JP3409678B2 - Manufacturing method of screwed steel pipe pile - Google Patents

Manufacturing method of screwed steel pipe pile

Info

Publication number
JP3409678B2
JP3409678B2 JP04026598A JP4026598A JP3409678B2 JP 3409678 B2 JP3409678 B2 JP 3409678B2 JP 04026598 A JP04026598 A JP 04026598A JP 4026598 A JP4026598 A JP 4026598A JP 3409678 B2 JP3409678 B2 JP 3409678B2
Authority
JP
Japan
Prior art keywords
steel pipe
steel
wing
mounting member
wings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04026598A
Other languages
Japanese (ja)
Other versions
JPH11241337A (en
Inventor
正宏 林
隆 岡本
敏雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP04026598A priority Critical patent/JP3409678B2/en
Publication of JPH11241337A publication Critical patent/JPH11241337A/en
Application granted granted Critical
Publication of JP3409678B2 publication Critical patent/JP3409678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、翼を有するねじ込
み式鋼管杭に係り、さらに詳しくは、翼の取付部に肉厚
の厚い取付部材又は強度の大きい取付部材を用いた鋼管
杭に回転力を与え、無排土で地中に埋設することのでき
るねじ込み式鋼管杭に関するものである。 【0002】 【従来の技術】鋼管の先端部や側面に翼状板を取付けた
鋼管杭に、地上に設置した機械により回転力を与え、ね
じの作用により鋼管杭を地中に埋設する方法は、従来か
ら多数提案されており、その一部は小径の杭を対象とし
たものではあるが実用化されている。ここでは、本発明
に関連すると思われる3件の発明について、以下に説明
する。 【0003】特公平2−62648号公報に記載された
鋼管杭の埋設方法は、鋼管杭本体の下端に底板を固設
し、この底板に掘削刃を設けると共に、杭本体の下端部
外周面に杭本体の外径のほぼ2倍強の外径を有する翼幅
の大きな杭ねじ込み用の螺旋翼を、ほぼ一巻きにわたり
突設した鋼管杭を、軟弱地盤にねじ込むように回転させ
ながら地中に押圧し、下端の掘削刃によって杭本体先端
の土砂を掘削軟化させて、杭側面の未掘削土砂中に螺旋
翼を食い込ませて、土の耐力を反力として杭体を回転推
進しつつ、掘削軟化した土砂を杭側面に押出して圧縮
し、無排土で地中に杭体をねじ込んでゆくようにしたも
のである(従来技術1)。 【0004】また、特開平7−292666号公報に記
載された鋼管杭は、一枚の長さが半巻きで、外径が杭本
体の1.5〜3倍程度である一対のラセン翼を、鋼管杭
の下端部外周面の同じ高さ位置でラセン方向を同じにし
て互いに相対的に複数枚不連続に固定したものである
(従来技術2)。 【0005】さらに、特開昭61−98818号公報に
記載された回転圧入式鋼管杭は、鋼製円筒体の下部に、
上下方向に延長する押込用傾斜前面を有する刃を設ける
と共に、その傾斜前面の下端部から円筒体回転方向の後
方に向って斜めに上昇する傾斜ブレードを固定して環状
のドリルヘッドを構成し、そのドリルヘッドの上端部に
鋼管杭の下端部を取付けたものである(従来技術3)。
これら従来技術1〜3に示す螺旋翼又は傾斜ブレード
は、施工に際してねじとして機能すると共に、大きな地
盤反力を得るための支持体としての機能も備えている。 【0006】 【発明が解決しようとする課題】従来技術1及び2の鋼
管杭は、工事完了後上載構造物の重量や地震力により鋼
管杭に鉛直力が作用すると、螺旋翼は翼下面の地盤から
強い反力を受ける。その結果、螺旋翼の付け根部に大き
な曲げモーメントが生じ、これが鋼管に伝達されて大き
な曲げ応力が発生する。この曲げ応力は、従来技術2の
明細書にも記載されているように、鋼管の外径が100
〜200mm程度の径の小さい鋼管杭でれば実用上大きな
問題にはならない。しかしながら、広く使用されている
鋼管の外径が500〜600mmの鋼管杭では、設計上大
きな問題になる。 【0007】螺旋翼の外径は、従来技術1及び2に示さ
れるように、施工上あるいは支持力上、鋼管の外径の2
倍程度がよいとされている。ここで、鋼管の外径が20
0mmの鋼管杭と600mmの鋼管杭を比較する。いま、そ
れぞれの螺旋翼の外径を、鋼管の外径の2倍である40
0mm、1200mmとすると、螺旋翼の幅、すなわち(翼
外径−鋼管外径)/2は、それぞれ100mm、300mm
となる。螺旋翼に作用する単位面積当りの地盤反力が同
じとすると、螺旋翼の付け根に作用する単位周長当りの
曲げモーメントは、螺旋翼の幅の2乗に比例するので、
外径600mmの鋼管では外径200mmの鋼管に比べて約
9倍と大きくなる。このため、螺旋翼は大変厚いものが
要求される。 【0008】一方、螺旋翼の付け根近傍の鋼管には、螺
旋翼から曲げモーメントが伝達され、曲げ応力が発生す
る。鋼管に伝達される曲げモーメントの大きさは鋼管の
寸法によって異なるが、螺旋翼の付け根に生じる曲げモ
ーメントの5〜10割程度になる。例えば、外径600
mmの鋼管の場合、設計上40mm以上の厚さが必要な螺旋
翼の曲げモーメント値の5〜10割程度の曲げモーメン
トが螺旋翼の付け根近傍の鋼管に作用する。外径600
mmの鋼管の場合、一般に使用されている鋼管の肉厚は5
〜12mm程度であり、地盤反力によって生じる鋼管の曲
げ応力は上記の鋼管の設計許容曲げ応力を大きく超過す
ることになる。これに対処するために、肉厚が上記の2
〜3倍の鋼管を用いることも考えられるが、そのためコ
ストが著しく大きくなり、実用上設計不能にならざるを
得ない。 【0009】また、従来技術3の鋼管杭は、鋼製円筒体
の先端部に蓋がないため、大きな地盤支持力を得ること
ができないという重要な問題を持っており、また、傾斜
ブレードの幅が狭く、鋼製円筒体の先端部の内外に僅か
に突出する構造のため、傾斜ブレードを大きな地盤支持
力の支持体として期待することができない。 【0010】本発明は、上記の課題を解決するためにな
されたもので、次のようなねじ込み式鋼管杭の製造方法
を得ることを目的としたものである。 (1)材料を無駄なく使用することができ、その上構造
が簡単で加工が少なく、コストを低減することができ
る。 また、以下のような特徴を有するねじ込み式鋼管杭を製
造することを目的としている。 (2)翼を利用して大きな地盤支持力が得られること。 (3)翼から伝達される曲げモーメントにより、鋼管杭
に過大な応力を発生させないこと。 (4)強固な地盤までねじ込みにより鋼管杭を埋設でき
ること。 【0011】 【課題を解決するための手段】本発明に係るねじ込み式
鋼管杭の製造方法は、鋼管と、先端部又は外周面に翼が
取付けられた取付部材とを備えてなるものであって、前
記鋼管の肉厚より厚い肉厚又は前記鋼管の強度より大き
い強度の鋼板を切断して平行四辺形状又は台形状の鋼板
を製作する工程と、該平行四辺形状又は台形状の鋼板を
円筒状に曲げ加工してその両端部を溶接接合することに
よって端部にほぼレ字状の取付部を有する取付部材を製
作する工程と、該取付部に翼を取り付ける工程と、前記
鋼管の下端部又は取付部材の何れか一方を他方に嵌入し
て一体に接合する工程と、を備えたものである。 【0012】 【0013】 【発明の実施の形態】前述のように、鋼管杭の翼によっ
て大きな地盤反力を受けるためには、翼は高い剛性が要
求される。例えば、鋼管の外径が500mm、翼の外径が
1000mmの場合、翼には地盤反力により大きな曲げモ
ーメントが発生するため、設計上、厚さ40mm程度の鋼
板を用いることが要求され、この曲げモーメントは鋼管
に伝達されて大きな曲げ応力が生じる。上記の曲げモー
メントの大きさは、鋼管の外径と翼の外径との関係や地
盤反力の分布状態によっては、鋼管の内側と外側の翼に
加えられる曲げモーメントに大きなアンバランスが生
じ、これが鋼管に伝達されて、図7に示すように、鋼管
に大きな曲げモーメントが伝達されることが考えられ
る。 【0014】本発明は、鋼管杭の曲げ応力の影響がある
部分に、鋼管の肉厚より厚い板厚の鋼板、又は鋼管の強
度より大きい強度の鋼板によって構成した取付部材を使
用することにより、曲げ応力の影響を受ける部分に発生
する応力を許容応力内に収めるようにしたものである。
以下、本発明の実施の形態について説明する。 【0015】[実施形態1]図1は本発明の実施形態1
に係るねじ込み式鋼管杭の斜視図である。図において、
1はねじ込み式鋼管杭(以下、単に鋼管杭という)、2
は鋼管杭1を構成する鋼管、3は下端部に翼10を構成
する鋼製翼11a,11bが取付けられ、鋼管2の下端
部が嵌入されて接合され、鋼管2と共に鋼管杭1を構成
する取付部材である。 【0016】取付部材3は、鋼管2の肉厚t1 より厚い
板厚t2 でその幅(又は長さ)が鋼管2の外周長よりや
や長い鋼板、又は強度が鋼管2の強度より大きくその幅
(又は長さ)が鋼2の周長よりやや長い鋼板を、図2
に示すように、斜めに切断して平行四辺形状の鋼板7a
を製作する。そして、この鋼板7aを矢印で示すように
曲げ加工して円筒状に形成し、その両端部を溶接接合し
て図3に示すように構成したものである。これにより、
取付部材3の上下端部には、螺旋状仮想線のピッチPに
対応した段差部5により、ほぼレ字状(螺旋状)の翼1
0の取付部4が形成される。この場合、取付部材3の内
径D2 は、鋼管2の外径Dとほぼ等しいか、又は若干大
きく形成される。 【0017】図4は図2の台形状に切断された鋼板7b
を曲げ加工して円筒状の取付部材3を構成したもので、
下端部にはピッチPの螺旋状の取付部4が形成され、上
端部はほぼ水平になっている。なお、取付部材3を構成
する鋼板は、平行四辺形状又は台形状に限定するもので
はなく、矩形状等、ほぼ短冊状のものであればよい。 【0018】この場合、段差部5によって形成されるピ
ッチPは、鋼管杭1を埋設する地盤の状態、鋼管2の外
径Dなどによって異なるが、一般にP=0.1〜0.6
D(Dは鋼管2の外径)程度であることが望ましい(以
下の各実施形態においても同様である)。このピッチP
が0.1未満の場合は鋼管杭1の1回転当りの貫入量が
低下し、また、0.6Dを超えると1回転当りの貫入量
が大きくなりすぎるため、鋼管杭1を回転するためのト
ルクが過大になり、さらに鋼製翼11a,11bで掘削
する深さが大きくなるため、支持力が低下することがあ
る。 【0019】取付部材3の板厚t2 及びその長さLは、
想定される地盤反力を考慮して、数値解析によって決定
することになる。先ず、板厚t2 についてみるに、例え
ば、鋼管2の外径Dが500mm、翼10の直径D4 が1
000mmで、500tの鉛直荷重が作用した場合、通常
の鋼管では、軸力のみが作用する部分では14mmの板厚
で降伏応力(2400kgf/cm2 )内に収まるところ、軸
力と曲げモーメントの両者が作用する部分の応力を許容
値内に収めるためには、20mm程度の肉厚の鋼管を必要
とする。このため、鋼管の肉厚を厚くして翼10を直接
鋼管に取付ける方法では、不経済になってしまう。 【0020】そこで、前述のように、曲げモーメントが
作用する部分に鋼管2の肉厚t1 より厚い肉厚t2 の取
付部材3、又は鋼管2の強度より大きい強度の取付部材
を用いれば、鋼管2の全体の肉厚を厚くする必要がない
ので経済的であり、その上大きな曲げモーメントにも十
分対応できることになる。また、取付部材3は前述のよ
うなほぼ短冊状に切断した鋼板を曲げ加工して溶接する
だけなので、作用荷重に対応して各種サイズのものを用
いることができる。 【0021】次に、取付部材3の長さLは、発明者らの
実施したFEM解析によれば、地盤反力によって異なる
が、一般に0.3D(Dは鋼管2の外径)以上にするの
が望ましい(以下の各実施形態においても同様とす
る)。なお、上記の説明では、ほぼ短冊状の鋼板を曲げ
加工して取付部材3を製作した場合を示したが、内径が
鋼管2の外径とほぼ等しいか又は若干大きく、肉厚が鋼
管2の肉厚より厚い鋼管又は強度が鋼管2の強度より大
きい鋼管を所定の長さLに切断し、その下端部をピッチ
Pの螺旋状に切除して、ほぼ図4に示すような構造の取
付部材を構成してもよい。 【0022】翼10は、図5に示すように、外径D4
円形鋼板11又は楕円形鋼板を中央から2分割して平板
状の鋼製翼11a,11bを形成し、その直線縁部を取
付部材3の取付部4の段差部5から中心を通る線上に載
置し、溶接により取付部4に接合して全体としてほぼ螺
旋状に構成したものである。この場合、取付部材3の先
端部において、鋼製翼11a,11bの直線縁部によっ
て形成された空間部を、閉塞部材によって閉塞してもよ
い。なお、翼10の外径D4 は、一般に、鋼管2の外径
Dの1.5〜3.0倍程度が望ましい(以下の各実施形
態においても同様とする)。 【0023】また、本実施形態においては、内角の和が
360°の2枚の鋼製翼11a,11bにより翼10を
構成した場合を示したが、円形鋼板11を3等分、4等
分して、内角の総和が360°の複数枚の鋼製翼を、全
体としてほぼ螺旋状を形成するように取付部材3の先端
部に取付けて翼10を構成してもよい。鋼製翼の数が多
いほど螺旋形に近くなるが、実際の施工にあたっては4
枚あれば充分であり、枚数が多くなりすぎるとねじとし
ての機能が低下すると共に、翼取付け構造上不安定にな
り、取付手間が増加するだけで、不経済である。 【0024】本実施形態においては、下端部に鋼製翼1
1a,11bが取付けられた取付部材3内に、上部から
鋼管2の下端部を所定の位置まで嵌入し、取付部材3の
上縁部と鋼管2の外周面を溶接して一体に接合し、鋼管
杭1が構成される。この場合、取付部材3と鋼管2の接
合にあたっては、鋼管2が取付部材3内に嵌入されてい
るため安定しており、また、取付部材3の上縁部と鋼管
2とを溶接できるので、容易かつ確実に接合することが
できる。なお、鋼管2の外周面又は取付部材3の内周面
に、鋼管2を取付部材3に嵌入する際の位置決め用のス
トッパを設ければ、より確実に先端部への鉛直荷重の伝
達を行うことができる。また、取付部材3に鋼製翼11
a,11bを取付ける前に取付部材3と鋼管2の接合を
行えば、取付部材3の上縁部と鋼管2の外周面、及び取
付部材3の内周面又は下縁部と鋼管2の下端部とを溶接
により確実に一体化することができる。 【0025】鋼管杭1の埋設にあたっては、図6に示す
ように、その杭頭部を施工機械30に搭載した回転駆動
装置31に連結し、回転駆動装置31を駆動して鋼管杭
1を回転させ、翼10のねじ作用により地盤中に推進さ
せて埋設する。このとき、鋼管杭1の先端開口部(した
がって、取付部材3の先端開口部)の大部分は鋼製翼1
1a,11bで閉塞されているので、鋼管杭1内には土
砂はほとんど浸入しない。 【0026】上記のように構成した本実施形態によれ
ば、鋼管杭1の先端開口部の閉塞と推進翼との両機能を
備えた鋼製翼11a,11bが、上載構造物等による鉛
直力の作用時に支持体として機能し、大きな地盤支持力
を得ることができる。また、鋼管杭1の翼10に発生す
る曲げモーメントが伝達される部分に取付部材3を配設
したので、取付部材3に生じる曲げ応力を許容値内に収
めることができ、鋼管杭1に翼10により生じる曲げモ
ーメントを伝達することがない。さらに、取付部材3を
設けたことにより通常の肉厚の鋼管2を用いることがで
き、また、取付部材3は加工部分が少なく、無駄なく製
作できるため、コストを低減することができる。 【0027】[実施形態2]図8は本発明の実施形態2
の斜視図である。実施形態1では、鋼管2の外径Dとほ
ぼ等しいか又は若干大きい内径D2 の取付部材3を用
い、この取付部材3内に鋼管2を嵌入して溶接した場合
を示したが、本実施形態は、鋼管2の内径D1とほぼ等
しいか又はこれより若干小さい外径D3 の取付部材3を
用い、取付部材3の外周に鋼管2を嵌合し、鋼管2の下
縁部と取付部材3の外周面を溶接して鋼管杭1を構成し
たものである。本実施形態の作用効果は、実施形態1の
場合と同様なので説明を省略する。 【0028】[実施形態3]次に、実施形態1,2の各
種の変形例について説明する。図9は第1の変形例を示
す斜視図で、取付部材3の下端部に鋼製翼11a,11
bを取付けたものである。取付部材3は、図10、図1
1に示すように(図10は説明を容易にするため上下を
逆にしてある)、鋼管2の外周長よりやや長い(又は鋼
管2の内周長よりやや短い)矩形状の鋼板8の一方の長
辺の中央部を、前述の螺旋状仮想線のピッチPの2分の
1の高さの段部5bとして鋸歯状に形成し、この鋼板8
を曲げ加工して図10に示すような円筒状に構成し、そ
の下端部にレ字状の2つの取付部4a,4bを形成した
ものである。なお、2枚の長方形状の鋼板の端部を互い
にずらせて接合したのち円筒状に曲げ加工して2つのレ
字状の取付部4a,4bを形成してもよい。また、鋼板
8は平行四辺形状又は台形状でもよく、さらには鋼管の
端部を鋸歯状に切除して取付部材3を構成してもよい。 【0029】このような取付部材3の取付部4a,4b
に図5に示すような鋼製翼11a,11bを溶接により
取付け、取付部材3に鋼管2を嵌合すれば、鋼管杭1が
構成される。本変形例の作用効果は、実施形態1,2の
場合とほぼ同様である。 【0030】図12は第2の変形例の斜視図で、取付部
材3の下端部に四角形の鋼製翼21a,21bからなる
翼10を設けたものである。なお、取付部材3は実施形
態1,2の取付部材3と同じものを使用した例が示して
ある。 【0031】翼10は、例えば、図13に示すような四
角形の鋼板21を中央から2分割した四角形の鋼製翼2
1a,21bからなるので、きわめて簡単な構造のもの
である。そして、この鋼製翼21a,21bを合わせた
大きさは、鋼管杭1を埋設する地盤の状態、鋼管2の外
径などによって異なるが、一般に、鋼管2の外径Dの
1.5〜3.0倍程度が望ましい。ここで、鋼製翼21
a,21bの大きさとは、図13に示す鋼板21の対角
線の長さLをいう。なお、鋼製翼21a,21bは、三
角形の鋼板を2分割して構成してもよい。 【0032】本変形例に係る翼付き鋼管杭1の作用、効
果も上述の各実施形態の場合とほぼ同様であるが、本変
