサ
ブ信号(15kHz以下)をn個の周波数領域のチャンネ
ルに区分する各BPF6−1〜6−nによって周波数的
に分離されたn個のサブ信号成分を出力する。 【0006】なお、第1のBPF群6の各BPF6−1
〜6−nの特性は第2のBPF群5の各BPF5−1〜
5−nの特性と同一であるものとする。第1のBPF群
5のn個の出力メイン信号成分は合成回路7及び信号処
理回路8へ入力され、第2のBPF群6のn個の出力サ
ブ信号成分は信号処理回路8へ入力される。合成回路7
では第1のBPF群5のn個の出力メイン信号成分を合
成し、再び合成メイン信号{(EL+ER)/2}’を作
って、マトリクス回路9へ供給する。 【0007】信号処理回路8の一構成例を図6に示す。
図6において、8−1〜8−nは信号処理部で、夫々振
幅検波回路21−1〜21−n、比較回路22−1〜2
2−n、基準電圧発生回路23−1〜23−n、利得制
御回路24−1〜24−nから成る。 【0008】信号処理回路8では第1のBPF群5から
のn個のメイン信号成分の各振幅を振幅検出回路21−
1〜21−nで検出する。検出された各振幅は比較回路
22−1〜22−nで基準電圧発生回路23−1〜23
−nで設定されたレベルと比較され、これよりも大きい
振幅レベルを有する周波数チャンネルと同じ第2のBP
F群6の周波数チャンネルのサブ信号成分の利得のみ
を、利得制御回路24−1〜24−nのうち対応する回
路において制御して通過させ、得られたサブ信号成分を
合成回路10で合成した後にマトリクス回路9へ合成サ
ブ信号{(EL−ER)/2}’を供給する。 【0009】即ちメイン信号(EL+ER)/2の周波数
分析(nチャンネル)を行い、各メイン信号成分のうち
振幅レベルの低いチャンネルに対応するサブ信号のチャ
ンネル成分を抑圧することでサブ信号のノイズを低減し
SN比の改善を行う。マトリクス回路9では合成メイン
信号(EL+ER)/2と合成サブ信号{(EL−ER)/
2}’の加算・減算を行い、ステレオ信号EL’(左信
号)、ER’(右信号)を発生させる。 【0010】上述のように前記先願ではメイン信号(E
L+ER)/2とサブ信号(EL−ER)/2の周波数相関
性を利用して、弱電界時等においてS/N劣化の著しい
サブ信号のS/Nの改善をサブ信号S/Nより良好なメ
イン信号によって行っている(S/N劣化時のサブ信号
自身によってサブ信号S/N改善を行うとノイズによる
誤動作発生のおそれがある)。 【0011】しかしこのような先願の方式にも未だ下記
のような改良の余地があることが判明した。即ち先願の
方式ではS/Nの良好な強電界においては効果がない
(サブ信号のS/N劣化がないため)だけでなく、正常
なステレオ再生が行えない場合が発生する恐れがある。
例えばEL=−ER(L信号とR信号が同一周波数、同一
振幅で逆位相)という信号の場合メイン信号が0とな
り、本来出力されるステレオ信号(EL’=−ER’)が
L’=ER’=0となる不具合が発生する。 【0012】本発明の目的は前記先願の方式において、
更に強電界等でサブ信号のS/Nが良好な場合に、上記
ステレオ信号再生時における不具合を解消する制御方式
を提案することにある。 【0013】 【課題を解決するための手段】上記目的を達成するた
め、本発明のFMステレオ受信機は、FM復調出力信号
の中のメイン信号を複数の周波数領域のチャンネルのメ
イン信号成分に分割する第1の周波数分割手段と、FM
復調出力信号をそのサブキャリア信号で同期検波した検
波出力信号を複数の周波数領域のチャンネルのサブ信号
成分に分割する第2の周波数分割手段と、各メイン信号
成分のレベルを検出する第1のレベル検出手段と、各サ
ブ信号成分のレベルを検出する第2のレベル検出手段
と、前記第1のレベル検出手段の各検出信号と第2のレ
ベル検出手段の各検出信号をシグナルメータ出力信号
に応じた加算係数に従って加算する第1の加算手段と、
前記第1の加算手段の各加算出力信号と基準信号とを比
較する比較手段と、前記比較手段の各比較出力信号に応
じて各サブ信号成分の利得を制御する利得制御手段と、
前記利得制御手段の各出力信号を加算する第2の加算手
段と、各メイン信号成分を加算する第3の加算手段と、
前記第3の加算手段からの合成メイン信号と第2の加算
手段からの合成サブ信号とからステレオ信号を得るマト
リクス手段と、を備えたことを要旨とする。 【0014】 【作用】本発明のFMステレオ受信機においては、各メ
イン信号成分のレベル検出信号と各サブ信号成分のレベ
ル検出信号とを、FM復調出力信号に応じた加算係数に
従って加算し、各加算出力信号と基準信号とを比較す
る。そしてその各比較出力信号に応じて各サブ信号成分
の利得を制御してから合成し、合成サブ信号を合成メイ
ン信号と共にマトリクス手段に送る。 【0015】 【実施例】以下本発明の実施例を説明する。図1は本発
明のFMステレオ受信機の一実施例で、図5と同一符号
は同一又は類似の回路をあらわし、この実施例ではIF
増幅及びFM復調器1から電界強度を示すシグナルメー
タ電圧を信号処理回路31に入力していること及びその
構成が図5とは異なっている。 【0016】図2は信号処理回路31の一構成例で、n
チャンネルの信号処理部31−1〜31−nから成る。
図2において、図6と同一符号は同一又は類似の回路を
あらわし、図6と異なる構成としては各サブ信号成分の
振幅検出回路41−1〜41−n及び各メイン信号成分
の振幅検出信号と各サブ信号成分の振幅検出信号とをシ
グナルメータ電圧に応じて加算する電圧制御加算回路4
2−1〜42−nを設けた点である。 【0017】上記実施例において、まず、メイン信号用
の第1のBPF群5からのn個のメイン信号成分の各振
幅を振幅検出回路21−1〜21−nで検出し、その各
振幅検出信号を電圧制御加算回路42−1〜42−nの
一方の入力端子へ加える。サブ信号用の第2のBPF群
6からのn個のサブ信号成分の各振幅を振幅検出回路4
1−1〜41−nで検出し、その各振幅検出信号を電圧
制御加算回路42−1〜42−nのもう一方の入力端子
へ加える。 【0018】各電圧制御加算回路42−1〜42−nで
はシグナルメータ電圧に応じて、上記メイン信号用振幅
検出回路21−1〜21−nの各出力(直流電圧)とサ
ブ信号用振幅検出用回路41−1〜41−nの各出力
(直流電圧)とを加算後、その加算出力(直流電圧)を
各比較回路22−1〜22−nへ加える。比較回路22
−1〜22−n、基準電圧発生回路23−1〜23−
n、利得制御回路24−1〜24−n、合成回路10
各動作は図5と同様である。 【0019】次に電圧制御加算回路42−1〜42−n
の動作を図3を用いて説明する。図3(a)に電圧制御
加算回路42−1〜42−nの入出力関係を示す。この
回路において、2つの加算入力信号をV1,V2、加算出
力信号をV3とすると以下のようになる。 【数1】 V3=kV1+(1−k)V2 k:加算係数 0≦k≦1 (1) 加算係数kは制御入力信号Vcに応じて変化する。加算
係数kと制御入力信号Vcの関係を図3(b)に示す。
Vc=0の場合はV3=V1となり、Vc=Vxの場合は
3=V2となる。V3は0<Vc<Vxの範囲ではVc
に対応するkにより(1)式の値となる。 【0020】従って、V1として図2のメイン信号用振
幅検出回路21−1〜21−nの出力、V2としてサブ
信号用振幅検出回路41−1〜41−nの出力、Vcと
してシグナルメータ電圧をとれば、前記本発明での電圧
制御加算回路が得られる。即ち、電界強度が低い(シグ
ナルメータ電圧が低い)と電圧制御加算回路42−1〜
42−nの出力としてはメイン信号用振幅検出回路21
−1〜21−nの出力信号が支配的となり、電界強度が
高い(シグナルメータ電圧が高い)と電圧制御加算回路
42−1〜42−nの出力としてはサブ信号用振幅検出
回路41−1〜41−nの出力信号が支配的となる。 【0021】なお、シグナルメータ電圧と電界強度、受
信機出力S/N(SN比改善技術を使わないステレオ復
調時)と電界強度の関係の一例を図4に示す。図4
(a)と図4(b)のような関係をもたせることはIF
増幅及びFM復調器1において設定することにより可能
である。従ってシグナルメータ電圧が強電界域で飽和す
る電圧をVxとすれば、上記図3に示した関係を満足さ
せることができる。 【0022】更に、本実施例では説明の簡略化のため
に、サブ信号の利得制御回路24−1〜24−nを中心
にした信号処理回路31でサブ信号の各周波数チャンネ
ルをスイッチング的に制御して合成回路10へ加えてい
るが、アナログ的に制御する方式としても良い。 【0023】 【発明の効果】前述したように強電界等でサブ信号S/
Nの劣化がない場合に先願の方式では正常なステレオ再
生が行えない恐れがあったが、本発明によれば弱電界時
のサブ信号のS/N改善を先願と同等にし、しかも強電
界時のサブ信号S/Nが劣化ないときには正常なステ
レオ再生を行えるようにすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FM stereo receiver, and more particularly to an improvement for improving the S / N of a stereo sub signal. 2. Description of the Related Art In an FM stereo receiver, the S / N ratio of a sub-signal (E L -E R ) / 2, which is disadvantageous to the main signal (E L + E R ) / 2, in terms of S / N ratio. As an improvement method, a sub-signal is divided into bands by a narrow-band BPF group, the frequency spectrum of the sub-signal is instantaneously and instantaneously analyzed, and the frequency band components not transmitted are cut, and then the remaining frequency band components are combined. There is. However, if the analysis of the frequency spectrum of the sub-signal is performed by the sub-signal itself, a malfunction due to noise detection may occur when the S / N is deteriorated in a weak electric field or the like. Accordingly, the present inventor has previously disclosed a method of analyzing the frequency spectrum of a sub signal using a main signal having a frequency correlation with the sub signal.
No. 349005 (JP-A-5-160799) was filed. FIG. 5 shows the basic configuration of the above-mentioned prior application,
In the figure, 1 is IF amplifier and FM demodulator, 2 bandpass filters, BPF (19 kHz), 3 sub-carrier signal generator (f p (38kHz)), the synchronous detection circuit 4, the first 5 The BPF group includes BPFs of 5-1 to 5-n. Reference numeral 6 denotes a second BPF group, and BPs of 6-1 to 6-n
F. 7 and 10 are first and second constituent circuits, and 8
Denotes a signal processing circuit, and 9 denotes a matrix circuit. In FIG. 5, first, an IF signal is input to an IF amplification and FM demodulator 1 and FM demodulated. A BPF 2 (19 kHz), a synchronous detection circuit 4, and a first BPF group 5 are connected to the output of the IF amplification and FM demodulator 1. B
The PF 2 (19 kHz) extracts a pilot signal (19 kHz) and supplies the pilot signal to the subcarrier signal generator 3. The pilot signal generator 3 generates a subcarrier signal (38 kHz) synchronized with the pilot signal,
It is supplied to the other input of the synchronous detection circuit 4. In the synchronous detection circuit 4, FM is performed by the subcarrier signal (38 kHz).
The demodulation output signal is synchronously detected, and the sub-signal (38 kHz ± 15 kHz) in the FM demodulation output signal is converted into a low-frequency signal. In a first BPF group 5, n main signals (15 kHz or less) in an FM demodulated output signal are divided into n frequency domains by n BPFs 5-1 to 5-n. Is output.
