JP3412015B2 - Station error compensation method - Google Patents

Station error compensation method

Info

Publication number
JP3412015B2
JP3412015B2 JP2001038082A JP2001038082A JP3412015B2 JP 3412015 B2 JP3412015 B2 JP 3412015B2 JP 2001038082 A JP2001038082 A JP 2001038082A JP 2001038082 A JP2001038082 A JP 2001038082A JP 3412015 B2 JP3412015 B2 JP 3412015B2
Authority
JP
Japan
Prior art keywords
signal
station
phase
intra
calibration signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001038082A
Other languages
Japanese (ja)
Other versions
JP2002246896A (en
Inventor
等 木内
Original Assignee
独立行政法人通信総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人通信総合研究所 filed Critical 独立行政法人通信総合研究所
Priority to JP2001038082A priority Critical patent/JP3412015B2/en
Publication of JP2002246896A publication Critical patent/JP2002246896A/en
Application granted granted Critical
Publication of JP3412015B2 publication Critical patent/JP3412015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Phase Differences (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、広帯域電波干渉計
や高精度測位システム等における局内の遅延量・周波数
特性が誤差要因となる信号受信システムで、局内機器や
信号系路に起因する誤差を高精度に補償する局内誤差補
償方法に関するものである。 【0002】 【従来の技術】従来、干渉計などの局内周波数特性など
が誤差要因となるシステムにおいては、図6に示すよう
に、干渉計素子であるアンテナ51からの受信信号に対
して、位相校正信号生成手段52で生成した位相校正信
号を注入する方式がとられていた。方向性結合器53に
よって位相校正信号が注入された受信信号は、その後、
増幅器54、周波数変換手段55、フィルタ56等によ
り変換され、サンプリング手段57によって受信信号と
位相校正信号とを同時にサンプリングしていた。 【0003】上記のようにしてサンプリングされたデー
タと、SIN・COS成分作成手段58がデータ記録時
の周波数で作成した位相校正信号のSIN成分および位
相校正信号のCOS成分とで、相関処理手段59がラグ
1の相関処理を行い、取得された相関値に基づいて位相
差検出手段60がSIN相関成分とCOS相関成分との
比を求めることにより、校正信号の位相差を検出できる
のである。なお、上記相関処理手段59が行う「ラグ1
の相関処理」とは、相関をとる2つの信号間に遅延を与
えず相関をとる事をいう。 【0004】 【発明が解決しようとする課題】しかしながら、上述し
たような位相差検出方式による局内誤差補償方法は、簡
便なわりに位相校正を完璧に行うことができる反面、補
正される信号位相は、位相校正信号の周波数相当範囲の
位相に限定されることとなり、ポイント的な補正を行う
ことしかできなかった。例えば、図7(a)のようにト
ーン信号を位相校正信号として注入した場合、上述した
従来方法で位相校正が正しく行われる周波数範囲は、位
相校正信号で代表された位相特性と等価とみなされる位
相校正信号近傍の周波数帯域に制限されるのである。な
お、トーン信号とは一周波の信号である。 【0005】ここで、トーン信号を位相校正信号とせず
に、沢山の位相校正信号を帯域内に注入する方法(図7
(b)のようにコム信号を位相校正信号として注入する
方法)も考えられるが、互いの位相校正信号位相の影響
を避けて位相校正信号位相を検出しなければならない
等、技術的に複雑となり、現実的ではなかった。 【0006】コム信号を注入して位相校正する場合、具
体的には、図8のような相関処理を行う。位相校正信号
の検出をデータ記録時の周波数での位相校正信号(SI
N成分およびCOS成分)とサンプリングデータを遅延
無しの排他的論理和の否定(以下、EXNOR)から成
る一つ(ラグ数1)の相関器で相関し、SIN成分およ
びCOS成分の各々の積分値を取得する。 【0007】そして、得られた相関値からTAN-1(S
IN成分/COS成分)を計算することで位相差を求め
る訳であるが、ある周波数の位相校正信号検出時には、
その奇数倍の周波数の位相校正信号の影響が入り込んで
しまい、沢山の位相校正信号を同時に入れることは誤差
をもたらすことにつながる。例えば、図9(a)に示し
た記録された位相校正信号を考えてみる。これを検出す
るために生成した基本波SIN成分と基本波COS成分
を用い、位相校正信号との相互相関を各々計算すれば、
記録された位相校正信号と本来の基本波との位相差が求
まる。なお、相互相関は、2信号のEXNORをとるの
と等価である。 【0008】次に位相校正信号の2倍波、3倍波が混じ
っていた場合を考える。図9(b)に示す如く、2倍波
信号は、基本波SIN成分および基本波COS成分と各
々相関をとってもゼロになるので、基本波の位相校正信
号検出に影響を与えない。しかしながら、3倍波(奇数
倍波)成分は問題である。図9(c)に示す如く、3倍
波は、基本波COS成分と相関をとると「*」で示した
区間でゼロにならない。同様に、3倍波と基本波SIN
成分との相関をとった場合も、「**」で示す区間でゼ
ロにならない。よって、正確な偶数倍の周波数以外で沢
山の位相校正信号を同時に入れることは、誤差をもたら
すことにつながる。 【0009】そこで、本発明は、トーン信号やコム信号
を位相校正信号として用いることなく、高分解能で局内
遅延、遅延変動、周波数特性といった要因に基づく局内
誤差を受信信号の帯域全体に渡って実時間で簡便に校正
できる局内誤差補償方法を提供することを目的とする。 【0010】 【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、広帯域電波干渉計や高精度
測位システムなど、局内の周波数特性が誤差要因となる
信号受信システムで、局内機器や信号系路に起因する誤
差を補償する局内誤差補償方法において、基準信号に位
相同期した広帯域のPN信号で搬送波をPSK拡散した
PSK拡散信号の片側側帯波を位相校正信号として、干
渉計素子の直下で受信信号に注入し、局内伝送後にサン
プリングされたサンプリングデータと基準信号に位相同
期した広帯域のPN信号とで広ラグ相関処理を行うこと
により、位相校正信号が局内で受けた遅延・遅延変動を
特定し、これに基づいて受信信号の全帯域に亘る局内周
波数特性を取得し、受信信号に含まれる局内誤差を補償
するようにしたことを特徴とする。 【0011】 【発明の実施の形態】次に、添付図面に基づいて、本発
明の実施形態を詳細に説明する。図1は、広帯域電波干
渉計の一素子における局内構成の腰部を示すもので、例
えば、干渉計素子たるアンテナ1の直下で局内誤差補償
に用いる位相校正信号を注入する。位相校正信号は、基
準信号生成手段2により生成される基準信号に位相同期
した広帯域のPN(擬似雑音)信号を発生する第1PN
信号発生手段3と、搬送波を発生する搬送波発生手段4
から、各々PN信号と搬送波との供給を受けたPSK拡
散手段5により拡散されたPSK(フェーズシフトキー
イング)拡散信号を生成し、このPSK拡散信号からフ
ィルタ6で片側側帯波(上側帯波もしくは下側帯波の何
れか一方)のみ切り出したものである。 【0012】ここで、位相校正信号の生成過程を図2に
より説明する。(a)はPN信号を時間軸で表現したも
ので、これを周波数軸で表現すると(b)の様になる。
このPN信号で搬送波信号を拡散すると(c)のような
PSK拡散信号が得られる。これは、PSK拡散信号と
して通常の通信等で用いられる形態である。そして、本
発明では、(d)のようにPSK拡散信号の片側側帯波
(図2の例においては上側帯波)を切り出し、これを位
相校正信号として用いる。 【0013】このように、本発明で用いる局内誤差補償
のための位相校正信号は、通常のPSK拡散信号とは異
なり、受信帯域内に拡散信号の両側帯波を存在させない
様に、分離された拡散信号の上側帯波もしくは下側帯波
のみを用いるので、通常のPSK拡散信号のように直行
したI,Q成分に分離した後にコードとの相関をとる必
要が無いため、逆拡散が行われないという利点がある。 【0014】上記のようにして生成した位相校正信号
は、方向性結合器7によりアンテナ1での受信信号に注
入され、図2(e)の様になる。その後、増幅器8、周
波数変換手段9、フィルタ10等の干渉計を構成する機
器により適宜変換され、受信信号と位相校正信号とは同
時にサンプリング手段11によってサンプリングされ、
サンプリングデータとして収集・記録される。 【0015】そして、サンプリングデータに含まれる位
相校正信号は、基準信号生成手段2により生成される基
準信号に位相同期したPN信号を発生する第2PN信号
発生手段12から供給されるPN信号との相互相関を、
広ラグ相関処理手段13によって相関処理される。斯く
して求められた位相校正信号の広ラグ相互相関関数(相
互相関スペクトラム)から周波数スペクトル取得手段1
4によって較正信号の周波数スペクトルを求め、この周
波数スペクトルが位相スペクトル取得手段15へ供給さ
れる。 【0016】更に、予め測定しておいた校正信号発生部
(第1PN信号発生手段3,搬送波発生手段4,PSK
拡散手段5,フィルタ6)における周波数特性と、周波
数スペクトル取得手段14で取得した周波数スペクトル
とを比較することで、受信信号の全帯域に亘る局内周波
数特性が得られる。すなわち、位相校正信号は、アンテ
ナ直下で受信信号に混ぜられるため、注入点以降は同一
の経路を通過することとなるので、受信信号位相から位
相校正信号により得られた周波数特性を引いてやると、
受信信号と位相校正信号で共通である局内周波数特性に
よる誤差を受信信号周波数の全帯域に渡って補正するこ
とが可能となる。よって、周波数スペクトル取得手段1
4により取得した校正信号の周波数スペクトルと、校正
信号発生部における既知の周波数特性との比較で得られ
る局内周波数特性を用いれば、サンプリング手段11に
よりサンプリングされた受信信号に含まれる局内誤差を
補償できるのである。 【0017】このため、本実施形態においては、予め計
測しておいた校正信号発生部の周波数特性を校正信号発
生部周波数特性記憶手段16に記憶させておき、この校
正信号発生部周波数特性記憶手段16から供給される周
波数特性と周波数スペクトル取得手段14から供給され
る周波数スペクトルとを局内周波数特性取得手段17が
比較することにより、局内周波数特性を取得できる構成
とした。このようにして局内周波数特性取得手段17に
より取得した局内周波数特性は、局内誤差補償手段18
へ供給され、この局内誤差補償手段18によって、サン
プリング手段11でサンプリングした受信信号に含まれ
る局内誤差の補償が行われる。 【0018】なお、上記校正信号発生部周波数特性記憶
手段15に記憶する校正信号発生部の周波数特性の測定
は、例えば、図3に示すように、基準受信器を用いて行
う。基準受信器とは、位相及び遅延基準となる受信構成
であり、例えば、周波数変換手段9とフィルタ10によ
り構成する。通常の受信系では、アンテナ1からサンプ
リング手段11まで長いケーブル等で結合されることと
なるが、基準受信器では、長いケーブル等を用いる事無
く全部品を結合した物で、方向性結合器7や長いケーブ
ル等を通らないため、増幅器8も不要である。このた
め、机上にて校正信号発生部を基準受信器に接続し、サ
ンプリング手段11、広ラグ相互相関手段13、周波数
スペクトル取得手段14により、基準受信器を介した校
正信号発生部の周波数特性の測定を行うことができる。
また、干渉計を構成する他の干渉素子(アンテナ)に接
続される校正信号発生部の周波数特性の測定も、同一の
基準受信器を介して行う。これにより、共通に入った基
準受信器を介し相対特性補正を行うことが可能となる。
必要ならば、基準受信器の周波数特性は、ネットワーク
アナライザ19で取得することができ、これと相対特性
補正を合わせれば、絶対特性補正を行うことが可能とな
る。 【0019】また、位相スペクトル取得手段15によっ
て、周波数スペクトルから位相スペクトルを計算し、こ
れを時系列に記録しておくと、その変化から群遅延とし
ての局内遅延変動を知ることができる。この時の周波数
特性(位相情報)も、拡散帯域全体に渡って得ることが
できる。ここで、「位相変化量=周波数×遅延量」と表
すことができるので、遅延変化と位相変化はリニアな関
係となるはずであるから、この関係に無いものは周波数
特性の変化によるものと判断できる。 【0020】ここで、上述した広ラグ相互相関処理手段
13で行う広ラグ相関の例を図4に基づき説明する。広
ラグ相関処理は、PNコードもしくは受信信号のどちら
かをシフトレジスタに通過させ、遅延量の異なったデー
タを作成する処理である。図4の例では、受信信号をシ
フトレジスタに通して遅延させるものとしている。これ
らの遅延量が各々異なる受信信号と遅延の無いPNコー
ドとでn個のEXNORで広ラグ相関し、相関積分ラグ
毎に相関結果が得られる。そして、相関積分ラグ毎に広
帯域相互相関スペクトルが得られるのである。 【0021】続いて、図5に基づき局内周波数特性補正
による局内誤差補償の原理を説明する。図5(a)で棒
グラフの様に示したのは、任意の点(周波数)での受信
信号位相と校正信号位相の関係の概略を表すものであ
る。なお、実際の測定においては、より連続的で拡散コ
ードクロック幅毎の位相成分として求まる。ここで、校
正信号はアンテナ直下で受信信号に混ぜられるため、注
入点(方向性結合器7)以降は受信信号と同一の経路を
通過することとなり、受信信号と全く同一の遅延、位相
特性を受けているのであるから、受信信号の位相より位
相校正信号の位相を減ずれば、位相校正信号注入点から
サンプリングされるまでの局内(例えば、増幅器8,周
波数変換手段9,フィルタ10等)で受ける遅延・遅延
変動、周波数特性による影響を取り去ることができる。 【0022】すなわち、上述した局内誤差補償方法によ
れば、干渉計の局内分における遅延・周波数特性を受け
ない各干渉計素子(アンテナ)間の信号の遅延が求まる
のである。よって、校正信号の拡散帯域全体に渡り、遅
延量、変動量、周波数特性等に起因する局内誤差を求め
ることができ、補償範囲の広帯域化を実現できる。しか
も、干渉計素子の各々で、受信信号に対して異なったP
Nコードの校正信号をRF周波数で混ぜ合わせることに
より、各干渉計素子間で相関をとる干渉計観測に影響を
与えること無く、干渉計観測と同時に局内周波数特性を
実時間で補償できるという利点もある。 【0023】なお、通常のPSK拡散信号での逆拡散で
求められるのは、搬送波の位相とPNコードのコード遅
延であり、これを実現するためDLL(Delay L
ocked Loop)等で、PNコードクロックの半
クロック分づつずらした3ラグの相関を行っていたが、
本発明は、広い時間窓における広ラグ相互相関処理を必
須とするもので、搬送波の位相とPNコードのコード遅
延は求められ無い代わりに、広ラグ相互相関関数から広
帯域に亘る周波数スペクトルを求めることができるので
ある。 【0024】 【発明の効果】以上説明したように、請求項1に係る発
明によれば、基準信号に位相同期した広帯域のPN信号
で搬送波をPSK拡散したPSK拡散信号の片側側帯波
を位相校正信号として、干渉計素子の直下で受信信号に
注入するので、その後は位相校正信号も受信信号と同一
の経路を通過するため、受信信号に含まれる誤差要因と
なる局内周波数特性を位相校正信号から取得することが
できる。そして、この位相校正信号により取得できる局
内周波数特性は、受信信号の全帯域に亘って取得できる
ので、広帯域の周波数特性の補償を実現できる。しか
も、実際の運用状態での局内遅延・遅延変動・周波数特
性を広帯域に渡り測定できるので、本発明方法を干渉計
に適用した場合には、干渉計観測と同時に局内周波数特
性等に起因する局内誤差を実時間で補償できるという利
点もある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal receiving system in a wideband radio interferometer, a high-accuracy positioning system, or the like, in which delay and frequency characteristics in the station cause an error. The present invention relates to an intra-station error compensation method for compensating an error caused by a device or a signal path with high accuracy. 2. Description of the Related Art Conventionally, in a system such as an interferometer in which an intra-station frequency characteristic or the like causes an error, as shown in FIG. The method of injecting the phase calibration signal generated by the calibration signal generation means 52 has been adopted. The received signal into which the phase calibration signal has been injected by the directional coupler 53 is then
The signal is converted by the amplifier 54, the frequency converter 55, the filter 56, and the like, and the received signal and the phase calibration signal are simultaneously sampled by the sampling unit 57. [0003] Correlation processing means 59 uses the data sampled as described above and the SIN component of the phase calibration signal and the COS component of the phase calibration signal created by the SIN / COS component creation means 58 at the frequency at the time of data recording. Performs the correlation processing of the lag 1, and the phase difference detection means 60 calculates the ratio between the SIN correlation component and the COS correlation component based on the acquired correlation value, so that the phase difference of the calibration signal can be detected. The “lag 1” performed by the correlation processing unit 59 is described.
"Correlation processing" means that correlation is obtained without giving a delay between two signals to be correlated. [0004] However, the above-described intra-station error compensation method using the phase difference detection method can simply and perfectly perform phase calibration, but the signal phase to be corrected is The phase is limited to the phase within the frequency range of the calibration signal, and only point correction can be performed. For example, when a tone signal is injected as a phase calibration signal as shown in FIG. 7A, a frequency range in which phase calibration is correctly performed by the above-described conventional method is regarded as equivalent to a phase characteristic represented by the phase calibration signal. It is limited to the frequency band near the phase calibration signal. The tone signal is a signal of one frequency. Here, a method of injecting many phase calibration signals into a band without using a tone signal as a phase calibration signal (FIG. 7)
Although a method of injecting a comb signal as a phase calibration signal as in (b) is also conceivable, it is technically complicated, for example, the phase calibration signal phase must be detected while avoiding the influence of each other's phase calibration signal phase. Was not realistic. When phase correction is performed by injecting a comb signal, specifically, a correlation process as shown in FIG. 8 is performed. Detection of the phase calibration signal is performed using the phase calibration signal (SI
N and COS components) and the sampled data are correlated by one (lag number 1) correlator consisting of exclusive-OR negation (hereinafter, EXNOR) without delay, and the integrated value of each of the SIN component and COS component To get. Then, TAN -1 (S
(IN component / COS component) to calculate the phase difference. However, when a phase calibration signal of a certain frequency is detected,
The influence of the phase calibration signal having an odd multiple of the frequency enters, and inputting many phase calibration signals at the same time leads to an error. For example, consider the recorded phase calibration signal shown in FIG. By using the fundamental wave SIN component and the fundamental wave COS component generated to detect this and calculating the cross-correlation with the phase calibration signal,
The phase difference between the recorded phase calibration signal and the original fundamental wave is obtained. The cross-correlation is equivalent to taking EXNOR of two signals. Next, consider a case where the second and third harmonics of the phase calibration signal are mixed. As shown in FIG. 9 (b), the second harmonic signal becomes zero even if it is correlated with the fundamental wave SIN component and the fundamental wave COS component, and thus does not affect the detection of the phase calibration signal of the fundamental wave. However, the third harmonic (odd number harmonic) component is a problem. As shown in FIG. 9C, when the third harmonic is correlated with the fundamental COS component, it does not become zero in the section indicated by “*”. Similarly, third harmonic and fundamental SIN
Even when the correlation with the component is obtained, it does not become zero in the section indicated by “**”. Therefore, simultaneous input of many phase calibration signals at frequencies other than the correct even-numbered frequency leads to an error. Therefore, the present invention realizes high-resolution intra-station errors due to factors such as intra-station delay, delay variation, and frequency characteristics over the entire band of a received signal without using a tone signal or a comb signal as a phase calibration signal. It is an object of the present invention to provide an intra-station error compensation method that can be easily calibrated in time. [0010] In order to solve the above-mentioned problems, the invention according to claim 1 is a method for receiving a signal, such as a broadband radio interferometer or a high-accuracy positioning system, in which frequency characteristics in a station cause an error. In a system, an intra-station error compensating method for compensating for errors due to intra-station devices and signal paths, wherein a sideband of a PSK spread signal obtained by PSK spreading a carrier with a wideband PN signal synchronized with a reference signal is used as a phase calibration signal. The phase calibration signal is received within the station by injecting the received signal immediately below the interferometer element and performing wide lag correlation processing on the sampled data sampled after intra-station transmission and the wideband PN signal phase-synchronized with the reference signal. The delay / delay variation is specified, the intra-station frequency characteristics over the entire band of the received signal are obtained based on the delay / delay variation, and the intra-station error included in the received signal is compensated. It is characterized by doing so. Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a waist of an intra-station configuration in one element of a broadband radio interferometer. For example, a phase calibration signal used for intra-station error compensation is injected immediately below an antenna 1 as an interferometer element. The phase calibration signal is a first PN that generates a wideband PN (pseudo noise) signal that is phase-synchronized with the reference signal generated by the reference signal generation unit 2.
Signal generating means 3 and carrier generating means 4 for generating a carrier wave
A PSK (phase shift keying) spread signal spread by the PSK spreading means 5 which receives the supply of the PN signal and the carrier is generated from the PSK spread signal, and a one side band (upper band or lower band) is generated by the filter 6 from the PSK spread signal. Only one of the sideband waves) is cut out. Here, the generation process of the phase calibration signal will be described with reference to FIG. (A) is a representation of the PN signal on the time axis, which is represented on the frequency axis as shown in (b).
When the carrier signal is spread with the PN signal, a PSK spread signal as shown in FIG. This is a form used in ordinary communication or the like as a PSK spread signal. Then, in the present invention, one side band (upper band in the example of FIG. 2) of the PSK spread signal is cut out as shown in (d), and this is used as a phase calibration signal. As described above, the phase calibration signal for compensating the intra-station error used in the present invention is separated from the ordinary PSK spread signal so as not to have both sidebands of the spread signal in the reception band. Since only the upper band wave or lower band wave of the spread signal is used, there is no need to separate the orthogonal I and Q components and correlate with the code as in a normal PSK spread signal, so no despreading is performed. There is an advantage. The phase calibration signal generated as described above is injected into the received signal at the antenna 1 by the directional coupler 7, and becomes as shown in FIG. After that, the signals are appropriately converted by devices constituting the interferometer, such as the amplifier 8, the frequency conversion means 9, and the filter 10, and the reception signal and the phase calibration signal are simultaneously sampled by the sampling means 11,
Collected and recorded as sampling data. The phase calibration signal included in the sampled data is mutually reciprocated with the PN signal supplied from the second PN signal generation means 12 for generating a PN signal synchronized in phase with the reference signal generated by the reference signal generation means 2. The correlation
Correlation processing is performed by the wide lag correlation processing means 13. Frequency spectrum obtaining means 1 from the wide lag cross-correlation function (cross-correlation spectrum) of the phase calibration signal thus obtained.
The frequency spectrum of the calibration signal is obtained by 4, and this frequency spectrum is supplied to the phase spectrum obtaining means 15. Further, a calibration signal generator (first PN signal generator 3, carrier wave generator 4, PSK) which has been measured in advance.
By comparing the frequency characteristics of the spreading means 5 and the filter 6) with the frequency spectrum obtained by the frequency spectrum obtaining means 14, the intra-station frequency characteristics over the entire band of the received signal can be obtained. In other words, since the phase calibration signal is mixed with the received signal immediately below the antenna, it passes through the same path after the injection point, so the frequency characteristics obtained by the phase calibration signal are subtracted from the received signal phase. ,
It is possible to correct errors due to intra-station frequency characteristics common to the received signal and the phase calibration signal over the entire band of the received signal frequency. Therefore, frequency spectrum acquisition means 1
By using the intra-station frequency characteristics obtained by comparing the frequency spectrum of the calibration signal acquired in step 4 with the known frequency characteristics in the calibration signal generator, intra-station errors included in the reception signal sampled by the sampling unit 11 can be compensated. It is. For this reason, in the present embodiment, the frequency characteristics of the calibration signal generator, which are measured in advance, are stored in the calibration signal generator frequency characteristic storage means 16, and the calibration signal generator frequency characteristic storage means is stored. The intra-station frequency characteristic acquisition unit 17 compares the frequency characteristics supplied from the frequency spectrum 16 with the frequency spectrum supplied from the frequency spectrum acquisition unit 14 so that the intra-station frequency characteristics can be acquired. The intra-station frequency characteristic acquired by the intra-station frequency characteristic acquisition unit 17 in this way is
The internal error compensating means 18 compensates for the internal error contained in the received signal sampled by the sampling means 11. The measurement of the frequency characteristics of the calibration signal generator stored in the calibration signal generator frequency characteristic storage means 15 is performed using, for example, a reference receiver as shown in FIG. The reference receiver is a reception configuration serving as a phase and delay reference, and is configured by, for example, a frequency conversion unit 9 and a filter 10. In a normal receiving system, the antenna 1 is connected to the sampling means 11 by a long cable or the like. However, in the reference receiver, all components are connected without using a long cable or the like. Since the cable does not pass through a long cable, the amplifier 8 is not required. For this reason, the calibration signal generator is connected to the reference receiver on a desk, and the sampling unit 11, the wide lag cross-correlation unit 13, and the frequency spectrum acquisition unit 14 determine the frequency characteristics of the calibration signal generator via the reference receiver. A measurement can be made.
The measurement of the frequency characteristics of the calibration signal generator connected to another interference element (antenna) constituting the interferometer is also performed via the same reference receiver. This makes it possible to perform relative characteristic correction via the common reference receiver.
If necessary, the frequency characteristic of the reference receiver can be acquired by the network analyzer 19, and if this and the relative characteristic correction are combined, the absolute characteristic correction can be performed. When the phase spectrum is calculated from the frequency spectrum by the phase spectrum obtaining means 15 and is recorded in a time series, the change in the intra-station delay as the group delay can be known from the change. The frequency characteristic (phase information) at this time can also be obtained over the entire spread band. Here, since “phase change amount = frequency × delay amount” can be expressed, the delay change and the phase change should have a linear relationship. Therefore, it is determined that the one not in this relationship is due to the change in the frequency characteristic. it can. Here, an example of the wide lag correlation performed by the wide lag cross correlation processing means 13 will be described with reference to FIG. The wide lag correlation process is a process of passing either a PN code or a received signal through a shift register to create data with different delay amounts. In the example of FIG. 4, the received signal is passed through the shift register to be delayed. A wide lag correlation is made between the received signals having different delay amounts and the PN code having no delay by n EXNORs, and a correlation result is obtained for each correlation integral lag. Then, a broadband cross-correlation spectrum is obtained for each correlation integration lag. Next, the principle of intra-station error compensation by intra-station frequency characteristic correction will be described with reference to FIG. What is shown as a bar graph in FIG. 5A schematically shows the relationship between the received signal phase and the calibration signal phase at an arbitrary point (frequency). In the actual measurement, it is obtained as a more continuous phase component for each spread code clock width. Here, since the calibration signal is mixed with the received signal immediately below the antenna, the signal passes through the same path as the received signal after the injection point (directional coupler 7), and has exactly the same delay and phase characteristics as the received signal. Therefore, if the phase of the phase calibration signal is subtracted from the phase of the received signal, the station (for example, the amplifier 8, the frequency conversion means 9, the filter 10, etc.) from the injection point of the phase calibration signal until sampling is performed. It is possible to remove the influence of the delay, delay variation, and frequency characteristics. That is, according to the above-described intra-station error compensation method, the signal delay between the interferometer elements (antennas) which is not affected by the delay / frequency characteristics in the intra-station of the interferometer is obtained. Therefore, an intra-station error caused by a delay amount, a fluctuation amount, a frequency characteristic, and the like can be obtained over the entire spread band of the calibration signal, and a wide band of the compensation range can be realized. Moreover, each interferometer element has a different P
By mixing the N-code calibration signal at the RF frequency, there is also the advantage that the intra-station frequency characteristics can be compensated in real time simultaneously with the interferometer observation without affecting the interferometer observation that correlates between the interferometer elements. is there. The phase of the carrier and the code delay of the PN code are obtained by despreading using a normal PSK spread signal. To realize this, a DLL (Delay L) is used.
In this case, the correlation of three lags shifted by half a clock of the PN code clock has been performed by, for example,
The present invention requires a wide-lag cross-correlation process in a wide time window. Instead of calculating the phase of the carrier and the code delay of the PN code, a frequency spectrum over a wide band is obtained from the wide-lag cross-correlation function. You can do it. As described above, according to the first aspect of the present invention, one side band of a PSK spread signal obtained by PSK spreading a carrier with a wideband PN signal phase-synchronized with a reference signal is calibrated. Since the signal is injected into the received signal immediately below the interferometer element, the phase calibration signal also passes through the same path as the received signal. Can be obtained. Then, the intra-station frequency characteristic that can be obtained by the phase calibration signal can be obtained over the entire band of the received signal, so that the compensation of the frequency characteristic in a wide band can be realized. In addition, since the intra-station delay, delay variation, and frequency characteristics in an actual operation state can be measured over a wide band, when the method of the present invention is applied to an interferometer, the intra-station frequency caused by the intra-station frequency characteristics and the like can be observed simultaneously with the interferometer observation. There is also an advantage that errors can be compensated in real time.

【図面の簡単な説明】 【図1】本発明方法を干渉計に適用した構成の概略を示
す機能ブロック図である。 【図2】本発明方法で用いる校正信号の生成過程から受
信信号への注入までの概略説明図である。 【図3】校正信号発生部の周波数特性を測定するための
概略構成を示す機能ブロック図である。 【図4】広ラグ相関処理手段の一例を示すロジック回路
図である。 【図5】局内周波数特性の補償原理を示す説明図であ
る。 【図6】従来の局内誤差補償機能を備えた干渉計の機能
ブロック図である。 【図7】位相校正信号の注入状態を示す概略説明図であ
る。 【図8】ラグ1の相関処理手段の一例を示すロジック回
路図である。 【図9】(a)サンプリングされた位相校正信号と基本
波SIN成分および基本波COS成分との相関を示す概
略説明図である。 (b)位相校正信号の2倍波と基本波SIN成分および
基本波COS成分との相関を示す概略説明図である。 (c)位相校正信号の3倍波と基本波SIN成分および
基本波COS成分との相関を示す概略説明図である。 【符号の説明】 1 アンテナ 2 基準信号生成手段 3 第1PN信号発生手段 4 搬送波発生手段 5 PSK拡散手段 6 フィルタ 7 方向性結合器 8 増幅器 9 周波数変換手段 10 フィルタ 11 サンプリング手段 12 第2PN信号発生手段 13 広ラグ相互相関処理 14 周波数スペクトル取得手段 15 位相スペクトル取得手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a functional block diagram schematically showing a configuration in which the method of the present invention is applied to an interferometer. FIG. 2 is a schematic explanatory diagram from a generation process of a calibration signal used in a method of the present invention to an injection into a received signal. FIG. 3 is a functional block diagram showing a schematic configuration for measuring a frequency characteristic of a calibration signal generator. FIG. 4 is a logic circuit diagram showing an example of a wide lag correlation processing means. FIG. 5 is an explanatory diagram illustrating the principle of compensation for intra-station frequency characteristics. FIG. 6 is a functional block diagram of a conventional interferometer having an intra-station error compensation function. FIG. 7 is a schematic explanatory diagram showing an injection state of a phase calibration signal. FIG. 8 is a logic circuit diagram showing an example of a lag 1 correlation processing means. FIG. 9A is a schematic explanatory diagram showing a correlation between a sampled phase calibration signal and a fundamental SIN component and a fundamental COS component. (B) It is a schematic explanatory view showing the correlation between the second harmonic of the phase calibration signal and the fundamental wave SIN component and fundamental wave COS component. (C) is a schematic explanatory view showing the correlation between the third harmonic of the phase calibration signal and the fundamental wave SIN component and the fundamental wave COS component. [Description of Signs] 1 Antenna 2 Reference signal generating means 3 First PN signal generating means 4 Carrier wave generating means 5 PSK spreading means 6 Filter 7 Directional coupler 8 Amplifier 9 Frequency converting means 10 Filter 11 Sampling means 12 Second PN signal generating means 13 Wide lag cross-correlation processing 14 Frequency spectrum acquisition means 15 Phase spectrum acquisition means

Claims (1)

(57)【特許請求の範囲】 【請求項1】 広帯域電波干渉計や高精度測位システム
など、局内の周波数特性が誤差要因となる信号受信シス
テムで、局内機器や信号系路に起因する局内誤差を補償
する局内誤差補償方法において、 基準信号に位相同期した広帯域のPN信号で搬送波をP
SK拡散したPSK拡散信号の片側側帯波を位相校正信
号として、干渉計素子の直下で受信信号に注入し、局内
伝送後にサンプリングされたサンプリングデータと基準
信号に位相同期した広帯域のPN信号とで広ラグ相関処
理を行うことにより、位相校正信号が局内で受けた遅延
・遅延変動を特定し、これに基づいて受信信号の全帯域
に亘る局内周波数特性を取得し、受信信号に含まれる局
内誤差を補償するようにしたことを特徴とする局内誤差
補償方法。
(57) [Claims] [Claim 1] A signal receiving system such as a broadband radio interferometer and a high-accuracy positioning system in which frequency characteristics in a station cause an error, and an intra-station error caused by an intra-station device or a signal path. In the station error compensating method for compensating for the carrier, a carrier is converted to P by a wideband PN signal synchronized in phase with a reference signal.
One sideband of the SK-spread PSK spread signal is injected as a phase calibration signal into the received signal immediately below the interferometer element, and is spread between the sampled data sampled after intra-station transmission and a wideband PN signal phase-synchronized with the reference signal. By performing the lag correlation process, the delay / delay variation received in the station by the phase calibration signal is specified, and based on this, the intra-station frequency characteristics over the entire band of the received signal are obtained, and the intra-station error included in the received signal is obtained. An intra-station error compensation method characterized in that compensation is performed.
JP2001038082A 2001-02-15 2001-02-15 Station error compensation method Expired - Lifetime JP3412015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038082A JP3412015B2 (en) 2001-02-15 2001-02-15 Station error compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038082A JP3412015B2 (en) 2001-02-15 2001-02-15 Station error compensation method

Publications (2)

Publication Number Publication Date
JP2002246896A JP2002246896A (en) 2002-08-30
JP3412015B2 true JP3412015B2 (en) 2003-06-03

Family

ID=18901125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038082A Expired - Lifetime JP3412015B2 (en) 2001-02-15 2001-02-15 Station error compensation method

Country Status (1)

Country Link
JP (1) JP3412015B2 (en)

Also Published As

Publication number Publication date
JP2002246896A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
US8816672B1 (en) Systems and methods for accounting for residual passive intermodulation in passive intermodulation measuring instruments
US8294469B2 (en) Passive intermodulation (PIM) distance to fault analyzer with selectable harmonic level
US8410786B1 (en) Passive intermodulation (PIM) distance to fault analyzer with selectable harmonic level
CN101701988B (en) Integrated portable multichannel phase coherent signal analyzer
US20070202825A1 (en) Receiving circuit and method for compensating IQ mismatch
US7868607B2 (en) Test method for frequency converters with embedded local oscillators
WO1997044680A1 (en) Weighted carrier phase multipath reduction
CN102680826A (en) Method for realizing test of embedded local-oscillator frequency converter by utilizing vector network analyzer
CN105490760A (en) Frequency-converting sensor and system for providing at least a radio frequency signal parameter
CN106199187B (en) A kind of test method of multi-tone signal relative phase
Huang et al. Design and evaluation of an open-loop receiver for TWSTFT applications
US6525545B2 (en) Frequency domain reflection measurement device
JP3412015B2 (en) Station error compensation method
JP2006504960A (en) How to measure the scattering parameters of a multiport device under test using a multiport network analyzer with a non-sinusoidal measurement signal
JP6756491B2 (en) Methods and Devices for Generating Normalized Phase Spectrum
CN115567125A (en) Multichannel calibration and signal coherent recovery method and device for broadband channelization reception
Haddadi et al. Wide-band 0.9 GHz to 4 GHz four-port receiver
KR101325658B1 (en) Characterization of a frequency response for a frequency translation device
JP2006017486A (en) Spectral analysis method using nuclear magnetic resonance and nuclear magnetic resonance system
US20060064258A1 (en) Jitter measurement device and jitter measurement method
EP1367402A1 (en) Method and arrangement for phase measurement of a modulated RF signal
JP2003234675A (en) Intra-station phase compensation method and intra- station phase compensation device
US9887785B1 (en) Receiver adapted for use in wideband phase spectrum measurements
Zhang et al. A new modem for two way satellite time and frequency transfer
US20230388154A1 (en) Vector channel analyzer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3412015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term