形例においては、鋼管杭1の地盤への貫入に際して、土
砂の掘削の回転方向の側面が鋼製翼21a,21bの角
部(最大の大きさ部)により形成されるため、先端面部
の後方の側面は掘削された地盤から離れる傾向にある。
すなわち、鋼製翼21a,21bは掘削部の後方に逃げ
面を有する。このため、掘削部後方の側面が掘削された
地盤壁面に常時接触する外周円弧状の翼を有する鋼管杭
に比べて、貫入時の摩擦抵抗を低減することができる。 【0033】図14は本変形例の他の例を示すもので、
本例は、四角形状の鋼製翼21a,21bに代えて、四
角形の鋼板を対角線で切断して2分割した三角形状の鋼
製翼21c,21dを取付部材3の先端部に取付けたも
のである。本例の機能も図12の例の場合とほぼ同様で
ある。 【0034】図15は本変形例のさらに他の例を示すも
ので、本例は、鋼製翼21e,21fを六角形の鋼板を
2分割して構成したものである。本例の機能も図12の
例の場合とほぼ同様であるが、翼10をより円形に近づ
けたことにより、四角形状の鋼製翼と比べて支持力特性
が向上する。 【0035】上記の説明では、三角形、四角形又は六角
形の鋼板を2分割して鋼製翼21a〜21fを構成した
場合を示したが、例えば、八角形以上の多角形の鋼板を
2分割して鋼製翼を構成してもよい。また、上記の説明
では、多角形の鋼板を2分割して鋼製翼を構成した場合
を示したが、3分割以上に分割して鋼製翼を構成し、こ
れを取付部材3の先端部に設けた3個以上の取付部に順
次取付けるようにしてもよい。 【0036】図16は第3の変形例の斜視図である。本
例は、鋼管に角形鋼管2aを用いると共に、取付部材3
を角形に構成したものである。取付部材3の製作にあた
っては、例えば下端部が傾斜した4枚の矩形状の鋼板又
はL字状の鋼板などを四角形に溶接して下端部にほぼ螺
旋状の取付部4aを形成したものである。なお、本変形
例における角形鋼管2aの大きさD(実施形態1におけ
る鋼管2の外径に対応)は、角形鋼管の対角線の長さを
いう。 【0037】本変形例に係る鋼管杭1の作用効果も上記
各実施形態の場合とほぼ同様であるが、鋼管2が通常の
鋼管(丸形)からなる鋼管杭1の場合は、ねじ込みに際
して、鋼管2の全周面が地盤に摺接するため周面摩擦が
大きく、大きなトルクを必要とする。これに対して、角
形鋼管2aで構成した場合は、ねじ込みに際して、主と
して角形鋼管2aの角部が周面の地盤に接触するため周
面摩擦が小さく、このためねじ込みトルクを軽減するこ
とができる。 【0038】図17は第4の変形例の斜視図で、鋼管杭
1をリブ付き鋼管2bで構成したものである。すなわ
ち、例えば圧延によって表面に複数のリブ2cが設けら
れた鋼板を曲げ加工して、外周面に螺旋状のリブ2cを
形成したものである。このリブ2cのピッチPは、前述
の実施形態1の螺旋状仮想線のピッチPと同程度になっ
ている。この場合、取付部材3には、実施形態1又は2
で説明した取付部材3を使用する。 【0039】本変形例の作用、効果も前記各実施形態の
場合とほぼ同様であるが、地中へのねじ込みに際しては
螺旋状のリブ2cも推進に寄与するので、推進力を向上
させることができる。 【0040】上記の実施形態1,2では、円形鋼板又は
楕円形鋼板を複数等分して内角の総和が360°の鋼製
翼11a〜11bを形成し、これを取付部材3の先端部
に取付けて翼10を構成した場合を示したが、本変形例
は、鋼製翼11a,11bの内角の総和を360°より
小さく、又は360°より大きく形成したものである。
図18、図19は第5の変形例を示すもので、鋼製翼1
1a,11bの内角の和を360°より小さくし、鋼製
翼11aと11bとの間にはすき間13が生じたもので
ある。また、図20、図21は鋼製翼11a,11bの
内角の和を360°より大きくしたもので、鋼製翼11
aと11bとの間には重なり14が生じる。なお、この
場合、例えば、鋼製翼11bの取付けにあっては、段部
5の上部において取付部4に連続する溝4cを設け、こ
の溝4cに鋼製板11bの一部を嵌入すればよい。 【0041】発明者らが行った現場試験や数値解析など
による検討結果によれば、翼10を構成する鋼製翼11
a,11bの内角の和が320°より小さいと、鋼管杭
1のねじ込み施工の際の貫入速度が低下すると共に、埋
設後の先端支持力が低下する。また、400°を超える
と、粒径の大きい砂礫地盤では翼10の間に砂礫が詰っ
て施工性が悪くなることがわかった。このようなことか
ら、翼10を構成する鋼製翼11a,11bの内角の総
和は、320°〜400°の範囲内とすることが望まし
い。 【0042】この場合、翼10を構成する各鋼製翼11
a,11bの内角をすべて等しくする必要はなく、若干
異なってもよい。また、すき間13又は重なり14を1
か所に集中する必要はなく、隣接する鋼製翼11a,1
1bの間に適宜設けてもよい。さらに、鋼製翼11a,
11bも2個に限定するものではなく、3個以上でもよ
い(本実施形態は他の実施形態にも実施することができ
る)。 【0043】[実施形態4]図22は本発明の実施形態
4の斜視図である。本実施形態は、上下の端部がほぼ平
行な円筒状の取付部材3aの先端部に閉塞部材15を取
付けると共に、外周に鋼製翼12a,12bからなる翼
10を設けたものである。取付部材3aは、その内径が
鋼管2の外径とほぼ等しいか若しくは若干大きく、又は
その外径が鋼管の内径とほぼ等しいか若しくは若干小さ
く、鋼管2の肉厚より厚い肉厚の鋼管、又は鋼管2の強
度より大きい強度の鋼管を所定の長さに切断して構成
し、その先端部に溶接により閉塞部材15を取付けて先
端開口部を閉塞したものである。なお、取付部材3aは
鋼板を曲げ加工して製作してもよい。 【0044】翼10は図23に示すように、外径D6
鋼管2の外径より大きく(例えばD6 =2D)、内径D
5 が鋼管2の外径とほぼ等しいドーナツ状の平鋼板12
を中央から2分割して平板状の鋼製翼12a,12bを
構成したもので、この鋼製翼12a,12bは、取付部
材3aの外周面に想定されたピッチPの螺旋状仮想線に
沿って溶接により取付けられ、全体としてほぼ螺旋状の
翼10が形成される。そして、外周に翼10を有する取
付部材3aに鋼管2を嵌入又は嵌合し、溶接により接合
することにより、鋼管杭1が構成される。 【0045】本実施形態においては、内角の和が360
°の2枚の鋼製翼11a,11bにより翼10を構成し
た場合を示したが、ドーナツ状の平鋼板11を3等分、
4等分して、内角の総和が320°〜400°の複数枚
の鋼製翼を、全体としてほぼ螺旋状を形成するように取
付部材3aの外周に取付けて翼10を構成してもよい。
鋼製翼の数が多いほど螺旋形に近くなるが、実際の施工
にあたっては4枚あれば充分であり、枚数が多くなりす
ぎるとねじとしての機能が低下すると共に、翼取付け構
造上不安定になり、取付手間が増加するだけで、不経済
である。 【0046】図24は本実施形態の他の例を示すもの
で、図23に示す平板状の鋼製翼12a,12bを、取
付部材3aの外周面に、螺旋状仮想線に沿って互いに同
じ角度でかつ異なる向きに取付けたものである。本実施
形態における取付部材3aの長さL1 は、発明者らの実
施したFEM解析によれば、地盤反力によって異なる
が、一般に0.7D(Dは鋼管2の外径)以上にするの
がのぞましく、また、翼10の取付位置は、鋼管杭1の
ねじ込み施工上及び支持力性能上、取付部材3aの先端
部から1D以内であることが望ましい。なお、図22、
図24では、取付部材3aに1段の翼10を設けた場合
を示したが、2段またはそれ以上の複数段の翼10を設
けてもよい。 【0047】[実施形態5]図25は本発明の実施形態
5の斜視図で、取付部材3及びこれに設けた翼10は、
実施形態1の場合と同様である。本実施形態は、翼10
の上方において、鋼管2の外周面に図23に示すような
平板状の鋼製翼12a,12bを、ピッチPの螺旋状仮
想線に沿って翼10とほぼ同じ角度で、かつ互いに異な
る方向に取付けて翼20(上段翼)を設けたものであ
る。なお、この上段翼20は、実施形態4の図22の場
合と同様に、鋼製翼12a,12bを螺旋状仮想線に沿
って連続して螺旋状を形成するように取付けてもよい。 【0048】本実施形態によれば、鋼管杭1の地中への
ねじ込みに際しては、上段翼20が推進に大きく寄与し
て推進力を向上させるので、ねじ込みトルクを軽減する
ことができる。この上段翼20は鋼管杭1に複数段設け
てもよく、また、他の実施形態にも実施するとができ
る。なお、上段翼20は鋼管杭1の上方に設けられてい
るため、これに加わる地盤反力は比較的小さいので、上
段翼20を直接鋼管2に取付けることができるが、取付
位置、地盤の状態等によっては上段翼20の取付部にも
取付部材を設けてもよい。 【0049】[実施形態6]鋼管2の外径が大きくなる
と、前述のように翼10の外径も大きくなり、これに伴
って翼10の厚さも厚くなる。この結果、例えば、図6
に示すような施工機械30で鋼管杭1を地中にねじ込む
際に、鋼製翼11a,11b等の回転方向側の端部に地
盤による大きな抵抗が加わり、トルクが弱いと回転不能
になって地中に貫入できないことがある。このため、施
工機械30を大型化しなければならないという問題が生
じる。本実施形態は、このような問題を解決するため
に、鋼製翼11a,11b等のくい込み部(回転方向側
の端部)を鋭角に切除して傾斜面を設け、これにより端
部に加わる地盤の抵抗を軽減し、地中に貫入し易くして
トルクの低減をはかったものである。なお、傾斜面に代
えて鋼製翼11a,11b等のくい込み部に掘削を補助
するための掘削刃を取付けてもよい。なお、鋼管杭1を
地中にねじ込んで埋設する際、鋼製翼11a,11bの
端部が変形するのを防止するため、鋼製翼11a,11
b等のくい込み部に、補強部材を取付けてもよい。本実
施形態は、他の実施形態にも実施することができる。 【0050】上記の説明では、取付部材又は鋼管に取付
けた翼を複数個の平板状の鋼製翼で構成した場合を示し
たが、螺旋状仮想線に沿って曲げ加工した1個又は複数
個の螺旋状翼で構成してもよい。 【0051】 【発明の効果】本発明に係るねじ込み式鋼管杭の製造方
法においては、鋼板を切断して平行四辺形状又は台形状
の鋼板を製作して、該平行四辺形状又は台形状の鋼板を
円筒状に曲げ加工してその両端部を溶接接合することに
よって端部にほぼレ字状の取付部を有する取付部材を製
作するようにしたので、材料を無駄なく使用することが
でき、その上構造が簡単で加工が少ないので、コストを
低減することができる。また、本発明の製造方法によっ
て製造されるねじ込み式鋼管杭は、鋼管と、この鋼管の
肉厚より厚い肉厚又はこの鋼管の強度より大きい強度を
有し、先端部又は外周面に翼が取付けられた取付部材と
を備え、鋼管の下端部又は取付部材の何れか一方を他方
に嵌入して一体に接合してなるので、翼を利用して大き
な地盤支持力が得られ、翼から大きな曲げモーメントが
伝達されても鋼管杭に過大な応力が伝達することがな
い。また、鋼管又は取付部材の何れかを他方に嵌入して
接合するようにしたので、接合作業が容易である。さら
に、鋼管全体の肉厚を厚くする必要がないので、経済的
である。 【0052】 【0053】 【0054】
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw
For steel pipe piles, more specifically,
Steel pipe using a thick or strong mounting member
The pile can be buried underground with no soil removal by applying rotational force.
Screwed steel pipe piles. [0002] 2. Description of the Related Art A wing plate is attached to the tip or side of a steel pipe.
A rotating force is applied to the steel pipe pile by a machine installed on the ground,
The conventional method of burying steel pipe piles underground by the action of
Have been proposed, some of which are targeted at small diameter piles.
It has been put to practical use. Here, the present invention
The following describes three inventions that are believed to be related to
I do. [0003] Japanese Patent Publication No. 2-62848 discloses
The method of burying steel pipe piles is to fix a bottom plate at the lower end of the steel pipe pile body.
The bottom plate is provided with a digging blade, and the lower end of the pile body is
Wingspan with an outer diameter almost twice the outer diameter of the pile body on the outer peripheral surface
Helical wing for screwing large piles over almost one turn
Rotate the projecting steel pipe pile so that it is screwed into the soft ground.
While pushing into the ground, and the tip of the pile body
Excavated and softened, and spiraled into the unexcavated sediment on the side of the pile
Engage the wings and rotate the pile using the soil resistance as the reaction force.
Extruding and softening the excavated softened sand to the side of the pile while moving
And screwed the pile into the ground without earth removal.
(Prior Art 1). [0004] Further, Japanese Patent Application Laid-Open No. 7-292666 describes this.
The loaded steel pipe pile has a length of half a roll and an outer diameter of
A pair of spiral wings, which is about 1.5 to 3 times the body,
At the same height on the outer peripheral surface of the lower end of the
Are fixed to each other discontinuously relative to each other
(Prior art 2). Further, Japanese Patent Application Laid-Open No. 61-98818 discloses
The described rotary press-fit steel pipe pile is located at the bottom of the steel cylinder,
Providing a blade with a sloping front face for pushing extending in the vertical direction
And from the lower end of the inclined front surface in the cylinder rotation direction
Fix the inclined blade that rises obliquely toward
Of the drill head, at the upper end of the drill head
The lower end of a steel pipe pile is attached (Prior Art 3).
Spiral wing or inclined blade shown in these prior arts 1 to 3
Function as screws during construction and
It also has a function as a support for obtaining panel reaction force. [0006] The steels of prior arts 1 and 2
After the construction is completed, the pipe piles
When a vertical force acts on the pipe pile, the spiral wings
Receives strong reaction force. As a result, a large
A large bending moment, which is transmitted to the steel pipe and
High bending stress occurs. This bending stress is equal to that of the prior art 2.
As described in the specification, the outer diameter of the steel pipe is 100
Large for practical use with steel pipe piles with a small diameter of about 200 mm
It doesn't matter. However, widely used
For steel pipe piles with an outer diameter of 500 to 600 mm, the design is large.
Problem. The outer diameter of the spiral wing is shown in prior arts 1 and 2.
The outer diameter of the steel pipe is 2
It is said to be about twice as good. Here, the outer diameter of the steel pipe is 20
Compare 0mm steel pipe pile and 600mm steel pipe pile. Right now
The outer diameter of each spiral blade is 40 times the outer diameter of the steel pipe.
Assuming 0 mm and 1200 mm, the width of the spiral wing,
Outer diameter-outer diameter of steel pipe) / 2 are 100 mm and 300 mm, respectively.
Becomes The ground reaction force per unit area acting on the spiral wing is the same.
In other words, per unit circumference acting on the root of the spiral wing
Since the bending moment is proportional to the square of the width of the spiral wing,
About 600mm outside diameter steel pipe is about 200mm outside diameter compared to 200mm outside diameter steel pipe.
9 times larger. For this reason, spiral wings are very thick
Required. On the other hand, the steel pipe near the root of the spiral blade is
The bending moment is transmitted from the turning wing, and bending stress is generated.
You. The magnitude of the bending moment transmitted to the steel pipe is
Depending on the dimensions, the bending model generated at the root of the spiral wing
About 50 to 100% of the For example, an outer diameter of 600
Spiral that requires a thickness of 40 mm or more in the case of a steel pipe of mm
Bending moment about 50 to 100% of the wing bending moment
Acts on the steel pipe near the root of the spiral wing. Outer diameter 600
In the case of a steel pipe of mm, the wall thickness of the commonly used steel pipe is 5
About 12mm, bending of steel pipe caused by ground reaction
Shear stress greatly exceeds the design allowable bending stress of the above steel pipe
Will be. To cope with this, the wall thickness is
It is conceivable to use steel pipes up to 3 times
The strike becomes extremely large, making it impossible to design practically.
I can't get it. Further, the steel pipe pile of the prior art 3 is a steel cylindrical body.
Obtains large ground support because there is no lid at the tip
Have an important problem that can not be
The width of the blade is narrow, slightly inside and outside the tip of the steel cylinder.
Large ground support for inclined blades due to the structure projecting to the ground
Can not be expected as a supporter of power. The present invention has been made to solve the above problems.
Screwed steel pipe piles such asManufacturing method
The purpose is to obtain. (1)Materials can be used without waste, and the structure
But with less processing and lower costs
You. In addition, screw-type steel pipe piles with the following features are manufactured.
It is intended to build. (2) A large ground support force can be obtained using the wings. (3) Due to the bending moment transmitted from the wing, the steel pipe pile
Do not generate excessive stress on (4) Steel pipe piles can be buried by screwing into the strong ground
That. [0011] SUMMARY OF THE INVENTION A screw type according to the present invention.
The method of manufacturing steel pipe piles consists of a steel pipe and wings at the tip or outer peripheral surface.
And an attached mounting member.
Thickness greater than the thickness of the steel pipe or greater than the strength of the steel pipe
Parallelogram or trapezoidal steel plate by cutting high strength steel plate
The process of manufacturingThe parallelogram or trapezoidal shapeSteel sheet
CylindricalBendingWelded joints at both endsTo do
So at the endManufactures a mounting member with a substantially U-shaped mounting part.
Making, and attaching a wing to the attachment portion,
Either the lower end of the steel pipe or the mounting member is inserted into the other.
And joining them together. [0012] [0013] DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the steel pipe pile wings
Wings must have high rigidity to receive large ground reaction
Required. For example, if the outer diameter of the steel pipe is 500 mm and the outer diameter of the wing is
In the case of 1000 mm, the wing has large bending
Due to the design of the steel, the steel
Plate is required and this bending moment is
And a large bending stress is generated. Above bending mode
The size of the element depends on the relationship between the outer diameter of the steel
Depending on the distribution of panel reaction force, the inner and outer wings of the steel pipe
Large imbalance in applied bending moment
This is transmitted to the steel pipe, and as shown in FIG.
Large bending moment can be transmitted to
You. The present invention is affected by the bending stress of the steel pipe pile.
Steel plate with a thickness greater than the wall thickness of the steel pipe or the strength of the steel pipe.
Use mounting members made of steel
Generated in parts affected by bending stress
In this case, the applied stress is kept within the allowable stress.
Hereinafter, embodiments of the present invention will be described. [First Embodiment] FIG. 1 shows a first embodiment of the present invention.
It is a perspective view of the screw type steel pipe pile which concerns on. In the figure,
1 is a screw-in type steel pipe pile (hereinafter simply referred to as a steel pipe pile), 2
Is a steel pipe constituting the steel pipe pile 1, and 3 is a wing 10 at the lower end.
Steel wings 11a and 11b are attached to the lower end of the steel pipe 2.
Parts are fitted and joined to form a steel pipe pile 1 together with a steel pipe 2
It is a mounting member. The mounting member 3 has a thickness t of the steel pipe 2.1Thicker
Sheet thickness tTwoAnd its width (or length) is smaller than the outer peripheral length of the steel pipe 2.
Or longer steel plate, or its width is greater than the strength of steel pipe 2
(Or length) is steeltubeFig. 2 shows a steel plate slightly longer than the circumference of Fig. 2.
As shown in the figure, a parallelogram-shaped steel plate 7a cut diagonally
To produce And, as shown by the arrow,
Bend to form a cylinder, weld both ends
This is configured as shown in FIG. This allows
At the upper and lower ends of the mounting member 3, the pitch P of the spiral virtual line
The substantially stepped (spiral) wing 1 is provided by the corresponding step portion 5.
A mounting portion 4 of zero is formed. In this case, of the mounting members 3
Diameter DTwoIs substantially equal to or slightly larger than the outer diameter D of the steel pipe 2.
It is formed well. FIG. 4 shows a steel plate 7b cut into a trapezoidal shape shown in FIG.
To form a cylindrical mounting member 3 by bending
A spiral mounting portion 4 having a pitch P is formed at a lower end portion.
The ends are almost horizontal. The mounting member 3 is configured
Steel plates are limited to parallelograms or trapezoids.
However, any rectangular shape, such as a rectangular shape, may be used. In this case, the pin formed by the step 5
Switch P indicates the state of the ground in which the steel pipe pile 1 is buried,
Although it varies depending on the diameter D, etc., generally P = 0.1 to 0.6.
D (D is the outer diameter of the steel pipe 2).
The same applies to the following embodiments.) This pitch P
Is less than 0.1, the penetration amount of steel pipe pile 1 per rotation is
If it exceeds 0.6D, the amount of penetration per rotation
To rotate the steel pipe pile 1
Luk became excessive, and excavated with steel wings 11a and 11b
Support depth may be reduced
You. The thickness t of the mounting member 3TwoAnd its length L is
Determined by numerical analysis taking into account assumed ground reaction force
Will do. First, the thickness tTwoSee, for example,
For example, the outer diameter D of the steel pipe 2 is 500 mm, and the diameter D of the blade 10 isFourIs 1
When a vertical load of 500t is applied at 000mm,
In the case of steel pipes, the part where only axial force acts is 14mm thick
Yield stress (2400kgf / cmTwo) Where the axis fits
Allows stress where both forces and bending moments act
A steel pipe with a thickness of about 20 mm is required
And For this reason, the wing 10 is directly
The method of attaching to a steel pipe is uneconomical. Therefore, as described above, the bending moment
The thickness t of the steel pipe 2 is1Thicker wall thickness tTwoTake
Attachment member 3 or attachment member having strength greater than the strength of steel pipe 2
If it is used, it is not necessary to increase the entire thickness of the steel pipe 2.
Therefore, it is economical and has a large bending moment.
Will be able to respond in minutes. The mounting member 3 is as described above.
Weld a steel plate that has been cut into almost strips.
Only, so use various sizes corresponding to the applied load
Can be. Next, the length L of the mounting member 3 is determined by the inventors.
According to the conducted FEM analysis, it depends on the ground reaction force
However, in general, 0.3D (D is the outer diameter of the steel pipe 2) or more
(The same applies to each of the following embodiments.
). In the above description, a substantially strip-shaped steel plate is bent.
Although the case where the mounting member 3 is manufactured by processing is shown,
The outer diameter of the steel pipe 2 is almost equal to or slightly larger than that of the steel pipe 2.
A steel pipe thicker than the wall thickness of the pipe 2 or a strength greater than the strength of the steel pipe 2
A steel pipe is cut to a predetermined length L and its lower end is pitched.
P is cut into a spiral shape, and the structure shown in FIG.
An attachment member may be configured. The wing 10 has an outer diameter D as shown in FIG.Fourof
Circular steel plate 11 or elliptical steel plate is divided into two from the center and flat
Steel wings 11a and 11b are formed and straight edges are
It is placed on a line passing through the center from the step portion 5 of the attachment portion 4 of the attachment member 3.
To the mounting part 4 by welding, and
It is a spiral configuration. In this case, the tip of the mounting member 3
At the ends, the straight edges of the steel wings 11a, 11b
May be closed by the closing member.
No. The outer diameter D of the wing 10FourIs generally the outer diameter of the steel pipe 2
It is desirable that D is about 1.5 to 3.0 times (the following embodiments)
The same applies to the state). In this embodiment, the sum of the internal angles is
Wing 10 is formed by two 360 ° steel wings 11a and 11b.
The configuration is shown, but the circular steel plate 11 is divided into three equal parts, four equal parts, etc.
Then, a plurality of steel wings with a total inner angle of 360 ° were
The tip of the mounting member 3 so as to form a substantially spiral shape as a body
The wing 10 may be configured by attaching to the section. Large number of steel wings
It is almost spiral, but in actual construction, it is 4
It is enough if the number is too large.
Function and the wing mounting structure becomes unstable.
This is uneconomical because it only increases the installation time. In this embodiment, a steel wing 1 is provided at the lower end.
From above, in the mounting member 3 to which 1a and 11b are mounted.
The lower end of the steel pipe 2 is fitted to a predetermined position,
The upper edge and the outer peripheral surface of the steel pipe 2 are welded and joined together to form a steel pipe.
The pile 1 is configured. In this case, the connection between the mounting member 3 and the steel pipe 2 is performed.
At the time of fitting, the steel pipe 2 is fitted into the mounting member 3.
The upper edge of the mounting member 3 and the steel pipe.
Can be welded easily and securely.
it can. The outer peripheral surface of the steel pipe 2 or the inner peripheral surface of the mounting member 3
Next, a positioning slot for fitting the steel pipe 2 into the mounting member 3 will be described.
Providing a topper makes it more reliable to transmit the vertical load to the tip.
Can do it. Further, the steel wing 11 is attached to the mounting member 3.
Before attaching a and 11b, join the mounting member 3 and the steel pipe 2 together.
If done, the upper edge of the mounting member 3 and the outer peripheral surface of the steel pipe 2
Welding of inner peripheral surface or lower edge of attachment member 3 and lower end of steel pipe 2
Thus, they can be surely integrated. When the steel pipe pile 1 is buried, it is shown in FIG.
As shown in FIG.
Connected to the device 31 and drive the rotary drive device 31 to drive the steel pipe pile
1 is rotated and propelled into the ground by the screw action of the wing 10.
And buried. At this time, the tip opening (
Accordingly, most of the opening (tip opening) of the mounting member 3 is the steel wing 1
1a, 11b, the soil is
Sand hardly penetrates. According to the present embodiment configured as described above,
For example, both functions of closing the tip opening of the steel pipe pile 1 and the propulsion wing
Steel wings 11a and 11b provided by
Functions as a support when a direct force is applied, and has a large ground support force
Can be obtained. In addition, it occurs on the wing 10 of the steel pipe pile 1.
Mounting member 3 is provided at the part where bending moment is transmitted
Therefore, the bending stress generated in the mounting member 3 was kept within the allowable value.
The bending mode generated by the wing 10 on the steel pipe pile 1
No comment is transmitted. Further, the mounting member 3
By using the steel pipe, it is possible to use a steel pipe 2 having a normal thickness.
Also, the mounting member 3 has a small number of processed parts and is manufactured without waste.
As a result, the cost can be reduced. [Embodiment 2] FIG. 8 shows Embodiment 2 of the present invention.
It is a perspective view of. In the first embodiment, the outer diameter D of the steel pipe 2 is
Inner or slightly larger inner diameter DTwoUse mounting member 3
When the steel pipe 2 is inserted into the mounting member 3 and welded.
However, in the present embodiment, the inner diameter D of the steel pipe 2 is1And almost equal
Outer diameter DThreeMounting member 3
The steel pipe 2 is fitted around the outer periphery of the mounting member 3
The steel pipe pile 1 is formed by welding the edge and the outer peripheral surface of the mounting member 3.
It is a thing. The operation and effect of this embodiment are the same as those of the first embodiment.
The description is omitted because it is the same as the case. [Embodiment 3] Next, each of Embodiments 1 and 2
A description will be given of various modifications. FIG. 9 shows a first modification.
FIG. 3 is a perspective view showing the state where steel wings 11 a and 11
b. The attachment member 3 is shown in FIGS.
As shown in FIG. 1 (FIG.
), Slightly longer than the outer circumference of the steel pipe 2 (or
One length of the rectangular steel plate 8 (slightly shorter than the inner circumference of the pipe 2)
The center part of the side is set to a half of the pitch P of the above spiral virtual line.
1 is formed as a stepped portion 5b having a sawtooth shape.
Is bent to form a cylindrical shape as shown in FIG.
Formed at the lower end of the C-shaped two mounting portions 4a, 4b
Things. Note that the ends of the two rectangular steel plates are
After joining them, they are bent into a cylindrical shape and
The attachment portions 4a and 4b in the shape of a letter may be formed. Also, steel plate
8 may be a parallelogram or trapezoid, and
The attachment member 3 may be configured by cutting the end into a saw-tooth shape. The mounting portions 4a, 4b of the mounting member 3 as described above
The steel wings 11a and 11b as shown in FIG.
If the steel pipe 2 is fitted to the mounting member 3, the steel pipe pile 1 is
Be composed. The operation and effect of this modification are the same as those of the first and second embodiments.
It is almost the same as the case. FIG. 12 is a perspective view of a second modified example, in which
At the lower end of the material 3, there are square steel wings 21a and 21b.
A wing 10 is provided. In addition, the mounting member 3 is an embodiment type.
An example is shown in which the same mounting member 3 as in the first and second embodiments is used.
is there. The wing 10 has, for example, four wings as shown in FIG.
Square steel wing 2 obtained by dividing a square steel plate 21 into two parts from the center
1a, 21b, very simple structure
It is. Then, the steel wings 21a and 21b were combined.
The size is the condition of the ground where the steel pipe pile 1 is buried,
Generally, the outer diameter D of the steel pipe 2 varies depending on the diameter or the like.
It is desirably about 1.5 to 3.0 times. Here, the steel wing 21
The sizes of a and 21b are the diagonal of the steel plate 21 shown in FIG.
Refers to the length L of the line. The steel wings 21a and 21b are
A rectangular steel plate may be divided into two parts. Operation and effect of the steel pipe pile with wings 1 according to this modification.
The results are almost the same as those in the above-described embodiments.
In the embodiment, when the steel pipe pile 1 penetrates the ground,
The side of the sand excavation in the rotation direction is the angle of the steel wings 21a and 21b.
(The largest size part), so the tip surface
The rear side of the vehicle tends to move away from the excavated ground.
That is, the steel wings 21a and 21b escape behind the excavated portion.
Having a surface. For this reason, the side face behind the excavation part was excavated
Steel pipe pile with arcuate wings in constant contact with the ground wall
The frictional resistance at the time of penetration can be reduced as compared with. FIG. 14 shows another example of this modification.
In this example, instead of the square steel wings 21a and 21b,
Triangular steel cut into two pieces by cutting a square steel plate diagonally
Wings 21c and 21d are attached to the tip of attachment member 3.
It is. The function of this example is almost the same as that of the example of FIG.
is there. FIG. 15 shows still another example of this modification.
Therefore, in this example, the steel wings 21e and 21f are made of hexagonal steel plates.
It is configured by dividing into two parts. The function of this example is also shown in FIG.
Approximately the same as in the example, except that the wings 10
The bearing capacity characteristics compared to a square steel wing
Is improved. In the above description, a triangle, a square or a hexagon
Steel wings 21a to 21f were formed by dividing a shaped steel plate into two.
Although the case was shown, for example, a polygonal steel plate of octagon or more
The steel wing may be configured by dividing into two. Also, the above explanation
Then, when a polygonal steel plate is divided into two to form a steel wing
However, steel wings were divided into three or more parts,
To the three or more mounting parts provided at the tip of the mounting member 3.
You may make it attach next. FIG. 16 is a perspective view of a third modification. Book
In the example, a square steel pipe 2a is used for the steel pipe, and the mounting member 3 is used.
Is a square. In making the mounting member 3
In other words, for example, four rectangular steel plates or slanted lower ends
Is an L-shaped steel plate welded in a square shape and screwed almost at the lower end.
A spiral attachment portion 4a is formed. Note that this deformation
The size D of the square steel pipe 2a in the example (in the first embodiment,
Corresponds to the outer diameter of the steel pipe 2).
Say. The function and effect of the steel pipe pile 1 according to this modification are also described above.
It is almost the same as in each embodiment, except that the steel pipe 2
In the case of a steel pipe pile 1 made of steel pipe (round shape),
Then, since the entire peripheral surface of the steel pipe 2 is in sliding contact with the ground, peripheral surface friction is reduced.
Large and requires large torque. On the other hand, the corner
When it is composed of a shaped steel pipe 2a, the main
The corners of the square steel pipe 2a come into contact with the surrounding ground,
Low surface friction, which reduces screwing torque
Can be. FIG. 17 is a perspective view of a fourth modification, in which a steel pipe pile is shown.
1 comprises a ribbed steel pipe 2b. Sand
That is, a plurality of ribs 2c are provided on the surface by, for example, rolling.
The bent steel plate is bent, and a spiral rib 2c is formed on the outer peripheral surface.
It is formed. The pitch P of the rib 2c is as described above.
The pitch P of the spiral virtual line of the first embodiment
ing. In this case, the mounting member 3 includes the first or second embodiment.
The mounting member 3 described in the above is used. The operation and effect of this modified example are the same as those of the above embodiments.
It is almost the same as the case, but when screwing into the ground
Spiral ribs 2c also contribute to propulsion, improving propulsion
Can be done. In the first and second embodiments, the circular steel plate or
Oval steel plate is divided into several equal parts, and the sum of inner angles is 360 °
The wings 11a and 11b are formed, and this is
The case where the wing 10 is configured by attaching to the
Calculates the sum of the internal angles of the steel wings 11a and 11b from 360 °.
It is formed smaller or larger than 360 °.
18 and 19 show a fifth modification, in which the steel wing 1
The sum of the inner angles of 1a and 11b is smaller than 360 °
There is a gap 13 between the wings 11a and 11b
is there. 20 and 21 show the steel wings 11a and 11b.
The sum of the internal angles is larger than 360 °, and the steel wing 11
An overlap 14 occurs between a and 11b. Note that this
In the case, for example, when attaching the steel wing 11b,
5, a groove 4 c continuous with the mounting portion 4 is provided.
A part of the steel plate 11b may be fitted into the groove 4c. Field tests and numerical analysis performed by the inventors
According to the results of the study by the authors, the steel wing 11
If the sum of the interior angles of a and 11b is less than 320 °,
The penetration speed at the time of screwing in 1 decreases, and
The tip support force after installation decreases. More than 400 °
In a large-grained gravel ground, gravel is clogged between the wings 10.
The workability was found to be poor. Like this
The total of the inner angles of the steel wings 11a and 11b constituting the wing 10
It is desirable that the sum be in the range of 320 ° to 400 °.
No. In this case, each steel wing 11 constituting the wing 10
It is not necessary to make all interior angles of a and 11b equal,
May be different. Also, the gap 13 or the overlap 14 is set to 1
It is not necessary to concentrate on the place, the adjacent steel wings 11a, 1
1b may be provided as appropriate. Furthermore, steel wings 11a,
11b is not limited to two, but may be three or more.
(This embodiment can be implemented in other embodiments.
). [Embodiment 4] FIG. 22 shows an embodiment of the present invention.
4 is a perspective view of FIG. In this embodiment, the upper and lower ends are substantially flat.
The closing member 15 is attached to the distal end of the cylindrical mounting member 3a.
Attachment and wings made of steel wings 12a and 12b on the outer periphery
10 is provided. The inner diameter of the mounting member 3a is
Almost equal to or slightly larger than the outer diameter of the steel pipe 2, or
Its outer diameter is almost equal to or slightly smaller than the inner diameter of the steel pipe
A steel pipe having a thickness greater than the thickness of the steel pipe 2
Constructed by cutting steel pipe with strength greater than
Then, the closing member 15 is attached to the front end by welding.
The end opening is closed. In addition, the mounting member 3a
It may be manufactured by bending a steel plate. The wing 10 has an outer diameter D as shown in FIG.6But
Larger than the outer diameter of the steel pipe 2 (for example, D6= 2D), inner diameter D
FiveIs a donut-shaped flat steel plate 12 having a diameter substantially equal to the outer diameter of the steel pipe 2.
Is divided into two parts from the center to form flat steel wings 12a and 12b.
The steel wings 12a and 12b are provided with mounting portions.
A spiral virtual line with a pitch P assumed on the outer peripheral surface of the material 3a
Along the entire spiral is attached by welding along
A wing 10 is formed. Then, a casing having wings 10 on the outer periphery is provided.
The steel pipe 2 is fitted or fitted to the attachment member 3a and joined by welding
By doing so, the steel pipe pile 1 is configured. In this embodiment, the sum of the internal angles is 360
The blade 10 is constituted by two steel blades 11a and 11b of
Is shown, the donut-shaped flat steel plate 11 is divided into three equal parts,
Divide into 4 equal parts, and the total number of inner angles is 320 ° to 400 °
Steel wings so that they form an almost spiral shape as a whole.
The wing 10 may be configured by being attached to the outer periphery of the attachment member 3a.
The more steel wings, the closer to the spiral shape, but the actual construction
In this case, 4 sheets is enough and the number of sheets will increase
If it breaks, the function as a screw will decrease and the wing mounting
It is uneconomical only because it becomes unstable in construction and increases installation time
It is. FIG. 24 shows another example of the present embodiment.
Then, the flat steel wings 12a and 12b shown in FIG.
On the outer peripheral surface of the attachment member 3a,
They are mounted at the same angle and in different directions. This implementation
Length L of mounting member 3a in form1Is the fruit of the inventors
According to the applied FEM analysis, it depends on the ground reaction force
However, in general, it should be 0.7D (D is the outer diameter of the steel pipe 2) or more.
However, the mounting position of the wing 10 is
The tip of the mounting member 3a in terms of screwing work and supporting force performance
It is desirable that the distance is within 1D from the part. FIG. 22,
FIG. 24 shows a case where one stage of wings 10 is provided on the mounting member 3a.
However, two or more stages of wings 10 are installed.
You may ask. [Embodiment 5] FIG. 25 shows an embodiment of the present invention.
5, the mounting member 3 and the wings 10 provided on the mounting member 3 are:
This is the same as in the first embodiment. In the present embodiment, the wing 10
Above the outer peripheral surface of the steel pipe 2 as shown in FIG.
The flat steel wings 12a and 12b are
At almost the same angle as the wing 10 along the imaginary line, and different from each other.
Wing 20 (upper wing) attached in
You. The upper wing 20 is the same as the one shown in FIG.
Similarly, the steel wings 12a and 12b are moved along the spiral virtual line.
May be attached so as to form a spiral continuously. According to this embodiment, the steel pipe pile 1 is placed underground.
When screwing in, the upper stage wing 20 greatly contributes to propulsion.
To reduce the screwing torque
be able to. The upper wing 20 is provided in a plurality of stages on the steel pipe pile 1.
May also be implemented in other embodiments.
You. The upper wing 20 is provided above the steel pipe pile 1.
Therefore, the ground reaction force added to this is relatively small.
The step blade 20 can be directly attached to the steel pipe 2.
Depending on the position, ground condition, etc.
An attachment member may be provided. [Embodiment 6] The outer diameter of the steel pipe 2 is increased.
As described above, the outer diameter of the wing 10 also increases,
Therefore, the thickness of the wing 10 is also increased. As a result, for example, FIG.
The steel pipe pile 1 is screwed into the ground with a construction machine 30 as shown in FIG.
At this time, the ground side ends of the steel wings 11a, 11b, etc.
Large resistance is added by the panel, and rotation is impossible if the torque is weak
Sometimes it becomes impossible to penetrate the ground. For this reason,
The problem that the machine tool 30 must be enlarged
I will. This embodiment is to solve such a problem.
Into the wings 11a and 11b (rotational direction side)
End) is cut off at an acute angle to provide an inclined surface.
To reduce the resistance of the ground that is added to the part, making it easier to penetrate the ground
The torque is reduced. Note that the slope
Assists excavation in the cut-in portions of steel wings 11a and 11b
A digging blade may be attached. In addition, steel pipe pile 1
When screwed and buried underground, the steel wings 11a, 11b
In order to prevent the ends from being deformed, the steel wings 11a, 11
A reinforcing member may be attached to the bite portion such as b. Real truth
The embodiment can be implemented in other embodiments. In the above description, mounting on a mounting member or steel pipe
This figure shows the case where the girder wing is composed of multiple flat steel wings.
However, one or more bent along the spiral virtual line
It may be composed of spiral wings. [0051] The method for manufacturing the screw-in type steel pipe pile according to the present invention.
In the method, a steel sheet is cut into parallelograms or trapezoids
Make a steel plate ofThe parallelogram or trapezoidal shapeSteel sheet
CylindricalBendingWelded joints at both endsTo do
So at the endManufactures a mounting member with a substantially U-shaped mounting part.
So that the materials can be used without waste.
Cost, since the structure is simple and the processing is small.
Can be reduced. In addition, the manufacturing method of the present invention
Screwed steel pipe piles manufactured by
Thickness greater than wall thickness or strength greater than the strength of this steel pipe
A mounting member having a wing attached to a tip or an outer peripheral surface thereof.
The lower end of the steel pipe or one of the mounting members is the other
And joined together, so it can be
Large ground support force and a large bending moment from the wing
Even if it is transmitted, excessive stress is not transmitted to the steel pipe pile.
No. Also, either the steel pipe or the mounting member is inserted into the other
Since joining is performed, joining work is easy. Further
In addition, there is no need to increase the thickness of the entire steel pipe,
It is. [0052] [0053] [0054]

【図面の簡単な説明】 【図1】本発明の実施形態1の斜視図である。 【図2】図1の取付部材の製作を説明するための説明図
である。 【図3】図1の取付部材の斜視図である。 【図4】取付部材の他の例の斜視図である。 【図5】図1の翼の説明図である。 【図6】本発明に係るねじ込み式鋼管杭の施工例の説明
図である。 【図7】鋼製翼に加わる地盤反力による鋼管の応力分布
の説明図である。 【図8】本発明の実施形態2の斜視図である。 【図9】本発明の実施形態3による実施形態1,2の第
1の変形例の説明図である。 【図10】図9の取付部材の斜視図である。 【図11】図9の取付部材の製作を説明するための説明
図である。 【図12】第2の変形例の斜視図である。 【図13】図12の鋼製翼の説明図である。 【図14】第2の変形例の他の例の斜視図である。 【図15】第2の変形例の他の例の斜視図である。 【図16】第3の変形例の斜視図である。 【図17】第4の変形例の斜視図である。 【図18】第5の変形例の斜視図である。 【図19】図18の底面図である。 【図20】第5の変形例の他の例の斜視図である。 【図21】図20の底面図である。 【図22】本発明の実施形態4の斜視図である。 【図23】図22の鋼製翼の説明図である。 【図24】実施形態4の他の例の斜視図である。 【図25】本発明の実施形態5の斜視図である。 【符号の説明】 1 鋼管杭 2 鋼管 3,3a 取付部材 4,4a,4b 翼の取付部 10 翼 11a,11b,12a,12b,21a〜21f 鋼
製翼
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of Embodiment 1 of the present invention. FIG. 2 is an explanatory diagram for explaining the production of the mounting member of FIG. 1; FIG. 3 is a perspective view of the mounting member of FIG. 1; FIG. 4 is a perspective view of another example of a mounting member. FIG. 5 is an explanatory diagram of the wing of FIG. 1; FIG. 6 is an explanatory view of a construction example of a screw-in type steel pipe pile according to the present invention. FIG. 7 is an explanatory diagram of a stress distribution of a steel pipe due to a ground reaction force applied to a steel wing. FIG. 8 is a perspective view of Embodiment 2 of the present invention. FIG. 9 is an explanatory diagram of a first modification of the first and second embodiments according to the third embodiment of the present invention. FIG. 10 is a perspective view of the mounting member of FIG. 9; FIG. 11 is an explanatory diagram for explaining the production of the mounting member of FIG. 9; FIG. 12 is a perspective view of a second modified example. FIG. 13 is an explanatory view of the steel wing of FIG. FIG. 14 is a perspective view of another example of the second modified example. FIG. 15 is a perspective view of another example of the second modified example. FIG. 16 is a perspective view of a third modified example. FIG. 17 is a perspective view of a fourth modified example. FIG. 18 is a perspective view of a fifth modified example. FIG. 19 is a bottom view of FIG. 18; FIG. 20 is a perspective view of another example of the fifth modified example. FIG. 21 is a bottom view of FIG. 20; FIG. 22 is a perspective view of a fourth embodiment of the present invention. FIG. 23 is an explanatory view of the steel wing of FIG. 22. FIG. 24 is a perspective view of another example of the fourth embodiment. FIG. 25 is a perspective view of Embodiment 5 of the present invention. [Description of Signs] 1 steel pipe pile 2 steel pipe 3, 3a mounting member 4, 4a, 4b blade mounting portion 10 blade 11a, 11b, 12a, 12b, 21a to 21f steel blade

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−98818(JP,A) 特開 平9−242069(JP,A) 実開 昭47−33024(JP,U) (58)調査した分野(Int.Cl.7,DB名) E02D 5/56 E02D 5/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-98818 (JP, A) JP-A-9-242069 (JP, A) JP-A-47-33024 (JP, U) (58) Field (Int.Cl. 7 , DB name) E02D 5/56 E02D 5/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】 鋼管と、先端部又は外周面に翼が取付け
られた取付部材とを備えてなるねじ込み式鋼管杭の製造
方法であって、 前記鋼管の肉厚より厚い肉厚又は前記鋼管の強度より大
きい強度の鋼板を切断して平行四辺形状又は台形状の鋼
板を製作する工程と、該平行四辺形状又は台形状の 鋼板を円筒状に曲げ加工し
その両端部を溶接接合することによって端部にほぼレ
字状の取付部を有する取付部材を製作する工程と、 該取付部に翼を取り付ける工程と、 前記鋼管の下端部又は取付部材の何れか一方を他方に嵌
入して一体に接合する工程と、を備えたことを特徴とす
るねじ込み式鋼管杭の製造方法。
(57) [Claim 1] A method of manufacturing a screw-in type steel pipe pile comprising a steel pipe and a mounting member having a wing mounted on a tip or an outer peripheral surface thereof, wherein the steel pipe has a wall. Cutting a steel plate having a wall thickness greater than the thickness or a strength greater than the strength of the steel pipe to produce a parallelogram or trapezoidal steel plate, and bending the parallelogram or trapezoidal steel plate into a cylindrical shape.
A step of fabricating a mounting member having a Hobore shaped mounting portion on the end portion by welding the opposite ends Te, and attaching the wing portion with said mounting, either the lower end or mounting member of the steel pipe And a step of fitting one of them into the other and joining them together to form a screw-in type steel pipe pile.
JP04026598A 1998-02-23 1998-02-23 Manufacturing method of screwed steel pipe pile Expired - Fee Related JP3409678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04026598A JP3409678B2 (en) 1998-02-23 1998-02-23 Manufacturing method of screwed steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04026598A JP3409678B2 (en) 1998-02-23 1998-02-23 Manufacturing method of screwed steel pipe pile

Publications (2)

Publication Number Publication Date
JPH11241337A JPH11241337A (en) 1999-09-07
JP3409678B2 true JP3409678B2 (en) 2003-05-26

Family

ID=12575832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04026598A Expired - Fee Related JP3409678B2 (en) 1998-02-23 1998-02-23 Manufacturing method of screwed steel pipe pile

Country Status (1)

Country Link
JP (1) JP3409678B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298574B2 (en) * 2008-03-04 2013-09-25 Jfeスチール株式会社 Screwed pile

Also Published As

Publication number Publication date
JPH11241337A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP2592079B2 (en) Small diameter steel pipe pile
JP3170756B1 (en) Screw-in type steel pipe pile and its construction method
JP3643303B2 (en) Rotary press-fit steel pipe pile
JPH11140869A (en) Screwed-in type steel pipe pile with wing
JP3409678B2 (en) Manufacturing method of screwed steel pipe pile
JPH11247183A (en) Screwing type steel pipe pile with wing and its execution
JPH11303069A (en) Screwed type steel pipe pile with blade and execution method therefor
JP3216048B2 (en) Screw-in type steel pipe pile
JP4207263B2 (en) Threaded steel pipe pile and construction method of screwed steel pipe pile
JP4085492B2 (en) Winged screw pile
JP2001348867A (en) Screwed type steel pipe and its work execution method
JPH11247189A (en) Spliced pile structure made of steel pipe
JP3123472B2 (en) Screw-in type steel pipe pile
JP4210297B2 (en) Expanded pipe with tip blade and steel pipe pile with tip blade provided with the same
JP3293500B2 (en) Screwed steel pipe pile with wings
JP2861937B2 (en) Screw-in type steel pipe pile
JP3255040B2 (en) Screwed steel pipe pile with wings
JP3031245B2 (en) Screw-in type steel pipe pile
JPH1136295A (en) Screw type steel pipe pile
JP3031247B2 (en) Screw-in type steel pipe pile
JPH08284160A (en) Steel pipe pile with spiral blade
JPH11140870A (en) Winged screwed steel pipe pile
JPH11172669A (en) Screwing steel tube pile
JP3031246B2 (en) Screw-in type steel pipe pile
JPH1037182A (en) Screw-in type steel pipe pile

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees