JP3411678B2 - Processing equipment - Google Patents

Processing equipment

Info

Publication number
JP3411678B2
JP3411678B2 JP18067094A JP18067094A JP3411678B2 JP 3411678 B2 JP3411678 B2 JP 3411678B2 JP 18067094 A JP18067094 A JP 18067094A JP 18067094 A JP18067094 A JP 18067094A JP 3411678 B2 JP3411678 B2 JP 3411678B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer member
processing
gas
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18067094A
Other languages
Japanese (ja)
Other versions
JPH0831755A (en
Inventor
晃一 風間
昌巳 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP18067094A priority Critical patent/JP3411678B2/en
Publication of JPH0831755A publication Critical patent/JPH0831755A/en
Application granted granted Critical
Publication of JP3411678B2 publication Critical patent/JP3411678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、処理装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing device.

【0002】[0002]

【従来の技術】従来から例えば半導体製造プロセスにお
いては、半導体ウエハ(以下、「ウエハ」という)など
の表面処理、例えばエッチングやアッシング、スパッタ
リング、CVDを行うために、プラズマを利用した処理
装置が多く使用されている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing process, for example, a plasma processing apparatus is often used for surface treatment of a semiconductor wafer (hereinafter referred to as "wafer"), for example, etching, ashing, sputtering, and CVD. It is used.

【0003】そしてこの種の用途に使用される前記処理
装置は、例えば減圧自在な処理室容器内の上下に、上部
電極と下部電極とを対向して平行に設けており、被処理
体であるウエハは、例えば載置台を兼ねた下部電極上に
載置され、例えばエッチング処理の場合には、この処理
室内にエッチングガスを導入すると共に、高周波電力を
前記上部電極又は/及び下部電極に印加してこれら電極
間にプラズマを発生させ、エッチングガスの解離によっ
て生じたラジカル成分によって、前記ウエハをエッチン
グするように構成されている。
In the processing apparatus used for this kind of application, for example, an upper electrode and a lower electrode are provided in parallel in the upper and lower sides of a processing chamber container which can be decompressed so as to face each other. The wafer is placed on, for example, the lower electrode which also serves as a mounting table. In the case of, for example, an etching process, an etching gas is introduced into this processing chamber and high frequency power is applied to the upper electrode and / or the lower electrode. Plasma is generated between these electrodes, and the wafer is etched by radical components generated by the dissociation of the etching gas.

【0004】そして例えば前記上部電極には、前記エッ
チングガスをウエハに対して均一に吐出するためのバッ
フル板と呼ばれる多孔構造のガス拡散体が、例えば周縁
部の支持棒などによって支持されている場合がある。
In the case where, for example, a gas diffuser having a porous structure called a baffle plate for uniformly discharging the etching gas onto the wafer is supported on the upper electrode by, for example, a support rod at the peripheral portion. There is.

【0005】他方前記下部電極の内部には、略環状の冷
媒流路が形成されており、エチレングリコールなどの冷
媒をこの流路内に流通させることによって、前記ウエハ
の温度調節を行うように構成されている。そして従来、
この冷媒と下部電極との熱交換を高めるため、前記流路
内には、切削加工よって創出した垂直方向の複数の板状
のフィンが設けられていた。
On the other hand, a substantially annular coolant passage is formed inside the lower electrode, and the temperature of the wafer is adjusted by circulating a coolant such as ethylene glycol in this passage. Has been done. And conventionally,
In order to enhance the heat exchange between the refrigerant and the lower electrode, a plurality of plate-shaped fins in the vertical direction created by cutting were provided in the flow path.

【0006】[0006]

【発明が解決しようとする課題】しかしながらまず、前
記の上部電極に関していうと、この上部電極における下
部電極との対向面(下面)は、プラズマ発生に伴って極
めて高温になるので、所期の処理を実施するためには、
上部電極の下面を冷却するなどしてその温度を調節する
必要がある。この場合、例えば通常は、前記したバッフ
ル板の上方に、冷媒の流路を形成し、上部電極の熱をこ
の冷媒の流路にまで伝導させることにより、上部電極の
温度調節を行っている。
However, first, regarding the above-mentioned upper electrode, since the surface (lower surface) of the upper electrode facing the lower electrode becomes extremely hot due to plasma generation, the desired treatment is performed. In order to carry out
It is necessary to adjust the temperature by cooling the lower surface of the upper electrode. In this case, for example, usually, a coolant passage is formed above the baffle plate, and heat of the upper electrode is conducted to the coolant passage to adjust the temperature of the upper electrode.

【0007】ところが前記したように、ガス拡散体自体
は多孔構造であるため、実際には、上部電極下面の熱の
殆どは、その周縁部にある支持棒のみを熱伝達経路とし
て伝導されている。それゆえ、熱伝導効率が悪く問題で
あった。
However, as described above, since the gas diffuser itself has a porous structure, in reality, most of the heat on the lower surface of the upper electrode is conducted only by the support rods at the peripheral portion of the upper electrode. . Therefore, the heat conduction efficiency is poor, which is a problem.

【0008】他方、前記の載置台の方に関していえば、
冷媒との熱交換を担っているフィンは、垂直方向に形成
された板状のフィンであるため、冷媒との熱交換、即ち
冷媒中への放熱に、限界があった。この点、板状のフィ
ン自体を薄くして設置枚数を増加させれば、冷媒との接
触面積が増大して熱伝達効率を向上させることができる
が、削り出し加工では薄くするのに限界があり、またた
とえ実現したとしても、強度等の点で難があった。従っ
て、他の手段による熱伝達効率の向上が望まれていた。
On the other hand, regarding the above-mentioned mounting table,
Since the fins responsible for heat exchange with the refrigerant are plate-shaped fins formed in the vertical direction, there is a limit to heat exchange with the refrigerant, that is, heat dissipation into the refrigerant. In this respect, if the plate-shaped fins themselves are thinned and the number of installed fins is increased, the contact area with the refrigerant can be increased and the heat transfer efficiency can be improved, but there is a limit to thinning in the carving process. Even if it was realized, there was a problem in strength and the like. Therefore, it has been desired to improve the heat transfer efficiency by other means.

【0009】本発明はかかる点に鑑みてなされたもので
あり、上部電極や載置台における前記の問題点を解決し
て熱伝達効率を向上させることを目的とするものであ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to solve the above problems in the upper electrode and the mounting table to improve the heat transfer efficiency.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、請求項1によれば、減圧自在な処理容器内の上下に
上部電極と下部電極を対向して有し、処理ガス導入部か
ら導入される処理ガスを前記上部電極を介して前記被処
理体に対して吐出させると共に、前記上部電極と下部電
極との間にプラズマを発生させ、当該処理容器内の被処
理体に対して前記プラズマ雰囲気の下で所定の処理を施
す如く構成された処理装置において、前記上部電極の内
部に、山部と谷部とを交互に連続して有する側面が略波
型の放熱体を多段に積層した構造を有する熱伝達部材が
設けられると共に、この熱伝達部材には例えば上下方向
にガス流通孔が設けられ、前記処理ガスはこのガス流通
孔を通じて被処理体に対して吐出するように構成された
ことを特徴とする、処理装置が提供される。
In order to achieve the above object, according to claim 1, an upper electrode and a lower electrode are opposed to each other in the upper and lower sides of a depressurizable processing container, and are introduced from a processing gas introducing portion. The processed gas is discharged to the object to be processed through the upper electrode, and plasma is generated between the upper electrode and the lower electrode, and the plasma is applied to the object to be processed in the processing container. In a processing apparatus configured to perform a predetermined process under an atmosphere, inside the upper electrode, a side surface having peaks and valleys alternately and continuously has a substantially wave shape.
A heat transfer member having a structure in which mold radiators are stacked in multiple stages is provided, and a gas flow hole is provided in the heat transfer member, for example, in the vertical direction, and the processing gas is passed through the gas flow hole to the object to be processed. A processing device is provided, which is characterized in that it is configured to eject against.

【0011】また請求項2によれば、減圧自在な処理容
器と、この処理容器内に納入された被処理体に対向して
この処理容器内上部に設けられたガス拡散体とを有し、
処理ガス導入部から導入される処理ガスを前記ガス拡散
体を介して前記被処理体に対して吐出させ、前記被処理
体に対して所定の処理を施すように構成された処理装置
において、山部と谷部とを交互に連続して有する側面が
略波型の放熱体を多段に積層した構造を有する熱伝達部
材によって前記ガス拡散体が構成されると共に、この熱
伝達部材にはガス流通孔が設けられ、前記処理ガスはこ
のガス流通孔を通じて前記被処理体に対して吐出するよ
うに構成されたことを特徴とする、処理装置が提供され
る。
According to a second aspect of the present invention, there is provided a processing container which can be decompressed, and a gas diffuser which is provided in an upper part of the processing container so as to face the object to be processed delivered into the processing container.
The process gas introduced from the processing gas inlet through the gas diffuser discharged to the object to be processed, in a processor made in accordance to perform a predetermined processing on the object to be processed, mountain The side surface that has a series of alternating valleys and valleys
The gas diffuser is constituted by a heat transfer member having a structure in which substantially wave-shaped heat radiators are stacked in multiple stages, and a gas flow hole is provided in the heat transfer member, and the processing gas is passed through the gas flow hole. A processing apparatus is provided, which is configured to discharge onto the object to be processed.

【0012】前記の各処理装置における熱伝達部材とし
ては、例えばハニカム構造の放熱体によって構成した
、略筒状の放熱体を水平並びに上下方向に適宜接合し
て積層構造にしたり、あるいは山部と谷部とを交互に連
続して有する側面が略波型の放熱体を、複数組み合わせ
て用いてもよい。このように複数組み合わせた使用に
は、例えば従来のバッフル板、拡散板を併用して、交互
に積層させた使用も含むものである。
[0012] As the heat transfer member in each processing unit of the, for example, to constitute the heat radiation of the honeycomb structure, or a laminated structure substantially cylindrical heat radiator and bonded appropriately to the horizontal and vertical directions, there have the the crests and valleys substantially wave-shaped heat radiator side having successively alternating, it may be used in combination. The combined use of a plurality of pieces includes the combined use of, for example, a conventional baffle plate and a diffusion plate, which are alternately laminated.

【0013】また前記山部と谷部とを突き合わせるよう
にして接合積層して構成してもよい。なお以下の各処理
装置においても同様であるが、接合積層させる場合、溶
接、接着等適宜の接合手段が放熱体の材質に応じて選択
されるが、ろう付けによる接合が、加工容易で放熱体自
体の形態に影響を与えず、本発明に適している。
[0013] may be constructed by joining laminated such butting the peaks and valleys. Although the same applies to each of the following processing devices, when joining and laminating, an appropriate joining means such as welding or adhesion is selected according to the material of the radiator, but joining by brazing is easy to process and the radiator is easy to process. It does not affect the morphology of itself and is suitable for the present invention.

【0014】略波型の放熱体を用いる場合、前記山部と
谷部が交互に連続する方向と平行に所定の間隔で区画さ
れ、区画された部分の山部は、隣接する他の区画におけ
る山部と前記連続方向にずれている放熱体を使用しても
よく、また前記山部の頂部と谷部の底部を平坦に成形し
た放熱体を用いるようにしてもよい。
[0014] When using a substantially wave-shaped heat dissipating body, said ridges and valleys are defined by parallel a predetermined distance and direction of the continuous alternating peaks of the compartment portion is in adjacent other compartments may be used heat radiator are shifted the continuous direction and crests, also may be used heat radiator that is flat shaped bottom of the top of the peaks and valleys.

【0015】また以上のように構成される処理装置にお
ける各熱伝達部材は、熱伝達部材構成ブロックを組み合
わせて構成してもよく、その場合、熱伝達部材の外形が
厚みのある円板形状の場合には、熱伝達部材構成ブロッ
クは、この熱伝達部材を放射状に等分分割した形態とす
ることが提案できる。
Each heat transfer member in the processing apparatus configured as described above may be formed by combining heat transfer member building blocks. In that case , the heat transfer member has a thick disk-shaped outer shape. In this case, it can be proposed that the heat transfer member building block has a configuration in which the heat transfer member is radially equally divided.

【0016】そして以上のように構成される各処理装置
において、そのガス流通孔の径を、熱伝達部材の下層に
いくほど、その数が多くしてかつ径が小さくなるように
してもよい。
[0016] Then, in the processing apparatuses configured as above, the diameter of that gas distributing holes, toward the lower layer of the heat transfer member, it may be and diameter and many in number decreases .

【0017】一方請求項によれば、減圧自在な処理容
器内の下部に、被処理体を載置する載置台を有し、この
載置台内には、前記被処理体の温度を調整するための冷
媒の流路が設けられた処理装置において、前記冷媒の流
路内に、冷媒の流通を可能としつつ山部と谷部とを交互
に連続して有する側面が略波型の放熱体を多段に積層し
た構造を有する熱伝達部材が設けられたことを特徴とす
る、処理装置が提供される。
On the other hand, according to a seventh aspect of the present invention, there is provided a mounting table for mounting the object to be processed in a lower portion of the depressurizable processing container, and the temperature of the object to be processed is adjusted in the mounting table. In a processing device provided with a coolant flow path for, in the flow path of the coolant, the peaks and valleys alternate while allowing the flow of the coolant.
There is provided a processing device, characterized in that a heat transfer member having a structure in which heat-dissipating bodies each having a substantially continuous side surface are laminated in multiple stages is provided.

【0018】この場合の熱伝達部材を、ハニカム構造の
放熱体によって構成してもよく、あるいは略筒状の放熱
体を、その内部を冷媒の流通が可能としつつ、これら放
熱体を接合積層して構成したり、また山部と谷部とを交
互に連続して有する側面が略波型の放熱体を、複数組み
合わせて使用してもよい。その場合、その山部と谷部と
を突き合わせるようにして接合積層して構成したものを
用いてもよい。
[0018] The heat transfer member in this case may be constituted by the radiation of the honeycomb structure, there have in the substantially cylindrical heat radiating body, while its internal allow the distribution of the refrigerant, joining the heat radiator or formed by laminating a or crests and heat radiator side is substantially wave type having successively alternating valleys, may be used in combination. In that case, it may be used those formed by joining laminated such match the peaks and valleys of its.

【0019】さらに前記放熱体を、山部と谷部が交互に
連続する方向と平行に所定の間隔で区画し、区画された
部分の山部を、隣接する他の区画における山部と前記連
続方向にずらせて構成してもよい。またこれら放熱体に
おける山部の頂部と、谷部の底部を夫々平坦に成形すれ
ばなお好ましい。
Furthermore the heat dissipation body, ridges and valleys are defined by parallel a predetermined distance and direction of the continuous alternating, the continuous ridge portions of the partition portions, the crests of the adjacent other compartments It may be configured to be displaced in the direction. Also further preferred if the molding and the top of the ridges in the heat-radiating body, the bottom of the valley each flat.

【0020】そして以上のように構成される処理装置に
おいて、熱伝達部材を分割した形態の熱伝達部材構成ブ
ロックを組み合わせて、熱伝達部材を構成するようにし
てもよく、また熱伝達部材の外形が厚みのある略円板形
状の場合には、熱伝達部材構成ブロックは、この熱伝達
部材を放射状に等分分割した形態を有するように構成し
てもよい。
In the processing apparatus configured as described above, the heat transfer member may be configured by combining the heat transfer member building blocks in which the heat transfer member is divided, and the outer shape of the heat transfer member. When the heat transfer member constituting block has a substantially circular disk shape with a large thickness , the heat transfer member configuration block may have a configuration in which the heat transfer member is radially equally divided.

【0021】[0021]

【作用】請求項1の処理装置においては、上部電極の内
部に、山部と谷部とを交互に連続して有する側面が略波
型の放熱体を多段に積層した構造を有する熱伝達部材が
設けられているので、上部電極の下面からの熱は、この
放熱の接合部分を介して伝達される。従って、前記し
た従来の支持棒のみを伝達経路とする場合よりも、熱伝
達効率は向上している。また格子状の構造であるから、
強度も大きいものとなっている。なおこの熱伝達部材に
はガス流通孔が設けられ、前記処理ガスはこのガス流通
孔を通じて吐出するように構成されているので、処理ガ
スの被処理体への吐出には何ら支障をきたさない。
In the processing apparatus of the first aspect, the side surface having the peaks and the valleys alternately and continuously is substantially wave- shaped inside the upper electrode.
Since the type of the radiator the heat transfer member having a structure in which stacked in multiple stages is provided, the heat from the lower surface of the upper electrode is transmitted through the joint portion of the heat radiating body. Therefore, the heat transfer efficiency is improved as compared with the case where only the conventional support rod is used as the transfer path. In addition, since it has a lattice structure
The strength is also great. Since the heat transfer member is provided with a gas flow hole and the processing gas is discharged through the gas flow hole, there is no problem in discharging the processing gas to the object to be processed.

【0022】また請求項2の処理装置においては、プラ
ズマの発生を伴わない処理容器のガス拡散体として、熱
伝達部材が構成されており、例えばバッフル板としてこ
の熱伝達部材が機能する。またその作用効果は前記請求
項1の場合と同様であり、熱伝達効率が向上し、強度も
大きいものである。
Further, in the processing apparatus of the second aspect, the heat transfer member is configured as a gas diffuser of the processing container that does not generate plasma, and the heat transfer member functions as, for example, a baffle plate. In addition, the function and effect are the same as in the case of the first aspect, and the heat transfer efficiency is improved and the strength is large.

【0023】熱伝達部材として、例えばハニカム構造の
放熱体を用いれば、熱伝達効率が向上し、強度も極めて
大きいものとなるまた略筒状の放熱体を、その内部を
冷媒の流通が可能としつつ、これら放熱体を接合積層し
て構成したり、また山部と谷部とを交互に連続して有す
る側面が略波型の放熱体を、複数組み合わせて使用した
場合にも、熱伝達経路の断面積が増大し,熱伝達効率
向上し、しかも強度も極めて高いものとなる
As the heat transfer member, for example, a honeycomb structure is used.
If a heat radiator is used , the heat transfer efficiency is improved and the strength becomes extremely large. In addition, a substantially cylindrical radiator is
These radiators are joined and laminated while allowing the flow of refrigerant.
It has a structure that has a mountain part and a valley part alternately and continuously.
The cross-sectional area of the heat transfer path is increased , the heat transfer efficiency is improved, and the strength is extremely high even when a plurality of heat radiators having substantially wave-shaped side surfaces are used in combination. Will be things.

【0024】前記山部と谷部が交互に連続する方向と平
行に所定の間隔で区画され、区画された部分の山部が、
隣接する他の区画における山部と前記連続方向にずれて
いる場合には、強度がさらに増加する。また山部の頂部
と谷部の底部を平坦に成形した場合には、接合部分の面
積が増大するので、熱伝達効率がさらに向上する。
[0024] The ridges and valleys are defined by parallel a predetermined distance and direction of the continuous alternating mountain portions of the partition portion,
When the peaks in the other adjacent sections are displaced in the continuous direction, the strength is further increased. Further, when the tops of the peaks and the bottoms of the valleys are formed flat, the area of the joint portion increases, so that the heat transfer efficiency is further improved.

【0025】伝達部材構成ブロックを組み合わせて熱
伝達部材を構成した場合には、製作が容易であり、大き
いものであっても精度よく製作できる。形が厚みのあ
る略円板形状の形の熱伝達部材を放射状に分割した形態
を有する熱伝達部材構成ブロックを用いれば、例えば3
等分、4等分、・・・n等分に分割した同形、同大のブ
ロックをn個用意して、これらを組み合わせることによ
って平面円形の熱伝達部材を構成することが可能にな
る。またコストも低廉にすることが可能である。
When the heat transfer member is constructed by combining the heat transfer member construction blocks, the manufacture is easy, and even a large one can be manufactured accurately. With the heat transfer member building blocks in the form of an outer shape is radially divided heat transfer member in the form of a generally circular disk shape with a thickness, for example 3
It is possible to form a plane-circular heat transfer member by preparing n blocks of the same shape and size that are equally divided into 4 equal parts, ... N, and divided into n equal parts. Also, the cost can be reduced.

【0026】ス流通孔の径を、熱伝達部材の下層にい
くほど、その数を多くしてかつ径が小さくなるようにす
れば、被処理体に対して処理ガスを均等に吐出させるこ
とが容易になる。
[0026] The diameter of the gas flow hole, toward the lower layer of the heat transfer member, if so and diameter by increasing the number becomes smaller, thereby uniformly discharge the processing gas against the object to be processed Will be easier.

【0027】請求項によれば、載置台内の冷媒の流路
内に、山部と谷部とを交互に連続して有する側面が略波
型の放熱体を多段に積層させた構造を有する熱伝達部材
が設けられているので、冷媒との接触面積が増加し、載
置台と冷媒との熱交換が促進され、その熱伝達効率が向
上する。また熱伝達部材を略格子状としたり,ハニカム
構造の放熱体を用いた場合や、略筒状の放熱体を用いた
場合や、山部と谷部とを交互に連続して有する側面が略
波型の放熱体を用いた場合も、熱伝達効率が向上し、し
かも強度も高いものとなる。
According to the seventh aspect, the side surface having the peaks and the valleys alternately and continuously formed in the flow path of the refrigerant in the mounting table is substantially wave-shaped.
Since a heat transfer member having a structure in which mold radiators are stacked in multiple stages is provided, the contact area with the refrigerant is increased, heat exchange between the mounting table and the refrigerant is promoted, and the heat transfer efficiency is improved. To do. In addition, when the heat transfer member is formed in a substantially lattice shape, a heat dissipation member having a honeycomb structure is used, or a heat dissipation member having a substantially cylindrical shape is used, the side surface having the peaks and the valleys alternately and continuously is substantially Even when the corrugated radiator is used, the heat transfer efficiency is improved and the strength is also high.

【0028】部と谷部が交互に連続する方向と平行に
所定の間隔で区画し、区画された部分の山部を、隣接す
る他の区画における山部と前記連続方向にずれて構成し
た場合には、冷媒との接触面積がさらに増加してより一
層熱伝達効率が向上すると共に、強度自体も向上する。
そして山部の頂部と谷部の底部を平坦に成形すれば、冷
媒との接触面積がなお一層増加するので、熱伝達効率は
極めて高いものとなる。
[0028] parallel to the direction in which the crests and troughs are continuous alternately partitioned at predetermined intervals, the peaks of the compartment portion, constructed offset in the continuous direction and crests of another adjacent compartment In this case, the contact area with the refrigerant is further increased, the heat transfer efficiency is further improved, and the strength itself is also improved.
If flat shaped bottom of the top valley mountain portion And, the contact area between the refrigerant still more increased, the heat transfer efficiency is extremely high.

【0029】伝達部材を分割した熱伝達部材構成ブロ
ックを組み合わせて、熱伝達部材を構成するようにした
場合には、熱伝達部材の構成、製作が容易であり、大き
いものであっても、精度よく製作できる。そして熱伝達
部材構成ブロックが、放射状に分割した形態を有する場
合にはn等分に分割した構成とすることにより、同形、
同大の熱伝達部材構成ブロックをn個用意することによ
り、熱伝達部材を簡単に構成できる。またコストも低廉
にすることが可能である。
The combined heat transfer members building blocks obtained by dividing the heat transfer member, when so as to constitute a heat transfer member, configuration of the heat transfer member, it is easy fabricate, even larger, Can be manufactured accurately. By element heat transfer member building blocks, in the case of having a divided form radially a structure divided into n equal parts, isomorphic,
The heat transfer member can be easily configured by preparing n heat transfer member building blocks of the same size. Also, the cost can be reduced.

【0030】[0030]

【実施例】以下添付図面に基づき、実施例を説明する
と、本実施例はエッチング装置として構成されており、
図1に示すように、このエッチング装置1は、例えばア
ルミニウムなどからなる略円筒形状に成形され、かつ接
地された処理容器2を有しており、この処理容器2の底
部にはセラミックなどの絶縁材3を介して、被処理体、
たとえば半導体ウエハWを載置するための、厚みのある
アルミニウムの略円板形状の載置台4が設置されてい
る。
EXAMPLE An example will be described below with reference to the accompanying drawings. This example is configured as an etching apparatus.
As shown in FIG. 1, the etching apparatus 1 has a processing container 2 formed of, for example, aluminum and having a substantially cylindrical shape and grounded. The processing container 2 has an insulating material such as ceramic at the bottom thereof. Through the material 3, the object to be processed,
For example, a mounting table 4 having a substantially circular plate shape of aluminum for mounting the semiconductor wafer W is installed.

【0031】そしてこの載置台4の内部には、冷却手段
となる冷媒流路5や加熱手段6などの温度調節手段が設
けられ、前記半導体ウエハWの処理面を所望の温度に調
整することができるように構成されている。この冷媒流
路5は、略環状に形成され、その中を冷媒が流通するこ
とによって、載置台4を冷却するようになっており、本
実施例においては、処理容器2外部に設置された冷凍機
などの冷却装置7から、例えば−120゜Cの冷媒、例
えばCF4(フロンガスR−14)が、直接ポンプ8に
よって供給管9を通じて供給されて、この冷媒流路5内
を流通し、排出管10から再び冷却装置7へと戻され
て、循環するように構成されている。
Inside the mounting table 4, temperature adjusting means such as a cooling medium flow path 5 serving as a cooling means and a heating means 6 are provided to adjust the processing surface of the semiconductor wafer W to a desired temperature. It is configured to be able to. The coolant channel 5 is formed in a substantially annular shape, and the coolant circulates in the coolant channel 5 to cool the mounting table 4. In the present embodiment, the cooling channel installed outside the processing container 2 is frozen. From a cooling device 7 such as a machine, for example, a refrigerant of −120 ° C., for example, CF 4 (Freon gas R-14) is directly supplied by a pump 8 through a supply pipe 9, flows through the refrigerant flow path 5, and is discharged. The pipe 10 is returned to the cooling device 7 again and is circulated.

【0032】前記冷媒流路5は、図2に示したように、
環状の外壁11、及び径の小さな環状の内壁12、並び
に外壁11と内壁12の間に位置する中壁13によって
その側周が形成されている。またその中心部、即ち内壁
12の内側には、後述の各種配線、ガス流路を通すため
の貫通部14が形成されている。そして冷媒流路5に
は、図3〜図6に示した熱伝達部材21が収納されてい
る。
As shown in FIG. 2, the coolant channel 5 is
A side circumference is formed by an annular outer wall 11, an annular inner wall 12 having a small diameter, and an inner wall 13 located between the outer wall 11 and the inner wall 12. Further, in the central portion thereof, that is, inside the inner wall 12, various wirings described later and a penetrating portion 14 for passing a gas passage are formed. The heat transfer member 21 shown in FIGS. 3 to 6 is housed in the coolant channel 5.

【0033】この熱伝達部材21は、熱伝達部材21
を、中心角度90゜で、中壁13ごと放射状に分割した
形態を有する同大の4つのブロック21a、21b、2
1c、21dによって構成されている。これら各ブロッ
ク21a、21b、21c、21dは、基本的には、同
一の構成を有しているが、ブロック21b、21c、2
1dには、前記ウエハWを上昇下降自在なプッシャーピ
ン(図示せず)用の通路22が形成されている。
The heat transfer member 21 is the same as the heat transfer member 21.
At the central angle of 90 °, the four blocks 21a, 21b, 2 of the same size having a shape in which they are radially divided together with the inner wall 13.
It is composed of 1c and 21d. Each of these blocks 21a, 21b, 21c, 21d basically has the same configuration, but blocks 21b, 21c, 2
A passage 22 for a pusher pin (not shown) that allows the wafer W to be raised and lowered is formed in 1d.

【0034】そして図4〜図6に示したように、熱伝達
部材21自体は、山部23aと谷部23bとを交互に連
続して有する、側面が略波型の放熱体23を、その頂部
が平坦な山部23aと、底部が平坦な谷部23bとを突
き合わせるようにしてろう付けによって接合積層して構
成されている。この放熱体23の材質は、熱伝導性が良
好な材質、例えばCu、Al等からなっている。
As shown in FIGS. 4 to 6, the heat transfer member 21 itself has a radiator 23 having side surfaces of substantially corrugated shape, which have peaks 23a and valleys 23b alternately and continuously. The peak portion 23a having a flat top portion and the valley portion 23b having a flat bottom portion are joined and laminated by brazing so as to abut each other. The material of the radiator 23 is a material having good thermal conductivity, such as Cu or Al.

【0035】しかも本実施例においては、さらに山部2
3aと谷部23bが交互に連続する方向Aと平行に所定
の間隔dで区画され、例えば区画された部分の山部23
aは、隣接する他の区画における山部23a’と前記連
続方向Aに、山部の半分の幅分ずれている。そして以上
の構成から、前記方向Aと直交する方向Bに、冷媒が流
通することが可能である。即ち、冷媒流路5内の冷媒
は、これら放熱体23の内部を流通することが可能にな
っている。
Moreover, in this embodiment, the mountain portion 2 is further added.
3a and valleys 23b are partitioned at a predetermined interval d in parallel with the direction A in which the valleys 23b are alternately continuous.
a is displaced from the crests 23a ′ in other adjacent sections in the continuous direction A by a width of half the crests. With the above configuration, the refrigerant can flow in the direction B orthogonal to the direction A. That is, the refrigerant in the refrigerant channel 5 can flow inside the radiator 23.

【0036】なおかかる放熱体23は、いわば直交する
略直線形状のものによって構成されているので、そのま
までは、前記の例えばブロック21aに収納させること
はできない。従って例えば図3に示したように、放熱体
23を適当に分割成形した数個の放熱体セルを収納して
いる。従って、必ずしも放熱体23の内部を冷媒が流通
することはなく、例えば図3におけるエリアF、Gのよ
うに放熱体23の設置していない部分では、本来の冷媒
流路を流れることになる。しかしながら、かかる場合で
も、全体としてみると、放熱体23と接触して流通する
部分の方が格段に多く、本発明の所期の効果を得ること
が可能である。
Since the radiator 23 is composed of, so to speak, substantially orthogonal linear shapes, it cannot be stored in the block 21a, for example, as it is. Therefore, for example, as shown in FIG. 3, the radiator 23 accommodates several radiator cells obtained by appropriately dividing and molding. Therefore, the refrigerant does not necessarily flow through the inside of the heat radiator 23, and in a portion where the heat radiator 23 is not installed, such as areas F and G in FIG. However, even in such a case, as a whole, the portion in contact with the radiator 23 and flowing therein is remarkably large, and the intended effect of the present invention can be obtained.

【0037】もちろん前記のいわば空白となっているエ
リアF、Gを形成しないように、放熱体23をさらに適
当に分割成形加工して、エリアF、Gを充填するように
放熱体を設置すれば、さらに冷媒が放熱体23と接触す
る面積が増加し、熱伝達効率が向上するのはいうまでも
ない。
Of course, if the radiator 23 is further appropriately divided and molded so that the so-called blank areas F and G are not formed, the radiator is installed so as to fill the areas F and G. Needless to say, the area in which the refrigerant contacts the radiator 23 increases, and the heat transfer efficiency improves.

【0038】前出加熱手段6は、例えばセラミックヒー
タで構成されており、電力供給リード31によりカット
フィルタ32を介して電力源33から所望の電力を受け
て発熱し、半導体ウエハWの処理面の温度を所望する温
度まで加熱し、温度制御を行うことが可能なように構成
されている。
The above-mentioned heating means 6 is composed of, for example, a ceramic heater, receives desired electric power from the electric power source 33 through the cut filter 32 by the electric power supply lead 31, and generates heat to generate heat on the processing surface of the semiconductor wafer W. The temperature can be controlled by heating the temperature to a desired temperature.

【0039】上記載置台4は、上面中央部が凸状に成形
されており、この中央上面には、被処理体を保持するた
めのチャック部として、たとえば静電チャック34が被
処理体である半導体ウエハWと略同径大、好ましくは半
導体ウエハWの径よりも若干小さい径で設けられてい
る。この静電チャック34は、半導体ウエハWを載置保
持する面としてポリイミド樹脂などの高分子絶縁材料か
らなる2枚のフィルム34a、34b間に、銅箔などの
導電膜34cを挟持した静電チャックシートより構成さ
れており、その導電膜34cは、電圧供給リード35に
より、途中高周波をカットするフィルタ36、たとえば
コイルを介して可変直流電圧源37に接続されている。
したがって、その導電膜37cに高電圧を印加すること
により、静電チャック34の上側のフィルム34aの上
面に、半導体ウエハWをクーロン力により吸着保持する
ことが可能である。
The above-described mounting table 4 has a convex upper surface central portion, and on the central upper surface, for example, an electrostatic chuck 34 is a processing object as a chuck portion for holding the processing object. The diameter of the semiconductor wafer W is substantially the same as that of the semiconductor wafer W, preferably a diameter slightly smaller than the diameter of the semiconductor wafer W. This electrostatic chuck 34 is an electrostatic chuck in which a conductive film 34c such as a copper foil is sandwiched between two films 34a and 34b made of a polymer insulating material such as polyimide resin as a surface for mounting and holding the semiconductor wafer W. The conductive film 34c is formed of a sheet, and the conductive film 34c is connected to a variable DC voltage source 37 by a voltage supply lead 35 via a filter 36 that cuts a high frequency on the way, for example, a coil.
Therefore, by applying a high voltage to the conductive film 37c, the semiconductor wafer W can be attracted and held by the Coulomb force on the upper surface of the film 34a on the upper side of the electrostatic chuck 34.

【0040】また図1に示すように、前記載置台4の周
囲には、静電チャック34上の半導体ウエハWの外周を
囲むように、環状のフォーカスリング38が配置されて
いる。このフォーカスリング38は反応性イオンを引き
寄せない絶縁性の材料からなり、反応性イオンを内側の
半導体ウエハWにだけ効果的に入射せしめるように作用
するものである。
Further, as shown in FIG. 1, an annular focus ring 38 is arranged around the mounting table 4 so as to surround the outer periphery of the semiconductor wafer W on the electrostatic chuck 34. The focus ring 38 is made of an insulating material that does not attract reactive ions, and acts so that the reactive ions are effectively incident only on the semiconductor wafer W inside.

【0041】そして前記載置台4には、中空に成形され
た導体よりなる給電棒39が接続されており、さらにこ
の給電棒39にはブロッキングコンデンサ40を介して
高周波電源41が接続されており、プロセス時には、た
とえば13.56MHzの高周波電力を前記給電棒39
を介して載置台4に印加することが可能である。かかる
構成により載置台4は下部電極として作用し、被処理体
である半導体ウエハWに対向するように設けられた上部
電極51との間にグロー放電を生じ、処理容器2内に導
入された処理ガスをプラズマ化し、例えばラジカル粒子
によって被処理体である半導体ウエハWにエッチング処
理を施すことが可能である。
A feeding rod 39 made of a hollow conductor is connected to the mounting table 4, and a high frequency power source 41 is connected to the feeding rod 39 via a blocking capacitor 40. During the process, high frequency power of, for example, 13.56 MHz is supplied to the power feeding rod 39.
It is possible to apply to the mounting table 4 via. With such a configuration, the mounting table 4 acts as a lower electrode, a glow discharge is generated between the mounting table 4 and the upper electrode 51 provided so as to face the semiconductor wafer W which is the object to be processed, and the processing introduced into the processing container 2 is performed. It is possible to turn the gas into plasma and perform etching processing on the semiconductor wafer W, which is the object to be processed, by radical particles, for example.

【0042】さらに前記載置台4の中心近傍には、He
ガスなどのバッククーリングガスの流路42が構成され
ており、半導体ウエハWの裏面に所定温度のHeガスな
どを吐出させることが自在に構成されている。
Further, in the vicinity of the center of the mounting table 4 described above, He
A flow path 42 for a back cooling gas such as a gas is configured so that He gas or the like having a predetermined temperature can be freely discharged to the back surface of the semiconductor wafer W.

【0043】上部電極51は、前記載置台4の載置面か
ら、約10〜20mm程度離間させて配置されている。
この上部電極51は図1、図7に示したように、最下部
に位置する電極板52、及び熱伝達部材53を収納して
前記電極板52を支持する電極支持体54とからなって
いる。そしてこの電極支持体54の内部には、略環状の
冷媒流路55が形成されており、前出載置台4の冷媒流
路5と同様、供給管56から供給される冷媒が流通し
て、排出管57から外部の冷凍機(図示せず)へと戻
り、循環するように構成されている。
The upper electrode 51 is arranged at a distance of about 10 to 20 mm from the mounting surface of the mounting table 4.
As shown in FIGS. 1 and 7, the upper electrode 51 is composed of an electrode plate 52 located at the lowermost part, and an electrode support 54 which houses the heat transfer member 53 and supports the electrode plate 52. . Inside the electrode support 54, a substantially annular coolant channel 55 is formed, and like the coolant channel 5 of the mounting table 4, the coolant supplied from the supply pipe 56 flows, The discharge pipe 57 returns to an external refrigerator (not shown) and is circulated.

【0044】前記熱伝達部材53は、載置台4の冷媒流
路5に収納された熱伝達部材21と基本的に同一の構成
を有しており、まず図7、図8に示したように、熱伝達
部材53を、中心角度90゜で、放射状に4分割した形
態を有する同形同大の4つのブロック53a、53b、
53c、53dによって構成されている。そして図8、
図9に示したように、熱伝達部材53自体は、山部61
aと谷部61bとを交互に連続して有する、側面が略波
型の放熱体61を、その山部61aと谷部61bとを突
き合わせるようにしてろう付けによって多段に、ろう付
けによって接合積層して構成されている。また前出熱伝
達部材21の放熱体23と同様、山部61aと、隣接す
る他の区画における山部61a’とは山部の半分の幅分
ずれた構造となっている。この放熱体61の材質も、熱
伝導性が良好な材質、例えばCu、Al等からなってい
る。
The heat transfer member 53 has basically the same structure as that of the heat transfer member 21 housed in the coolant flow path 5 of the mounting table 4, and as shown in FIGS. , Four blocks 53a, 53b of the same shape and size having a shape in which the heat transfer member 53 is radially divided into four at a central angle of 90 °,
It is composed of 53c and 53d. And in FIG.
As shown in FIG. 9, the heat transfer member 53 itself has a mountain portion 61.
A heat-dissipating body 61 having side surfaces of substantially corrugated shape having alternating a and valley portions 61b is joined in multiple stages by brazing so that the peak portions 61a and valley portions 61b are butted against each other. It is configured by stacking. Further, similarly to the radiator 23 of the heat transfer member 21, the peak portion 61a and the peak portions 61a 'in the other adjacent sections are displaced from each other by half the width of the peak portion. The material of the radiator 61 is also a material having good thermal conductivity, such as Cu or Al.

【0045】そしてこの放熱体61には、上下、水平方
向に適宜のガス流通孔62が穿設されている。これらガ
ス流通孔62は、放熱体61の下層側、即ち電極板52
に向かうほど、その径が小さくなって数が多くなるよう
に設定されている。
The radiator 61 is provided with appropriate gas flow holes 62 in the vertical and horizontal directions. These gas flow holes 62 are formed on the lower layer side of the heat radiator 61, that is, the electrode plate 52.
It is set so that the diameter becomes smaller and the number increases as it goes to.

【0046】なお本実施例においては、放熱体61のみ
を多段に積層した構成を有しているが、このような構成
に代えて例えば図10に示したように、熱伝導性の良好
な多孔材のバッフル板63と交互に積層させてもよい。
In this embodiment, only the radiator 61 has a multi-layered structure, but instead of this structure, for example, as shown in FIG. It may be laminated alternately with the baffle plate 63 of the material.

【0047】前記ガス流通孔62は、図1に示したよう
に、電極支持体54の中央を貫設したガス供給路64と
連通しており、処理ガス源65より流量制御器(MF
C)66を介して所定の処理ガス、たとえばCFなど
のエッチングガスを導入することが可能である。従っ
て、処理ガス源65からのエッチングガスは、放熱体6
1のガス流通孔62を通じて、電極板52に穿設された
多数の吐出孔(図示せず)から、前記半導体ウエハWに
対して、均等に吐出されるようになっている。
As shown in FIG. 1, the gas flow hole 62 communicates with a gas supply passage 64 penetrating the center of the electrode support 54, and a flow rate controller (MF) is supplied from a processing gas source 65.
It is possible to introduce a predetermined process gas, for example an etching gas such as CF 4 , through C) 66. Accordingly, the etching gas from the processing gas source 65 is
Through one gas flow hole 62, a large number of discharge holes (not shown) formed in the electrode plate 52 are uniformly discharged onto the semiconductor wafer W.

【0048】そして前記処理容器2の下方には真空ポン
プなどからなる排気系に通ずる排気口67が設けられて
おり、処理容器2内部を所定の圧力に、たとえば0.5
Torrに減圧することが可能である。
An exhaust port 67 communicating with an exhaust system such as a vacuum pump is provided below the processing container 2, and the inside of the processing container 2 is kept at a predetermined pressure, for example, 0.5.
It is possible to reduce the pressure to Torr.

【0049】また前記処理容器2の側部には被処理体の
搬入出口71が設けられ、この搬入出口71は、駆動機
構(図示せず)により自動開閉するゲートバルブ72を
介してロードロック室73に接続されている。そしてこ
のロードロック室73内には被処理体である半導体ウエ
ハWを、一枚ずつ処理容器2内に搬送することが可能な
ハンドリングアーム74を備えた搬送機構75が設置さ
れている。
A loading / unloading port 71 for the object to be processed is provided on the side of the processing container 2, and the loading / unloading port 71 is provided with a gate valve 72 which is automatically opened / closed by a drive mechanism (not shown). It is connected to 73. Then, in the load lock chamber 73, a transfer mechanism 75 including a handling arm 74 capable of transferring the semiconductor wafers W to be processed into the processing container 2 one by one is installed.

【0050】本実施例にかかるエッチング装置1は以上
のように構成されており、次にその作用効果等にについ
て説明すると、被処理体である半導体ウエハWが、載置
台4の静電チャック34上保持されると、前記した所定
のエッチングガスが、この半導体ウエハW上に均等に吐
出されると共に、処理容器2内は所定の減圧度に設定、
維持される。
The etching apparatus 1 according to the present embodiment is configured as described above. Next, the function and effect of the etching apparatus 1 will be described. The semiconductor wafer W that is the object to be processed is the electrostatic chuck 34 of the mounting table 4. When held above, the above-mentioned predetermined etching gas is uniformly discharged onto the semiconductor wafer W, and the inside of the processing container 2 is set to a predetermined degree of pressure reduction.
Maintained.

【0051】そして高周波電源から、所定の高周波が載
置台4に印加されることによって、プラズマが発生し、
既述したように、前記半導体ウエハWに対して所定のエ
ッチングが施されるのであるが、このとき、発生したプ
ラズマによって処理容器2内の温度が上昇し、その熱で
上部電極51や載置台4の温度も上昇する。ところがエ
ッチング処理は、半導体ウエハWの温度によって大きく
左右されるので、これら載置台4や上部電極51の温度
を冷却して、半導体ウエハWの温度や上部電極51の電
極板52を適切な温度に維持する必要がある。
Then, when a predetermined high frequency is applied to the mounting table 4 from the high frequency power source, plasma is generated,
As described above, the semiconductor wafer W is subjected to predetermined etching. At this time, the temperature inside the processing container 2 rises due to the generated plasma, and the heat causes the upper electrode 51 and the mounting table to be heated. The temperature of 4 also rises. However, since the etching process largely depends on the temperature of the semiconductor wafer W, the temperatures of the mounting table 4 and the upper electrode 51 are cooled to bring the temperature of the semiconductor wafer W and the electrode plate 52 of the upper electrode 51 to an appropriate temperature. Need to maintain.

【0052】そのため、前記したように、載置台4の内
部には、冷媒流路5が形成され、また一方、上部電極5
1の電極支持体54の内部にも冷媒流路55が形成され
ているのであるが、本実施例においては、熱伝達効率を
向上させる熱伝達部材21が冷媒流路5に、熱伝達部材
53が上部電極51内に夫々収納されているので、従来
よりも冷媒による冷却効率が極めて良好であり、また温
度制御も容易となっている。
Therefore, as described above, the coolant channel 5 is formed inside the mounting table 4, while the upper electrode 5 is also formed.
Although the coolant channel 55 is also formed inside the first electrode support 54, in the present embodiment, the heat transfer member 21 that improves heat transfer efficiency is provided in the coolant channel 5, and the heat transfer member 53 is provided. Since they are housed in the upper electrode 51 respectively, the cooling efficiency by the refrigerant is much better than in the past and the temperature control is easy.

【0053】より詳述すれば、まず載置台4の冷媒流路
5に収納されている熱伝達部材21は、山部23aと谷
部23bとを交互に連続して有する、略波型の放熱体2
3をが、多段に接合積層しているので、冷媒との接触面
積が極めて広くなっている。しかも山部23aの頂部と
谷部23bの底部とは、夫々平坦に成形されて接合して
いるので、放熱体23相互の熱伝達効率もよく、その結
果、冷媒との熱交換が促進され、冷媒による冷却効率が
大きく向上しているのである。また構造的にも極めて強
固であるから、例えば冷媒流路5の断面積を大きくして
も、強度的に問題はない。
More specifically, first, the heat transfer member 21 housed in the coolant flow path 5 of the mounting table 4 has a substantially wave-shaped heat dissipation having peaks 23a and valleys 23b alternately and continuously. Body 2
Since 3 is bonded and laminated in multiple stages, the contact area with the refrigerant is extremely wide. Moreover, since the tops of the peaks 23a and the bottoms of the valleys 23b are formed and joined flat, the heat transfer efficiency between the radiators 23 is good, and as a result, heat exchange with the refrigerant is promoted. The cooling efficiency with the refrigerant is greatly improved. Further, since it is structurally extremely strong, there is no problem in strength even if the cross-sectional area of the coolant channel 5 is increased, for example.

【0054】一方上部電極51内の熱伝達部材53も、
前記した熱伝達部材21と同様な構成を有しているか
ら、電極板52の熱は効率よく電極支持体54へと伝達
され、冷媒流路55内を流れる冷媒による冷却効率が極
めて良好である。また強度的にも何ら問題はないもので
ある。
On the other hand, the heat transfer member 53 in the upper electrode 51 is also
Since it has the same structure as the heat transfer member 21 described above, the heat of the electrode plate 52 is efficiently transferred to the electrode support 54, and the cooling efficiency by the refrigerant flowing in the refrigerant passage 55 is extremely good. . Also, there is no problem in strength.

【0055】そして前記の熱伝達部材21、53は、基
本的に同一構成のブロックを組み合わせて構成されてい
るので、製作も容易であり、また大口径化に対応させる
ことも容易である。
Since the heat transfer members 21 and 53 are basically constructed by combining blocks having the same structure, they can be easily manufactured and can be adapted to a large diameter.

【0056】なお前記実施例における熱伝達部材21、
53は、いずれも断面が略波型の放熱体23、61を使
用したが、これに代えて例えば図11に示したような放
熱体81を熱伝達部材82を用いてもよい。この熱伝達
部材82は、6面のうち対向する1組の面が開口したセ
ル形状を有する放熱体81を、水平方向に並べ、かつ開
口部がずれるように多段に積層させた構成を持つもので
ある。
The heat transfer member 21 in the above embodiment is
Although the heat radiators 23 and 61 each having a substantially wave-shaped cross section are used for the 53, instead of this, a heat radiator 81 as shown in FIG. 11 may be used as the heat transfer member 82. This heat transfer member 82 has a structure in which heat radiators 81 each having a cell shape in which one set of six faces facing each other are opened are arranged in the horizontal direction and are stacked in multiple stages so that the openings are displaced. Is.

【0057】また図12に示した熱伝達部材83は、多
数四角形状の管路を形成するように構成したものであ
り、また図13に示した熱伝達部材84は、いわゆるハ
ニカム構造の断面を有するものである。これら熱伝達部
材83、84は長尺形状であるが、長さの短くしたもの
を適宜接続して組み合わせてもよく、かかる場合、開口
部分をずらせるように組み合わせてもよい。
The heat transfer member 83 shown in FIG. 12 is constructed so as to form a multiplicity of square pipes, and the heat transfer member 84 shown in FIG. 13 has a so-called honeycomb structure in cross section. I have. Although the heat transfer members 83 and 84 have a long shape, those having a short length may be appropriately connected and combined, and in such a case, the openings may be combined so as to be displaced.

【0058】そして図14に示した熱伝達部材85は、
筒状のパイプ材の放熱体86を多段に接合積層させた構
成を有している。もちろん断面が角型のパイプ材を使用
してもよい。またこの熱伝達部材85の放熱体86は、
直線形状を有しているが、載置台や上部電極の曲率に合
わせて、適宜環状に成形してもよい。
The heat transfer member 85 shown in FIG.
It has a configuration in which heat radiators 86 of tubular pipe material are joined and laminated in multiple stages. Of course, a pipe material having a square cross section may be used. Further, the radiator 86 of the heat transfer member 85 is
Although it has a linear shape, it may be formed in an appropriate ring shape according to the curvature of the mounting table and the upper electrode.

【0059】前記した各熱伝達部材82、83、84、
85を用いても熱伝達効率が極めて良好であり、かつ強
度も大きいものである。
Each of the heat transfer members 82, 83, 84,
Even if 85 is used, the heat transfer efficiency is extremely good and the strength is high.

【0060】なお前出実施例は、エッチング装置として
構成したが、本発明はかかる構成に限定されず、この他
にも、処理室容器に処理ガスを導入したり、また同時に
プラズマを発生させて処理を行う各種装置、たとえばC
VD装置、スパッタ装置、アッシング装置などにも適用
することが可能である。また被処理体についても半導体
ウエハの場合について説明したが、それに限らず本発明
は、例えばLCD基板を処理対象とする装置構成とする
ことも可能である。
Although the above-mentioned embodiment is constructed as an etching apparatus, the present invention is not limited to such a construction, and in addition to this, a processing gas may be introduced into a processing chamber container, or plasma may be simultaneously generated. Various devices for processing, eg C
It can also be applied to a VD device, a sputtering device, an ashing device, and the like. Also, the object to be processed has been described as a semiconductor wafer, but the present invention is not limited to this, and the present invention can also be configured as an apparatus in which an LCD substrate is an object to be processed.

【0061】[0061]

【発明の効果】本発明の処理装置においては、上部電極
やガス拡散体での熱伝達効率が向上する。従って、これ
ら上部電極やガス拡散体の温度調節、制御も容易であ
る。しかもかかる作用効果を実現する熱伝達部材の強度
は高いものとなっており、軽量化も可能である。
In the processing apparatus of the present invention , the heat transfer efficiency in the upper electrode and the gas diffuser is improved. Therefore, it is easy to adjust and control the temperature of the upper electrode and the gas diffuser. Moreover, the strength of the heat transfer member that realizes the above-described effects is high, and the weight can be reduced.

【0062】さらに熱伝達部材が大きいものであって
も、その組立、製作が容易であり、かつ精度よく製作で
きる。同形、同大のブロックを複数用意して、これらを
組み合わせることによって平面円形の熱伝達部材を構成
することが可能になる。従って、各ブロックの製作が容
易であり、コストも低廉にすることが可能である。
Even if the heat transfer member is large, it can be assembled and manufactured easily and can be manufactured with high precision . Isomorphically, a block of university Make several, it is possible to configure a flat circular heat transfer member by combining these. Therefore, each block can be easily manufactured and the cost can be reduced.

【0063】[0063]

【0064】また被処理体に対して処理ガスを均等に吐
出させることが容易になる。さらに載置台と載置台内部
に形成した冷媒の流路、即ち冷媒との接触面積が増大す
るので、載置台と冷媒との熱交換が促進され、従来より
も熱伝達効率が向上する。しかも構造的にみても熱伝達
部材の強度が高いので、その材質を薄くして、その分多
数の放熱体を冷媒流路内に収納し、より一層熱伝達効率
を向上させることが可能である。
Further , the processing gas is evenly discharged onto the object to be processed.
It will be easy to put out. Furthermore, since the flow path of the coolant formed inside the mounting table and the mounting table, that is, the contact area with the refrigerant is increased, heat exchange between the mounting table and the refrigerant is promoted, and the heat transfer efficiency is improved as compared with the conventional case. Moreover, since the strength of the heat transfer member is high structurally, it is possible to make the material thin and accommodate a large number of heat radiators in the refrigerant flow path, thereby further improving the heat transfer efficiency. .

【0065】[0065]

【0066】そして熱伝達部材が大きいものであって
も、その組立、製作を容易とすることが可能で,かつ精
度よく製作でき、同形、同大のブロックを複数用意すれ
ば、これらを組み合わせることによって平面環状の熱伝
達部材を構成することが可能になる。従って、各ブロッ
クの製作が容易であり、コストも低廉にすることが可能
である。
[0066] Then even those heat transfer member is large, its assembly, can be the ease of manufacture, and accurately be manufactured, the shape, if a plurality prepare blocks of university, combining them As a result, it becomes possible to form a planar annular heat transfer member. Therefore, each block can be easily manufactured and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかるエッチング装置の断面
を模式的に示した説明図である。
FIG. 1 is an explanatory view schematically showing a cross section of an etching apparatus according to an embodiment of the present invention.

【図2】図1のエッチング装置における冷媒流路の概観
を示す斜視図である。
FIG. 2 is a perspective view showing an overview of a coolant channel in the etching apparatus of FIG.

【図3】図2の冷媒流路に収納した熱伝達部材を構成す
るブロックの平面説明図である。
FIG. 3 is an explanatory plan view of a block that constitutes a heat transfer member housed in the coolant passage of FIG.

【図4】図2の冷媒流路に使用した熱伝達部材の放熱体
の概観を示す斜視図である。
FIG. 4 is a perspective view showing an overview of a radiator of a heat transfer member used in the refrigerant flow path of FIG.

【図5】図2の冷媒流路に使用した熱伝達部材の放熱体
の正面図である。
5 is a front view of a radiator of a heat transfer member used in the coolant passage of FIG.

【図6】図2の冷媒流路に使用した熱伝達部材の放熱体
の平面図である。
FIG. 6 is a plan view of a radiator of a heat transfer member used in the coolant passage of FIG.

【図7】図1のエッチング装置における上部電極内に収
納した熱伝達部材の概観を示す斜視図である。
7 is a perspective view showing an overview of a heat transfer member housed in an upper electrode in the etching apparatus of FIG.

【図8】図7の熱伝達部材を構成するブロックの平面説
明図である。
8 is an explanatory plan view of a block forming the heat transfer member of FIG. 7. FIG.

【図9】図7の熱伝達部材に使用した放熱体の正面図で
ある。
9 is a front view of a radiator used in the heat transfer member of FIG. 7. FIG.

【図10】図7の熱伝達部材に使用可能な他の放熱体の
正面図である。
10 is a front view of another heat radiator usable in the heat transfer member of FIG. 7. FIG.

【図11】セル形状の放熱体を使用した他の熱伝達部材
の概観を示す斜視図である。
FIG. 11 is a perspective view showing an overview of another heat transfer member using a cell-shaped radiator.

【図12】断面が四角形状の管路を有する他の熱伝達部
材の概観を示す斜視図である。
FIG. 12 is a perspective view showing an overview of another heat transfer member having a duct having a rectangular cross section.

【図13】断面がハニカム構造を有する他の熱伝達部材
の概観を示す斜視図である。
FIG. 13 is a perspective view showing an overview of another heat transfer member having a honeycomb structure in section.

【図14】パイプ材の放熱体を接合積層させた他の熱伝
達部材の概観を示す斜視図である。
FIG. 14 is a perspective view showing an outline of another heat transfer member in which a radiator of a pipe material is joined and laminated.

【符号の説明】[Explanation of symbols]

1 エッチング装置 2 処理容器 4 載置台 5 冷媒流路 21 熱伝達部材 23 放熱体 23a 山部 23b 谷部 51 上部電極 52 電極板 53 熱伝達部材 61 放熱体 W ウエハ 1 Etching equipment 2 processing vessels 4 table 5 Refrigerant flow path 21 heat transfer member 23 Radiator 23a Yamabe 23b Tanibe 51 upper electrode 52 electrode plate 53 Heat transfer member 61 Radiator W wafer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23F 4/00 H01L 21/3065 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/205 C23F 4/00 H01L 21/3065

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 減圧自在な処理容器内の上下に上部電極
と下部電極を対向して有し、処理ガス導入部から導入さ
れる処理ガスを前記上部電極を介して前記被処理体に対
して吐出させると共に、前記上部電極と下部電極との間
にプラズマを発生させ、当該処理容器内の被処理体に対
して前記プラズマ雰囲気の下で所定の処理を施す如く構
成された処理装置において、 前記上部電極の内部に、山部と谷部とを交互に連続して
有する側面が略波型の放熱体を多段に積層した構造を有
する熱伝達部材が設けられると共に、この熱伝達部材に
はガス流通孔が設けられ、前記処理ガスはこのガス流通
孔を通じて前記被処理体に吐出するように構成されたこ
とを特徴とする、処理装置。
1. An upper electrode and a lower electrode are opposed to each other in the upper and lower sides of a depressurizable processing container, and a processing gas introduced from a processing gas introducing portion is introduced into the object to be processed through the upper electrode. In the processing apparatus configured to discharge, generate plasma between the upper electrode and the lower electrode, and subject the object in the processing container to a predetermined process under the plasma atmosphere, Inside the upper electrode, peaks and valleys are alternately and continuously formed.
A heat transfer member having a structure in which heat-dissipating bodies having substantially wave-shaped sides are stacked in multiple stages is provided, and a gas flow hole is provided in the heat transfer member, and the processing gas is processed through the gas flow hole. A processing device, characterized in that it is configured to dispense to the body.
【請求項2】 減圧自在な処理容器と、この処理容器内
に納入された被処理体に対向してこの処理容器内上部に
設けられたガス拡散体とを有し、処理ガス導入部から導
入される処理ガスを前記ガス拡散体を介して前記被処理
体に対して吐出させ、前記被処理体に対して所定の処理
を施すように構成された処理装置において、山部と谷部とを交互に連続して有する側面が略波型の
熱体を多段に積層した構造を有する熱伝達部材によって
前記ガス拡散体が構成されると共に、この熱伝達部材に
はガス流通孔が設けられ、前記処理ガスはこのガス流通
孔を通じて前記被処理体に吐出するように構成されたこ
とを特徴とする、処理装置。
2. A processing container which can be decompressed, and a gas diffuser which is provided in an upper part of the processing container facing the object to be processed delivered into the processing container, and is introduced from a processing gas introduction part. In the processing apparatus configured to discharge the processing gas to the object to be processed through the gas diffuser and perform a predetermined process on the object to be processed , a peak portion and a valley portion are formed. The gas diffuser is constituted by a heat transfer member having a structure in which heat-radiating bodies having alternating and continuous side surfaces are stacked in multiple stages. Is provided, and the processing gas is configured to be discharged to the object to be processed through the gas flow hole.
【請求項3】 前記熱伝達部材は、ハニカム構造の放熱
体によって構成されたことを特徴とする、請求項1又は
2に記載の処理装置。
3. The processing apparatus according to claim 1, wherein the heat transfer member is composed of a radiator having a honeycomb structure.
【請求項4】 前記熱伝達部材は、熱伝達部材構成ブロ
ックを組み合わせてなることを特徴とする、請求項1又
は2に記載の処理装置。
4. The processing apparatus according to claim 1, wherein the heat transfer member is formed by combining heat transfer member building blocks.
【請求項5】 前記熱伝達部材の外形は厚みのある略円
板形状をなし、熱伝達部材構成ブロックは、この熱伝達
部材を放射状に等分分割した形態を有することを特徴と
する、請求項3又は4に記載の処理装置。
5. The heat transfer member has an outer shape in the form of a thick circular plate, and the heat transfer member constituting block has a form in which the heat transfer member is radially divided into equal parts. Item 5. The processing device according to Item 3 or 4.
【請求項6】 ガス流通孔の径は、熱伝達部材の下層に
いくほど、その数が多くかつ径が小さくなるように形成
されていることを特徴とする、請求項1、2、3,4又
は5に記載の処理装置。
6. The diameters of the gas flow holes are formed such that the number of the gas flow holes becomes larger and the diameter becomes smaller toward the lower layer of the heat transfer member. The processing device according to 4 or 5.
【請求項7】 減圧自在な処理容器内の下部に、被処理
体を載置する載置台を有し、この載置台内には、前記被
処理体の温度を調整するための冷媒の流路が設けられた
処理装置において、 前記冷媒の流路内に、冷媒の流通を可能としつつ山部と
谷部とを交互に連続して有する側面が略波型の放熱体を
多段に積層した構造を有する熱伝達部材が設けられたこ
とを特徴とする、処理装置。
7. A processing table, on which a target object is mounted, is provided in a lower portion of a depressurizable processing container, and a refrigerant flow path for adjusting a temperature of the target object is provided in the mounting table. In the processing device provided with, in the flow path of the refrigerant, with the mountain portion while allowing the flow of the refrigerant.
A processing device comprising: a heat transfer member having a structure in which heat radiators having substantially wave-shaped side surfaces alternately having valleys are continuously stacked.
【請求項8】 前記熱伝達部材は、冷媒の流通が可能な
ハニカム構造の放熱体によって構成されたことを特徴と
する、請求項7に記載の処理装置。
8. The processing apparatus according to claim 7, wherein the heat transfer member is composed of a radiator having a honeycomb structure through which a refrigerant can flow.
【請求項9】 熱伝達部材は、熱伝達部材構成ブロック
を組み合わせてなることを特徴とする、請求項7に記載
の処理装置。
9. The processing apparatus according to claim 7, wherein the heat transfer member is formed by combining heat transfer member building blocks.
【請求項10】 熱伝達部材の外形は厚みのある略円板
形状をなし、熱伝達部材構成ブロックは、この熱伝達部
材を放射状に等分分割した形態を有することを特徴とす
る、請求項8又は9に記載の処理装置。
10. The heat transfer member has an outer shape in the form of a thick circular plate, and the heat transfer member constituting block has a form in which the heat transfer member is radially divided into equal parts. The processing device according to 8 or 9.
JP18067094A 1994-07-08 1994-07-08 Processing equipment Expired - Lifetime JP3411678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18067094A JP3411678B2 (en) 1994-07-08 1994-07-08 Processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18067094A JP3411678B2 (en) 1994-07-08 1994-07-08 Processing equipment

Publications (2)

Publication Number Publication Date
JPH0831755A JPH0831755A (en) 1996-02-02
JP3411678B2 true JP3411678B2 (en) 2003-06-03

Family

ID=16087261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18067094A Expired - Lifetime JP3411678B2 (en) 1994-07-08 1994-07-08 Processing equipment

Country Status (1)

Country Link
JP (1) JP3411678B2 (en)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921234B2 (en) 2002-02-28 2007-05-30 キヤノンアネルバ株式会社 Surface treatment apparatus and manufacturing method thereof
US20080164144A1 (en) * 2005-03-07 2008-07-10 Katsushi Kishimoto Plasma Processing Apparatus And Method Of Producing Semiconductor Thin Film Using The Same
US8294068B2 (en) * 2008-09-10 2012-10-23 Applied Materials, Inc. Rapid thermal processing lamphead with improved cooling
KR101083590B1 (en) * 2008-09-11 2011-11-16 엘아이지에이디피 주식회사 Plasma treatment apparatus
JP5198226B2 (en) * 2008-11-20 2013-05-15 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9267739B2 (en) * 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI766433B (en) 2018-02-28 2022-06-01 美商應用材料股份有限公司 Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
KR102354527B1 (en) * 2020-06-11 2022-01-25 한국생산기술연구원 A heat transfer structure having a flow path consist of cell structures, a wafer chuck including the same, manufacturing methods of the same, and optimal design methods of the same

Also Published As

Publication number Publication date
JPH0831755A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP3411678B2 (en) Processing equipment
US8092602B2 (en) Thermally zoned substrate holder assembly
JP6651576B2 (en) Pedestal with multi-zone temperature control and multi-purge function
TWI226425B (en) Surface processing apparatus
JP3347742B2 (en) Heat conductive chuck for vacuum processing device, heat transfer device, and method for transferring heat between chuck body and substrate
TWI589719B (en) Improved substrate temperature control by using liquid controlled multizone substrate support
US9448278B2 (en) Direct liquid-contact micro-channel heat transfer devices, methods of temperature control for semiconductive devices, and processes of forming same
US9681497B2 (en) Multi zone heating and cooling ESC for plasma process chamber
CN100495655C (en) Gas treatment device and heat readiting method
US8910591B2 (en) Apparatus and methods for capacitively coupled plasma vapor processing of semiconductor wafers
US20040212947A1 (en) Substrate support having heat transfer system
JP6298232B2 (en) Transfer robot with substrate cooling
US5903437A (en) High density edge mounting of chips
JP2010147478A (en) Low cost manufacturing of micro-channel heat sink
WO2004031677A1 (en) Thermal control device and method of use therefor
US6508062B2 (en) Thermal exchanger for a wafer chuck
JP2004259829A (en) Plasma treatment device
JP2001196650A (en) Thermoelectric converting module
JPH1126564A (en) Electrostatic chuck
JP2002353297A (en) Wafer chuck
JP3485538B2 (en) Plasma processing equipment
US20030222072A1 (en) Wafer heating devices for use in ion implantation systems
JP2003037223A (en) Semiconductor device
US20240105498A1 (en) Apparatus for processing substrate
TWI788236B (en) Loading plate and loading structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030311

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150320

Year of fee payment: 12

EXPY Cancellation because of completion of term