In the second BPF group 6, n sub-signals (15 kHz or less) in the output signal of the synchronous detection circuit 4 are separated into n frequency-divided BPFs 6-1 to 6-n, which divide the sub-signals into n frequency domain channels. Is output. [0006] Each BPF 6-1 of the first BPF group 6
6-n correspond to each of the BPFs 5-1 to 5-1 of the second BPF group 5.
It is assumed that the characteristics are the same as those of 5-n. The n output main signal components of the first BPF group 5 are input to the combining circuit 7 and the signal processing circuit 8, and the n output sub signal components of the second BPF group 6 are input to the signal processing circuit 8. . Synthesis circuit 7
Then, the n output main signal components of the first BPF group 5 are combined, a combined main signal {(E L + E R ) / 2} ′ is formed again, and supplied to the matrix circuit 9. FIG. 6 shows an example of the configuration of the signal processing circuit 8.
In FIG. 6, reference numerals 8-1 to 8-n denote signal processing units, which are amplitude detectors 21-1 to 21-n and comparators 22-1 to 22-2, respectively.
2-n, reference voltage generating circuits 23-1 to 23-n, and gain control circuits 24-1 to 24-n. In the signal processing circuit 8, the amplitudes of the n main signal components from the first BPF group 5 are detected by the amplitude detection circuit 21-.
1 to 21-n. Each detected amplitude is compared with reference voltage generation circuits 23-1 to 23 by comparison circuits 22-1 to 22-n.
A second BP, which is compared to the level set at −n and is the same as the frequency channel having a greater amplitude level
Only the gain of the sub-signal component of the frequency group of the F group 6 is controlled and passed by the corresponding one of the gain control circuits 24-1 to 24-n, and the obtained sub-signal component is synthesized by the synthesis circuit 10. supplying a synthetic sub signal to the matrix circuit 9 {(E L -E R) / 2} ' after. That is, a frequency analysis (n channels) of the main signal (E L + E R ) / 2 is performed, and a sub-signal channel component corresponding to a channel having a low amplitude level among the main signal components is suppressed, whereby the sub-signal is suppressed. Is reduced and the SN ratio is improved. In the matrix circuit 9, the combined main signal (E L + E R ) / 2 and the combined sub signal {(E L -E R ) /
The addition and subtraction of 2} ′ are performed to generate stereo signals E L ′ (left signal) and E R ′ (right signal). As described above, in the prior application, the main signal (E
Using the frequency correlation between L + E R ) / 2 and the sub-signal (E L -E R ) / 2, the S / N of the sub-signal whose S / N deteriorates remarkably in a weak electric field or the like is improved by the sub-signal S. / N is better than the main signal (if the sub-signal S / N is improved by the sub-signal itself when the S / N is deteriorated, a malfunction may occur due to noise). However, it has been found that such a system of the prior application still has room for improvement as described below. That is, in the method of the prior application, not only is there no effect in a strong electric field having a good S / N (because there is no S / N deterioration of the sub-signal), but also a case where normal stereo reproduction cannot be performed may occur.
For example, in the case of a signal of E L = −E R (the L signal and the R signal have the same frequency, the same amplitude, and opposite phases), the main signal becomes 0, and the originally output stereo signal (E L ′ = −E R ′) is generated. A defect that E L ′ = E R ′ = 0 occurs. [0012] An object of the present invention is to provide the above-mentioned prior application,
Another object of the present invention is to propose a control method for eliminating the above-mentioned problem at the time of reproducing the stereo signal when the S / N of the sub signal is good due to a strong electric field or the like. To achieve the above object, an FM stereo receiver according to the present invention divides a main signal in an FM demodulated output signal into main signal components of a plurality of frequency domain channels. First frequency dividing means for performing
Second frequency dividing means for dividing a detection output signal obtained by synchronously detecting the demodulated output signal with the subcarrier signal into sub signal components of a plurality of frequency domain channels, and a first level for detecting a level of each main signal component a detection means, and second level detecting means for detecting the level of each sub-signal components, and respective detection signals of the detection signal and the second level detecting means of said first level detecting means to the signal meter output signal a first adding means for adding in accordance with the addition coefficient corresponding,
Comparison means for comparing each addition output signal of the first addition means with a reference signal; gain control means for controlling the gain of each sub-signal component according to each comparison output signal of the comparison means;
Second adding means for adding each output signal of the gain control means, third adding means for adding each main signal component,
The gist of the invention is to provide a matrix means for obtaining a stereo signal from the combined main signal from the third adding means and the combined sub-signal from the second adding means. In the FM stereo receiver of the present invention, the level detection signal of each main signal component and the level detection signal of each sub-signal component are converted into an addition coefficient corresponding to the FM demodulation output signal.
Therefore adding, comparing the respective addition output signal and the reference signal. Then, the gain of each sub-signal component is controlled in accordance with each of the comparison output signals and then synthesized, and the synthesized sub-signal is sent to the matrix means together with the synthesized main signal. An embodiment of the present invention will be described below. FIG. 1 shows an embodiment of an FM stereo receiver according to the present invention. The same reference numerals as those in FIG. 5 denote the same or similar circuits.
The difference from FIG. 5 is that a signal meter voltage indicating the electric field strength is input from the amplification and FM demodulator 1 to the signal processing circuit 31 and the configuration thereof is different from that of FIG. FIG. 2 shows an example of the configuration of the signal processing circuit 31, in which n
It comprises channel signal processing units 31-1 to 31-n.
2, the same reference numerals as those in FIG. 6 denote the same or similar circuits, and the configuration different from FIG. 6 is that the amplitude detection circuits 41-1 to 41-n of each sub-signal component and the amplitude detection signals of Voltage control addition circuit 4 for adding the amplitude detection signal of each sub signal component according to the signal meter voltage
2-1 to 42-n are provided. In the above embodiment, first, the amplitudes of the n main signal components from the first BPF group 5 for the main signal are detected by the amplitude detection circuits 21-1 to 21-n. The signal is applied to one input terminal of each of the voltage control addition circuits 42-1 to 42-n. Each amplitude of the n sub-signal components from the second BPF group 6 for sub-signals is detected by an amplitude detection circuit 4
1-1 to 41-n, and the respective amplitude detection signals are applied to the other input terminals of the voltage control addition circuits 42-1 to 42-n. In each of the voltage control addition circuits 42-1 to 42-n, in accordance with the signal meter voltage, each output (DC voltage) of the main signal amplitude detection circuits 21-1 to 21-n and the sub signal amplitude detection. After adding each output (DC voltage) of the circuits 41-1 to 41-n, the added output (DC voltage) is applied to each of the comparison circuits 22-1 to 22-n. Comparison circuit 22
-1 to 22-n, reference voltage generating circuits 23-1 to 23-
n, the gain control circuits 24-1 to 24-n, and the operation of the combining circuit 10 are the same as those in FIG. Next, voltage control addition circuits 42-1 to 42-n
Will be described with reference to FIG. FIG. 3A shows the input / output relationship of the voltage control addition circuits 42-1 to 42-n. In this circuit, if the two added input signals are V 1 and V 2 and the added output signal is V 3 , the following is obtained. V 3 = kV 1 + (1−k) V 2 k: Addition coefficient 0 ≦ k ≦ 1 (1) The addition coefficient k changes according to the control input signal Vc. FIG. 3B shows the relationship between the addition coefficient k and the control input signal Vc.
When Vc = 0, V 3 = V 1 , and when Vc = Vx, V 3 = V 2 . V 3 is 0 <Vc <Vc in the range of Vx
The value of equation (1) is obtained by k corresponding to [0020] Thus, the output of the main signal amplitude detection circuit 21 - 1 to 21-n in FIG. 2 as V 1, sub signal amplitude detection circuit as V 2 41-1 to 41-n output, signal meter as Vc By taking the voltage, the voltage controlled addition circuit according to the present invention can be obtained. That is, when the electric field strength is low (the signal meter voltage is low), the voltage control addition circuits 42-1 to 42-1 are used.
The output of 42-n is the main signal amplitude detection circuit 21.
The output signals of −1 to 21-n become dominant, and when the electric field strength is high (the signal meter voltage is high), the amplitude of the sub-signal amplitude detection circuit 41-1 is output from the voltage control addition circuits 42-1 to 42-n. The output signals of .about.41-n are dominant. FIG. 4 shows an example of the relationship between the signal meter voltage and the electric field strength, the output S / N of the receiver (at the time of stereo demodulation without using the SN ratio improvement technique), and the electric field strength. FIG.
(A) and the relationship shown in FIG.
It is possible by setting in the amplification and FM demodulator 1. Therefore, if the voltage at which the signal meter voltage saturates in the strong electric field region is Vx, the relationship shown in FIG. 3 can be satisfied. Further, in this embodiment, for the sake of simplicity of explanation, each frequency channel of the sub-signal is controlled in a switching manner by a signal processing circuit 31 centered on the sub-signal gain control circuits 24-1 to 24-n. Although it is added to the synthesizing circuit 10, it may be controlled in an analog manner. As described above, the sub signal S /
When there is no deterioration of N, there is a possibility that normal stereo reproduction cannot be performed by the method of the prior application. it is possible to allow the normal stereo reproduction when the sub-signal S / N when an electric field is not degraded.

【図面の簡単な説明】 【図1】本発明の一実施例を示すブロック図である。 【図2】上記実施例における信号処理回路の一構成例を
示すブロック図である。 【図3】図2の信号処理回路の電圧制御加算回路の動作
説明図である。 【図4】電界強度とシグナルメータ電圧及び受信機出力
のS/Nとの関係を示す説明図である。 【図5】先願の方式を示すブロック図である。 【図6】先願の方式における信号処理回路の構成を示す
ブロック図である。 【符号の説明】 1 IF増幅及びFM復調器 2 BPF(19kHz) 3 サブキャリア信号発生器 4 同期検波回路 5,6 BPF群 7,10 合成回路 9 マトリクス回路 31 信号処理回路 21−1〜21−n,41−1〜41−n 振幅検出回
路 42−1〜42−n 電圧制御加算回路 22−1〜22−n 比較回路 23−1〜23−n 基準電圧発生回路 24−1〜24−n 利得制御回路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a block diagram illustrating a configuration example of a signal processing circuit in the embodiment. 3 is an operation explanatory diagram of a voltage control addition circuit of the signal processing circuit of FIG. 2; FIG. 4 is an explanatory diagram showing the relationship between the electric field strength, the signal meter voltage, and the S / N of the output of the receiver. FIG. 5 is a block diagram showing a method of the prior application. FIG. 6 is a block diagram showing a configuration of a signal processing circuit in the method of the prior application. [Description of Signs] 1 IF amplification and FM demodulator 2 BPF (19 kHz) 3 Subcarrier signal generator 4 Synchronous detection circuits 5, 6 BPF group 7, 10 Synthesis circuit 9 Matrix circuit 31 Signal processing circuits 21-1 to 21- n, 41-1 to 41-n Amplitude detection circuits 42-1 to 42-n Voltage control addition circuits 22-1 to 22-n Comparison circuits 23-1 to 23-n Reference voltage generation circuits 24-1 to 24-n Gain control circuit

Claims (1)

(57)【特許請求の範囲】 【請求項1】 FM復調出力信号の中のメイン信号を複
数の周波数領域のチャンネルのメイン信号成分に分割す
る第1の周波数分割手段と、 FM復調出力信号をそのサブキャリア信号で同期検波し
た検波出力信号を複数の周波数領域のチャンネルのサブ
信号成分に分割する第2の周波数分割手段と、 各メイン信号成分のレベルを検出する第1のレベル検出
手段と、 各サブ信号成分のレベルを検出する第2のレベル検出手
段と、 前記第1のレベル検出手段の各検出信号と第2のレベル
検出手段の各検出信号をシグナルメータ出力信号に応
た加算係数に従って加算する第1の加算手段と、 前記第1の加算手段の各加算出力信号と基準信号とを比
較する比較手段と、 前記比較手段の各比較出力信号に応じて各サブ信号成分
の利得を制御する利得制御手段と、 前記利得制御手段の各出力信号を加算する第2の加算手
段と、 各メイン信号成分を加算する第3の加算手段と、 前記第3の加算手段からの合成メイン信号と第2の加算
手段からの合成サブ信号とからステレオ信号を得るマト
リクス手段と、 を備えたことを特徴とするFMステレオ受信機。
(57) [Claim 1] First frequency dividing means for dividing a main signal in an FM demodulated output signal into main signal components of a plurality of frequency domain channels, and Second frequency division means for dividing a detection output signal synchronously detected by the subcarrier signal into sub signal components of a plurality of frequency domain channels; first level detection means for detecting the level of each main signal component; A second level detecting means for detecting the level of each sub-signal component; and an addition coefficient corresponding to each signal detected by the first level detecting means and each detected signal of the second level detecting means according to a signal meter output signal. first adding means, said first comparison means for comparing the respective addition output signal and the reference signal adding means, each sub-signal according to the comparison output signal of said comparing means for adding in accordance with Gain control means for controlling the gain of each minute; second addition means for adding each output signal of the gain control means; third addition means for adding each main signal component; and third addition means. And a matrix means for obtaining a stereo signal from the combined main signal and the combined sub-signal from the second adding means.
JP23874693A 1993-08-31 1993-08-31 FM stereo receiver Expired - Fee Related JP3413779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23874693A JP3413779B2 (en) 1993-08-31 1993-08-31 FM stereo receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23874693A JP3413779B2 (en) 1993-08-31 1993-08-31 FM stereo receiver

Publications (2)

Publication Number Publication Date
JPH0774715A JPH0774715A (en) 1995-03-17
JP3413779B2 true JP3413779B2 (en) 2003-06-09

Family

ID=17034649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23874693A Expired - Fee Related JP3413779B2 (en) 1993-08-31 1993-08-31 FM stereo receiver

Country Status (1)

Country Link
JP (1) JP3413779B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263394B2 (en) * 2014-01-23 2018-01-17 パイオニア株式会社 FM receiver and signal correction method

Also Published As

Publication number Publication date
JPH0774715A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
KR920002899B1 (en) Fm stereophonic system incorporating companding of difference signal
US5067157A (en) Noise reduction apparatus in an FM stereo tuner
US4139866A (en) Stereophonic television sound transmission system
US5253299A (en) Noise reduction apparatus in an FM stereo tuner
JP3413779B2 (en) FM stereo receiver
US7313240B2 (en) Noise reduction in a stereo receiver comprising an expander
JP3640669B2 (en) Circuit device for derivation of sound quality signal depending on sound quality of received multiplexed signal
US4769841A (en) Receiver for compatible FM stereophonic system utilizing companding of difference signal
JP2699860B2 (en) Pilot signal detection circuit and pilot signal detection method
JPH05284125A (en) Fm stereo receiver
JPH0530054A (en) Fm stereo receiver
JP2561822B2 (en) FM stereo receiver
JPH07226721A (en) Fm stereo receiver
JPH06224866A (en) Signal processing circuit for band division due to fm stereo
JP2735832B2 (en) Television sound multiplex demodulation circuit
JPH05160799A (en) Fm stereo receiver
JPH0419862Y2 (en)
JP2890411B2 (en) Television audio multiplex signal demodulator
JPH05304505A (en) Fm stereo receiver
JPH02205120A (en) Noise reduction device for fm stereo tuner
US7362872B2 (en) Method for noise reduction of a FM signal
JPH05130059A (en) Stereo modulator
JP3395201B2 (en) Multi-system intermediate frequency signal processing circuit
JPH06125318A (en) Fm stereo receiver
JP3086602B2 (en) Noise removal circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees