JP3408903B2 - Analysis method by ion chromatography - Google Patents

Analysis method by ion chromatography

Info

Publication number
JP3408903B2
JP3408903B2 JP29188795A JP29188795A JP3408903B2 JP 3408903 B2 JP3408903 B2 JP 3408903B2 JP 29188795 A JP29188795 A JP 29188795A JP 29188795 A JP29188795 A JP 29188795A JP 3408903 B2 JP3408903 B2 JP 3408903B2
Authority
JP
Japan
Prior art keywords
eluent
ion
suppressor
solution
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29188795A
Other languages
Japanese (ja)
Other versions
JPH09113498A (en
Inventor
昌二 本水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29188795A priority Critical patent/JP3408903B2/en
Publication of JPH09113498A publication Critical patent/JPH09113498A/en
Application granted granted Critical
Publication of JP3408903B2 publication Critical patent/JP3408903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はカラムに溶離液とと
もに試料を流し、カラムで分離されて溶出した試料中の
目的イオンを電気伝導度検出器で検出するイオンクロマ
トグラフィーによる分析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion chromatography analysis method in which a sample is caused to flow through a column together with an eluent, and target ions in the sample separated and eluted by the column are detected by an electric conductivity detector. .

【0002】[0002]

【従来の技術】イオンクロマトグラフィー(以下ICと
略記する)の検出法の1つとして電気伝導度検出法があ
る。電気伝導度検出法によるノンサプレッサー型ICで
は、溶離液として低伝導度の有機酸イオンなどを用いる
が、サプレッサー型ICでは主に炭酸塩緩衝液を用いて
いる。サプレッサー型では、溶出液のバックグラウンド
を低下させるために、当初サプレッサーカラムが利用さ
れていたが、イオン交換樹脂の再生が必要なため長時間
の連続運転ができないなどの問題を含んでいた。現在で
は、この問題はイオン交換膜サプレッサーの出現により
解消されたが、サプレッサー用交換液やイオン交換膜の
耐久性などに新たな問題が生じている。
2. Description of the Related Art As one of the detection methods of ion chromatography (hereinafter abbreviated as IC), there is an electric conductivity detection method. A non-suppressor type IC by the electric conductivity detection method uses an organic acid ion having a low conductivity as an eluent, but the suppressor type IC mainly uses a carbonate buffer solution. In the suppressor type, a suppressor column was initially used in order to reduce the background of the eluate, but there was a problem in that continuous operation could not be performed for a long time because the ion exchange resin had to be regenerated. At present, this problem has been solved by the advent of ion-exchange membrane suppressors, but new problems have arisen in the durability of exchange liquids for suppressors and ion-exchange membranes.

【0003】溶出液の炭酸緩衝液に微細なH+−型陽イ
オン交換樹脂の懸濁液を混合させ、溶離液のバックグラ
ウンドを低下させるサプレッサー法が開発された(Ana
l.Chem., 62, 612(1990)参照)。また、通常用いられて
いるH+−型陽イオン交換樹脂を微細化して調製した懸
濁液を用いるICも報告されている(分析化学, 43,75
(1994)参照)。現在ではイオン交換樹脂懸濁液は市販さ
れている。この方法では、懸濁液の送液に用いるポンプ
の耐久性や安定性に問題がある。
A suppressor method has been developed in which a carbonate buffer solution as an eluent is mixed with a fine suspension of H + -type cation exchange resin to reduce the background of the eluent (Ana.
l. Chem., 62, 612 (1990)). An IC using a suspension prepared by refining a commonly used H + -type cation exchange resin has also been reported (Analytical Chemistry, 43, 75).
(1994)). Currently, ion exchange resin suspensions are commercially available. In this method, there is a problem in durability and stability of the pump used for feeding the suspension.

【0004】[0004]

【発明が解決しようとする課題】上記のサプレッサー法
はいずれもイオン交換型であるが、本発明はイオン交換
型のサプレッサー方式を用いずに、溶出液のバックグラ
ウンドを低下させることを目的とするものである。
All of the above suppressor methods are of the ion exchange type, but the object of the present invention is to reduce the background of the eluate without using the ion exchange type suppressor method. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明のイオンクロマト
グラフィーでは、溶離液として水酸化第四アンモニウム
溶液を用い、カラム出口から検出器に至る流路の溶離液
に、有機酸からなるイオン会合性試薬と非イオン性界面
活性剤とを含むサプレッサー液を添加して混合させる。
In the ion chromatography of the present invention, a quaternary ammonium hydroxide solution is used as the eluent, and the eluent in the flow path from the column outlet to the detector is ion-associating with an organic acid. A suppressor solution containing a reagent and a nonionic surfactant is added and mixed.

【0006】本発明は溶離液成分の中和とイオン会合体
のミセル抽出による電気伝導度の低下を利用している。
溶出液のバックグラウンドの電気伝導度を低下させるた
めに、第四級アンモニウムイオンの水酸化物(Q+・O
-)溶液を溶離液とし、カラム通過後にサプレッサー
液として非イオン性界面活性剤を含む有機酸溶液と混合
させる。その結果、OH-イオンは中和され、第四級ア
ンモニウムイオンと有機酸イオンはイオン会合体を形成
し、非イオン性界面活性剤と混合ミセルを形成する。こ
の反応をミセル抽出という。このように、中和とミセル
抽出により、溶出液の電気伝導度が大幅に低下する。ま
た、溶離液を二酸化炭素で中和し、溶離イオンの1部を
HCO3 -とCO3 2-とすることにより、イオンの溶出が
迅速化される。
The present invention utilizes the neutralization of the eluent components and the reduction of electrical conductivity due to the extraction of micelles of the ionic associations.
In order to reduce the background electric conductivity of the eluate, a quaternary ammonium ion hydroxide (Q + · O
The H ) solution is used as an eluent, and after passing through the column, it is mixed with an organic acid solution containing a nonionic surfactant as a suppressor solution. As a result, the OH ion is neutralized, the quaternary ammonium ion and the organic acid ion form an ion association body, and form a mixed micelle with the nonionic surfactant. This reaction is called micelle extraction. Thus, the electrical conductivity of the eluate is significantly reduced by the neutralization and the micelle extraction. Further, by neutralizing the eluent with carbon dioxide and making a part of the eluted ions into HCO 3 and CO 3 2− , the elution of the ions is accelerated.

【0007】[0007]

【発明の実施の形態】溶離液の溶離剤としての水酸化第
四アンモニウムとしては、水酸化デシルトリメチルアン
モニウム(C1021-TMA+OH-)、水酸化ドデシル
トリメチルアンモニウム(C1225-TMA+OH-)又
は水酸化テトラデシルトリメチルアンモニウム(C14
29-TMA+OH-)などの水酸化アルキルトリメチルア
ンモニウムや、水酸化テトラブチルアンモニウム((n-
49)4NO3 -+OH-)などを用いることができる。
The quaternary ammonium hydroxide as eluant PREFERRED EMBODIMENTS eluent decyl trimethyl ammonium hydroxide (C 10 H 21 -TMA + OH -), dodecyl trimethyl ammonium hydroxide (C 12 H 25 - TMA + OH -), or hydroxide tetradecyltrimethylammonium (C 14 H
29 -TMA + OH -) and alkyltrimethylammonium hydroxides such as tetrabutylammonium hydroxide ((n-
C 4 H 9) 4 NO 3 - N + OH -) and the like can be used.

【0008】サプレッサー液に用いる有機酸としては、
p-ペンチル安息香酸(H・PBC)、ミリスチン酸
(H・MA)、ドデシルスルホン酸(H・LS)又はド
デシルベンゼンスルホン酸(H・DBS)などを用いる
ことができる。サプレッサー液に用いる非イオン性界面
活性剤としては、例えばそれ自体の電気伝導度も低く、
水溶液として調製しやすいポリオキシエチレン(10)
オクチルフェニルエーテル(TX−100)などを用い
ることができる。
The organic acid used in the suppressor solution is
p-Pentylbenzoic acid (H.PBC), myristic acid (H.MA), dodecylsulfonic acid (H.LS), dodecylbenzenesulfonic acid (H.DBS), or the like can be used. As the nonionic surfactant used in the suppressor solution, for example, the electric conductivity of itself is low,
Polyoxyethylene easy to prepare as an aqueous solution (10)
Octyl phenyl ether (TX-100) and the like can be used.

【0009】どのようなイオン会合性試薬の組み合わせ
が好ましいかを検討した。種々の水酸化第四アンモニウ
ム(Q+・OH-)と有機酸(H+・A-)の同濃度の溶液
を調製し、同体積を混合して電気伝導度の値を調べた。
水酸化第四アンモニウムと有機酸をそれぞれ1.5×1
-3Mずつ混合した等モル混合溶液の電気伝導度の測定
結果を示す。溶液の電気伝導度測定には東亜電波製CM
−30ETを用いた。
It was examined what kind of combination of ion-associating reagents is preferable. Various quaternary ammonium hydroxide (Q + · OH ) and organic acid (H + · A ) solutions having the same concentration were prepared, and the same volume was mixed to examine the electric conductivity value.
1.5 x 1 each of quaternary ammonium hydroxide and organic acid
The measurement result of the electric conductivity of the equimolar mixed solution in which 0 -3 M was mixed is shown. Toa Denpa CM for measuring the electrical conductivity of the solution
-30ET was used.

【表1】 括弧内の数値は混合前のそれぞれの溶液の電気伝導度を
表わしており、有機酸溶液にはエタノール(4%(V/
V))と非イオン性界面活性剤のTX−100(2%
(m/m))を加えておいた。混合溶液のTX−100
の濃度は1%となるが、市販のTX−100の希釈溶液
の1%(m/m)水溶液の電気伝導度は 10.1μS
cm-1であった。
[Table 1] The numerical value in the parentheses represents the electric conductivity of each solution before mixing, and ethanol (4% (V /
V)) and the nonionic surfactant TX-100 (2%
(M / m)) was added. TX-100 of mixed solution
Is 1%, the electric conductivity of a 1% (m / m) aqueous solution of a commercially available diluted TX-100 solution is 10.1 μS.
It was cm- 1 .

【0010】(イオン会合性試薬の検討)表1の結果か
ら、陰イオン性イオン会合性試薬である有機酸について
検討してみると、ドデシルベンゼンスルホン酸(H・D
BS)が最もイオン会合しやすい。また、ドデシルスル
ホン酸(H・LS)とミリスチン酸(H・MA)の比較
から、−OSO3 -の方が−COO-よりもイオン会合し
やすいことがわかる。
(Study of Ion-Associating Reagent) From the results shown in Table 1, the organic acid which is an anionic ion-associating reagent was examined. As a result, dodecylbenzenesulfonic acid (HD
(BS) is most likely to undergo ion association. Further, from the comparison of dodecyl sulfonic acid (H · LS) and myristic acid (H · MA), -OSO 3 - the it is -COO - seen to be susceptible to ionic association than.

【0011】表1に示す陽イオン・陰イオンの対の中で
水酸化ドデシルトリメチルアンモニウム(C1225-T
MA+OH-)と水酸化テトラデシルトリメチルアンモニ
ウム(C1429-TMA+OH-)がドデシルベンゼンス
ルホン酸(H・DBS)と最もイオン会合しやすく、混
合溶液の電気伝導度はTX−100のみを含む水溶液の
電気伝導度にほぼ近い値を示している。これは、H+
OH-の中和とイオン会合がほぼ完全に行なわれている
ことを表わしている。陰イオン性のイオン会合性試薬と
しては、疎水性が高く、反応性の強いドデシルベンゼン
スルホン酸(H・DBS)が好ましい。
Among the cation and anion pairs shown in Table 1, dodecyltrimethylammonium hydroxide (C 12 H 25 -T
MA + OH -) and tetradecyl trimethyl ammonium hydroxide (C 14 H 29 -TMA + OH -) is the easiest to ion association and dodecylbenzenesulfonic acid (H · DBS), the electrical conductivity of the mixed solution TX-100 The value is close to the electric conductivity of the aqueous solution containing only. This means that the neutralization of H + and OH and the ionic association are almost completely performed. As the anionic ion-associating reagent, dodecylbenzenesulfonic acid (H · DBS), which has high hydrophobicity and high reactivity, is preferable.

【0012】(溶離剤の選択)サプレッサー液をドデシ
ルベンゼンスルホン酸(H・DBS)とTX−100を
含む溶液とし、溶離液にはドデシルベンゼンスルホン酸
イオン(DBS-)とイオン会合体を形成し、TX−1
00中にほぼ定量的にミセル抽出される水酸化ドデシル
トリメチルアンモニウムイオン(C1225-TMA+)と
水酸化テトラデシルトリメチルアンモニウムイオン(C
1429-TMA+)の水酸化物の溶液を用いて陰イオンの
分離検出を行なった。水酸化テトラデシルトリメチルア
ンモニウム(C1429-TMA+OH-)を溶離剤として
用いた場合、充填剤に吸着する第四級アンモニウムイオ
ンが増すため、イオン交換容量も増大し、試料イオンの
保持時間が長くなる。また、溶離剤の疎水性が増すほど
システムピークが出現する時間も遅くなる。このため、
水酸化テトラデシルトリメチルアンモニウム(C1429
-TMA+OH-)を溶離剤とすると、低濃度でもシステ
ムピークとCl-イオンのピークが重なる。したがっ
て、溶離剤には水酸化ドデシルトリメチルアンモニウム
イオン(C1225-TMA+)を用いるのが好ましい。
[0012] The (eluent selection) suppressor was dodecylbenzenesulfonic acid and (H · DBS) and a solution containing TX-100, dodecylbenzenesulfonate ions eluent (DBS -) and to form an ion associate , TX-1
Micellar extraction of dodecyltrimethylammonium hydroxide (C 12 H 25 -TMA + ) and tetradecyltrimethylammonium hydroxide (C 12
Separate detection of anions was carried out using a solution of 14 H 29 -TMA + ) hydroxide. Tetradecyltrimethylammonium hydroxide (C 14 H 29 -TMA + OH -) if was used as eluent, to increase the quaternary ammonium ions to be adsorbed to the filler, also increases ion exchange capacity, retention of sample ions Time will increase. Also, the more hydrophobic the eluent, the later the system peak appears. For this reason,
Tetradecyl trimethyl ammonium hydroxide (C 14 H 29
-TMA + OH - If) of the eluent peak system peak and Cl- ions overlap even at low concentrations. Therefore, it is preferable to use dodecyltrimethylammonium hydroxide ion (C 12 H 25 -TMA + ) as the eluent.

【0013】また、二価イオンのSO4 2-の迅速定量に
ついて検討した結果、二酸化炭素を吹き込んだ炭酸塩の
溶離液を用いることにより、SO4 2-の保持時間を短縮
させることができた。
Further, as a result of examination on rapid determination of SO 4 2− of divalent ions, it was possible to shorten the retention time of SO 4 2− by using an eluent of carbonate in which carbon dioxide was blown. .

【0014】次に、本発明によるイオン会合体のミセル
抽出サプレッサー法の原理を詳細に説明する。この方法
は、下記の式(1)で示される水溶液中のイオン会合体
生成−非イオン性界面活性剤との混合ミセル形成反応を
利用して、伝導性物質の濃度を低下させるものである。 Q+ + A- = (Q+・A-)m (1) ここで、Q+,A,(Q+・A-)mはそれぞれ疎水性陽イオ
ン、疎水性陰イオン及びこれらのイオン間で形成された
イオン会合体の非イオン性界面活性剤との混合ミセルを
示す。また、式(1)の平衡定数Kassは次の式で示さ
れる。 Kass=[(Q+・A-)m]/[Q+][A-] (2)
Next, the principle of the micelle extraction suppressor method for ion associations according to the present invention will be described in detail. This method reduces the concentration of the conductive substance by utilizing the reaction of forming an ion association product in an aqueous solution represented by the following formula (1) -mixing micelle formation reaction with a nonionic surfactant. Q + + A = (Q + · A ) m (1) Here, Q + , A and (Q + · A ) m are a hydrophobic cation, a hydrophobic anion and between these ions, respectively. The mixed micelle of the formed ion association body with a nonionic surfactant is shown. Further, the equilibrium constant K ass of the equation (1) is expressed by the following equation. K ass = [(Q + · A -) m] / [Q +] [A -] (2)

【0015】いま、Q+・OH-の溶離液を用いた場合を
考える。溶離液中のQ+・OH-、サプレッサー液中のH
A(有機酸のスルホン酸、カルボン酸など)の濃度は同
濃度とし、カラム通過後に(1:1)のモル比で混合さ
れるものとすると、次式(3)の中和反応と式(1)の
イオン会合ミセル抽出反応が起こる。 Q+・OH- + HA = Q+ + A- + H2O (3)
Now, consider the case where an eluent of Q + .OH is used. In the eluent Q + · OH -, H suppressor solution
Assuming that the concentrations of A (sulphonic acid, carboxylic acid, etc. of organic acid) are the same, and that they are mixed at a molar ratio of (1: 1) after passing through the column, the neutralization reaction of the following formula (3) and the formula (3) The ion association micelle extraction reaction of 1) occurs. Q + · OH - + HA = Q + + A - + H 2 O (3)

【0016】また、検出器通過後には次の関係が成立し
ている。 (a)試料イオンS-(強酸の共役塩基とする)が存在
しないとき、物質収支及び電気的中性の原理より、
(4),(5)式が成立する。 [Q+]o+[(Q+・A-)m]o=[A-]o+[HA]o+[(Q+・A-)m]o (4) [Q+]o+[H+]o=[A-]o+[OH-]o (5) ここで、[ ]oは試料イオンS-が存在しないときを示
す。Q+・OH-は強塩基であり、HAはスルホン酸又は
カルボン酸であるので、これらは定量的(99.9%以
上)に反応するとみなすことができ、[HA]o
[H+]o,[OH-]oは他の項に対して無視できる。した
がって、(4),(5)式はともに式(6)となる。 [Q+]o=[A-]o (6)
After passing through the detector, the following relationships are established. (A) In the absence of sample ion S- (which is a conjugate base of strong acid), the principle of mass balance and electrical neutrality
Equations (4) and (5) are established. [Q +] o + [( Q + · A -) m] o = [A -] o + [HA] o + [(Q + · A -) m] o (4) [Q +] o + [ H + ] o = [A ] o + [OH ] o (5) Here, [] o indicates the time when the sample ion S does not exist. Since Q + .OH is a strong base and HA is a sulfonic acid or a carboxylic acid, it can be considered that these react quantitatively (99.9% or more), and [HA] o ,
[H +] o, [OH -] o can be ignored with respect to the other terms. Therefore, equations (4) and (5) are both equation (6). [Q +] o = [A -] o (6)

【0017】(b)試料イオンS-が存在するときに
は、次式の関係が成立する。 [Q+]s+[(Q+・A-)m]s=[A-]s+[HA]s+[(Q+・A-)m]s (7) [Q+]s+[H+]s=[A-]s+[S-]s+[OH-]s (8) ここで、[ ]sは試料イオンS-が存在しているときの
濃度を示す。この場合には酸HAの一部は中和されずに
残っているので、[H+]>>[OH-]となり、(8)式の
右辺の[OH-]は他の項に対して無視できるので、
(7),(8)式はそれぞれ(9),(10)式となる。 [Q+]s=[A-]s+[HA]s (9) [Q+]s+[H+]s=[A-]s+[S-]s (10) なお、通常の無機陰イオン性試料イオンのイオン会合体
(Q+・S-)はミセル抽出されないものと考えてよい。
(B) When the sample ion S − is present, the following relationship is established. [Q +] s + [( Q + · A -) m] s = [A -] s + [HA] s + [(Q + · A -) m] s (7) [Q +] s + [ H +] s = [a - ] s + [S -] s + [OH -] s (8) where, s is the sample ions S [] - indicates the concentration at which are present. Since some of which remain to be neutralized acid HA in this case, [H +] >> [OH -] , and the right side of equation (8) - for the other terms [OH] You can ignore it,
Equations (7) and (8) become equations (9) and (10), respectively. [Q +] s = [A -] s + [HA] s (9) [Q +] s + [H +] s = [A -] s + [S -] s (10) In addition, the usual inorganic It can be considered that the ionic association (Q + · S ) of the anionic sample ions is not subjected to micelle extraction.

【0018】(a)の条件下での電気伝導度を(C
D)o、(b)の条件下での電気伝導度を(CD)sとする
と、 (CD)o =λQ+[Q+]o+λA-[A-]o+λH+[H+]o+λOH-[OH-]o (11) (CD)s =λQ+[Q+]s+λA-[A-]s+λH+[H+]s+λS-[S-]s+λOH-[OH-]s (12) ここで、λは当量電導度を表わす。このうち、[H+]o
[OH-]o,[OH-]sは通常10-6〜10-8M程度と非常
に小さいため、これらによる電気伝導度は無視してよ
い。(11),(12)式より、試料イオンが存在する場
合のピークに相当する電気伝導度は次式で示される。 Δ(CD)=(CD)s−(CD)o =λQ+([Q+]s-[Q+]o)+λA-([A-]s-[A-]o)+λH+[H+]s+λS-[S-]s (13) (2)式のイオン会合ミセル抽出定数が十分大きいとき
には、(6),(7)式から次式を満足する。 [Q+]o=[A-]o≒0 [A-]s=0 と考えてよい。したがって、(13)式は次式となる。 Δ(CD)=λQ+[Q+]s+λH+[H+]s+λS-[S-]s (14) (14)式と(9)式より、次式の関係が得られる。 Δ(CD)=λQ+[HA]s+λH+[H+]s+λS-[S-]s (15) あるいは、式(10)から、次式(16)が得られる。
The electric conductivity under the condition (a) is (C
D) o, when the electric conductivity of the (CD) s under the conditions of (b), (CD) o = λ Q + [Q +] o + λ A- [A -] o + λ H + [H +] o + λ OH- [OH -] o (11) (CD) s = λ Q + [Q +] s + λ A- [A -] s + λ H + [H +] s + λ S- [S -] s + λ OH- [ OH ] s (12) Here, λ represents the equivalent electric conductivity. Of these, [H + ] o ,
Since [OH ] o and [OH ] s are usually very small, about 10 −6 to 10 −8 M, their electrical conductivity can be ignored. From the equations (11) and (12), the electric conductivity corresponding to the peak when the sample ions are present is shown by the following equation. Δ (CD) = (CD) s - (CD) o = λ Q + ([Q +] s - [Q +] o) + λ A- ([A -] s - [A -] o) + λ H + [H + ] s + λ S- [S ] s (13) When the ion association micelle extraction constant of the equation (2) is sufficiently large, the following equation is satisfied from the equations (6) and (7). [Q +] o = [A -] o ≒ 0 [A -] may be considered that s = 0. Therefore, the equation (13) becomes the following equation. Δ (CD) = λ Q + [Q + ] s + λ H + [H + ] s + λ S− [S ] s (14) From the equations (14) and (9), the following equation is obtained. Δ (CD) = λ Q + [HA] s + λ H + [H + ] s + λ S− [S ] s (15) Alternatively, the following equation (16) can be obtained from the equation (10).

【0019】また、HAが−SO3Hをもつ強酸の場合
には、 Δ(CD)=(λQ+H+)[HA]s+(λH+S-)[S-]s (16) また、HAが−SO3Hをもつ強酸の場合には、 [HA]s=0 [Q+]s=[A-]s≒0 となり、式(10)は次式となる。 [H+]=[S-] (17) したがって、式(14)から次の関係が得られる。 Δ(CD)=λH+[H+]s+λS-[S-]s =(λH++λS-)[S-]s (18)
Further, in the case of the strong acid HA has a -SO 3 H is, Δ (CD) = (λ Q + -λ H +) [HA] s + (λ H + + λ S-) [S -] s ( 16) Further, when HA is a strong acid having —SO 3 H, [HA] s = 0 [Q + ] s = [A ] s ≈0, and the equation (10) becomes the following equation. [H + ] = [S ] (17) Therefore, the following relation is obtained from the equation (14). Δ (CD) = λ H + [H +] s + λ S- [S -] s = (λ H + + λ S-) [S -] s (18)

【0020】式16では(λQ+H+)[HA]<0である
ことより、HAが弱酸の場合には、式(18)の強酸の
場合に比べΔCDがかなり小さくなることがわかる。ま
た、強酸の場合はΔCD(ピーク高さ)は[S-]に比例
し、比例定数はH+及びS-の当量電導度の和(λH++λ
S-)となるのに対し、弱酸の場合には必ずしも比例しな
いことが分かる。さらに、次式から、バックグラウンド
の電気伝導度も中和及びミセル抽出/サプレッサー法に
より大きく低下することがわかる。 CD=λQ+[Q+]+λOH-[OH-] Δ(CD)=λQ+[Q+]+λOH-[OH-]−(λQ+[Q+]o+λA-[A-]o) ≒λQ+[Q+]+λOH-[OH-] ここで、CDはミセル抽出を行なわない場合の電気伝導
度とする。
Since (λ Q +H + ) [HA] <0 in Formula 16, it can be seen that ΔCD is considerably smaller when HA is a weak acid than when it is a strong acid of Formula (18). In the case of a strong acid, ΔCD (peak height) is proportional to [S ], and the proportionality constant is the sum of equivalent electric conductivity of H + and S H + + λ
S- ), whereas it is not necessarily proportional in the case of weak acids. Further, it can be seen from the following equation that the background electric conductivity is also greatly reduced by the neutralization and micelle extraction / suppressor methods. CD = λ Q + [Q + ] + λ OH- [OH -] Δ (CD) = λ Q + [Q +] + λ OH- [OH -] - (λ Q + [Q +] o + λ A- [A -] o ) ≒ λ Q + [Q + ] + λ OH- [OH -] where, CD is the electrical conductivity of the case where no micelles extraction.

【0021】また、炭酸塩を用いた場合には次式の反応
が起こり、バックグラウンドの電気伝導度が低下するこ
とがわかる。 (HAは強酸とする) Q+(HCO3 -) + HA = (Q+・A-m + CO2 + H2O (Q+)2(CO3 2-) + 2HA = 2(Q+・A-m + CO2 + H2
It is also understood that when the carbonate is used, the reaction of the following formula occurs and the background electric conductivity is lowered. (HA is a strong acid) Q + (HCO 3 -) + HA = (Q + · A -) m + CO 2 + H 2 O (Q +) 2 (CO 3 2-) + 2HA = 2 (Q + · A -) m + CO 2 + H 2 O

【0022】[0022]

【実施例】図1に本発明が適用されるイオンクロマトグ
ラフィーの概略を示す。溶離液1とサプレッサー液2は
送液ポンプ3によりそれぞれ1.0ml/分で送液され
る。溶離液1はカラム5に供給され、その溶離液流路に
はカラム5の上流にサンプルインジェクションバルブ
(50μml又は100μml)4が配置されて試料が
注入される。カラム5は陰イオン分析用カラムであり、
例えば東ソー製TSKgelIC-AnionPW(4.6mm
×50mm)を用いることができる。6は恒温水槽であ
り、カラム5を35℃の一定温度に保つ。カラム5の溶
出液とサプレッサー液2は流路で混合されてミキシング
コイル(内径0.5mm、長さ50cm)7に入り、均
一に混合された後、電気伝導度検出器8に導かれて検出
が行なわれる。9は検出出力を記録するレコーダ、10
は検出後の廃液を受ける廃液容器である。
EXAMPLE FIG. 1 shows the outline of ion chromatography to which the present invention is applied. The eluent 1 and the suppressor liquid 2 are sent by the liquid feed pump 3 at 1.0 ml / min. The eluent 1 is supplied to the column 5, and a sample injection valve (50 μml or 100 μml) 4 is arranged upstream of the column 5 in the eluent flow path to inject the sample. Column 5 is a column for anion analysis,
For example, Tosoh TSKgel IC-Anion PW (4.6 mm
× 50 mm) can be used. 6 is a constant temperature water tank, which keeps the column 5 at a constant temperature of 35 ° C. The eluate of the column 5 and the suppressor liquid 2 are mixed in the flow path and enter the mixing coil (inner diameter 0.5 mm, length 50 cm) 7, and after being mixed uniformly, they are guided to the electric conductivity detector 8 for detection. Is performed. 9 is a recorder for recording the detection output, 10
Is a waste liquid container for receiving the waste liquid after detection.

【0023】溶離液1の溶離剤としては水酸化ドデシル
トリメチルアンモニウムを用いた。これは臭化又は塩化
第四級アンモニウム溶液を、OH-−型とした陰イオン
交換樹脂(アンバーライトIRA−400)に通すこと
により調製した。溶離液の水酸化ドデシルトリメチルア
ンモニウムの濃度は1.5×10-3Mで、溶離液には二
酸化炭素を吹き込んでpH=10.8とした。
Dodecyltrimethylammonium hydroxide was used as the eluent for Eluent 1. It was prepared by passing a solution of quaternary ammonium bromide or chloride through an anion exchange resin (Amberlite IRA-400) in the OH form. The concentration of dodecyltrimethylammonium hydroxide in the eluent was 1.5 × 10 −3 M, and carbon dioxide was blown into the eluent to adjust the pH to 10.8.

【0024】サプレッサー液に含まれる有機酸としては
ドデシルベンゼンスルホンサ酸(H・DBS)を用い
た。これはナトリウム塩の溶液をH型とした陽イオン交
換樹脂(アンバーライトIR−120B)に通すことに
より調製した。サプレッサー液はH・DBS(1.5×1
-3M)とTX−100(4%(W/W))を含むものと
した。
Dodecylbenzene sulfonic acid (H.DBS) was used as the organic acid contained in the suppressor solution. This was prepared by passing a solution of sodium salt through a cation exchange resin (Amberlite IR-120B) which was H type. Suppressor solution is H ・ DBS (1.5 × 1
0 -3 M) and TX-100 (4% (W / W)) was intended to include.

【0025】この溶離液とサプレッサー液を用いて
-、Cl-、NO2 -、Br-、NO3 -、I-、SO4 2-
それぞれ2×10-4Mずつ含む試料の分離を行なった結
果のクロマトグラムを図2に示す。1はシステムピー
ク、2はF-、3はCl-、4はNO2 -、5はBr-、6
はNO3 -、7はSO4 2-、8はI-であり、互いによく分
離されていることがわかる。
Using this eluent and suppressor solution, a sample containing 2 × 10 −4 M each of F , Cl , NO 2 , Br , NO 3 , I and SO 4 2− was separated. The chromatogram of the result is shown in FIG. 1 is a system peak, 2 is F , 3 is Cl , 4 is NO 2 , 5 is Br , 6
Is NO 3 , 7 is SO 4 2− , 8 is I , and it is understood that they are well separated from each other.

【0026】[0026]

【発明の効果】本発明では溶離液として水酸化第四アン
モニウム溶液を用い、カラム出口から検出器に至る流路
の溶離液に、有機酸からなるイオン会合性試薬と非イオ
ン性界面活性剤とを含むサプレッサー液を添加して混合
させるようにしたので、イオン交換型のサプレッサー方
式を用いなくても溶出液のバックグラウンドを低下させ
ることができ、種々の陰イオンの分離定量が可能にな
る。
INDUSTRIAL APPLICABILITY In the present invention, a quaternary ammonium hydroxide solution is used as an eluent, and an ion-associating reagent composed of an organic acid and a nonionic surfactant are used as the eluent in the flow path from the column outlet to the detector. Since the suppressor solution containing is added and mixed, the background of the eluate can be reduced without using the ion exchange type suppressor system, and various anions can be separated and quantified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用されるイオンクロマトグラフィー
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing ion chromatography to which the present invention is applied.

【図2】一実施例で得られたクロマトグラムを示す波形
図である。
FIG. 2 is a waveform diagram showing a chromatogram obtained in one example.

【符号の説明】[Explanation of symbols]

1 溶離液 2 サプレッサー液 3 送液ポンプ 4 サンプルインジェクションバルブ 5 カラム 6 恒温水槽 7 ミキシングコイル 8 電気伝導度検出器 1 Eluent 2 suppressor liquid 3 Liquid feed pump 4 sample injection valve 5 columns 6 constant temperature water tank 7 mixing coil 8 Electric conductivity detector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−300960(JP,A) 特開 平3−172758(JP,A) 特開 昭63−44166(JP,A) 特開 昭61−2072(JP,A) 分析化学,日本,1989年,38,147− 170 分析化学,日本,1995年12月 5日, 44,1041−1048 Fresenius Z Anal Chem,1987年,327,451−455 (58)調査した分野(Int.Cl.7,DB名) G01N 30/84 G01N 27/06 G01N 30/26 G01N 30/64 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-63-300960 (JP, A) JP-A-3-172758 (JP, A) JP-A-63-44166 (JP, A) JP-A-61- 2072 (JP, A) Analytical Chemistry, Japan, 1989, 38, 147-170 Analytical Chemistry, Japan, December 5, 1995, 44, 1041-1048 Fresenius Z Anal Chem, 1987, 327, 451-455 ( 58) Fields investigated (Int.Cl. 7 , DB name) G01N 30/84 G01N 27/06 G01N 30/26 G01N 30/64

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カラムに溶離液とともに試料を流し、カ
ラムで分離されて溶出した試料中の目的イオンを電気伝
導度検出器で検出するイオンクロマトグラフィーによる
分析方法において、 溶離液として水酸化第四アンモニウム溶液を用い、 カラム出口から検出器に至る流路の溶離液に、有機酸か
らなるイオン会合性試薬と非イオン性界面活性剤とを含
むサプレッサー液を添加して混合させることを特徴とす
る分析方法。
1. An analytical method by ion chromatography in which a sample is caused to flow through a column together with an eluent, and a target ion in the sample separated and eluted by the column is detected by an electric conductivity detector. A feature is that an ammonium solution is used, and a suppressor solution containing an ion-associating reagent composed of an organic acid and a nonionic surfactant is added to and mixed with the eluent of the flow path from the column outlet to the detector. Analysis method.
【請求項2】 前記溶離液が二酸化炭素で中和されてい
る請求項1に記載の分析方法。
2. The analysis method according to claim 1, wherein the eluent is neutralized with carbon dioxide.
JP29188795A 1995-10-13 1995-10-13 Analysis method by ion chromatography Expired - Lifetime JP3408903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29188795A JP3408903B2 (en) 1995-10-13 1995-10-13 Analysis method by ion chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29188795A JP3408903B2 (en) 1995-10-13 1995-10-13 Analysis method by ion chromatography

Publications (2)

Publication Number Publication Date
JPH09113498A JPH09113498A (en) 1997-05-02
JP3408903B2 true JP3408903B2 (en) 2003-05-19

Family

ID=17774743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29188795A Expired - Lifetime JP3408903B2 (en) 1995-10-13 1995-10-13 Analysis method by ion chromatography

Country Status (1)

Country Link
JP (1) JP3408903B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582766C (en) * 2004-03-05 2010-01-20 安捷伦科技有限公司 Contactless detection cell for detecting passage inner section shrinkage
CN111257495B (en) * 2020-02-21 2022-02-25 南京农业大学 Method for detecting nitrate and nitrite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fresenius Z Anal Chem,1987年,327,451−455
分析化学,日本,1989年,38,147−170
分析化学,日本,1995年12月 5日,44,1041−1048

Also Published As

Publication number Publication date
JPH09113498A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
Corr et al. Analysis of Inorganic Species by Capillary Electrophoresis− Mass Spectrometry and Ion Exchange Chromatography− Mass Spectrometry Using an Ion Spray Source
Hu et al. Electrostatic ion chromatography
Pacáková et al. Capillary electrophoresis of inorganic cations
Staby et al. Comparison of chromatographic ion-exchange resins: V. Strong and weak cation-exchange resins
Charles et al. Electrospray ion chromatography− tandem mass spectrometry of bromate at sub-ppb levels in water
Buchberger Detection techniques in ion analysis: what are our choices?
López‐Pastor et al. Ionic liquids and CE combination
Sha et al. Separation and determination of paraquat and diquat in human plasma and urine by magnetic dispersive solid phase extraction coupled with high-performance liquid chromatography
Simonet et al. Determination of myo‐inositol phosphates in food samples by flow injection‐capillary zone electrophoresis
JP3408903B2 (en) Analysis method by ion chromatography
Hu et al. Simultaneous separation of inorganic cations and anions by ion chromatography using a single column coated with weak/strong-charged zwitterionic bile salt micelles
Mullins Determination of inorganic anions by non-suppressed ion chromatography with indirect ultraviolet absorption detection
Mori et al. Determination of inorganic anions in human saliva by zwitterionic micellar capillary electrophoresis
Basova et al. Micellar liquid chromatography
Dias et al. Chelidamic acid as a new eluent for the determination of Fe (II) and Fe (III) species and other metals by high performance chelation ion chromatography
Rodrigues et al. Strategies involving mass spectrometry combined with capillary electrophoresis in metabolomics
Ivaska Graphic determination of equivalence volumes in potentiometric titrations of mixtures of weak acids—I Two monobasic acids
de Oliveira Moreira et al. Capillary Electrophoresis Applied to Human Urine Analysis for Clinical Diagnosis: New Trends and Perspectives
Gerakis et al. Physicochemical studies of the cetyltrimethylammonium bromide micellar system using a bromide selective electrode
Zhao et al. Chemiluminescence determination of tiopronin and its metabolite 2-mercaptopropionic acid in human urine by HPLC coupled with flow injection
Tarter Eluent selection criteria for the simultaneous determination of anions and cations
Hu et al. Analysis of inorganic anions by electrostatic ion chromatography using zwitterionic/cationic mixed micelles as the stationary phase
Mattox et al. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers
Blatný et al. Determination of anionic feed additives by two-dimensional capillary isotachophoresis
Zappoli et al. Interpretation of the retention mechanism of transition-metal cations in ion interaction chromatography

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10