JP3409337B2 - A novel sugar derivative and a method for measuring the activity of a physiologically active substance using the same as a substrate - Google Patents

A novel sugar derivative and a method for measuring the activity of a physiologically active substance using the same as a substrate

Info

Publication number
JP3409337B2
JP3409337B2 JP24735492A JP24735492A JP3409337B2 JP 3409337 B2 JP3409337 B2 JP 3409337B2 JP 24735492 A JP24735492 A JP 24735492A JP 24735492 A JP24735492 A JP 24735492A JP 3409337 B2 JP3409337 B2 JP 3409337B2
Authority
JP
Japan
Prior art keywords
sugar
group
reaction
compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24735492A
Other languages
Japanese (ja)
Other versions
JPH0665300A (en
Inventor
藤 英 雄 加
村 慎 二 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP24735492A priority Critical patent/JP3409337B2/en
Publication of JPH0665300A publication Critical patent/JPH0665300A/en
Application granted granted Critical
Publication of JP3409337B2 publication Critical patent/JP3409337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は、生体成分中に含まれる、
例えば糖修飾酵素等の生理活性物質の活性測定用基質と
して有用な糖誘導体及びそれを基質として用いた生理活
性物質の測定法に関する。
FIELD OF THE INVENTION The present invention includes biological components,
For example, the present invention relates to a sugar derivative useful as a substrate for measuring the activity of a physiologically active substance such as a sugar-modifying enzyme, and a method for measuring a physiologically active substance using the sugar derivative.

【0002】[0002]

【発明の背景】生体中には種々の生理活性物質が存在す
ることはよく知られており、糖質に作用する生理活性物
質としては、例えば糖転移酵素、糖加水分解酵素、糖異
性化酵素等の糖修飾酵素が知られている。
BACKGROUND OF THE INVENTION It is well known that various physiologically active substances exist in the living body, and examples of physiologically active substances acting on sugars include glycosyltransferases, sugar hydrolases, and sugar isomerases. Sugar-modifying enzymes such as are known.

【0003】これら糖修飾酵素は、生体内での糖質の生
合成や代謝等に於いて重要な役割を担っている酵素であ
る。そのため、これら酵素の活性を測定することによっ
て、生理学上の重要な知見、例えば腫瘍マーカーとして
の臨床的意義等が得られると考えられている。
These sugar-modifying enzymes are enzymes that play an important role in the biosynthesis and metabolism of carbohydrates in the living body. Therefore, it is considered that by measuring the activity of these enzymes, important physiological knowledge, such as clinical significance as a tumor marker, can be obtained.

【0004】これらの含有量は少ないため、精度よく測
定するためには検出感度の高い物質で標識された基質を
使用する必要がある。基質の標識方法としては、放射性
標識方法と非放射性標識方法とがあるが、測定の簡便さ
や設備の制約、人体への安全性等を考慮すると非放射性
標識方法の方が望ましく、測定感度を考慮に入れればそ
の中でも蛍光標識方法がより望ましい。
Since these contents are small, it is necessary to use a substrate labeled with a substance having high detection sensitivity for accurate measurement. Substrate labeling methods include radioactive labeling methods and non-radioactive labeling methods, but non-radioactive labeling methods are preferable and measurement sensitivity is taken into consideration when considering the convenience of measurement, restrictions on equipment, safety to the human body, etc. Among them, the fluorescent labeling method is more preferable.

【0005】しかしながら、従来から用いられている蛍
光標識化試薬、即ちフルオレッセンイソチオシアネート
(FITC)、エオシン、クマリンイソチオシアネート等の
蛍光標識化試薬は、それ自体の水溶性が低いため種々の
問題点を有していた。即ち、例えば上記した如き蛍光標
識化試薬は一旦極性有機溶媒に溶解して用いなければな
らないため、蛍光標識化操作が煩雑であることや、上記
した如き蛍光標識化試薬を用いて調製された蛍光標識化
物質はそれ自体の水溶性が低下するため、例えば上記蛍
光標識化試薬を用いて調製された蛍光標識基質を利用し
て他の物質の検出を行う場合に必要濃度の水溶液を調製
することができない場合があること、等である。
However, conventionally used fluorescent labeling reagents, that is, fluorescent labeling reagents such as fluorescein isothiocyanate (FITC), eosin, and coumarin isothiocyanate have various problems due to their low water solubility. Had. That is, for example, since the fluorescent labeling reagent as described above must be dissolved in a polar organic solvent once and used, the fluorescent labeling operation is complicated and the fluorescence prepared using the fluorescent labeling reagent as described above. Since the labeled substance has a reduced water solubility, it is necessary to prepare an aqueous solution of the required concentration when other substances are detected using the fluorescent labeling substrate prepared by using the above-mentioned fluorescent labeling reagent. May not be possible, etc.

【0006】これらの問題点を解決する目的で、例えば
スルホ基、カルボキシル基等の水溶性基を導入した、例
えばダンシルクロライド、ルシファーイエロー、o-フタ
ルアルデヒド等の水溶性蛍光標識化試薬が開発された。
しかしながら、これらの試薬は、それ自体の保存安定性
が悪く、しかもこれらを用いて調製された蛍光標識化さ
れた物質も、水溶性という面では改善されたものの、そ
れ自体の保存安定性が悪いため、調製後の保存ができな
いという問題点を有していた。
For the purpose of solving these problems, water-soluble fluorescent labeling reagents such as dansyl chloride, lucifer yellow, o-phthalaldehyde and the like, which have introduced water-soluble groups such as sulfo group and carboxyl group, have been developed. It was
However, these reagents themselves have poor storage stability, and the fluorescent-labeled substances prepared using these reagents also have poor storage stability, although they have improved water solubility. Therefore, it has a problem that it cannot be stored after preparation.

【0007】一方、例えば2-アミノピリジン、3-アミノ
ピリジン等のアミノピリジンは、それ自体水溶性で且つ
非常に安定な蛍光物質であり、これにより標識された物
質も保存安定性に優れ、且つ標識対象物質が水溶性のも
のの場合には水溶性がそのまま維持されるため、糖質等
への蛍光標識物質として近時広く利用されている化合物
である(Biochemical and Biophysical Research Commu
nications 85,257頁,1978等)。
On the other hand, aminopyridines such as 2-aminopyridine and 3-aminopyridine are themselves water-soluble and very stable fluorescent substances, and thus labeled substances are also excellent in storage stability, and When the substance to be labeled is water-soluble, the water-solubility is maintained as it is, and thus it is a compound that has recently been widely used as a fluorescent labeling substance for sugars (Biochemical and Biophysical Research Commu
nications 85, 257, 1978 etc.).

【0008】しかしながら、アミノピリジンそのもの
を、糖質等の標識物質として用いるには問題があった。
即ち、アミノピリジンを用いた蛍光標識化方法として
は、標識対象物質のアルデヒド基にシッフ塩基を介して
結合させる方法が一般的であるが、該方法を利用してア
ミノピリジンを糖質に結合させた場合には、糖質の還元
末端側の糖残基の環が開環してしまうため、蛍光標識化
した糖質を糖転移酵素や糖分解酵素等の基質として用い
るためには目的の構造を有する糖質の還元末端側に更に
もう一つ余分な糖残基を結合させておかなければならな
いと言う問題がそれである(Biochem. Biophys. Res. C
ommun.,vol.152, 107-112, 1988)。
However, there is a problem in using aminopyridine itself as a labeling substance such as sugar.
That is, as a fluorescent labeling method using aminopyridine, a method of binding to an aldehyde group of a substance to be labeled via a Schiff base is generally used, but using this method, aminopyridine is bound to a sugar. In the case of the saccharide, the ring of the sugar residue on the reducing end side of the sugar will be opened, so that the target structure can be That is the problem that one extra sugar residue must be attached to the reducing end side of the saccharide having the amino acid (Biochem. Biophys. Res. C).
ommun., vol.152, 107-112, 1988).

【0009】そのため、ピリジルアミノ基等の蛍光を有
する基を、穏和な条件下で、且つ還元末端側の糖残基の
環を開環させることなく容易に糖質等に導入し得る蛍光
標識化試薬の開発とこれを用いた新規な蛍光標識化方法
の出現が待ち望まれていた。
Therefore, a fluorescent labeling reagent capable of easily introducing a fluorescent group such as a pyridylamino group into a sugar or the like under mild conditions and without opening the ring of the sugar residue on the reducing terminal side. And the emergence of a novel fluorescent labeling method using the same have been awaited.

【0010】池中らは、上記問題を解決するため、糖質
の還元末端の一位の水酸基に蛍光を有する置換アミノア
ルキル基をグリコシド結合により結合させる方法を開発
した(特開平1−42496号公報)。
In order to solve the above problems, Ikenaka et al. Developed a method in which a substituted aminoalkyl group having fluorescence is bonded to the hydroxyl group at the 1-position of the reducing end of the sugar by a glycosidic bond (JP-A-1-42496). Gazette).

【0011】この方法は、穏和な条件下で、しかも糖質
の還元末端側の糖残基の環を開環させることなく糖質の
還元末端の一位の水酸基に蛍光を有する置換アミノアル
キル基を導入し得る方法なので、従来の方法に比較して
明らかに有利な方法ではある。
This method comprises a substituted aminoalkyl group having fluorescence at the 1-position hydroxyl group of the reducing end of the sugar under mild conditions and without opening the ring of the sugar residue on the reducing end side of the sugar. Is a method that can be introduced, which is a clear advantage compared with the conventional method.

【0012】しかしながら、この方法により調製された
蛍光標識化基質を用いて生理活性物質の活性測定を行っ
た場合でも、例えば糖転移酵素の活性測定に於いては、
糖受容体糖鎖の還元末端に結合した、アスパラギン残
基、セリン残基、トレオニン残基等のアミノ酸残基やこ
れらを含むペプチド残基が活性測定に影響を与える場合
があって(International Immunology,vol.2, 105-112,
1989等)、目的の生理活性物質の活性測定を充分には
行い得ないこともある、と言う問題がある。
However, even when the activity of a physiologically active substance is measured using the fluorescently labeled substrate prepared by this method, for example, in measuring the activity of a glycosyltransferase,
There is a case where an amino acid residue such as an asparagine residue, a serine residue, a threonine residue or the like or a peptide residue containing these bound to the reducing end of the sugar acceptor sugar chain influences the activity measurement (International Immunology, vol.2, 105-112,
(1989, etc.), there is a problem that the activity of a target physiologically active substance may not be sufficiently measured.

【0013】また、糖鎖にアミノ酸残基やペプチド残基
が結合した糖ペプチドは極めて親水性が高く極性有機溶
媒にも溶解しないため、従来の蛍光標識化試薬を使用す
ると目的の蛍光標識化を実施し難いと言う問題もあり、
蛍光標識され且つアミノ酸残基又はペプチド残基を有す
る糖質の開発が望まれていた。
Further, since a glycopeptide in which an amino acid residue or a peptide residue is bound to a sugar chain is extremely hydrophilic and does not dissolve in a polar organic solvent, the conventional fluorescent labeling reagent can be used for the desired fluorescent labeling. There is also a problem that it is difficult to implement,
It has been desired to develop a carbohydrate that is fluorescently labeled and has an amino acid residue or a peptide residue.

【0014】[0014]

【発明の目的】本発明は、上記した如き状況に鑑み成さ
れたもので、例えば糖修飾酵素等の生理活性物質の活性
測定用基質として有用な蛍光標識糖誘導体及びそれを基
質として用いた高感度な生理活性物質の測定法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and for example, a fluorescently labeled sugar derivative useful as a substrate for measuring the activity of a physiologically active substance such as a sugar-modifying enzyme and a high-performance product using the same It is intended to provide a sensitive method for measuring a physiologically active substance.

【0015】[0015]

【本発明の構成】本発明は、下記一般式(1) R1−A−NH−R2 (1) 式中、R1はグルコース,マンノース,ガラクトー
ス,フコース,シアル酸,N−アセチルグルコサミン,N
−アセチルガラクトサミンから選択される糖残基を2〜
10個有する糖鎖であって、糖修飾酵素の基質と成り得
る糖鎖構造を成しているものを表わし、Aはアスパラギ
ン残基、セリン残基、トレオニン残基又はこれらから構
成されるペプチド残基を表わし、R2は R3−(CH 2 )m−NH−CO−(CH 2 )n−CO― (A) R3−CO−(CH 2 )n−CO−NH−(CH 2 )m−CO− (B) R3−(CH 2 )m−CO−NH−(CH 2 )n−CO− (C) (式中、R3は2−ピリジルアミノ基又は3−ピリジルア
ミノ基を表わし、m及びnは夫々独立して1〜4の整数
を表わす。)で示される基を表わす。〕 で示される糖誘
導体、及び上記一般式(1)で示される糖誘導体を基質と
して用いることを特徴とする糖修飾酵素の活性測定法の
発明である。
The present invention includes the following general formula (1) R1-A-NH-R2 (1) [wherein R1 is glucose, mannose or galactose].
Su, fucose, sialic acid, N-acetylglucosamine, N
2 to 2 sugar residues selected from acetylgalactosamine
It has 10 sugar chains and can be a substrate for sugar-modifying enzyme
It represents what forms a sugar chain structure that, A is aspartic
Residues, serine residues, threonine residues, or
Represents a peptide residue which is made, R2 is R3- (CH 2) m-NH -CO- (CH 2) n-CO- (A) R3-CO- (CH 2) n-CO-NH- (CH 2) m-CO- (B) R3- (CH 2) m-CO-NH- (CH 2) n-CO- (C) ( wherein, R3 is 2-pyridylamino or 3 Pirijirua
Represents a mino group, m and n are each independently an integer of 1 to 4
Represents ) Represents a group represented by. ] The sugar derivative represented by the above formula and the sugar derivative represented by the above general formula (1) are used as substrates, and the invention is a method for measuring the activity of a sugar modifying enzyme .

【0016】即ち、本発明者らは、上記した如き問題を
解決するために鋭意研究の途上、上記一般式(1)で示さ
れる糖誘導体が、例えば糖修飾酵素等の生理活性物質の
活性測定用基質として極めて有用性が高く、これを基質
として用いることにより糖修飾酵素等の活性測定を高精
度且つ高感度で実施し得ることを見い出し、本発明を完
成するに至った。
That is, the inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and the sugar derivative represented by the above general formula (1) is used to measure the activity of a physiologically active substance such as a sugar-modifying enzyme. It has been found to be extremely useful as a substrate for use, and by using this as a substrate, the activity of a sugar-modifying enzyme or the like can be measured with high accuracy and high sensitivity, and the present invention has been completed.

【0017】本発明の一般式(1)で示される糖誘導体の
R1はグルコース,マンノース,ガラクトース,フコ
ース,シアル酸,N-アセチルグルコサミン,N-アセチル
ガラクトサミンから選択される糖残基2〜10個有す
る糖鎖が挙げられる。また、糖鎖の糖残基間の結合の種
類にも特に制限はなく、例えばα1→4,β1→4,α
1→6,α2→3,β1→2,β1→3,α2→6,α
1→3,α1→2,β1→6等何れにてもよい。但し、
R1は目的とする生理活性物質 、例えば糖転移酵素、糖
加水分解酵素、糖異性化酵素等の糖修飾酵素の基質と成
り得る糖鎖構造を成していることは言うまでもない。
R1 of the sugar derivative represented by the general formula (1) of the present invention has 2 to 2 sugar residues selected from glucose, mannose, galactose, fucose, sialic acid, N-acetylglucosamine and N-acetylgalactosamine. Have 10
Sugar chains . There is no particular limitation on the type of linkage between sugar residues of the sugar chain, and for example, α1 → 4, β1 → 4, α
1 → 6, α2 → 3, β1 → 2, β1 → 3, α2 → 6, α
It may be any of 1 → 3, α1 → 2, β1 → 6 and the like. However,
It goes without saying that R1 has a sugar chain structure that can serve as a substrate for a target physiologically active substance, for example, a sugar-modifying enzyme such as a glycosyltransferase, a sugar hydrolase, or a sugar isomerase.

【0018】また、本発明の一般式(1)で示される糖誘
導体のAはアスパラギン残基、セリン残基、トレオニ
ン残基又はこれらから構成されるペプチド残基が挙げら
れるが、目的の酵素活性測定の際の分離・分析の面から
考えるとアミノ酸残基であることが望ましい。尚、Aも
目的とする生理活性物質、例えば糖転移酵素、糖加水分
解酵素、糖異性化酵素等の糖修飾酵素の基質として使用
するに際して目的の活性測定を充分に行い得るような構
造を成していることは言うまでもない。R2としては、
下記一般式(A)、(B)、又は(C) R3−(CH 2 )m−NH−CO−(CH 2 )n−CO― (A) R3−CO−(CH 2 )n−CO−NH−(CH 2 )m−CO− (B) R3−(CH 2 )m−CO−NH−(CH 2 )n−CO− (C) (式中、R3は2−ピリジルアミノ基又は3−ピリジルア
ミノ基を表わし、m及びnは夫々独立して1〜4の整数
を表わす。)で示される基が 挙げられるが、中でも例え
ば2-ピリジルアミノエチルスクシナモイル基,N-(2-ピ
リジル)-スクシナモイルアミノ プロピオニル基,N-(2-
ピリジル)-β-アラニルアミノプロピオニル基等が好ま
しく挙げられる。
Further, A of the sugar derivative represented by the general formula (1) of the present invention includes an asparagine residue, a serine residue, a threonine residue or a peptide residue composed of these. From the viewpoint of separation and analysis when measuring activity, amino acid residues are desirable. When A is also used as a substrate for a target physiologically active substance, for example, a sugar-modifying enzyme such as a glycosyltransferase, a sugar hydrolase, or a sugar isomerase, it has a structure capable of sufficiently performing the target activity measurement. Needless to say. For R2,
Following general formula (A), (B), or (C) R3- (CH 2) m-NH-CO- (CH 2) n-CO- (A) R3-CO- (CH 2) n-CO- NH- (CH 2) m-CO- (B) R3- (CH 2) m-CO-NH- (CH 2) n-CO- (C) ( wherein, R3 is 2-pyridylamino or 3 Pirijirua
Represents a mino group, m and n are each independently an integer of 1 to 4
Represents ) . Among them, a 2-pyridylaminoethylsuccinamoyl group, N- (2-pyridyl) -succinamoylaminopropionyl group, N- (2-
Pyridyl) -β-alanylaminopropionyl group and the like are preferable.

【0019】本発明の一般式(1)で示される糖誘導体
は、例えば以下の如くして容易に合成し得る。即ち、一
般式(2) R1−A−NH2 (2) (式中、R1及びAは前記に同じ。)で示されるアミノ
酸残基又はペプチド残基を有する糖誘導体に、該糖誘導
体1モルに対して通常1〜10モル、好ましくは1〜5モ
ル、より好ましくは2〜4モルの、例えば一般式(3)、
(4)又は(5) R3ー(CH2)m-NH-CO-(CH2)n-COO-R4 (3) R3ーCO-(CH2)n-CO-NH-(CH2)m-COO-R4 (4) R3-(CH2)m-CO-NH-(CH2)n-COO-R4 (5) (式中、R3は2-ピリジルアミノ基又は3-ピリジルアミ
ノ基を表わし、R4は活性エステル化剤に起因する基を
表わし、m及びnは夫々独立して1〜4の整数を表わ
す。)で示される化合物等に代表される、一方の末端に
ピリジルアミノ基が結合し他方の末端にアミノ基に対し
て反応性を有する基(例えばコハク酸イミドオキシカル
ボニル基、フタル酸イミドオキシカルボニル基、5-ノル
ボルネン-2,3-ジカルボキシイミドオキシカルボニル
基、p-ニトロフェニルオキシカルボニル基、ホルミル
基、トレシルアルキル基、トシルアルキル基等)が結合
した化合物とを、水、又は例えばメタノール,エタノー
ル等のアルコール類、アセトン、アセトニトリル、ジメ
チルホルムアミド等の極性有機溶媒、或はこれら極性有
機溶媒と水との混合溶媒(以下、これらを総称して「水
溶媒等」と略記する。)中で反応させ、要すれば還元処
理(末端にホルミル基を有する化合物を使用した場合
等。)等を行った後、常法により精製等を行うことによ
り容易に合成し得る。
The sugar derivative represented by the general formula (1) of the present invention can be easily synthesized, for example, as follows. That is, 1 mol of the sugar derivative is added to a sugar derivative having an amino acid residue or a peptide residue represented by the general formula (2) R 1 -A-NH 2 (2) (wherein R 1 and A are the same as above). With respect to usually 1 to 10 mol, preferably 1 to 5 mol, more preferably 2 to 4 mol, for example the general formula (3)
(4) or (5) R3 chromatography (CH 2) m-NH- CO- (CH 2) n-COO-R4 (3) R3 over CO- (CH 2) n-CO -NH- (CH 2) m -COO-R4 (4) R3- ( CH 2) m-CO-NH- (CH 2) n-COO-R4 (5) ( wherein, R3 represents a 2-pyridylamino group or 3-pyridylamino group, R4 Represents a group derived from an active esterifying agent, and m and n each independently represent an integer of 1 to 4). A group having reactivity with an amino group at the terminal (eg, succinimideoxycarbonyl group, phthalic acid imidooxycarbonyl group, 5-norbornene-2,3-dicarboximidooxycarbonyl group, p-nitrophenyloxycarbonyl group , Formyl group, tresylalkyl group, tosylalkyl group, etc.) and water or, for example, methano Alcohols such as toluene and ethanol, polar organic solvents such as acetone, acetonitrile and dimethylformamide, or mixed solvents of these polar organic solvents and water (hereinafter, these are collectively referred to as "water solvent and the like"). The reaction can be carried out in the medium and, if necessary, reduction treatment (when a compound having a formyl group at the terminal is used, etc.) is performed, and then purification can be performed by a conventional method to easily synthesize the compound.

【0020】尚、上記反応を実施する際の水溶媒等のp
Hとしては、一般式(2)で示される糖誘導体の安定性に
影響がない範囲であれば特に限定されないが、例えば一
般式(3)〜(5)で示される化合物の反応性を勘案すると、
pH6〜10程度(弱酸性〜弱アルカリ性)が望ましい。
また、上記反応液中には、一般式(2)で示される糖誘導
体と、一般式(3)、(4)、(5)等で示される化合物に代表
される、一方の末端にピリジルアミノ基が結合し他方の
末端にアミノ基に対して反応性を有する基が結合した化
合物との反応を阻害しないものであれば、例えばリン酸
塩,重炭酸塩等の1級アミノ基を有さない緩衝剤や、防
腐剤、界面活性剤、安定化剤等が共存していてもよい。
In carrying out the above reaction, p of water solvent or the like is used.
H is not particularly limited as long as it does not affect the stability of the sugar derivative represented by the general formula (2), but in consideration of the reactivity of the compounds represented by the general formulas (3) to (5), for example. ,
A pH of about 6 to 10 (weakly acidic to weakly alkaline) is desirable.
Further, in the reaction solution, a sugar derivative represented by the general formula (2) and a compound represented by the general formula (3), (4), (5) or the like, a pyridylamino group at one end is represented. Does not have a primary amino group such as phosphate or bicarbonate as long as it does not interfere with the reaction of the compound with a compound having a group reactive with an amino group at the other end. A buffer, an antiseptic, a surfactant, a stabilizer and the like may coexist.

【0021】一般式(2)で示される糖誘導体は、常法に
より合成された目的の構造を有する糖鎖に、目的のアミ
ノ酸残基又はペプチド残基を常法により結合させること
により容易に得ることができるし、天然糖タンパク質か
ら酵素処理(例えばプロテアーゼ処理、グリコシダーゼ
処理等)や化学的処理(例えば酸やアルカリによる加水
分解処理等)により調製することもできるし、天然糖タ
ンパク質から酵素処理や化学的処理により得られたアミ
ノ酸残基又はペプチド残基を有する糖誘導体を更に化学
的及び/又は酵素的に修飾して目的の構造を有するもの
に変換することによっても得ることができる。尚、一般
式(2)で示される化合物を大量に得たいのであれば、天
然の糖タンパク質を原料として酵素処理や化学的処理す
る方法が、より具体的には例えばイムノグロブリン,卵
白アルブミン,トランスフェリン,甲状腺刺激ホルモン
(TSH),ヒト絨毛性ゴナドトロピン(hCG),卵
胞刺激ホルモン(FSH),黄体形成ホルモン(LH)
等の糖蛋白質を例えばトリプシン,キモトリプシン,ペ
プシン,パパイン,V8プロテアーゼ等のプロテアーゼ
や例えばβ-ガラクトシダーゼ,ノイラミニダーゼ,N-
アセチル-β-グルコサミニダーゼ,α-マンノシダーゼ
I,α-マンノシダーゼII等のグリコシダーゼによる処
理や、化学的処理、要すれば更に化学的及び/又は酵素
的に修飾する方法が好ましく挙げられる。
The sugar derivative represented by the general formula (2) can be easily obtained by linking a target amino acid residue or peptide residue to a sugar chain having a target structure synthesized by a standard method by a standard method. It can be prepared from natural glycoproteins by enzymatic treatment (eg, protease treatment, glycosidase treatment, etc.) or chemical treatment (eg, hydrolysis treatment with acid or alkali). It can also be obtained by further chemically and / or enzymatically modifying a sugar derivative having an amino acid residue or a peptide residue obtained by a chemical treatment to convert it into a sugar derivative having a desired structure. If it is desired to obtain a large amount of the compound represented by the general formula (2), a method of enzymatically or chemically treating a natural glycoprotein as a raw material is more specifically described, for example, immunoglobulin, ovalbumin, transferrin. , Thyroid stimulating hormone (TSH), human chorionic gonadotropin (hCG), follicle stimulating hormone (FSH), luteinizing hormone (LH)
Glycoproteins such as trypsin, chymotrypsin, pepsin, papain, V8 protease and the like, and β-galactosidase, neuraminidase, N-
Preference is given to treatment with a glycosidase such as acetyl-β-glucosaminidase, α-mannosidase I, α-mannosidase II, chemical treatment, and if necessary further chemical and / or enzymatic modification.

【0022】また、一般式(3)、(4)及び(5)で示される
化合物は、例えば以下の如くして合成したものを用いれ
ばよい。先ず、一般式(3)で示される化合物は、例えば
下記の合成ルートに従って容易に合成し得る。
As the compounds represented by the general formulas (3), (4) and (5), those synthesized as follows may be used. First, the compound represented by the general formula (3) can be easily synthesized, for example, according to the following synthetic route.

【式1】(上記反応スキーム中、Xはハロゲン原子を表
わし、m、n及びR4は前記と同じ。)即ち、先ず例え
ば2-クロロピリジン,2-ブロモピリジン,3-クロロピリ
ジン,3-ブロモピリジン等の2-又は3-ハロピリジンと、
該2-又は3-ハロピリジンに対して10〜20倍モルのアルキ
レンジアミン(例えばエチレンジアミン,1,3-プロパン
ジアミン,1,4-ブタンジアミン等)とを80〜120℃で8
〜 24時間撹拌下に反応させる。反応後、反応液を減圧
濃縮し、目的物をクロロホルム、ジクロロエタン等で抽
出し、溶媒留去後、残渣を、適当な溶媒(例えばベンゼ
ン−石油エ−テル混合溶媒等)を用いて結晶化して、上
記一般式(3a)で示されるアミノアルキルアミノピリジン
を得る。次いで、該アミノアルキルアミノピリジンとこ
れに対して1〜3倍モルのジカルボン酸無水物(例えば
無水コハク酸,無水グルタ−ル酸,無水マレイン酸等)
又は、ジカルボン酸(例えばコハク酸,グルタ−ル酸,
マレイン酸等)の2分子間脱水縮合物{[HOOC-(CH
2)n-CO]2O}(式中nは前記に同じ)とを、例えばメ
タノ−ル、エタノ−ル、イソプロパノール等の溶媒中、
0〜30℃で2〜6時間撹拌下に反応させる。反応後、析
出晶を濾取、乾燥させて、上記一般式(3b)で示される化
合物(以下、化合物(3b)と略記する。)を得る。次い
で、この化合物(3b)を、該化合物に対して1〜3倍モル
の活性エステル化剤[例えばN-ヒドロキシ-5-ノルボル
ネン-2,3-ジカルボキシイミド(以下、HONBと略記
する。)、N-ヒドロキシコハク酸イミド(以下、HOS
uと略記する。)等]と、例えばジメチルホルムアミド
(DMF)、テトラヒドロフラン(THF)、ジオキサ
ン等の溶媒中、例えば、化合物(3b)に対して1〜3倍モ
ルのトリフェニルホスフィンと、これと等モルのジスル
フィド化合物[例えば2,2'- ジチオジピリジン(以下、
2-PDSと略記する。)、2,2'-ジチオビス(5-ニトロピ
リジン)等]と、0〜40℃で2〜8時間撹拌下に反応さ
せる。反応後、反応液 を減圧濃縮し、得られた残渣
を、適当な溶媒(例えば酢酸エチル−ジエチルエ−テル
混合溶媒等)を用いて結晶化する等により、一般式(3)
で示される化合物が 得られる。尚、上記の反応に於い
て、トリフェニルホスフィンとジスルフィド化合物との
組合せ試薬を用いる代りに、例えばジシクロヘキシルカ
ルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミ
ノプロピル)カルボジイミド塩酸塩(W SC)等の縮合
試薬を用いても、同様に一般式(3)で示される化合物が
得られる。
(In the above reaction scheme, X represents a halogen atom, and m, n and R4 are the same as above.) That is, first, for example, 2-chloropyridine, 2-bromopyridine, 3-chloropyridine, 3-bromo. 2- or 3-halopyridine such as pyridine,
10 to 20 times mol of alkylenediamine (for example, ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, etc.) with respect to the 2- or 3-halopyridine at 80 to 120 ° C.
Allow to react for ~ 24 hours with stirring. After the reaction, the reaction solution is concentrated under reduced pressure, the target product is extracted with chloroform, dichloroethane or the like, the solvent is distilled off, and the residue is crystallized using a suitable solvent (e.g. benzene-petroleum ether mixed solvent). An aminoalkylaminopyridine represented by the above general formula (3a) is obtained. Then, the aminoalkylaminopyridine and 1 to 3 times the molar amount of a dicarboxylic acid anhydride (for example, succinic anhydride, glutaric anhydride, maleic anhydride, etc.)
Or a dicarboxylic acid (eg succinic acid, glutaric acid,
Intermolecular dehydration condensation product of maleic acid) {[HOOC- (CH
2 ) n-CO] 2 O} (wherein n is the same as above) in a solvent such as methanol, ethanol or isopropanol,
The reaction is carried out at 0-30 ° C for 2-6 hours with stirring. After the reaction, the precipitated crystals are collected by filtration and dried to obtain the compound represented by the above general formula (3b) (hereinafter abbreviated as compound (3b)). Then, the compound (3b) is added to a 1- to 3-fold molar amount of the active esterifying agent [for example, N-hydroxy-5-norbornene-2,3-dicarboximide (hereinafter abbreviated as HONB). , N-hydroxysuccinimide (hereinafter referred to as HOS
Abbreviated as u. Etc.] and, for example, in a solvent such as dimethylformamide (DMF), tetrahydrofuran (THF), dioxane, etc., for example, 1 to 3 moles of triphenylphosphine with respect to compound (3b), and a disulfide compound in an equimolar amount to this. [For example, 2,2'-dithiodipyridine (hereinafter,
It is abbreviated as 2-PDS. ), 2,2′-dithiobis (5-nitropyridine), etc.] at 0-40 ° C. for 2-8 hours with stirring. After the reaction, the reaction solution is concentrated under reduced pressure, and the obtained residue is crystallized using an appropriate solvent (eg, ethyl acetate-diethyl ether mixed solvent) to give the compound of the general formula (3)
A compound represented by is obtained. In the above reaction, instead of using a combination reagent of triphenylphosphine and a disulfide compound, for example, dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC Even if a condensation reagent such as) is used, the compound represented by the general formula (3) can be similarly obtained.

【0023】また、一般式(4)で示される化合物は、例
えば下記の如き合成ルートに従って容易に合成し得る。
The compound represented by the general formula (4) can be easily synthesized according to the following synthetic route.

【式2】 (上記反応スキーム中、Rはアルキル基を表わし、m、
n及びR4は前記と同じ。)即ち、先ず例えば2-アミノ
ピリジン,3-アミノピリジン等のアミノピリジンと、該
アミノピリジンに対して1〜3倍モルのジカルボン酸無
水物(例えば無水コハク酸,無水グルタ−ル酸,無水マ
レイン酸等)又はジカルボン酸(例えばコハク酸,グル
タ−ル酸,マレイン酸等)の2分子間脱水縮合物{[HO
OC-(CH2)n-CO]2O}(式中nは前記に同じ)と
を、例えばエタノ−ル、THF、トルエン、ベンゼン等
の溶媒中、60〜100℃で2〜4時間、次いで10〜30℃で
2〜4時間撹拌下に反応させる。反応後、析出晶を濾
取、乾燥させて、上記一般式(4a)で示される化合物(以
下、化合物(4a)と略記する。)を得る。
[Formula 2] (In the above reaction scheme, R represents an alkyl group, m,
n and R4 are the same as above. That is, first, for example, aminopyridine such as 2-aminopyridine and 3-aminopyridine, and 1 to 3 moles of dicarboxylic acid anhydride (for example, succinic anhydride, glutaric anhydride, maleic anhydride) relative to the aminopyridine. Acid or the like) or a dicarboxylic acid (eg, succinic acid, glutaric acid, maleic acid, etc.) intermolecular dehydration condensate {[HO
OC- (CH2) n-CO] 2O} (wherein n is the same as above) in a solvent such as ethanol, THF, toluene or benzene at 60 to 100 ° C. for 2 to 4 hours and then 10 React with stirring at -30 ° C for 2-4 hours. After the reaction, the precipitated crystals are collected by filtration and dried to obtain the compound represented by the general formula (4a) (hereinafter, abbreviated as compound (4a)).

【0024】次いで、得られた化合物(4a)と、該化合物
に対して1〜3倍モルのアミノ酸エステル(例えばグリ
シンエチルエステル,β−アラニンメチルエステル等)
とを、例えばDMF、ジオキサン等の溶媒中、化合物(4
a)に対して1〜3倍モルのトリフェニルホスフィンと、
これと等モルのジスルフィド化合物(例えば2-PDS,
2,2'-ジチオビス(5-ニトロピリジン)等)の存在下、0
〜40℃で2〜8時間撹拌下に反応させる。反応後、不溶
物を瀘去し、溶媒を留去して得られた残渣を、例えばク
ロロホルム、ジクロロメタン等の溶媒で抽出し、抽出液
を例えば飽和重ソウ水,炭酸ナトリウム水溶液等のアル
カリ溶液、次いで水で順次洗浄する。その後、抽出液を
例えば無水硫酸ナトリウム、無水硫酸マグネシウム等に
より乾燥し、溶媒を留去して得られた残渣を適当な溶媒
(例えば酢酸エチル−ジエチルエ−テル混合溶媒等)を
用いて結晶化する等により、上記一般式(4b)で示される
化合物を得る。これを、常法により鹸化してエステルを
加水分解すれば一般式(4c)で示される化合物(以下、化
合物(4c)と略記する。)が得られる。尚、上記化合物(4
a)と反応させるアミノ酸エステルは、例えば塩酸塩,硫
酸塩等の鉱酸塩となっているものでも良いが、その場合
は、通常これと等モルの塩基(例えばトリエチルアミ
ン,N-メチルモルホリン等)が併せて用いられる。ま
た、上記化合物(4a)とアミノ酸エステルとの脱水縮合反
応は、トリフェニルホスフィンとジスルフィド化合物の
組合せ試薬を用いる方法の代りに、例えばDCC,WS
C等の縮合試薬を用いる方法、混合酸無水物法、アジド
法等のペプチドの合成の際に用いられる常法により行っ
てもよいことは言うまでもない。
Then, the obtained compound (4a) and 1 to 3 moles of the amino acid ester with respect to the compound (eg, glycine ethyl ester, β-alanine methyl ester, etc.)
And in a solvent such as DMF or dioxane, the compound (4
1 to 3 times the molar amount of triphenylphosphine with respect to a),
An equimolar disulfide compound (eg 2-PDS,
2,2'-dithiobis (5-nitropyridine) etc.)
React with stirring at -40 ° C for 2-8 hours. After the reaction, insoluble materials were removed by filtration, the solvent was distilled off, and the resulting residue was extracted with a solvent such as chloroform or dichloromethane. The extract was saturated with sodium bicarbonate water, an alkaline solution such as an aqueous solution of sodium carbonate, Then, it is washed successively with water. Thereafter, the extract is dried with, for example, anhydrous sodium sulfate, anhydrous magnesium sulfate, etc., and the solvent is distilled off to obtain a residue, which is then crystallized using a suitable solvent (eg, ethyl acetate-diethyl ether mixed solvent). From the above, the compound represented by the above general formula (4b) is obtained. When this is saponified by a conventional method and the ester is hydrolyzed, a compound represented by the general formula (4c) (hereinafter abbreviated as compound (4c)) is obtained. The above compound (4
The amino acid ester to be reacted with a) may be a mineral acid salt such as hydrochloride or sulfate, but in this case, it is usually an equimolar base (eg triethylamine, N-methylmorpholine etc.). Are used together. In addition, the dehydration condensation reaction between the compound (4a) and the amino acid ester is carried out by using, for example, DCC, WS instead of the method using a combined reagent of triphenylphosphine and a disulfide compound.
Needless to say, it may be carried out by a conventional method used in peptide synthesis such as a method using a condensation reagent such as C, a mixed acid anhydride method and an azide method.

【0025】次いで、得られた化合物(4c)を、該化合物
に対して1〜3倍モルの活性エステル化剤(例えばHO
NB、HOSu等)と、例えばDMF、THF、ジオキ
サン等の溶媒中、化合物(4c)に対して1〜3倍モルのト
リフェニルホスフィンと、これと等モルのジスルフィド
化合物(例えば2-PDS、2,2'-ジチオビス(5-ニトロピ
リジン)等)の存在下、0〜40℃で2〜8時間撹拌下に
反応させる。反応後、反応液を減圧濃縮し、得られた残
渣を、適当な溶媒(例えば酢酸エチル−ジエチルエ−テ
ル混合溶媒等)を用いて結晶化する等により、一般式
(4)で示される化合物が得られる。尚、上記反応に於い
て、トリフェニルホスフィンとジスルフィド化合物の組
合せ試薬を用いる代りに、例えばDCC、WSC等の縮
合試薬を用いても、同様に一般式(4)で示される化合物
が得られる。
Then, the compound (4c) thus obtained is treated with 1 to 3 moles of the active esterifying agent (eg, HO).
NB, HOSu, etc.) in a solvent such as DMF, THF, dioxane and the like, and 1 to 3 moles of triphenylphosphine with respect to the compound (4c), and a disulfide compound (eg, 2-PDS, 2 2,2'-dithiobis (5-nitropyridine) and the like) and reacted at 0-40 ° C for 2-8 hours with stirring. After the reaction, the reaction solution is concentrated under reduced pressure, and the obtained residue is crystallized using an appropriate solvent (eg, ethyl acetate-diethyl ether mixed solvent) to give a compound of the general formula
The compound represented by (4) is obtained. In the above reaction, the compound represented by the general formula (4) can be similarly obtained by using a condensing reagent such as DCC or WSC instead of the combined reagent of triphenylphosphine and disulfide compound.

【0026】また、一般式(5)で示される化合物の内、
mが2である化合物は、例えば下記の合成ルートに従っ
て容易に且つ収率良く合成し得る。
Further, among the compounds represented by the general formula (5),
The compound in which m is 2 can be easily synthesized in good yield, for example, according to the following synthetic route.

【式3】 (上記反応スキーム中、R'はアルキル基を表わし、n
及びR4は前記と同じ。)即ち、例えば2-アミノピリジ
ン,3-アミノピリジン等のアミノピリジンと、該アミノ
ピリジンに対して1〜3倍モルの不飽和脂肪酸エステル
(例えばアクリル酸メチル,アクリル酸エチル等)と
を、例えば2,5-ジ-tert-ブチルヒドロキノン等の重合禁
止剤の存在下、60〜100℃で12〜36時間撹拌下に反応さ
せる。反応後、反応液を、例えばベンゼン、トルエン等
の溶媒中に注入して、析出した結晶を瀘去し、溶媒を留
去して得られた残渣を、適当な溶媒(例えばベンゼン−
ヘキサン混合溶媒等)から再結晶することにより、上記
一般式(5a)で示される化合物を得る。次いで、これを、
常法により鹸化してエステルを加水分解すれば、一般式
(5b)で示される化合物(以下、化合物(5b)と略記す
る。)が得られる。
[Formula 3] (In the above reaction scheme, R ′ represents an alkyl group, and n
And R4 are the same as above. ) That is, for example, aminopyridine such as 2-aminopyridine and 3-aminopyridine, and unsaturated fatty acid ester (for example, methyl acrylate, ethyl acrylate, etc.) in 1 to 3 moles relative to the aminopyridine, The reaction is carried out in the presence of a polymerization inhibitor such as 2,5-di-tert-butylhydroquinone at 60 to 100 ° C for 12 to 36 hours with stirring. After the reaction, the reaction solution is poured into a solvent such as benzene or toluene, the precipitated crystals are filtered off, and the solvent is distilled off to obtain a residue, which is then mixed with a suitable solvent (such as benzene-
The compound represented by the above general formula (5a) is obtained by recrystallization from a hexane mixed solvent). Then,
If the ester is hydrolyzed by saponification by a conventional method, the general formula
A compound represented by (5b) (hereinafter abbreviated as compound (5b)) is obtained.

【0027】得られた化合物(5b)と、該化合物に対して
1〜3倍モルのアミノ酸エステル(例えばグリシンエチ
ルエステル,β−アラニンメチルエステル等)とを、例
えばDMF、ジオキサン等の溶媒中、例えば、該化合物
に対して1〜3倍モルの例えばDCC,WSC等の縮合
試薬の存在下、0〜30℃で12〜36時間撹拌下に反応させ
る。反応後、不溶物を瀘去し、濾液を減圧濃縮して得ら
れた残渣を例えばクロロホルム、ジクロロメタン等の溶
媒で抽出し、抽出液を例えば飽和重ソウ水、炭酸ナトリ
ウム水溶液等のアルカリ溶液、次いで水で順次洗浄す
る。抽出液を例えば無水硫酸ナトリウム、無水硫酸マグ
ネシウム等により乾燥後、溶媒を留去して、得られた残
渣を適当な溶媒(例えば酢酸エチル−ジエチルエ−テル
混合溶媒等)を用いて結晶化する等により、一般式(5c)
で示される化合物を得る。次いで、これを、常法により
鹸化してエステルを加水分解すれば、一般式(5d)で示さ
れる化合物(以下、化合物(5d)と略記する。)が得られ
る。尚、上記化合物(5b)と反応させるアミノ酸エステル
は、例えば塩酸塩,硫酸塩等の鉱酸塩となっているもの
でも良いが、その場合は、通常これと等モルの塩基(例
えばトリエチルアミン,N-メチルモルホリン等)が併せ
て用いられる。また、上記化合物(5b)とアミノ酸エステ
ルとの脱水縮合反応は、トリフェニルホスフィンとジス
ルフィド化合物の組合せ試薬を用いる方法の代りに、例
えばDCC,WSC等の縮合試薬を用いる方法、混合酸
無水物法、アジド法等のペプチドの合成の際に用いられ
る常法により行ってもよいことは言うまでもない。
The compound (5b) thus obtained and 1 to 3 moles of the amino acid ester (eg, glycine ethyl ester, β-alanine methyl ester, etc.) relative to the compound are mixed in a solvent such as DMF or dioxane. For example, the reaction is carried out at 0 to 30 ° C. for 12 to 36 hours with stirring in the presence of 1 to 3 times the molar amount of a condensation reagent such as DCC or WSC. After the reaction, insoluble matter was removed by filtration, the residue obtained by concentrating the filtrate under reduced pressure was extracted with a solvent such as chloroform or dichloromethane, and the extract was extracted with saturated sodium bicarbonate water, an alkaline solution such as an aqueous solution of sodium carbonate, and then extracted. Wash sequentially with water. The extract is dried with, for example, anhydrous sodium sulfate, anhydrous magnesium sulfate, etc., the solvent is distilled off, and the obtained residue is crystallized using a suitable solvent (eg ethyl acetate-diethyl ether mixed solvent). According to the general formula (5c)
A compound represented by is obtained. Next, this is saponified by an ordinary method to hydrolyze the ester to obtain a compound represented by the general formula (5d) (hereinafter, abbreviated as compound (5d)). The amino acid ester to be reacted with the compound (5b) may be a mineral acid salt such as a hydrochloride or a sulfate, but in that case, it is usually an equimolar base (eg triethylamine, N -Methylmorpholine, etc.) is also used. Further, the dehydration condensation reaction between the compound (5b) and the amino acid ester is carried out by a method using a condensation reagent such as DCC, WSC, a mixed acid anhydride method instead of a method using a combination reagent of triphenylphosphine and a disulfide compound. Needless to say, it may be carried out by a conventional method used in peptide synthesis such as the azide method.

【0028】次いで、得られた化合物(5d)を、該化合物
に対して1〜3倍モルの活性エステル化剤(例えばHO
NB、HOSu等)と、例えばDMF、THF、ジオキ
サン等の溶媒中、化合物(5d)に対して1〜3倍モルのト
リフェニルホスフィンと、これと等モルのジスルフィド
化合物(例えば2-PDS、2,2'-ジチオビス(5-ニトロピ
リジン)等)の存在下、0〜40℃で2〜8時間撹拌下に
反応させる。反応後、反応液を減圧濃縮し、得られた残
渣をシリカゲルカラムクロマトグラフィ等により精製す
れば、一般式(5e)で示される化合物(一般式(5)で示さ
れる化合物の内、m=2である化合物)が得られる。
尚、上記の反応に於いて、トリフェニルホスフィンとジ
スルフィド化合物との組合せ試薬を用いる代りに、例え
ばDCC,WSC等の縮合試薬を用いても、同様に一般
式(5e)で示される化合物が容易に得られる。
Then, the compound (5d) thus obtained is treated with 1 to 3 moles of the active esterifying agent (for example, HO).
NB, HOSu, etc.) in a solvent such as DMF, THF, dioxane and the like, and 1 to 3 times the molar amount of triphenylphosphine to the compound (5d) and an equimolar disulfide compound (eg 2-PDS, 2 2,2'-dithiobis (5-nitropyridine) and the like) and reacted at 0-40 ° C for 2-8 hours with stirring. After the reaction, the reaction solution is concentrated under reduced pressure, and the obtained residue is purified by silica gel column chromatography or the like to give a compound represented by the general formula (5e) (of the compounds represented by the general formula (5), m = 2). A compound) is obtained.
In the above reaction, the compound represented by the general formula (5e) can also be easily obtained by using a condensing reagent such as DCC or WSC instead of using a combination reagent of triphenylphosphine and a disulfide compound. Can be obtained.

【0029】尚、一般式(5)で示される化合物の一般的
な製法としては、例えば下記の合成ルートが挙げられ
る。
As a general method for producing the compound represented by the general formula (5), for example, the following synthetic route can be mentioned.

【式4】 (上記反応スキーム中、R'はアルキル基を表わし、X
はハロゲン原子を表わし、m、n及びR4は前記と同
じ。)即ち、例えば2-アミノピリジン,3-アミノピリジ
ン等のアミノピリジンと、該アミノピリジンに対して1
〜3倍モルのモノハロカルボン酸エステル(例えばモノ
ブロモ酢酸エチル、4-クロロ酪酸メチル、5-クロロ吉草
酸エチル等)とを、例えばDMF、クロロホルム、ベン
ゼン等の溶媒中、適当な塩基(例えば水素化ナトリウ
ム、N,N'-ジイソプロピルエチルアミン、トリエチルア
ミン等)の存在下、0〜40℃で3〜8時間撹拌下に反応
させる。反応終了後、反応液を減圧濃縮し、得られた残
渣から目的物を例えばクロロホルム、ジクロロメタン等
の溶媒を用いて抽出する。得られた抽出液を、例えば0.
1〜2規定塩酸,10%クエン酸水溶液等の酸溶液、例えば
飽和重ソウ水,炭酸ナトリウム水溶液等のアルカリ溶
液、水で順次洗浄する。次いで、例えば無水硫酸ナトリ
ウム、無水硫酸マグネシウム等で乾燥し、溶媒留去し、
得られた残渣をシリカゲルクロマトグラフィー等で精製
することにより、上記一般式(5f)で示される化合物を得
る。次いで、これを、常法により鹸化してエステルを加
水分解すれば、一般式(5g)で示される化合物(以下、化
合物(5g)と略記する。)が得られる。
[Formula 4] (In the above reaction scheme, R'represents an alkyl group, X
Represents a halogen atom, and m, n and R4 are the same as defined above. ) That is, for example, aminopyridine such as 2-aminopyridine and 3-aminopyridine, and 1 for the aminopyridine.
~ 3 times mol of monohalocarboxylic acid ester (eg, ethyl monobromoacetate, methyl 4-chlorobutyrate, ethyl 5-chlorovalerate, etc.) in a solvent such as DMF, chloroform, benzene, etc. Sodium chloride, N, N′-diisopropylethylamine, triethylamine, etc.) at 0-40 ° C. for 3-8 hours with stirring. After completion of the reaction, the reaction solution is concentrated under reduced pressure, and the desired product is extracted from the obtained residue using a solvent such as chloroform or dichloromethane. The extract obtained is, for example, 0.
It is washed successively with an acid solution such as 1 to 2 N hydrochloric acid and a 10% citric acid aqueous solution, for example, saturated sodium bicarbonate water, an alkaline solution such as a sodium carbonate aqueous solution, and water. Then, for example, dried over anhydrous sodium sulfate, anhydrous magnesium sulfate, etc., the solvent is distilled off,
The compound represented by the above general formula (5f) is obtained by purifying the obtained residue by silica gel chromatography or the like. Next, this is saponified by a conventional method to hydrolyze the ester to obtain a compound represented by the general formula (5g) (hereinafter, abbreviated as compound (5g)).

【0030】得られた化合物(5g)と、該化合物に対して
1〜3倍モルのアミノ酸エステル(例えばグリシンエチ
ルエステル,β−アラニンメチルエステル等)とを、例
えばDMF、ジオキサン等の溶媒中、例えば、該化合物
に対して1〜3倍モルの例えばDCC,WSC等の縮合
試薬の存在下、0〜30℃で12〜36時間撹拌下に反応させ
る。反応後、不溶物を瀘去し、濾液を減圧濃縮して得ら
れた残渣を例えばクロロホルム、ジクロロメタン等の溶
媒で抽出し、抽出液を例えば飽和重ソウ水、炭酸ナトリ
ウム水溶液等のアルカリ溶液、次いで水で順次洗浄す
る。抽出液を例えば無水硫酸ナトリウム、無水硫酸マグ
ネシウム等により乾燥後、溶媒を留去して、得られた残
渣を適当な溶媒(例えば酢酸エチル−ジエチルエ−テル
混合溶媒等)を用いて結晶化する等により、一般式(5h)
で示される化合物を得る。次いで、これを、常法により
鹸化してエステルを加水分解すれば、一般式(5i)で示さ
れる化合物(以下、化合物(5i)と略記する。)が得られ
る。尚、上記化合物(5g)と反応させるアミノ酸エステル
は、例えば塩酸塩,硫酸塩等の鉱酸塩となっているもの
でも良いが、その場合は、通常これと等モルの塩基(例
えばトリエチルアミン,N-メチルモルホリン等)が併せ
て用いられる。また、上記化合物(5g)とアミノ酸エステ
ルとの脱水縮合反応は、トリフェニルホスフィンとジス
ルフィド化合物の組合せ試薬を用いる方法の代りに、例
えばDCC,WSC等の縮合試薬を用いる方法、混合酸
無水物法、アジド法等のペプチドの合成の際に用いられ
る常法により行ってもよいことは言うまでもない。
The compound (5 g) thus obtained and 1 to 3 moles of the amino acid ester (eg, glycine ethyl ester, β-alanine methyl ester, etc.) with respect to the compound are dissolved in a solvent such as DMF or dioxane. For example, the reaction is carried out at 0 to 30 ° C. for 12 to 36 hours with stirring in the presence of 1 to 3 times the molar amount of a condensation reagent such as DCC or WSC. After the reaction, insoluble matter was removed by filtration, the residue obtained by concentrating the filtrate under reduced pressure was extracted with a solvent such as chloroform or dichloromethane, and the extract was extracted with saturated sodium bicarbonate water, an alkaline solution such as an aqueous solution of sodium carbonate, and then extracted. Wash sequentially with water. The extract is dried with, for example, anhydrous sodium sulfate, anhydrous magnesium sulfate, etc., the solvent is distilled off, and the obtained residue is crystallized using a suitable solvent (eg ethyl acetate-diethyl ether mixed solvent). According to the general formula (5h)
A compound represented by is obtained. Next, this is saponified by an ordinary method to hydrolyze the ester to obtain a compound represented by the general formula (5i) (hereinafter abbreviated as compound (5i)). The amino acid ester to be reacted with the compound (5 g) may be a mineral acid salt such as a hydrochloride or a sulfate, but in that case, it is usually an equimolar base (eg triethylamine, N -Methylmorpholine, etc.) is also used. In addition, the dehydration condensation reaction between the compound (5 g) and the amino acid ester is carried out by a method using a condensation reagent such as DCC, WSC, a mixed acid anhydride method instead of a method using a combination reagent of triphenylphosphine and a disulfide compound. Needless to say, it may be carried out by a conventional method used in peptide synthesis such as the azide method.

【0031】次いで、得られた化合物(5i)を、該化合物
に対して1〜3倍モルの活性エステル化剤(例えばHO
NB、HOSu等)と、例えばDMF、THF、ジオキ
サン等の溶媒中、化合物(5i)に対して1〜3倍モルのト
リフェニルホスフィンと、これと等モルのジスルフィド
化合物(例えば2-PDS、2,2'-ジチオビス(5-ニトロピ
リジン)等)の存在下、0〜40℃で2〜8時間撹拌下に
反応させる。反応後、反応液を減圧濃縮し、得られた残
渣をシリカゲルカラムクロマトグラフィ等により精製す
れば、一般式(5)で示される化合物が得られる。尚、上
記の反応に於いて、トリフェニルホスフィンとジスルフ
ィド化合物との組合せ試薬を用いる代りに、例えばDC
C,WSC等の縮合試薬を用いても、同様に一般式(5)
で示される化合物が容易に得られる。
Then, the obtained compound (5i) is treated with 1 to 3 moles of the active esterifying agent (for example, HO).
NB, HOSu, etc.) in a solvent such as DMF, THF, dioxane and the like, and 1 to 3 moles of triphenylphosphine with respect to the compound (5i) and a disulfide compound (eg, 2-PDS, 2 2,2'-dithiobis (5-nitropyridine) and the like) and reacted at 0-40 ° C for 2-8 hours with stirring. After the reaction, the reaction solution is concentrated under reduced pressure, and the obtained residue is purified by silica gel column chromatography or the like to obtain the compound represented by the general formula (5). In the above reaction, instead of using a combination reagent of triphenylphosphine and a disulfide compound, for example, DC
Even if a condensation reagent such as C or WSC is used, the same formula (5)
The compound represented by is easily obtained.

【0032】尚、上記一般式(3)〜(5)で示される化合物
に於けるR4の活性エステル化剤に起因する基として
は、カルボキシル基の活性化剤に起因する基であって1
級アミノ基に対して反応性を有するものであれば何れに
てもよいが、具体的には例えばコハク酸イミド基、フタ
ル酸イミド基、5-ノルボルネン-2,3-ジカルボキシイミ
ド基、p-ニトロフェニル基等が好ましく挙げられる。
The group derived from the active esterifying agent of R4 in the compounds represented by the above general formulas (3) to (5) is a group derived from the carboxyl group activating agent.
It may be any as long as it has reactivity with a primary amino group, and specifically, for example, a succinimide group, a phthalic acid imide group, a 5-norbornene-2,3-dicarboximide group, p -Nitrophenyl group and the like are preferable.

【0033】本発明の糖誘導体を用いることにより測定
可能な生理活性物質としては、本発明の糖誘導体を基質
とする生理活性物質であれば特に限定することなく挙げ
られるが、具体的には、例えばフコース(α1→2)転
移酵素,フコース(α1→3)転移酵素,フコース(α
1→4)転移酵素,フコース(α1→6)転移酵素,シ
アル酸(α2→3)転移酵素,シアル酸(α2→6)転
移酵素,ガラクトース(β1→3)転移酵素,ガラクト
ース(β1→4)転移酵素,ガラクトース(α1→3)
転移酵素,N-アセチルグルコサミン(β1→2)転移
酵素,N-アセチルグルコサミン(β1→4)転移酵
素,N-アセチルグルコサミン(β1→6)転移酵素,
マンノース(α1→2)転移酵素,マンノース(α1→
3)転移酵素,マンノース(α1→6)転移酵素,マン
ノース(β1→4)転移酵素,キシロース(β1→2)
転移酵素等の糖転移酵素、例えばシアリダーゼ,β(又
はα)−ガラクトシダーゼ,β−N−アセチルグルコサ
ミニダーゼ,α(又はβ)−マンノシダーゼ,α−フコ
シダーゼ,α(又はβ)−N−アセチルガラクトサミニ
ダーゼ,キシロシダーゼ等の糖加水分解酵素(エンド
型、エキソ型の何れでも可。)、例えばグルコースイソ
メラーゼ等の糖異性化酵素等の糖修飾酵素が好ましく挙
げられる。
The physiologically active substance that can be measured by using the sugar derivative of the present invention is not particularly limited as long as it is a physiologically active substance using the sugar derivative of the present invention as a substrate. For example, fucose (α1 → 2) transferase, fucose (α1 → 3) transferase, fucose (α
1 → 4) transferase, fucose (α1 → 6) transferase, sialic acid (α2 → 3) transferase, sialic acid (α2 → 6) transferase, galactose (β1 → 3) transferase, galactose (β1 → 4) ) Transferase, galactose (α1 → 3)
Transferase, N-acetylglucosamine (β1 → 2) transferase, N-acetylglucosamine (β1 → 4) transferase, N-acetylglucosamine (β1 → 6) transferase,
Mannose (α1 → 2) transferase, mannose (α1 →
3) transferase, mannose (α1 → 6) transferase, mannose (β1 → 4) transferase, xylose (β1 → 2)
Glycosyltransferases such as transferases, such as sialidase, β (or α) -galactosidase, β-N-acetylglucosaminidase, α (or β) -mannosidase, α-fucosidase, α (or β) -N-acetylgalactosaminidase Preferable examples thereof include sugar hydrolases such as xylosidase (both endo-type and exo-type), and sugar-modifying enzymes such as sugar isomerases such as glucose isomerase.

【0034】尚、糖修飾酵素等の生理活性物質の由来は
限定されず、例えばヒトを含む動物の血清、血漿、尿、
髄液等の体液や生体組織、動物(又は植物)細胞抽出
液、細胞培養液等およそ生理活性物質が存在すると思わ
れるものに由来するものは全て挙げられる。
The origin of physiologically active substances such as sugar-modifying enzymes is not limited, and examples thereof include serum, plasma, urine of animals including humans,
Examples thereof include those derived from body fluids such as cerebrospinal fluid, biological tissues, animal (or plant) cell extracts, cell culture fluids, and the like, which are thought to have physiologically active substances.

【0035】本発明の生理活性物質の活性測定法は、本
発明の糖誘導体を基質として用いる以外は、文献(例え
ばJ.Biol.Chem.,vol.246,5154-5161,1971、Biochem.Bio
phys.Res.Commun.,vol.136,563-569,1986等)に記載さ
れた自体公知の常法で用いられる試薬類を用い、自体公
知の常法における操作に準じてこれを行えば足りる。
The method for measuring the activity of a physiologically active substance of the present invention is the same as that of the literature (for example, J. Biol. Chem., Vol. 246, 5154-5161, 1971, Biochem. Bio, except that the sugar derivative of the present invention is used as a substrate.
phys.Res.Commun., vol.136, 563-569, 1986) and the like, which are used in a conventional method known per se, and this can be carried out in accordance with an operation in a conventional method known per se.

【0036】尚、以下に糖転移酵素の活性測定を行う場
合を例にとり、本発明の活性測定法をより具体的に説明
する。即ち、先ず例えばシチジン一リン酸ノイラミン
酸,ウリジン二リン酸ガラクトース,ウリジン二リン酸
グルコース,ウリジン二リン酸N-アセチルグルコサミ
ン,グアノシン二リン酸マンノース,グアノシン二リン
酸フコース等の糖ヌクレオチドから目的に応じて適宜選
択された糖供与体としての糖ヌクレオチドと、測定対象
の糖転移酵素の特異性に応じて調製された本発明の糖誘
導体を糖受容体として含む測定用試液を調製し、該試液
と測定対象の糖転移酵素を含む試料とを混合して反応を
開始させ、一定時間経過後に酵素反応生成物量(又は残
存する糖受容体量)を蛍光法により測定する。得られた
測定値を、予め同様の操作法を行って作成した測定対象
の酵素量と酵素反応生成物量(又は残存する糖受容体
量)との関係を示す検量線に当てはめることにより、容
易に実施することができる。尚、上記の測定法に於い
て、糖供与体としての糖ヌクレオチドや糖受容体として
の本発明の糖誘導体の濃度は目的の活性測定を実施し得
る濃度であれば特に限定されないが、糖ヌクレオチドの
濃度としては酵素反応時の濃度として通常約0.1〜20mM
の範囲から、また、本発明の糖誘導体の濃度としては酵
素反応時の濃度として通常約1〜1,000μMの範囲から適
宜選択される。
The method for measuring the activity of the present invention will be described more specifically by taking the case of measuring the activity of a glycosyltransferase as an example. That is, first, for example, from sugar nucleotides such as cytidine monophosphate neuraminic acid, uridine diphosphate galactose, uridine diphosphate glucose, uridine diphosphate N-acetylglucosamine, guanosine diphosphate mannose, and guanosine diphosphate fucose A sugar reagent as an appropriately selected sugar nucleotide and a reagent solution for measurement containing a sugar derivative of the present invention prepared according to the specificity of the glycosyltransferase to be measured as a sugar acceptor are prepared, and the reagent solution And a sample containing the glycosyltransferase to be measured are mixed to start the reaction, and after a certain period of time, the amount of the enzyme reaction product (or the amount of the remaining sugar acceptor) is measured by the fluorescence method. By easily applying the obtained measured values to a calibration curve showing the relationship between the amount of enzyme to be measured and the amount of enzyme reaction product (or the amount of residual sugar acceptor), which was created in advance by performing the same operation method, It can be carried out. In the above measuring method, the concentration of the sugar nucleotide as the sugar donor or the sugar derivative of the present invention as the sugar acceptor is not particularly limited as long as it is a concentration at which the intended activity measurement can be carried out. The concentration of the enzyme is usually about 0.1 to 20 mM during the enzyme reaction.
In addition, the concentration of the sugar derivative of the present invention is appropriately selected from the range of usually about 1 to 1,000 μM as the concentration during the enzyme reaction.

【0037】また、本発明の測定法を実施する際の反応
温度は特に限定されないが、通常約25〜40℃の範囲から
適宜選択すればよいし、反応時間も目的により適宜選択
すればよく特に限定されない。反応のpHは、目的とす
る生理活性物質の性質により若干異なるが、通常約4〜
9、好ましくは6〜8の範囲から適宜選択される。ま
た、pHを維持する目的で用いられる緩衝剤は、目的と
する酵素反応を妨げないものの中から適宜選択すること
ができ、例えばトリスヒドロキシメチルアミノメタン−
塩酸、カコジル酸−水酸化ナトリウム、グッドの緩衝剤
等が好ましく挙げられる。
The reaction temperature for carrying out the measuring method of the present invention is not particularly limited, but it may be appropriately selected from the range of about 25 to 40 ° C., and the reaction time may be appropriately selected depending on the purpose. Not limited. The pH of the reaction varies slightly depending on the properties of the target physiologically active substance, but is usually about 4 to
9, preferably selected from the range of 6 to 8. Further, the buffer used for the purpose of maintaining the pH can be appropriately selected from those which do not interfere with the intended enzymatic reaction, and for example, trishydroxymethylaminomethane-
Preferable examples include hydrochloric acid, cacodylic acid-sodium hydroxide, Good's buffer and the like.

【0038】生理活性物質の作用により生ずる反応生成
物の分離・定量方法としては特に限定されないが、操作
の簡便性、測定時間が短い等の利点を有する高速液体ク
ロマトグラフィー(HPLC)によるゲルパーミエーシ
ョン法、逆相法、イオン交換法或はアフィニティクロマ
トグラフ法等が好ましく挙げられる。
The method for separating and quantifying the reaction product generated by the action of the physiologically active substance is not particularly limited, but gel permeation by high performance liquid chromatography (HPLC) has advantages such as easy operation and short measurement time. Method, reverse phase method, ion exchange method, affinity chromatography method and the like are preferably mentioned.

【0039】HPLCの条件の一例を示せば、逆相クロ
マトグラフィではオクタデシルシラン基やアミド基等を
導入した化学結合型シリカゲルを充填剤として用いる方
法が挙げられる。該方法に於ける溶離液としては目的に
応じて適当な緩衝液を適宜選択して用いればよいが、例
えば1ーブタノール、アセトニトリル或はメタノールを0.
01〜80%含有する 0.1M酢酸アンモニウム緩衝液(pH3.0
〜8.0)等が好ましく挙げられ、流速は用いられる分離
カラムの直径に応じて0.1〜3.0ml/min.の範囲で適宜選
択されるが特にこれらに限定されるものではない。ま
た、検出は当然のことながら蛍光法で行われる。尚、シ
アル酸関連修飾酵素の活性測定の場合等、生成物が荷電
を有するものであるときは、イオン交換カラムを利用し
たHPLC法や電気泳動による分離・定量法も有効であ
る。
As an example of HPLC conditions, there is a method in which reversed-phase chromatography uses a chemically bonded silica gel having an octadecylsilane group or an amide group introduced as a packing material. As the eluent in the method, an appropriate buffer may be appropriately selected and used according to the purpose, and for example, 1-butanol, acetonitrile or methanol can be used in an amount of 0.
0.1 to 80% 0.1M ammonium acetate buffer (pH3.0
~ 8.0) and the like, and the flow rate is appropriately selected within the range of 0.1 to 3.0 ml / min. According to the diameter of the separation column used, but is not particularly limited thereto. Further, the detection is naturally performed by the fluorescence method. When the product has a charge, such as when measuring the activity of a sialic acid-related modifying enzyme, the HPLC method using an ion exchange column or the separation / quantification method by electrophoresis is also effective.

【0040】以下に実施例を挙げて本発明を更に具体的
に説明するが、本発明はこれら実施例により何ら限定さ
れるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【実施例】【Example】

【0041】参考例1.2-ピリジルアミノエチルスクシ
ナミン酸 5-ノルボルネン-2,3-ジカルボキシイミドエ
ステル(PAE−Suc−ONB)の合成 1)2-(2-アミノエチル)アミノピリジン(PAEA)の合
成 2-クロルピリジン85gとエチレンジアミン450gとを、120
℃で8時間還流下に反応させた。反応終了後、反応液を
減圧濃縮し、クロロホルムにより目的物を抽出した。抽
出液からクロロホルムを留去し、残渣をベンゼン−石油
エ−テル(1:5)で再結晶して、PAEA86gを得た
(収率83.7%)。 融点:36〜40℃。 IRνmax(neat)cm-1:3500〜3100(NH)、3000〜2800(-C
H2-)、780(ピリジン環)。1 H−NMR(60MHz、CDCl3)δppm:1.64(bs,2H,N
H2)、2.82〜3.58(m,4H,-CH2CH2-)、6.40〜8.24(m,4H,ピ
リジン環)。 MS:m/z 137(M+)。 2)2-ピリジルアミノエチルスクシナミン酸(PAE−S
uc−OH)の合成 上記1)で得たPAEA10gと無水コハク酸7.3gとをエタ
ノ−ル300mlに溶解し、室温にて2時間撹拌下に反応さ
せた。反応終了後、析出晶を濾取し、乾燥させてPAE
−Suc−OH13.6gを得た(収率78.6%)。 融点:128〜130℃。 IRνmax(KBr)cm-1:3400〜3200(NH)、1700(カルボン
酸)、1660,1560(アミド)、780(ピリジン環)。1 H−NMR(270MHz、DMSO-d6)δppm:2.32(t,2H,Suc
-CH2-,J=6.48Hz)、2.34(t,2H,Suc-CH2-,J=6.48Hz)、3.2
0〜3.30(m,4H,AEA-CH2-CH2-)、6.43〜7.95(m,4H,ピリジ
ン環)。 MS:m/z 237(M+)。 3)2-ピリジルアミノエチルスクシナミン酸 5-ノルボル
ネン-2,3-ジカルボキシイミドエステル(PAE−Su
c−ONB)の合成 上記2)で得たPAE−Suc−OH 2.37gと、N-ヒドロ
キシ-5-ノルボルネン-2,3-ジカルボキシイミド(HON
B)1.8gとを、DMF50mlに溶解し、これに、2,2'-ジ
チオジピリジン(2ーPDS)2.2gと、トリフェニルホス
フィン2.6gを含むDMF溶液20mlを添加した後、室温で
4時間撹拌下に反応させた。反応終了後、DMFを減圧
留去し、得られた残渣を酢酸エチル−エ−テルで結晶化
して、下記化学式で示されるPAE−Suc−ONB2.
5gを得た(収率62.5%)。
Reference Example 1. Synthesis of 2-pyridylaminoethylsuccinamic acid 5-norbornene-2,3-dicarboximide ester (PAE-Suc-ONB) 1) 2- (2-aminoethyl) aminopyridine (PAEA) ) Of 2-chloropyridine 85g and ethylenediamine 450g, 120
The mixture was reacted under reflux at 8 ° C for 8 hours. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the target product was extracted with chloroform. Chloroform was distilled off from the extract, and the residue was recrystallized with benzene-petroleum ether (1: 5) to obtain 86 g of PAEA (yield 83.7%). Melting point: 36-40 ° C. IRνmax (neat) cm -1 : 3500-3100 (NH), 3000-2800 (-C
H 2 -), 780 (pyridine ring). 1 H-NMR (60 MHz, CDCl 3 ) δppm: 1.64 (bs, 2H, N
H 2), 2.82~3.58 (m, 4H, -CH 2 CH 2 -), 6.40~8.24 (m, 4H, pyridine ring). MS: m / z 137 (M + ). 2) 2-pyridylaminoethylsuccinamic acid (PAE-S
Synthesis of uc-OH) 10 g of PAEA obtained in 1) above and 7.3 g of succinic anhydride were dissolved in 300 ml of ethanol and reacted at room temperature with stirring for 2 hours. After the reaction was completed, the precipitated crystals were collected by filtration, dried and PAE.
13.6 g of -Suc-OH was obtained (yield 78.6%). Melting point: 128-130 ° C. IR (nu) max (KBr) cm < -1 >: 3400-3200 (NH), 1700 (carboxylic acid), 1660,1560 (amide), 780 (pyridine ring). 1 H-NMR (270 MHz, DMSO-d6) δppm: 2.32 (t, 2H, Suc
-CH 2- , J = 6.48Hz), 2.34 (t, 2H, Suc-CH 2- , J = 6.48Hz), 3.2
0~3.30 (m, 4H, AEA- CH 2 -CH 2 -), 6.43~7.95 (m, 4H, pyridine ring). MS: m / z 237 (M + ). 3) 2-Pyridylaminoethyl succinamic acid 5-norbornene-2,3-dicarboximide ester (PAE-Su
Synthesis of c-ONB) 2.37 g of PAE-Suc-OH obtained in 2) above and N-hydroxy-5-norbornene-2,3-dicarboximide (HON
B) 1.8 g was dissolved in DMF 50 ml, and DMF solution 20 ml containing 2,2′-dithiodipyridine (2-PDS) 2.2 g and triphenylphosphine 2.6 g was added thereto, and then the mixture was stirred at room temperature for 4 hours. The reaction was allowed to stir for hours. After completion of the reaction, DMF was distilled off under reduced pressure and the obtained residue was crystallized with ethyl acetate-ether to give PAE-Suc-ONB2.
5 g was obtained (yield 62.5%).

【化1】 融点:122℃〜(dec.)。 IRνmax(KBr)cm-1:3300〜3100(NH)、3100〜2800(-CH
2-)、1780(エステル)、1660,1600(アミド)、780(ピリジ
ン環)。1 H−NMR(60MHz、DMSO-d6)δppm:1.60(m,2H,N
B)、2.50〜2.88(m,4H,AEA-CH2CH2-)、3.33〜3.60(m,8H,
Suc-CH2CH2- and NB)、6.23(s,2H,NB)、6.50〜8.16(m,4
H,ピリジン環)。 MS:m/z 398(M+)。
[Chemical 1] Melting point: 122 ° C- (dec.). IRνmax (KBr) cm -1 : 3300-3100 (NH), 3100-2800 (-CH
2- ), 1780 (ester), 1660, 1600 (amide), 780 (pyridine ring). 1 H-NMR (60 MHz, DMSO-d6) δppm: 1.60 (m, 2H, N
B), 2.50 ~ 2.88 (m, 4H, AEA-CH 2 CH 2- ), 3.33 ~ 3.60 (m, 8H,
Suc-CH 2 CH 2 -and NB), 6.23 (s, 2H, NB), 6.50 ~ 8.16 (m, 4
H, pyridine ring). MS: m / z 398 (M + ).

【0042】参考例2.N-(2-ピリジル)スクシナモイル
アミノプロピオン酸 コハク酸イミドエステル(Py−
Suc−Ala−OSu)の合成 1)2-ピリジルスクシナミン酸(Py−Suc−OH)の
合成 2-アミノピリジン131gと無水コハク酸139gとを、トルエ
ン2lに懸濁させた後、90℃で1時間、更に室温で1時
間撹拌下に反応させた。反応終了後、析出晶を濾取し、
乾燥させてPy−Suc−OH195gを得た(収率72.2
%)。 融点:171〜172℃。 IRνmax(KBr)cm-1:3300〜3000(NH)、1700(カルボン
酸)、1620,1580(アミド)、780(ピリジン環)。1 H−NMR(270MHz、DMSO-d6)δppm:1.84(dd,2H,-C
H2-,J=6.21)、1.98(dd,2H,-CH2-,J=6.21)、6.35〜7.62
(m,4H,ピリジン環)、9.72(s,1H,NH)、11.36(s,1H,カル
ボン酸)。 MS:m/z 194(M+)。 2)N-(2-ピリジル)スクシナモイルアミノプロピオン酸
メチルエステル(Py−Suc−Ala−OMe)の合
成 上記1)で得たPy−Suc−OH 9.7gとβ-アラニン
メチルエステル塩酸塩7.0gとをDMF250mlに溶解し、
これにトリエチルアミン7.0mlを加えた後、2-PDS11.
0gとトリフェニルホスフィン13.1gを含むDMF溶液100
mlを加えて、室温で6時間撹拌下に反応させた。反応終
了後、反応液を減圧濃縮し、得られた残渣をクロロホル
ムで抽出、抽出液を飽和重ソウ水、飽和食塩水で順次洗
浄した。クロロホルム層を無水硫酸ナトリウムで乾燥
後、クロロホルムを留去し、得られた残渣を酢酸エチル
−エ−テルで再結晶して、Py−Suc−Ala−OM
e11.7gを得た(収率84.0%)。 融点:135〜139℃。 IRνmax(KBr)cm-1:3400〜3100(NH)、3100〜2900(-CH
2-)、1740(エステル)、1660,1580(アミド)、780(ピリ
ジン環)。1 H−NMR(270MHz、DMSO-d6)δppm:2.36〜2.51(m,
4H,Suc-CH2CH2-,J=7.02)、2.61(t,2H,Ala-CH2CO,J=6.2
1)、3.26(t,2H,AlaN-CH2-,J=6.21)、3.60(s,3H,CH3)、
7.02〜8.28(m,5H,ピリジン環 and NH)、10.41(s,1H,N
H)。 MS:m/z 279(M+)。 3)N-(2-ピリジル)スクシナモイルアミノプロピオン酸
(Py−Suc−Ala−OH)の合成 上記2)で得たPy−Suc−Ala−OMe 15.4gと水
酸化ナトリウム2.5gとを、水200mlとメタノ−ル100mlの
混合溶媒に溶解し、室温で8時間撹拌下に反応させた。
反応終了後、1N-塩酸62mlで中和し、液量が100mlになる
まで減圧濃縮した。析出した結晶を濾取し、水、アセト
ンで順次洗浄した後乾燥させてPy−Suc−Ala−
OH12.1gを得た(収率82.5%)。 融点:186〜189℃。 IRνmax(KBr)cm-1:3500〜3200(NH)、3100〜2900(-CH
2-)、1700(カルボン酸)、1680〜1550(アミド)、800(ピ
リジン環)。1 H−NMR(270MHz、DMSO-d6)δppm:2.35〜2.42(m,
4H,Suc-CH2CH-,J=7.02)、2.61(t,2H,Ala-CH2CO,J=6.4
8)、3.24(dd,2H,AlaN-CH2-J=6.48)、7.03〜8.08(m,5H,
ピリジン環 and NH)、10.42(s,1H,NH)。 MS:m/z 265(M+)。 4)N-(2-ピリジル)スクシナモイルアミノプロピオン酸
コハク酸イミドエステル(Py−Suc−Ala−OS
u)の合成 上記3)で得たPy−Suc−Ala−OH 2.7gとN-ヒ
ドロキシコハク酸イミド1.2gとを、DMF50mlに溶解
し、これに、2-PDS2.2gとトリフェニルホスフィン2.
6gを含むDMF溶液20mlを添加した後、室温で4時間撹
拌下に反応させた。反応終了後、反応液を減圧濃縮し、
得られた残渣を酢酸エチル−エ−テルで結晶化して、下
記化学式で示されるPy−Suc−Ala−OSu3.4g
を得た(収率93.1%)。
Reference Example 2. N- (2-pyridyl) succinamoylaminopropionic acid succinimide ester (Py-
Synthesis of Suc-Ala-OSu) 1) Synthesis of 2-pyridylsuccinamic acid (Py-Suc-OH) 131 g of 2-aminopyridine and 139 g of succinic anhydride were suspended in 2 l of toluene and then 90 ° C. The mixture was reacted for 1 hour at room temperature and then for 1 hour at room temperature with stirring. After the reaction was completed, the precipitated crystals were collected by filtration,
It was dried to obtain 195 g of Py-Suc-OH (yield 72.2
%). Melting point: 171-172 ° C. IR ν max (KBr) cm −1 : 3300 to 3000 (NH), 1700 (carboxylic acid), 1620,1580 (amide), 780 (pyridine ring). 1 H-NMR (270 MHz, DMSO-d6) δppm: 1.84 (dd, 2H, -C
H 2- , J = 6.21), 1.98 (dd, 2H, -CH 2- , J = 6.21), 6.35 ~ 7.62
(m, 4H, pyridine ring), 9.72 (s, 1H, NH), 11.36 (s, 1H, carboxylic acid). MS: m / z 194 (M + ). 2) N- (2-pyridyl) succinamoylaminopropionic acid
Synthesis of methyl ester (Py-Suc-Ala-OMe) 9.7 g of Py-Suc-OH obtained in 1) above and β-alanine
Dissolve 7.0 g of methyl ester hydrochloride in 250 ml of DMF,
After adding 7.0 ml of triethylamine to this, 2-PDS11.
DMF solution containing 0g and 13.1g triphenylphosphine 100
ml was added, and the mixture was reacted at room temperature for 6 hours with stirring. After completion of the reaction, the reaction solution was concentrated under reduced pressure, the obtained residue was extracted with chloroform, and the extract was washed successively with saturated aqueous sodium bicarbonate solution and saturated brine. The chloroform layer was dried over anhydrous sodium sulfate, chloroform was distilled off, and the obtained residue was recrystallized from ethyl acetate-ether to obtain Py-Suc-Ala-OM.
e11.7g was obtained (yield 84.0%). Melting point: 135-139 ° C. IRνmax (KBr) cm -1 : 3400-3100 (NH), 3100-2900 (-CH
2- ), 1740 (ester), 1660,1580 (amide), 780 (pyridine ring). 1 H-NMR (270 MHz, DMSO-d6) δppm: 2.36 to 2.51 (m,
4H, Suc-CH 2 CH 2- , J = 7.02), 2.61 (t, 2H, Ala-CH 2 CO, J = 6.2
1), 3.26 (t, 2H, AlaN-CH 2- , J = 6.21), 3.60 (s, 3H, CH 3 ),
7.02 ~ 8.28 (m, 5H, pyridine ring and NH), 10.41 (s, 1H, N
H). MS: m / z 279 (M + ). 3) Synthesis of N- (2-pyridyl) succinamoylaminopropionic acid (Py-Suc-Ala-OH) 15.4 g of Py-Suc-Ala-OMe obtained in 2) above and 2.5 g of sodium hydroxide, It was dissolved in a mixed solvent of 200 ml of water and 100 ml of methanol and reacted at room temperature for 8 hours with stirring.
After the reaction was completed, it was neutralized with 62 ml of 1N-hydrochloric acid and concentrated under reduced pressure until the liquid volume became 100 ml. The precipitated crystals were collected by filtration, washed successively with water and acetone and then dried to give Py-Suc-Ala-.
12.1 g of OH was obtained (yield 82.5%). Melting point: 186-189 ° C. IRνmax (KBr) cm -1 : 3500-3200 (NH), 3100-2900 (-CH
2- ), 1700 (carboxylic acid), 1680 to 1550 (amide), 800 (pyridine ring). 1 H-NMR (270 MHz, DMSO-d6) δppm: 2.35 to 2.42 (m,
4H, Suc-CH 2 CH-, J = 7.02), 2.61 (t, 2H, Ala-CH 2 CO, J = 6.4
8), 3.24 (dd, 2H, AlaN-CH 2 -J = 6.48), 7.03 ~ 8.08 (m, 5H,
Pyridine ring and NH), 10.42 (s, 1H, NH). MS: m / z 265 (M + ). 4) N- (2-pyridyl) succinamoylaminopropionic acid
Succinimide ester (Py-Suc-Ala-OS
Synthesis of u) Py-Suc-Ala-OH (2.7 g) obtained in the above 3) and N-hydroxysuccinimide (1.2 g) were dissolved in DMF (50 ml), and 2-PDS (2.2 g) and triphenylphosphine (2.
After adding 20 ml of a DMF solution containing 6 g, the mixture was reacted at room temperature for 4 hours with stirring. After the reaction was completed, the reaction solution was concentrated under reduced pressure,
The obtained residue was crystallized with ethyl acetate-ether to give 3.4 g of Py-Suc-Ala-OSu represented by the following chemical formula.
Was obtained (yield 93.1%).

【化2】 融点:172〜176℃。 IRνmax(KBr)cm-1:3400〜3200(NH)、3100〜2900(-CH
2-)、1790(エステル)、1660,1580(アミド)、790(ピリジ
ン環)。1 H−NMR(270MHz、DMSO-d6)δppm:2.42〜2.59(m,
4H,Suc-CH2CH2-,J=7.02)、2.83(s,4H,Su)、2.83〜2.97
(m,2H,Ala-CH2CO)、3.24〜3.42(dd,2H,AlaN-CH2-,J=6.2
1)、7.00〜8.45(m,4H,ピリジン環)、10.47(b,1H,NH)。 MS:m/z 362(M+)。
[Chemical 2] Melting point: 172-176 ° C. IRνmax (KBr) cm -1 : 3400-3200 (NH), 3100-2900 (-CH
2- ), 1790 (ester), 1660, 1580 (amide), 790 (pyridine ring). 1 H-NMR (270 MHz, DMSO-d6) δppm: 2.42 to 2.59 (m,
4H, Suc-CH 2 CH 2- , J = 7.02), 2.83 (s, 4H, Su), 2.83 to 2.97
(m, 2H, Ala-CH 2 CO), 3.24 to 3.42 (dd, 2H, AlaN-CH 2- , J = 6.2
1), 7.00 to 8.45 (m, 4H, pyridine ring), 10.47 (b, 1H, NH). MS: m / z 362 (M + ).

【0043】参考例3.N-(2ーピリジル)ーβ-アラニルア
ミノプロピオン酸 5-ノルボルネン-2,3-ジカルボキシ
イミドエステル(Py−Ala−Ala−ONB)の合
成 1)N-(2-ピリジル)-β-アラニン メチルエステル(Py
−Ala−OMe)の合成 2-アミノピリジン94gにアクリル酸メチル100mlと2,5-ジ
-tert-ブチルヒドロキノン1.1gを加え、撹拌下24時間還
流反応させた。反応終了後、反応液をベンゼン1lに注
ぎ、0℃で5時間放置した。析出した結晶を瀘去し、瀘
液を濃縮して得られた残渣をベンゼン−ヘキサン(1:
5)で結晶化して、Py−Ala−OMe64.5gを得た
(収率35.8%)。 融点:48〜49℃。 IRνmax(KBr)cm-1:3300〜3200(NH)、3100〜2800(-CH
2-)、1760(エステル)、1610,1580(アミド)、780(ピリジ
ン環)。1 H−NMR(270MHz、DMSO-d6)δppm:2.57(t,2H,-CH
2CO-,J=7.02)、3.48(dd,2H,NCH2-,J=7.02)、3.60(s,3H,
CH3)、6.44〜7.98(m,4H,ピリジン環)。 MS:m/z 180(M+)。 2)N-(2-ピリジル)-β-アラニン(Py−Ala−OH)
の合成 上記1)で得たPy−Ala−0Me 62.1gを水620mlに
懸濁し、撹拌下24時間還流反応させた。反応終了後、水
を減圧留去し、得られた残渣をエタノ−ルで再結晶し
て、Py−Ala−OH43.1gを得た(収率75.2%)。 融点:136〜138℃。 IRνmax(KBr)cm-1:3300〜3000(NH)、3000〜2800(-CH
2-)、1700(カルボン酸)、1640,1550(アミド)、760(ピリ
ジン環)。1 H-NMR(270MHz、DMSOーd6)δppm:2.50(t,2H,-CH2
CO,J=6.75)、3.45(m,2H,NCH2-,J=6.75)、6.44〜7.98(m,
4H,ピリジン環)。 MS:m/z 166(M+)。 3)N-(2-ピリジル)-β-アラニルアミノプロピオン酸 メ
チルエステル(Py−Ala−Ala−OMe)の合成 DMF60mlに、上記2)で得たPy−Ala−OH 3.3g
とβ-アラニン メチルエステル塩酸塩 2.8g及びDCC
4.1gを加え、これに更にトリエチルアミン2.8mlを加え
て、室温で24時間撹拌下に反応させた。反応終了後、不
溶物を瀘去し、瀘液を減圧濃縮して得られた残渣をクロ
ロホルムで抽出し、抽出液を飽和重ソウ水、飽和食塩水
で順次洗浄した。クロロホルム層を無水硫酸ナトリウム
で乾燥後、クロロホルムを留去し、得られた残渣を酢酸
エチル−エ−テルで再結晶して、Py−Ala−Ala
−OMe4.3gを得た(収率86.5%)。 融点:68〜70℃。 IRνmax(KBr)cm-1:3400〜3200(NH)、3100〜2800(-CH
2-)、1730(エステル)、1650,1600(アミド)、780(ピリジ
ン環)。1 H−NMR(60MHz、DMSO-d6)δppm:2.35〜2.69(m,4
H,2×Ala-CH2CO)、3.30〜3.57(m,4H,2×AlaN-CH2-)、3.
59(s,3H,CH3)、6.33〜8.02(m,6H,ピリジン環 and 2×N
H)。 MS:m/z 251(M+)。 4)N-(2-ピリジル)-β-アラニルアミノプロピオン酸(P
y−Ala−Ala−OH)の合成 上記3)で得たPy−Ala−Ala−OMe 16.0gと水
酸化ナトリウム2.6gとを、水200mlとメタノ−ル100mlの
混合溶媒に溶解した後、室温で24時間撹拌下に反応させ
た。反応終了後、1N-塩酸64mlで中和し、減圧濃縮し
た。得られた残渣を水−エタノ−ル(1:5)で再結晶
して、Py−Ala−Ala−OH14.7gを得た(収率9
7.4%)。 融点:146〜149℃ IRνmax(KBr)cm-1:3300(NH)、3000〜2800(-CH2-)、1
680(カルボン酸)、1630,1550(アミド)、760(ピリジン
環)。1 H−NMR(60MHz、DMSO-d6)δppm:2.20〜2.59(m,4
H,2×Ala-CH2CO)、3.09〜3.64(m,4H,2×AlaN-CH2-)、6.
38〜8.09(ピリジン環 and 2×NH)。 MS:m/z 237(M+)。 5)N-(2-ピリジル)-β-アラニルアミノプロピオン酸 5-
ノルボルネン-2,3-ジカルボキシミドエステル(Py−
Ala−Ala−0NB)の合成 上記4)で得たPy−Ala−Ala−OH 3.6gとHO
NB 2.7gとを、DMF75mlに溶解し、次いで、これ
に、2-PDS 3.3gとトリフェニルホスフィン3.9gを含
むDMF溶液30mlを加えた後、室温で6時間撹拌下に反
応させた。反応終了後、反応液を減圧濃縮し、得られた
残渣をシリカゲルクロマトグラフィ(溶出液;クロロホ
ルム−アセトン=1:1の混合溶媒)にて精製し、下記
化学式で示されるPy−Ala−Ala−ONB2.4gを
油状物質として得た(収率40.5%)。
Reference Example 3. Synthesis of N- (2-pyridyl) -β-alanylaminopropionic acid 5-norbornene-2,3-dicarboximide ester (Py-Ala-Ala-ONB) 1) N- (2-pyridyl) -β-alanine Methyl ester (Py
-Ala-OMe) Synthesis of 2-aminopyridine (94 g) with methyl acrylate (100 ml) and 2,5-diamine
1.1 g of -tert-butylhydroquinone was added, and the mixture was refluxed for 24 hours with stirring. After completion of the reaction, the reaction solution was poured into 1 liter of benzene and left at 0 ° C. for 5 hours. The precipitated crystals were filtered off, the filtrate was concentrated, and the resulting residue was benzene-hexane (1:
Crystallization was performed in 5) to obtain 64.5 g of Py-Ala-OMe (yield 35.8%). Melting point: 48-49 ° C. IRνmax (KBr) cm -1 : 3300-3200 (NH), 3100-2800 (-CH
2- ), 1760 (ester), 1610,1580 (amide), 780 (pyridine ring). 1 H-NMR (270 MHz, DMSO-d6) δppm: 2.57 (t, 2H, -CH
2 CO-, J = 7.02), 3.48 (dd, 2H, NCH 2- , J = 7.02), 3.60 (s, 3H,
CH 3), 6.44~7.98 (m, 4H, pyridine ring). MS: m / z 180 (M + ). 2) N- (2-pyridyl) -β-alanine (Py-Ala-OH)
Synthesis of Py-Ala-0Me (62.1 g) obtained in 1) above was suspended in 620 ml of water and refluxed for 24 hours while stirring. After completion of the reaction, water was distilled off under reduced pressure, and the obtained residue was recrystallized with ethanol to obtain 43.1 g of Py-Ala-OH (yield 75.2%). Melting point: 136-138 ° C. IRνmax (KBr) cm -1 : 3300 ~ 3000 (NH), 3000 ~ 2800 (-CH
2- ), 1700 (carboxylic acid), 1640,1550 (amide), 760 (pyridine ring). 1 H-NMR (270 MHz, DMSO-d6) δppm: 2.50 (t, 2H, -CH 2
CO, J = 6.75), 3.45 (m, 2H, NCH 2- , J = 6.75), 6.44 ~ 7.98 (m,
4H, pyridine ring). MS: m / z 166 (M + ). 3) Synthesis of N- (2-pyridyl) -β-alanylaminopropionic acid methyl ester (Py-Ala-Ala-OMe) In 60 ml of DMF, 3.3 g of Py-Ala-OH obtained in the above 2) was added.
And β-alanine methyl ester hydrochloride 2.8g and DCC
4.1 g was added, and triethylamine (2.8 ml) was further added thereto, and the mixture was reacted at room temperature for 24 hours with stirring. After completion of the reaction, the insoluble matter was filtered off, the filtrate was concentrated under reduced pressure, the resulting residue was extracted with chloroform, and the extract was washed successively with saturated sodium bicarbonate water and saturated saline. The chloroform layer was dried over anhydrous sodium sulfate, chloroform was distilled off, and the obtained residue was recrystallized from ethyl acetate-ether to obtain Py-Ala-Ala.
-OMe 4.3g was obtained (yield 86.5%). Melting point: 68-70 ° C. IRνmax (KBr) cm -1 : 3400-3200 (NH), 3100-2800 (-CH
2- ), 1730 (ester), 1650, 1600 (amide), 780 (pyridine ring). 1 H-NMR (60 MHz, DMSO-d6) δppm: 2.35 to 2.69 (m, 4
H, 2 × Ala-CH 2 CO), 3.30 to 3.57 (m, 4H, 2 × AlaN-CH 2- ), 3.
59 (s, 3H, CH 3 ), 6.33-8.02 (m, 6H, pyridine ring and 2 × N
H). MS: m / z 251 (M + ). 4) N- (2-pyridyl) -β-alanylaminopropionic acid (P
y-Ala-Ala-OH) 16.0 g of Py-Ala-Ala-OMe obtained in 3) above and 2.6 g of sodium hydroxide were dissolved in a mixed solvent of 200 ml of water and 100 ml of methanol, and then room temperature. And reacted for 24 hours under stirring. After completion of the reaction, the mixture was neutralized with 1N-hydrochloric acid 64 ml and concentrated under reduced pressure. The obtained residue was recrystallized from water-ethanol (1: 5) to obtain 14.7 g of Py-Ala-Ala-OH (yield 9
7.4%). Melting point: 146 to 149 ° C IRνmax (KBr) cm -1 : 3300 (NH), 3000 to 2800 (-CH 2- ), 1
680 (carboxylic acid), 1630,1550 (amide), 760 (pyridine ring). 1 H-NMR (60 MHz, DMSO-d6) δppm: 2.20 to 2.59 (m, 4
H, 2 × Ala-CH 2 CO), 3.09 to 3.64 (m, 4H, 2 × AlaN-CH 2- ), 6.
38-8.09 (pyridine ring and 2xNH). MS: m / z 237 (M + ). 5) N- (2-pyridyl) -β-alanylaminopropionic acid 5-
Norbornene-2,3-dicarboximide ester (Py-
Synthesis of Ala-Ala-0NB) 3.6 g of Py-Ala-Ala-OH obtained in 4) above and HO
2.7 g of NB was dissolved in 75 ml of DMF, and then 30 ml of a DMF solution containing 3.3 g of 2-PDS and 3.9 g of triphenylphosphine was added thereto, and the mixture was reacted at room temperature for 6 hours with stirring. After completion of the reaction, the reaction solution was concentrated under reduced pressure, the obtained residue was purified by silica gel chromatography (eluent; chloroform-acetone = 1: 1 mixed solvent), and Py-Ala-Ala-ONB2 represented by the following chemical formula: 0.4 g was obtained as an oily substance (yield 40.5%).

【化3】 IRνmax(neat)cm-1:3600〜3200(NH)、3100〜2900(-C
H2-)、1780(エステル)、1700,1580(アミド)、760(ピリ
ジン環)。1 H−NMR(60MHz、DMSO-d6)δppm:1.29(s,2H,N
B)、2.41〜2.85(m,4H,2×Ala-CH2CO)、3.09〜3.68(m,8
H,2×AlaNCH2- and NB)、6.15(s,2H,NB)、6.44〜7.97
(m,6H,ピリジン環 and 2×NH)。 MS:m/z 398(M+)。
[Chemical 3] IRνmax (neat) cm -1 : 3600-3200 (NH), 3100-2900 (-C
H 2 -), 1780 (ester), 1700,1580 (amide), 760 (pyridine ring). 1 H-NMR (60 MHz, DMSO-d6) δppm: 1.29 (s, 2H, N
B), 2.41 to 2.85 (m, 4H, 2 x Ala-CH 2 CO), 3.09 to 3.68 (m, 8
H, 2 × AlaNCH 2 -and NB), 6.15 (s, 2H, NB), 6.44 ~ 7.97
(m, 6H, pyridine ring and 2xNH). MS: m / z 398 (M + ).

【0044】実施例1.蛍光標識糖誘導体の合成 (1)ヒト血清由来トランスフェリンからの糖ペプチドの
調製 ヒト血清トランスフェリン(シグマ社製)1gを50mMト
リス塩酸(pH8.0、1mMの塩化カルシウム含有)40mlに
溶解したものに、プロナーゼ(ベーリンガーマンハイム
社製)20mgを加え、30℃で24時間反応させた。24時間経
過後に10mgのプロナーゼを追加し、更に30℃で24時間反
応させた。反応終了後、反応液をトヨパール40Sカラム
(東ソー社製、2.5×140cm。)を用いたクロマトグラフ
ィー(溶離液:0.1N-酢酸)により精製した。回収され
た各画分の内、フェノール硫酸法により橙色を呈する画
分を集め、凍結乾燥し糖ペプチド標品とした。尚、上記
で得られた糖ペプチド標品2mgを6N-塩酸適当量に溶解
し、110℃で24時間加水分解反応させ、生じたアミノ酸
をPTCアミノ酸分析法により分析した。その結果、本糖
ペプチド標品からは、アスパラギン、リジン及びグルコ
サミンのピークが検出された。この結果とヒト血清トラ
ンスフェリンの1次構造を比較した結果、上記糖ペプチ
ドの構造はAsn413-(糖鎖)-Lysと推定された。 (2)糖ペプチドへの蛍光標識 上記(1)で得られた糖ペプチド10mgを0.1M 炭酸水素ナト
リウム溶液2mlに溶解したものに、参考例1で得られた
PAE−Suc−ONB 250mgを加え37℃で3時間反応
させた。反応終了後、反応液を、Wakopak 5C18カラム
(4.6×150mm、和光純薬工業(株)製)を用いた逆相カラ
ムクロマトグラフィーにより分画・精製して、目的の蛍
光標識糖ペプチドを得た。尚、カラムクロマトグラフィ
ーの測定条件は下記の通り。 ・装置:SHIMADZU LC-6A((株)島津製作所製)。 ・溶離液 A:0.1M 酢酸アンモニウム緩衝液(pH4.
0)。 ・溶離液 B:12% アセトニトリルを含む溶離液 A ・グラジェント条件:A→B 0〜10分 B 10〜12分 ・流速:1.5ml/分 ・カラム温度:55℃ ・検出:励起波長:320nm及び測定波長:400nmによる蛍
光検出により行った。 (3)酵素消化による糖鎖の修飾 a)ノイラミニダーゼ消化 上記(2)で得られた蛍光標識糖ペプチド10μgを0.1M リ
ン酸緩衝液(pH6.0、γ-ガラクトノラクトンを20mM含
有)100μlに溶解したものに、ノイラミニダーゼ(ス
トレプトコッカス属由来、東洋紡績(株)製)0.1国際単
位を加え、37℃で18時間反応させた。反応終了後、Wako
pak 5C18カラム(4.6×150mm、和光純薬工業(株)製)を
用いた逆相カラムクロマトグラフィーにより用いて分画
・精製して、目的の蛍光標識糖ペプチドを得た。尚、カ
ラムクロマトグラフィーの測定条件は上記(2)と同じ。 b)β-ガラクトシダーゼ消化 上記a)で得られたノイラミニダーゼ消化した蛍光標識糖
ペプチドを0.1M 酢酸緩衝液(pH3.5)100μlに溶解し
たものに、β-ガラクトシダーゼ(ナタマメ由来、生化
学工業(株)製)0.1国際単位をくわえ、37℃で18時間反
応させた。反応終了後、Wakopak 5C18カラム(4.6×150
mm、和光純薬工業(株)製)を用いた逆相カラムクロマト
グラフィーにより用いて分画・精製して、目的の蛍光標
識糖誘導体を得た。尚、カラムクロマトグラフィーの測
定条件は上記(2)と同じ。上記(1)で確認された糖ペプチ
ド構造から、これら2種類のエキソグリコシダーゼ消化
により得られた蛍光標識糖ペプチド中の糖鎖構造は、図
1に示す如くであると考えられる。また、該蛍光標識糖
誘導体(酢酸アンモニウム緩衝液中から再結晶)につい
て質量分析を行った結果は次の通りである。 MS:m/Z 1794.7(M+NH4)。 *計算値:C711151141 = 1777。 尚、上記(2)の反応に於いて、PAE−Suc−ONB
の代りに、参考例2で得られたPy−Suc−Ala−
OSu又は参考例3で得られたPy−Ala−Ala−
ONBを蛍光標識化試薬として用い、それ以外は、PA
E−Suc−ONBの場合と全く同様にして反応及び後
処理を行い、上記で得られたのと同じ糖ペプチド構造を
有する蛍光標識糖ペプチドが得られた。
Example 1. Synthesis of fluorescent labeled sugar derivative (1) Preparation of glycopeptide from human serum-derived transferrin 1 g of human serum transferrin (manufactured by Sigma) was dissolved in 40 ml of 50 mM Tris-hydrochloric acid (pH 8.0, containing 1 mM calcium chloride), 20 mg of pronase (Boehringer Mannheim) was added and reacted at 30 ° C. for 24 hours. After 24 hours, 10 mg of pronase was added, and the mixture was further reacted at 30 ° C. for 24 hours. After completion of the reaction, the reaction solution was purified by chromatography (eluent: 0.1N-acetic acid) using a Toyopearl 40S column (Tosoh Corporation, 2.5 × 140 cm.). Of the collected fractions, orange-colored fractions were collected by the phenol-sulfuric acid method and freeze-dried to obtain glycopeptide standards. 2 mg of the glycopeptide preparation obtained above was dissolved in an appropriate amount of 6N-hydrochloric acid and hydrolyzed at 110 ° C. for 24 hours, and the resulting amino acid was analyzed by the PTC amino acid analysis method. As a result, peaks of asparagine, lysine and glucosamine were detected in this glycopeptide preparation. This result and the results of comparing a primary structure of human serum transferrin, the structure of the glycopeptide Asn 413 - was estimated (sugar) -Lys. (2) Fluorescent labeling of glycopeptide 10 mg of the glycopeptide obtained in (1) above was dissolved in 2 ml of 0.1 M sodium hydrogen carbonate solution, and 250 mg of PAE-Suc-ONB obtained in Reference Example 1 was added. The reaction was carried out at 0 ° C for 3 hours. After completion of the reaction, the reaction solution was fractionated and purified by reverse phase column chromatography using a Wakopak 5C18 column (4.6 × 150 mm, manufactured by Wako Pure Chemical Industries, Ltd.) to obtain a target fluorescently labeled glycopeptide. . The measurement conditions for column chromatography are as follows. -Device: SHIMADZU LC-6A (manufactured by Shimadzu Corporation). Eluent A: 0.1M ammonium acetate buffer (pH 4.
0).・ Eluent B: Eluent containing 12% acetonitrile A ・ Gradient condition: A → B 0 to 10 minutes B 10 to 12 minutes ・ Flow rate: 1.5 ml / min ・ Column temperature: 55 ° C ・ Detection: Excitation wavelength: 320 nm And measurement wavelength: 400 nm for fluorescence detection. (3) Modification of sugar chain by enzymatic digestion a) Digestion of neuraminidase 10 μg of the fluorescently labeled glycopeptide obtained in (2) above was added to 100 μl of 0.1 M phosphate buffer (pH 6.0, containing 20 mM of γ-galactolactone). To the dissolved product, 0.1 international unit of neuraminidase (derived from Streptococcus, manufactured by Toyobo Co., Ltd.) was added and reacted at 37 ° C. for 18 hours. After the reaction, Wako
Fractionation and purification were carried out by reverse phase column chromatography using a pak 5C18 column (4.6 × 150 mm, manufactured by Wako Pure Chemical Industries, Ltd.) to obtain the target fluorescently labeled glycopeptide. The measurement conditions for column chromatography are the same as in (2) above. b) β-galactosidase digestion The neuraminidase-digested fluorescent-labeled glycopeptide obtained in the above a) was dissolved in 100 μl of 0.1 M acetate buffer (pH 3.5), and β-galactosidase (nama bean-derived, Seikagaku Corp. )) 0.1 international unit was added, and the reaction was carried out at 37 ° C for 18 hours. After the reaction was completed, Wakopak 5C18 column (4.6 x 150
mm, manufactured by Wako Pure Chemical Industries, Ltd.) was used for fractionation and purification by reverse phase column chromatography to obtain a target fluorescently labeled sugar derivative. The measurement conditions for column chromatography are the same as in (2) above. From the glycopeptide structure confirmed in (1) above, the sugar chain structure in the fluorescence-labeled glycopeptide obtained by digestion of these two types of exoglycosidase is considered to be as shown in FIG. Further, the results of mass spectrometry of the fluorescently labeled sugar derivative (recrystallized from ammonium acetate buffer) are as follows. MS: m / Z 1794.7 (M + NH 4). * Calculated: C 71 H 115 N 11 O 41 = 1777. In the reaction of (2) above, PAE-Suc-ONB
In place of Py-Suc-Ala- obtained in Reference Example 2.
OSu or Py-Ala-Ala- obtained in Reference Example 3
ONB was used as a fluorescent labeling reagent, otherwise PA
Reaction and post-treatment were carried out in exactly the same manner as in the case of E-Suc-ONB, and a fluorescence-labeled glycopeptide having the same glycopeptide structure as obtained above was obtained.

【0045】実施例2.α1→6フコース転移酵素(F
T16)活性測定 (FT16酵素源) 肝細胞癌患者血清を使用した。 (糖供与体溶液) グアノシン二燐酸−β−フコース(住友精化製、分子量
589.3)を1mMとなるように水に溶解したものを糖供与
体溶液とした。 (糖受容体溶液) 実施例1で得られた蛍光標識糖誘導体(以下、FT16A
と略記する。)を147μMとなるように50mM リン酸緩衝
液(pH7.0、150mM 塩化ナトリウム及び0.2%牛血清アル
ブミンを含有)に溶解したものを糖受容体溶液とした。 (反応緩衝液) アデノシン5’-三燐酸二ナトリウム・三水和物(オリ
エンタル酵母社製)605mg、アジ化ナトリウム(和光純
薬工業(株)製)125mg、塩化マグネシウム・六水和物
(和光純薬工業(株)製)1g及び3-(N-モルホリノ)プロ
パンスルホン酸(MOPS)2gを水に溶解し、pHを7.5に
調製した後、最終液量を100mlとしたものを反応緩衝液
とした。 (HPLC条件) ・装置:SHIMADZU LC-9A((株)島津製作所製)。 ・カラム:TSKgel Amide80(4.6×250mm、東ソー
製)。 ・溶離液A:60% アセトニトリルを含む0.1M 酢酸アン
モニウム緩衝液(pH4.0)。 ・溶離液B:54% アセトニトリルを含む0.1M 酢酸アン
モニウム緩衝液(pH4.0)。 ・グラジェント:A→B 0〜10分。 B 10〜12分。 ・流速:1ml/分。 ・カラム温度:45℃。 ・検出:励起波長:320nm及び測定波長:400nmによる蛍
光検出により行った。 (操作法) 糖供与体溶液2μl、糖受容体溶液5μl、反応緩衝液
8μlに、下記表1に示す組成の試料5μlを加え、37
℃で16時間反応させた。反応終了後、反応液に溶離液A
200μlを加えてよく攪拌し、この100μlをHPLCに
より分析した。
Example 2. α1 → 6 fucosyltransferase (F
T16) Activity measurement (FT16 enzyme source) Serum from hepatocellular carcinoma patients was used. (Sugar donor solution) Guanosine diphosphate-β-fucose (Sumitomo Seika, molecular weight
A solution of 589.3) dissolved in water to 1 mM was used as a sugar donor solution. (Sugar acceptor solution) The fluorescence-labeled sugar derivative obtained in Example 1 (hereinafter referred to as FT16A)
Is abbreviated. Was dissolved in 50 mM phosphate buffer (pH 7.0, containing 150 mM sodium chloride and 0.2% bovine serum albumin) to give a sugar receptor solution. (Reaction buffer) Adenosine 5'-trisodium triphosphate trihydrate (manufactured by Oriental Yeast Co., Ltd.) 605 mg, sodium azide (manufactured by Wako Pure Chemical Industries, Ltd.) 125 mg, magnesium chloride hexahydrate (sum Koujunyaku Kogyo Co., Ltd.) 1-g and 3- (N-morpholino) propanesulfonic acid (MOPS) 2g were dissolved in water to adjust the pH to 7.5, and then the final volume was 100 ml. And (HPLC conditions) -Device: SHIMADZU LC-9A (manufactured by Shimadzu Corporation). -Column: TSKgel Amide 80 (4.6 x 250 mm, manufactured by Tosoh Corporation). Eluent A: 0.1 M ammonium acetate buffer (pH 4.0) containing 60% acetonitrile. Eluent B: 0.1 M ammonium acetate buffer (pH 4.0) containing 54% acetonitrile. -Gradient: A-> B 0-10 minutes. B 10-12 minutes. -Flow rate: 1 ml / min. -Column temperature: 45 ° C. -Detection: It was performed by fluorescence detection with an excitation wavelength of 320 nm and a measurement wavelength of 400 nm. (Procedure) 5 μl of the sample having the composition shown in Table 1 below was added to 2 μl of the sugar donor solution, 5 μl of the sugar acceptor solution, and 8 μl of the reaction buffer, and 37
The reaction was carried out at 16 ° C for 16 hours. After completion of the reaction, eluent A is added to the reaction solution.
200 μl was added and stirred well, and 100 μl was analyzed by HPLC.

【表1】 (結果) HPLCによる分析の結果、未反応のFT16Aは10.9分
後に溶出され、FT16の作用によりフコースがFT16A
の還元末端のN−アセチルグルコサミン残基に付加した
生成物は、11.3分後に溶出されることが判った。該生成
物のピークの高さと添加したFT16酵素源液量との関係
を示す検量線を図2に示す。図2から明らかな如く、該
生成物は、FT16酵素源液量に比例して、即ちFT16酵
素量に比例して生成することが判る。また、FT16Aの
還元末端N−アセチルグルコサミン残基以外の糖残基に
フコースが付加した物質は、今回のHPLCによる分析
条件下ではFT16Aよりも速く溶出する事が確認されて
いるので、本発明の測定法によりFT16活性測定が可能
であることが判る。尚、本実施例に於いて、基質として
FT16を用いる代りに、上記実施例1の(2)の反応に於
いてPAE−Suc−ONBの代りに、参考例2で得ら
れたPy−Suc−Ala−OSu又は参考例3で得ら
れたPy−Ala−Ala−ONBを蛍光標識化試薬と
して用いてFT16と同様にして得られた蛍光標識糖ペプ
チドを基質として用いた場合も、上記と同様の結果が得
られた。
[Table 1] (Results) As a result of analysis by HPLC, unreacted FT16A was eluted after 10.9 minutes, and fucose was converted into FT16A by the action of FT16.
It was found that the product added to the N-acetylglucosamine residue at the reducing end of was eluted after 11.3 minutes. A calibration curve showing the relationship between the peak height of the product and the amount of FT16 enzyme source solution added is shown in FIG. As is clear from FIG. 2, the product is produced in proportion to the amount of FT16 enzyme source solution, that is, in proportion to the amount of FT16 enzyme. In addition, it has been confirmed that a substance in which fucose is added to a sugar residue other than the reducing terminal N-acetylglucosamine residue of FT16A elutes faster than FT16A under the analysis conditions of this time of HPLC. It is understood that the FT16 activity can be measured by the measuring method. In this Example, instead of using FT16 as a substrate, instead of PAE-Suc-ONB in the reaction of (2) of Example 1 above, the Py-Suc-obtained in Reference Example 2 was used. When Ala-OSu or Py-Ala-Ala-ONB obtained in Reference Example 3 was used as a fluorescent labeling reagent and a fluorescent labeled glycopeptide obtained in the same manner as FT16 was used as a substrate, the same results as above were obtained. Results were obtained.

【0046】[0046]

【発明の効果】以上述べた如く、本発明は、糖鎖の生合
成に重要な働きを有し、最近では腫瘍マーカーとしても
注目されている糖転移酵素等に代表される糖質に作用す
る生理活性物質の基質と成り得る新規な糖誘導体と、そ
れを基質として用いる生理活性物質の簡便で且つ定量性
に優れた活性測定法を提供するものであり、斯業に貢献
するところ大なる発明である。
INDUSTRIAL APPLICABILITY As described above, the present invention has an important function in sugar chain biosynthesis and acts on sugars typified by glycosyltransferases, which have recently attracted attention as tumor markers. The present invention provides a novel sugar derivative that can be a substrate for a physiologically active substance, and a method for measuring the activity of a physiologically active substance that uses the substrate as a substrate, which is simple and excellent in quantification. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた蛍光標識糖ペプチド中の糖
鎖構造を示す。
FIG. 1 shows the sugar chain structure in the fluorescently labeled glycopeptide obtained in Example 1.

【図2】実施例2で得られた、試料中のFT16酵素源液
量と、FT16酵素の反応による生成物のピークの高さと
の関係を示す検量線を示す。
FIG. 2 shows a calibration curve obtained in Example 2 showing the relationship between the amount of FT16 enzyme source solution in a sample and the peak height of the product of the reaction of FT16 enzyme.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12Q 1/533 C12Q 1/533 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI C12Q 1/533 C12Q 1/533

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式(1) R1−A−NH−R2 (1) 式中、R1はグルコース,マンノース,ガラクトー
ス,フコース,シアル酸,N−アセチルグルコサミン,N
−アセチルガラクトサミンから選択される糖残基を2〜
10個有する糖鎖であって、糖修飾酵素の基質と成り得
る糖鎖構造を成しているものを表わし、Aはアスパラギ
ン残基、セリン残基、トレオニン残基又はこれらから構
成されるペプチド残基を表わし、R2は R3−(CH 2 )m−NH−CO−(CH 2 )n−CO― (A) R3−CO−(CH 2 )n−CO−NH−(CH 2 )m−CO− (B) R3−(CH 2 )m−CO−NH−(CH 2 )n−CO− (C) (式中、R3は2−ピリジルアミノ基又は3−ピリジルア
ミノ基を表わし、m及びnは夫々独立して1〜4の整数
を表わす。)で示される 基を表わす。で示される糖誘
導体。
1. A compound represented by the following general formula (1): R1-A-NH-R2 (1) [wherein R1 is glucose, mannose or galactose.
Su, fucose, sialic acid, N-acetylglucosamine, N
2 to 2 sugar residues selected from acetylgalactosamine
It has 10 sugar chains and can be a substrate for sugar-modifying enzyme
It represents what forms a sugar chain structure that, A is aspartic
Residues, serine residues, threonine residues, or
Represents a peptide residue which is made, R2 is R3- (CH 2) m-NH -CO- (CH 2) n-CO- (A) R3-CO- (CH 2) n-CO-NH- (CH 2) m-CO- (B) R3- (CH 2) m-CO-NH- (CH 2) n-CO- (C) ( wherein, R3 is 2-pyridylamino or 3 Pirijirua
Represents a mino group, m and n are each independently an integer of 1 to 4
Represents ) Represents a group represented by. ] The sugar derivative shown by these.
【請求項2】R2が、2−ピリジルアミノエチルスクシナ2. R2 is 2-pyridylaminoethylsuccina
モイル基,N−(2−ピリジル)−スクシナモイルアミノプMoyl group, N- (2-pyridyl) -succinamoylaminop
ロピオニル基,N−(2−ピリジル)−β−アラニルアミノRopionyl group, N- (2-pyridyl) -β-alanylamino
プロピオニル基から選択される基である、請求項1記載2. A group selected from a propionyl group.
の糖誘導体。Sugar derivative.
【請求項3】下記一般式(1) R1−A−NH−R2 (1) 式中、R1はグルコース,マンノース,ガラクトー
ス,フコース,シアル酸,N−アセチルグルコサミン,N
−アセチルガラクトサミンから選択される糖残基を2〜
10個有する糖鎖であって、糖修飾酵素の基質と成り得
る糖鎖構造を成しているものを表わし、Aはアスパラギ
ン残基、セリン残基、トレオニン残基又はこれらから構
成されるペプチド残基を表わし、R2は R3−(CH 2 )m−NH−CO−(CH 2 )n−CO― (A) R3−CO−(CH 2 )n−CO−NH−(CH 2 )m−CO− (B) R3−(CH 2 )m−CO−NH−(CH 2 )n−CO− (C) (式中、R3は2−ピリジルアミノ基又は3−ピリジルア
ミノ基を表わし、m及びnは夫々独立して1〜4の整数
を表わす。)で示される基 を表わす。で示される糖誘
導体を基質として用いることを特徴とする糖修飾酵素
活性測定法。
3. The following general formula (1) R1-A-NH-R2 (1) [wherein R1 is glucose, mannose or galactose].
Su, fucose, sialic acid, N-acetylglucosamine, N
2 to 2 sugar residues selected from acetylgalactosamine
It has 10 sugar chains and can be a substrate for sugar-modifying enzyme
It represents what forms a sugar chain structure that, A is aspartic
Residues, serine residues, threonine residues, or
Represents a peptide residue which is made, R2 is R3- (CH 2) m-NH -CO- (CH 2) n-CO- (A) R3-CO- (CH 2) n-CO-NH- (CH 2) m-CO- (B) R3- (CH 2) m-CO-NH- (CH 2) n-CO- (C) ( wherein, R3 is 2-pyridylamino or 3 Pirijirua
Represents a mino group, m and n are each independently an integer of 1 to 4
Represents ) Represents a group represented by. ] The sugar derivative shown by these is used as a substrate, The activity measuring method of the sugar modification enzyme characterized by the above-mentioned.
【請求項4】R2が、2−ピリジルアミノエチルスクシナ4. R2 is 2-pyridylaminoethylsuccina
モイル基,N−(2−ピリジル)−スクシナモイルアミノプMoyl group, N- (2-pyridyl) -succinamoylaminop
ロピオニル基,N−(2−ピリジル)−β−アラニルアミノRopionyl group, N- (2-pyridyl) -β-alanylamino
プロピオニル基から選択される基である、請求項3記載4. A group selected from a propionyl group.
の測定法。Measurement method.
【請求項5】糖修飾酵素が、糖転移酵素、糖加水分解酵
素又は糖異性化酵素である請求項3又は4に記載の測定
法。
5. A sugar modification enzymes, measurement method described in claim 3 or 4 is a glycosyltransferase, a sugar hydrolase or sugar isomerase.
JP24735492A 1992-08-24 1992-08-24 A novel sugar derivative and a method for measuring the activity of a physiologically active substance using the same as a substrate Expired - Fee Related JP3409337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24735492A JP3409337B2 (en) 1992-08-24 1992-08-24 A novel sugar derivative and a method for measuring the activity of a physiologically active substance using the same as a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24735492A JP3409337B2 (en) 1992-08-24 1992-08-24 A novel sugar derivative and a method for measuring the activity of a physiologically active substance using the same as a substrate

Publications (2)

Publication Number Publication Date
JPH0665300A JPH0665300A (en) 1994-03-08
JP3409337B2 true JP3409337B2 (en) 2003-05-26

Family

ID=17162171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24735492A Expired - Fee Related JP3409337B2 (en) 1992-08-24 1992-08-24 A novel sugar derivative and a method for measuring the activity of a physiologically active substance using the same as a substrate

Country Status (1)

Country Link
JP (1) JP3409337B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712138A (en) * 1994-10-05 1998-01-27 Kyoto Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase
DE69835268T2 (en) * 1997-04-24 2006-11-23 Arkray, Inc. METHOD FOR THE ENZYMATIC DETECTION OF A SUGAR PROTEIN
JP3949854B2 (en) 1999-10-01 2007-07-25 キッコーマン株式会社 Method for measuring glycated protein
EP2086322B1 (en) 2006-10-12 2010-12-01 Vib Vzw Non-steroidal brassinosteroid mimetic
JP5279286B2 (en) * 2008-02-13 2013-09-04 学校法人北里研究所 Fluorescent labeling method of sialic acid, sialic acid-containing carbohydrate, or sialic acid-containing complex carbohydrate, and fluorescently labeled sialic acid, sialic acid-containing carbohydrate, or sialic acid-containing complex sugar obtained by the above method quality
KR20180113568A (en) 2016-02-26 2018-10-16 프로자임 인코포레이티드 Use of bispyridines to improve the labeling of nucleophiles

Also Published As

Publication number Publication date
JPH0665300A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
KR100254113B1 (en) Glycosylated prodrugs, method of preparation and use
US5306809A (en) Acid-labile linker molecules
US5760072A (en) Paclitaxel prodrugs, method for preparation as well as their use in selective chemotherapy
US5182203A (en) Bifunctional compounds useful in catalyzed reporter deposition
JP2013107885A (en) Modified protein
US5595741A (en) Aminoalkylmaleimides and hapten and antigen derivatives derived therefrom as well as conjugates with peptides or proteins
HU189246B (en) Process for preparing conjugates of an enzyme and an antobody formed by covalents bonds
US4994385A (en) Heterobifunctional coupling agents
JP3409337B2 (en) A novel sugar derivative and a method for measuring the activity of a physiologically active substance using the same as a substrate
EP0589951A1 (en) Modified sialyl lewis?x compounds
JP2006502986A (en) Compositions and methods for diagnosis and treatment of medical conditions involved in angiogenesis
US5668272A (en) Method for producing synthetic N-linked glycoconjugates
US4287345A (en) Polyfunctional disulfide compounds having S--S exchange reactivity
EP0299007A1 (en) Preparation of 1-amino-1-deoxyoligosaccharides and derivatives thereof
US5414085A (en) Barbiturate derivatives and protein and polypeptide barbiturate derivative conjugates and labels
JP2002501931A (en) MurG substrate analog, method for producing the same and assay using the same
JPH06510745A (en) modified sialyl lewis a compound
JP2010540488A (en) Glycoproteins and glycosylated cells and methods for their preparation
JPH06172312A (en) Method for labeling compound having primary amino group with fluorescence
JP3122520B2 (en) 2-Aminopyridine derivative, production method thereof and fluorescent labeling agent
JP3553075B2 (en) Novel oligoside derivative, its preparation method and its use
Fukase et al. Functional fluorescence labeling of carbohydrates and its use for preparation of neoglycoconjugates
CA2021006A1 (en) Base modified nucleosides
Sugeac et al. Synthesis and anti-HIV activity of some heterodimers [NRTI]-glycyl-succinyl-[trovirdine analogue] of known HIV-1 reverse transcriptase inhibitors
US5321142A (en) Compounds from biopolymers and effector substances which are linked via optically active amino acid derivatives, processes for the preparation thereof and the use thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030218

LAPS Cancellation because of no payment of annual fees