JP3409942B2 - Film thickness determination method using color measurement - Google Patents

Film thickness determination method using color measurement

Info

Publication number
JP3409942B2
JP3409942B2 JP11348795A JP11348795A JP3409942B2 JP 3409942 B2 JP3409942 B2 JP 3409942B2 JP 11348795 A JP11348795 A JP 11348795A JP 11348795 A JP11348795 A JP 11348795A JP 3409942 B2 JP3409942 B2 JP 3409942B2
Authority
JP
Japan
Prior art keywords
thickness
film thickness
thin film
index
colorimetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11348795A
Other languages
Japanese (ja)
Other versions
JPH08304035A (en
Inventor
薫 水野
康夫 高木
敏明 小林
五郎 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11348795A priority Critical patent/JP3409942B2/en
Publication of JPH08304035A publication Critical patent/JPH08304035A/en
Application granted granted Critical
Publication of JP3409942B2 publication Critical patent/JP3409942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は主に金属産業分野、特に
自動車、建材、缶材などの分野で、プレス成形、接合、
組み付けおよび燐酸塩化成処理後に塗装される用途に利
用される合金板の表面酸化層を除去するに際して、その
除去の程度の測定や金属板製造産業分野で、圧延油や
防錆油などの付着量を管理するための測定に関するも
のである。 【0002】 【従来の技術】固体表面に薄膜層が存在する場合、従来
の薄膜層の厚さの定量方法としては、例えばX線光電子
分光法や偏光解析法が挙げられる。一方、光電型色彩計
は国際照明委員会(CIE)によって定義された三刺激
値を測定し、たとえば ,a ,b 表色系の表色指
数などに変換して色彩を定量化するものである。該光電
型色彩計は分光型色彩計と違って、回折格子やプリズム
などの分光器を使わず、三刺激値と同じ分光感度を持っ
た3つのセンサーで直接三刺激値を求めるものである。
したがって光電型色彩計は分光型に比べて小型、安価
操作性、迅速測定ができるなどの利点を持ち、従来よ
り塗装、染色、印刷等の産業において色品質の管理など
に使われてきている。 【0003】 【発明が解決しようとする課題】従来の固体表面の薄膜
の厚さの定量法には以下のような欠点があった。すなわ
ち、X線光電子分光法や偏光解析法は装置が高価であ
る、解析に時間を要する等の欠点があり、またX線光電
子分光法は測定雰囲気や試料形状に制限がある等の理由
から、たとえば製造工程の管理に用いるためには実用的
ではなく、使用範囲が制限されており、時間やコストの
面からより簡便な方法が望まれている。また、色彩計は
色品質の管理には従来から用いられているものの、とく
に50nm以下の厚さの薄膜に対してはその厚さの定量
には用いられていなかった。本発明は前述した従来の方
法に比較して固体表面の薄膜の厚さをより迅速・簡便に
しかも安価に非破壊で材料を切り出すことなしに定量
る方法を提供することを目的とする。 【0004】 【課題を解決するための手段】本発明は固体表面に薄膜
層(固体とは複素屈折率の波長依存性の異なるもの)
が存在する場合、光電型色彩計を用いてあらかじめ厚さ
が既知の同薄膜によって覆われた同固体の、均等知覚色
空間である ,a ,b 表色系における明度指数L
、クロマネティクス指数a,b等の表色指数のい
ずれかを測定することによって、膜厚と表色指数との相
関関係を表す膜厚補正線を作成しておき、次に厚さが未
知の同薄膜に覆われた同固体表面の当該表色指数を当該
色彩計で測定し、当該補正線と比較することによって未
知の薄膜の厚さを決定することを特徴とする。特に干渉
色が生じない程度の50nm以下の膜厚の場合、当該薄
膜の膜厚と ,a ,b 等のいずれかの値が一意に
対応することを利用するものである。 【0005】 【作用】一般に薄膜の膜厚が50nmの場合干渉色が生
じる。したがって、たとえば、L ,a ,b のそれ
ぞれの値が薄膜の厚さと一意に対応しないため、
,b のいずれかひとつの値のみから膜厚を決定す
ることが困難である。しかしながら当該膜の厚さが5
0nm以下の場合、たとえば、L ,a ,b のいず
れかの値を測定すれば、当該膜厚を決定することができ
る。しかも、本発明の定量方法によって、試料になんら
変質をもたらさない。 【0006】 【実施例】 実施例1 マグネトロンスパッタ蒸着装置により予め研磨により平
坦にしたAl−5wt%Mg合金表面に、厚さの異なる
マグネシウム酸化物の層を有する試料を複数個作製し、
触針式膜厚計によって膜厚を測定した。ついでこれらの
試料に対して光電型色彩計でL* 値の測定を行った。膜
厚とL* 値との関係を図1に示す。図1から明らかなよ
うに、L* 値に対してマグネシウム酸化物層の厚さは一
意の対応関係を示している。したがって、図1はマグネ
シウム酸化物の層の厚さを求めるための補正線として用
いることができることがわかる。次にマグネトロンスパ
ッタ蒸着装置で作製した同一の系でマグネシウム酸化物
の層の厚さが未知の試料のL* 値を求めたところ、7
6.4の値を得た。測定結果を図1に□として示す。こ
の値を図1の補正線と比較することによってこの試料表
面のマグネシウム酸化物層の厚さは10nmであること
がわる。念のため、X線光電子分光法によって同じ酸洗
試料の酸化膜厚を測定したところ、10nmであり、本
発明方法によって正確に酸化膜厚を測定できることが確
認できた。 【0007】実施例2 Al−5wt%Mg合金板を板厚1mm,幅900mm
に冷間圧延したのち、70℃の脱脂剤浴中で、約20秒
間脱脂し、これを60℃の10wt%硫酸溶液中で酸洗
の時間を段階的に変えながら酸洗減量を調整した。つい
で各酸洗段階における合金表面のbを光電型色彩計で
測定した。次にX線光電子分光法を用いて酸化膜厚を決
定した。図2に膜厚とb値との関係を示す。図2から
明らかなように、クロマネティクス指数b値に対して
マグネシウム酸化物層の厚は一意の対応関係を示して
いる。したがって、図2は酸化膜厚を求めるための補正
線として用いることができる。次に前記アルミニウム合
金を図2の補正線を作成した場合と同じ条件で作製し、
3秒間酸洗した。この試料のbの値を求めたところ、
4.7の値を得た。測定結果を図2に□として示す。こ
の値を図2の補正線と比較することによって、この酸洗
した試料表面の酸化膜厚は5nmであると決定した。念
のため、X線光電子分光法によって同じ酸洗試料の酸化
膜厚を測定したところ、5nmであり、本発明方法によ
って正確に酸化膜厚を測定できることが確認できた。 【0008】 【発明の効果】本発明によれば固体表面の酸化膜などの
膜厚が定量的に決定できる。しかも測定は迅速、安価、
簡便に実施することができ、測定によって試料になんの
変化ももたらさない。したがって、たとえばアルミニウ
ム−マグネシウム合金の酸洗工程において、本発明によ
り測定した ,a ,b のいずれかの値が所定の範
囲内になるように、ライン速度、温度、酸濃度などを制
御すれば、酸洗の程度をオンラインで精度よく、迅速に
工程を管理することができ、低コストで高品質が得られ
る、歩留まりが向上するなどの効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used in the metal industry, particularly in the fields of automobiles, building materials, cans, etc.
When removing the surface oxide layer of an alloy sheet used for painting after assembly and phosphate conversion treatment, measure the degree of removal, and adhere to rolling oil and rust prevention oil in the metal sheet manufacturing industry. It relates to measurement and the like for controlling the amount. [0002] When a thin film layer is present on the surface of a solid, conventional methods for quantifying the thickness of the thin film layer include X-ray photoelectron spectroscopy and ellipsometry. On the other hand, a photoelectric colorimeter measures tristimulus values defined by the International Commission on Illumination (CIE), and converts them into, for example, L * , a * , b * colorimetric indices to quantify color. Is what you do. Unlike the spectral colorimeter, the photoelectric colorimeter directly obtains tristimulus values with three sensors having the same spectral sensitivity as the tristimulus values without using a spectroscope such as a diffraction grating or a prism.
Therefore, photoelectric colorimeters are smaller, cheaper ,
It has advantages such as high operability and quick measurement, and has been conventionally used for color quality management and the like in industries such as painting, dyeing, and printing. [0003] The conventional method for determining the thickness of a thin film on a solid surface has the following disadvantages. That is, X-ray photoelectron spectroscopy and ellipsometry have disadvantages such as expensive equipment and time-consuming analysis, and X-ray photoelectron spectroscopy has limitations such as measurement atmosphere and sample shape. For example, it is not practical for use in controlling a manufacturing process, and the range of use is limited. Therefore, a simpler method is desired in terms of time and cost. Further, colorimeter although conventionally used for the management of color quality, especially for the following thick film 50nm has not been used for the determination of its thickness. The present invention quantifies the thickness of a thin film on a solid surface more quickly, easily and inexpensively and without cutting out a material as compared with the above-mentioned conventional method .
It is intended to provide a method for doing so. [0004] The present invention SUMMARY OF] The thin-film layer to a solid surface (the solid and the complex refractive index of the wavelength dependency of different ones)
Exists, the lightness index L in the L * , a * , b * color system , which is a uniform perceived color space, of the same solid covered with the same thin film having a known thickness in advance using a photoelectric colorimeter.
*, * Black Manet Genetics indices a, by measuring either the colorimetric index b *, etc., in advance to create a film thickness correction curve showing the correlation between the film thickness and the color specification indices, then the thickness Is characterized in that the colorimetric index of the same solid surface covered with the unknown thin film is measured by the colorimeter and compared with the correction line to determine the thickness of the unknown thin film. In particular, in the case of a film thickness of 50 nm or less that does not cause interference color, the fact that the film thickness of the thin film uniquely corresponds to any one of values such as L * , a * , b *, etc. is used. Generally, when the thickness of a thin film is 50 nm, an interference color is generated. Thus, for example, for L *, a *, b * of each value does not correspond uniquely to the thickness of the thin film, L *,
It is difficult to determine the film thickness from only one of a * and b * . However the thickness of the thin film 5
In the case of 0 nm or less, the film thickness can be determined by measuring any of L * , a * , and b * , for example. In addition, the quantification method of the present invention does not alter the sample at all. EXAMPLE 1 A plurality of samples having different thicknesses of magnesium oxide layers were prepared on the surface of an Al-5 wt% Mg alloy which had been previously polished and flattened by a magnetron sputter deposition apparatus.
The film thickness was measured by a stylus type film thickness meter. Next, the L * values of these samples were measured with a photoelectric colorimeter. FIG. 1 shows the relationship between the film thickness and the L * value. As is clear from FIG. 1, the thickness of the magnesium oxide layer shows a unique correspondence with the L * value. Therefore, it can be seen that FIG. 1 can be used as a correction line for determining the thickness of the magnesium oxide layer. Next, the L * value of a sample whose thickness of the magnesium oxide layer was unknown was determined using the same system produced by the magnetron sputter deposition apparatus.
A value of 6.4 was obtained. The measurement results are shown in FIG. Comparing this value with the correction line in FIG. 1 indicates that the thickness of the magnesium oxide layer on the surface of the sample is 10 nm. As a precaution, when the oxide film thickness of the same pickling sample was measured by X-ray photoelectron spectroscopy, it was 10 nm, and it was confirmed that the oxide film thickness could be accurately measured by the method of the present invention. Example 2 An Al-5 wt% Mg alloy plate was 1 mm thick and 900 mm wide.
After cold rolling, the resultant was degreased in a degreasing agent bath at 70 ° C. for about 20 seconds, and the pickling loss was adjusted while gradually changing the pickling time in a 10 wt% sulfuric acid solution at 60 ° C. Next, b * of the alloy surface at each pickling stage was measured with a photoelectric colorimeter. Next, the oxide film thickness was determined using X-ray photoelectron spectroscopy. FIG. 2 shows the relationship between the film thickness and the b * value. As apparent from FIG. 2, the thickness of the magnesium oxide layer against black Manet Genetics index b * value indicates a unique correspondence. Therefore, FIG. 2 can be used as a correction line for obtaining the oxide film thickness. Next, the aluminum alloy was manufactured under the same conditions as when the correction line of FIG. 2 was manufactured,
Pickling was performed for 3 seconds. When the value of b * of this sample was determined,
A value of 4.7 was obtained. The measurement results are shown in FIG. By comparing this value with the correction line in FIG. 2, it was determined that the oxide film thickness of the pickled sample surface was 5 nm. As a precaution, when the oxide film thickness of the same pickling sample was measured by X-ray photoelectron spectroscopy, it was 5 nm, and it was confirmed that the oxide film thickness could be accurately measured by the method of the present invention. According to the present invention, the thickness of an oxide film or the like on a solid surface can be quantitatively determined. Moreover, the measurement is quick, inexpensive,
It can be carried out simply and the measurement does not change the sample. Therefore, for example, in the pickling step of an aluminum-magnesium alloy, the line speed, temperature, acid concentration, etc. are adjusted so that any of L * , a * , b * measured according to the present invention falls within a predetermined range. If controlled, the degree of pickling can be controlled on-line with high accuracy and speed, and high-quality can be obtained at low cost, and the yield can be improved.

【図面の簡単な説明】 【図1】鏡面研磨したアルミニウム−マグネシウム合金
板基板上にスパッタリング蒸着したマグネシウム酸化物
層の厚さと明度指数L* との関係を示した図、 【図2】アルミニウム−マグネシウム合金板の表面の酸
化膜厚とクロマネティクス指数b* との関係を示した図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the thickness of a magnesium oxide layer sputter-deposited on a mirror-polished aluminum-magnesium alloy plate substrate and a lightness index L * . FIG. 4 is a view showing a relationship between an oxide film thickness on a surface of a magnesium alloy plate and a chromonetics index b * .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 敏明 東京都中央区日本橋室町4丁目3番18号 スカイアルミニウム株式会社内 (72)発明者 北山 五郎 東京都中央区日本橋室町4丁目3番18号 スカイアルミニウム株式会社内 (56)参考文献 特開 平6−50722(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/06 G01J 3/46 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiaki Kobayashi 4-3-1-18 Nihonbashi Muromachi, Chuo-ku, Tokyo Inside Sky Aluminum Co., Ltd. (72) Inventor Goro Kitayama 4-3-1, Nihonbashi Muromachi, Chuo-ku, Tokyo (56) References JP-A-6-50722 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/06 G01J 3/46

Claims (1)

(57)【特許請求の範囲】 【請求項1】 固体表面に、同固体とは複素屈折率の波
長依存性の異なるもので、その膜厚が干渉色が生じない
程度の領域である50nm以下の薄膜層が存在する場合
の膜厚定量法において、光電型色彩計を用いてあらかじ
め厚さが既知の同薄膜によって覆われた同固体の、均等
知覚色空間である ,a ,b 表色系等の表色指数
を測定することによって、膜厚と表色指数との相関関係
を表す膜厚補正線を作成しておき、次に厚さが50nm
以下の未知の同薄膜に覆われた同固体表面の当該表色指
数を当該色彩計で測定し当該補正線と比較することによ
って未知の薄膜の厚さを決定することを特徴とする色彩
測定を利用した膜厚定量方法。
(57) to the Claims 1 solid surface, and the solid ones having different wavelength dependence of the complex refractive index, 50 nm below its thickness is an area that will not cause interference color In the film thickness quantification method in the case where the thin film layer is present, L * , a * , b , which is a uniform perceived color space of the same solid covered by the same thin film having a known thickness using a photoelectric colorimeter in advance. * By measuring a colorimetric index such as a colorimetric system, a film thickness correction line showing a correlation between the film thickness and the colorimetric index is created, and then the thickness is adjusted to 50 nm.
A color measurement characterized by determining the thickness of the unknown thin film by measuring the colorimetric index of the same solid surface covered by the following unknown thin film with the colorimeter and comparing with the correction line. Film thickness determination method used.
JP11348795A 1995-05-12 1995-05-12 Film thickness determination method using color measurement Expired - Fee Related JP3409942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11348795A JP3409942B2 (en) 1995-05-12 1995-05-12 Film thickness determination method using color measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11348795A JP3409942B2 (en) 1995-05-12 1995-05-12 Film thickness determination method using color measurement

Publications (2)

Publication Number Publication Date
JPH08304035A JPH08304035A (en) 1996-11-22
JP3409942B2 true JP3409942B2 (en) 2003-05-26

Family

ID=14613546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11348795A Expired - Fee Related JP3409942B2 (en) 1995-05-12 1995-05-12 Film thickness determination method using color measurement

Country Status (1)

Country Link
JP (1) JP3409942B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565298B2 (en) * 2010-12-24 2014-08-06 株式会社Ihi Carbon thin film thickness evaluation method
KR101242699B1 (en) * 2010-12-28 2013-03-12 주식회사 포스코 Method for measuring spreaded quantity of coating layer
US8982362B2 (en) * 2011-10-04 2015-03-17 First Solar, Inc. System and method for measuring layer thickness and depositing semiconductor layers
JP6528907B2 (en) * 2016-12-02 2019-06-12 日産化学株式会社 Undercoating foil for energy storage device electrode and method of manufacturing energy storage device electrode
FR3097314B1 (en) * 2019-06-14 2021-12-10 Safran Aircraft Engines Determination of a thickness by colorimetry.
US11216928B2 (en) 2019-09-10 2022-01-04 The Boeing Company Method and apparatus for coating thickness inspection of a surface and coating defects of the surface
CN111412843B (en) * 2020-04-14 2020-12-08 新磊半导体科技(苏州)有限公司 Method for measuring thickness of film layer in semiconductor epitaxial wafer

Also Published As

Publication number Publication date
JPH08304035A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP3409942B2 (en) Film thickness determination method using color measurement
JPS6176904A (en) Method for measuring film thickness
US20080212080A1 (en) Measuring a process parameter of a semiconductor fabrication process using optical metrology
JPS58154602A (en) Method and apparatus for measuring film thickness of surface of tin-free steel
WO2020186844A1 (en) Self-adaptive surface absorption spectrum analysis method and system, storage medium, and device
Laha et al. Use of spectroscopic ellipsometry to study Zr/Ti films on Al
JPH095038A (en) Chromate treatment steel plate and chromate film thickness measuring method and apparatus
Beck et al. Decorative hard coatings: Interdependence of optical, stoichiometric and structural properties
US7268876B1 (en) General virtual interface algorithm for in-situ spectroscopic ellipsometric data analysis
JP3318393B2 (en) Measuring method of element concentration on surface of alloy
JPH07270130A (en) Method of measuring thickness of oxide film
JPS5830605A (en) Method for measuring thickness of surface film
JP2935412B2 (en) Method and apparatus for measuring thickness of thin film and method for manufacturing optical filter
Suzuki et al. Quantitative GDOS analysis of oxide films on steels
JP2006220554A (en) Method for estimating covering film thickness of paint film
Zapien et al. Application of spectral and temporal weighted error functions for data analysis in real-time spectroscopic ellipsometry
Kechagias et al. ‘Real-time’multiwavelength ellipsometry diagnostics for monitoring dry etching of Si and TiNx deposition
Goeminne et al. Non‐destructive characterization of chromium phosphate coated aluminium with SE and FTIRS correlated to surface analytical analyses by AES and TEM
JP3141803B2 (en) Method for calculating spectral line intensity of fluorescent X-ray
Johs et al. Accuracy of color determination from spectroscopic ellipsometry measurements
Trolier-McKinstry et al. Composition profiling of graded dielectric function materials by spectroscopic ellipsometry
JP3369011B2 (en) Quantitative analysis method of weight composition ratio of element in depth direction of metal material in glow discharge emission spectroscopy
JPH06331323A (en) Measurement of thickness of protective layer of magnetic recording medium
US20050045824A1 (en) Measurement of metal polish quality
JP2001116518A (en) Method and instrument for measuring film thickness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees