JP3407565B2 - Spool valve - Google Patents

Spool valve

Info

Publication number
JP3407565B2
JP3407565B2 JP28483496A JP28483496A JP3407565B2 JP 3407565 B2 JP3407565 B2 JP 3407565B2 JP 28483496 A JP28483496 A JP 28483496A JP 28483496 A JP28483496 A JP 28483496A JP 3407565 B2 JP3407565 B2 JP 3407565B2
Authority
JP
Japan
Prior art keywords
outflow
spool
valve chamber
depression
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28483496A
Other languages
Japanese (ja)
Other versions
JPH10132096A (en
Inventor
靖裕 近藤
勝彦 服部
健一 芳澤
俊哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP28483496A priority Critical patent/JP3407565B2/en
Publication of JPH10132096A publication Critical patent/JPH10132096A/en
Application granted granted Critical
Publication of JP3407565B2 publication Critical patent/JP3407565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding Valves (AREA)
  • Details Of Valves (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、各種の油圧制御回
路に使用されるスプール弁に関する。 【0002】 【従来の技術】自動車用自動変速機の油圧制御回路に使
用されるスプール弁は、図12に一部を示すように、本
体1にスプール孔2、流入路3と流出路4をそれぞれ形
成し、流入路3と流出路4をスプール孔2の軸芯方向に
少し離れた2個所に連通している。丸軸形状のスプール
5は、中央部に長方形断面の周溝の弁室6を軸対称に形
成している。スプール孔2には、スプール5を軸芯方向
に移動可能に嵌合している。スプール5は、軸芯方向の
所定の範囲内で移動可能である。 【0003】弁室6と流出路4の連通部9の増減によっ
て流入路3または流出路4の圧力や流量を制御する場
合、流入路3は、スプール5の位置に拘らず、常に、弁
室6に連通している。 【0004】スプール5が流入路3側に移動している
と、スプール孔2の流入路3連通部と流出路4連通部の
中間部7がスプール5の流出路4側のランド8で閉鎖さ
れ、弁室6と流出路4が遮断されている。 【0005】スプール5を流出路4側に移動すると、図
12に示すように、スプール孔2の流入路3連通部と流
出路4連通部の中間部7が開放され、弁室6と流出路4
が連通する。スプール5を流出路4側に移動するに従っ
て、弁室6と流出路4の連通部9即ち絞り部9の開度x
が増加する。 【0006】作動油のような流体が流入路3から弁室6
に流入し、弁室6から絞り部9を経て流出路4に流出す
ると、流体の流入時と流出時では圧力ないし運動量が異
なるので、その圧力ないし運動量の差に基づく軸芯方向
の力Fがスプール5に作用する。この力Fは、流体力と
呼ばれ、スプール5を軸芯方向に移動させる操作力に影
響を与える。 【0007】 【発明が解決しようとする課題】上記のようなスプール
弁において、流入路3または流出路4の圧力や流量を制
御する精度が高いときには、流体力Fがスプール5の操
作力に与える影響が大きくなる。 【0008】例えば、自動車用自動変速機の油圧制御回
路において、図13に一部を示すように、スプール弁の
流入路3に、エンジンに直結したオイルポンプ11と、
変速機構を操作するライン圧力の通路12を接続し、流
出路4をドレンの通路13にし、スプール5の一端にラ
イン圧力を作用させてライン圧力などでスプール5を移
動させ、スプール5の位置即ち絞り部9の開度xでライ
ン圧力を制御する場合、絞り部9の開度xを減少させる
向きに作用する流体力Fは、図2に従来例Fとして示す
ように、絞り部9の開度xによって、への字形状に大き
く変化する。 【0009】従って、流体力Fは、絞り部9の開度xに
よる変化が大きいので、スプール5を所望の位置に移動
させ難く、ライン圧力が所望の通りに制御されない。変
速時の衝撃が大きくなったり、変速の遅れが大きくなる
ことがある。 【0010】結局、スプール弁においては、流体力F
は、小さく、かつ、絞り部9の開度xによる変化が小さ
いことが望まれる。 【0011】 【課題を解決するための研究】上記のようなスプール弁
において、図12に示すように、密度ρの流体が流量Q
で流入路3から弁室6に速度V1,流入角θ1で流入し、
弁室6から絞り部9を経て流出路4に速度V2,流出角
θ2で流出する場合、流体力Fは、絞り部9の開度xを
減らす向きを正にすると、運動量理論から次の通りにな
る。 【0012】F=ρQ(V2cosθ2−V1cosθ1) この式において、流体力Fは、流入角θ1を小さくし
て、流出角θ2を大きくすると、小さくなる。しかし、
流入角θ1は、弁室6の形状を変えても、あまり変化し
ないので、流出角θ2を大きくする弁室6の形状を考察
することにする。 【0013】弁室6は、図1に例示するように、流出端
の端面を滑らかに湾曲して弓形状断面の窪み21を軸対
称に形成し、窪み21の流出端と流出路4側ランド8の
外周面の間の角度θを鋭角、好ましくは80度以下にす
る。 【0014】流体が弁室6の流出端の滑らかな窪み21
に沿って流れれば、窪みがなくて上記の角度θが直角で
ある従来の場合より、流出角θ2が大きくなる。 【0015】ところが、弁室6の流出端の端面に窪み2
1を形成すると、窪み21が滑らかな弓形状断面であっ
ても、窪み21に二次渦が発生することがある。窪み2
1に二次渦が発生すると、流れが窪み21から剥離し易
く、流体が窪み21に沿って流れ難い。 【0016】そこで、流れの転向を抑制する二次渦の発
生を防止し、流体を窪み21に沿って流すため、図1に
例示するように、窪み21直前の円輪形状断面の流路2
3を、窪み21に近付くに従って流速が徐々に増加する
増速流路にする。例えば、弁室6の流出端側部分22
は、窪み21に近付くに従って底を軸対称に徐々に浅く
する。実効流路断面を窪み21に近付くに従って徐々に
減少させる。 【0017】すると、流体が窪み21直前の流路23で
増速流れとなって窪み21に流入し、窪み21に二次渦
が発生し難く、流体が窪み21から剥離し難く窪み21
に沿って流れ易く、流出角θ2が大きくなって、流体力
Fが減少する。 【0018】 【課題を解決するための手段】本発明は、流入路と流出
路をスプール孔の軸芯方向に離れた2個所に連通し、ス
プールの中央部に周溝の弁室を形成し、スプール孔にス
プールを軸芯方向に移動可能に嵌合し、流体が流入路か
ら弁室に流入して弁室と流出路の連通部を経て流出路に
流出し、弁室と流出路の連通部の開度によって流入路ま
たは流出路の圧力や流量を制御するスプール弁におい
て、弁室は、流出端の端面を湾曲して滑らかな窪みを形
成し、窪みの流出端と流出路側ランドの外周面との間の
角度を鋭角にし、窪み直前の流路、窪みに近付くに従
って実効流路断面を徐々に減少させて増速流路にし、
体は、窪み直前の増速流路で徐々に増速して窪みに流入
し、窪みに沿って向きを変え、弁室と流出路の連通部を
通過する構成にしたことを特徴とする。 【0019】窪みは、弓形状断面にして軸対称にするこ
とができる。 【0020】窪みの流出端と流出路側ランドの外周面の
間の角度は、80度以下にすることが好ましい。 【0021】弁室の流出端側部分は、窪みに近付くに従
って底を軸対称に徐々に浅くすることができる。 【0022】弁室の中央部分は、増速流路または等速流
路にすることが好ましい。 【0023】 【発明の効果】本発明においては、弁室から流出路に流
出する流体の流出角が大きくなって、流体力が減少す
る。スプールを所望の位置に移動させ易く、流入路また
は流出路の圧力や流量を制御し易い。 【0024】 【発明の実施の形態】 <第1例(図1〜図9参照)>本例のスプール弁は、ス
プール5の中央部に、従来とは断面形状が異なる周溝の
弁室6を軸対称に形成している。弁室6は、図1に一部
の縦断端面を示すように、流出端の端面を湾曲して滑ら
かな弓形状断面の窪み21を軸対称に形成し、窪み21
の流出端と流出路4側ランド8の外周面の間の角度θ、
即ち、窪み21の流出端の角度θを80度以下にしてい
る。 【0025】弁室6の流出端側部分22は、図1に示す
ように、窪み21に近付くに従って底を軸対称に徐々に
浅くしている。窪み21直前の円輪形状断面の流路23
は、実効流路断面が窪み21に近付くに従って徐々に減
少し、流速が窪み21に近付くに従って徐々に増加する
増速流路にしている。弁室6の底面の流出端は、窪み2
1の流入端に滑らかに接続している。 【0026】弁室6の流出端側部分22を除く残りの部
分は、図1に示すように、窪み21に近付くに従って底
を軸対称に徐々に深くしている。弁室6の中央部分は、
増速流路24または等速流路にし、弁室6の流出端側部
分の増速流路23に接続している。 【0027】その他の構成は、図12に示した従来例と
同様である。 【0028】作動油のような流体は、図1に示すよう
に、流入路3から弁室6の流入端側部分に流入し、増速
流路24または等速流路を経て増速流路23に流入し、
増速流路23で増速して窪み21に流入し、滑らかな窪
み21に沿って向きを変え、弁室6と流出路4の連通部
9即ち絞り部9を通過し、大きな流出角θ2で流出路4
に流出する。 【0029】自動車用自動変速機の油圧制御回路におい
て、本例のスプール弁の流入路3に、エンジンに直結し
たオイルポンプと、変速機構を操作するライン圧力の通
路を接続し、流出路4をドレンの通路にし、スプール5
の一端にライン圧力を作用させてライン圧力などでスプ
ール5を移動させ、スプール5の位置即ち絞り部9の開
度xでライン圧力を制御する場合、絞り部9の開度xを
減少させる向きに作用する流体力Fは、図2に実施例A
として示すように、絞り部9の開度xによってへの字形
状に変化するが、図12に示した従来例Fに比較して、
絶対値が小さく、かつ、絞り部9の開度xによる変化が
小さい。 【0030】なお、窪み21の流出端の角度θは、本例
では70度、従来例では90度である。スプール5の径
Dは、共に、12.5mmである。流体は、共に、温度7
0℃、密度0.834kgf/cm3、動粘度0.15cm2/sで
ある。 【0031】本例のスプール弁において、窪み21の流
出端の角度θを70度にした実施例A、80度にした実
施例Bと、図3に示すように、窪み21をなくして弁室
6の流出端の角度θを90度にした比較例Cについて、
同一条件で流体力Fを求め、流体力Fと流出端の角度θ
の関係を示すと、図4に示すようになる。この図から明
らかなように、流出端の角度θが80度以下になると、
流体力Fが大幅に低下する。 【0032】また、上記の実施例A、実施例Bと比較例
C、及び、図5に示すような比較例D、図6に示すよう
な比較例E、更に、図12に示した従来例Fについて、
同一条件で流体力Fを求めると、図7に示すように、流
体力Fは、実施例Aと実施例Bでは小さいが、比較例
C、比較例Dと比較例E及び従来例Fでは大きい。その
理由は、比較例C、比較例Eと従来例Fでは窪みがない
ためであり、比較例Dでは、窪み21直前の流路23が
減速流路であって増速流路になっていないためであるも
のと認められる。 【0033】実施例A,Bと比較例C,D,E及び従来
例Fについて、同一条件の下での軸対称,非定常,非圧
縮,粘性流れの時間平均値の流線図を求めると、図8に
示すようになる。この図から明らかなように、実施例A
と実施例Bでは、窪み21での二次渦の発生が抑制され
て流出角θ2が大きくなっている。比較例Dでは、窪み
21で二次渦が発生して流れの転向が抑制され、流出角
θ2が小さくなっている。比較例C、比較例Eと従来例
Fでは、流出角θ2が小さくなっている。 【0034】図9に示すような比較例Gについて、流体
力Fは、図2に比較例Gとして示すように、従来例Fに
おけるよりは小さくなるが、実施例Aにおけるより大き
くなる。実施例Aにおいては、絞り部9の開度xが小さ
い範囲、即ち、流体力Fが大きくなる範囲で、流体力F
が大幅に低下する。 【0035】<第2例と第3例(図10と図11参照)
>第2例のスプール弁は、図10に示すように、弁室6
の流出端の端面に形成した窪み21の流出端と流出路4
側ランド8の外周面の間に、そのランド8の外周面と直
交する狭い平坦部31を軸対称に形成している。弁室6
の流入端側部分には、段状の凹部32を軸対称に形成し
ている。 【0036】その他の点は、第1例におけるのと同様で
ある。 【0037】第3例のスプール弁は、図11に示すよう
に、弁室6の流出端側部分を除く部分について、深さを
一定にしている。 【0038】その他の点は、第1例におけるのと同様で
ある。 【0039】なお、第1例〜第3例のスプール弁は、上
記の自動変速機用油圧制御回路以外の油圧制御回路にも
使用される。例えば、スプール弁のスプール5の一端に
作用する流体の圧力を、調整圧力を電気信号で制御する
比例式減圧弁で増減し、スプール弁の流入路3または流
出路4の圧力や流量を、比例式減圧弁に入力する電気信
号に比例して制御する油圧制御回路に使用される。する
と、流体力Fに基づく制御誤差が減少する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spool valve used for various hydraulic control circuits. 2. Description of the Related Art As shown in FIG. 12, a spool valve used in a hydraulic control circuit of an automobile automatic transmission has a main body 1 provided with a spool hole 2, an inflow passage 3 and an outflow passage 4. The inflow passage 3 and the outflow passage 4 are respectively communicated with two portions of the spool hole 2 slightly separated in the axial direction. The spool 5 having a round shaft shape has a valve chamber 6 having a circumferential groove with a rectangular cross section formed at the center in an axially symmetric manner. A spool 5 is fitted into the spool hole 2 so as to be movable in the axial direction. The spool 5 is movable within a predetermined range in the axial direction. When the pressure or flow rate of the inflow passage 3 or the outflow passage 4 is controlled by increasing or decreasing the communication portion 9 between the valve chamber 6 and the outflow passage 4, the inflow passage 3 is always in the valve chamber irrespective of the position of the spool 5. It communicates with 6. When the spool 5 is moving toward the inflow path 3, an intermediate portion 7 between the inflow path 3 and the outflow path 4 of the spool hole 2 is closed by a land 8 on the outflow path 4 of the spool 5. , The valve chamber 6 and the outflow passage 4 are shut off. When the spool 5 is moved to the outflow passage 4 side, as shown in FIG. 12, an intermediate portion 7 between the inflow passage 3 and the outflow passage 4 of the spool hole 2 is opened, and the valve chamber 6 and the outflow passage are opened. 4
Communicate. As the spool 5 is moved toward the outflow path 4, the opening x of the communication portion 9 between the valve chamber 6 and the outflow path 4, that is, the throttle portion 9 is set.
Increase. [0006] Fluid such as hydraulic oil flows from the inflow passage 3 through the valve chamber 6.
When the fluid flows out of the valve chamber 6 to the outflow passage 4 through the constricted portion 9, the pressure or momentum is different between the inflow and the outflow of the fluid. Therefore, the force F in the axial direction based on the difference between the pressure and the momentum is Acts on spool 5. This force F is called a fluid force and affects the operation force for moving the spool 5 in the axial direction. [0007] In the above-described spool valve, when the precision of controlling the pressure and flow rate of the inflow passage 3 or the outflow passage 4 is high, the fluid force F gives the operating force of the spool 5. The effect is greater. For example, in a hydraulic control circuit of an automatic transmission for an automobile, an oil pump 11 directly connected to an engine is provided in an inflow passage 3 of a spool valve as shown in FIG.
The line pressure passage 12 for operating the transmission mechanism is connected, the outflow passage 4 is changed to the drain passage 13, and the line pressure is applied to one end of the spool 5 to move the spool 5 by the line pressure or the like. When the line pressure is controlled by the opening degree x of the throttle section 9, the fluid force F acting in a direction to decrease the opening degree x of the throttle section 9 is increased as shown in FIG. Depending on the degree x, the shape changes greatly into a concave shape. Therefore, since the fluid force F greatly varies depending on the opening x of the throttle portion 9, it is difficult to move the spool 5 to a desired position, and the line pressure is not controlled as desired. The impact at the time of shifting may increase, or the delay of shifting may increase. After all, in the spool valve, the fluid force F
Is desired to be small and a change due to the opening x of the throttle unit 9 is small. In the above-described spool valve, as shown in FIG. 12, a fluid having a density ρ has a flow rate Q
Flows into the valve chamber 6 from the inflow passage 3 at a speed V 1 and an inflow angle θ 1 ,
When the fluid force F flows out of the valve chamber 6 to the outflow path 4 via the throttle portion 9 at the speed V 2 and the outlet angle θ 2 , the fluid force F becomes the following from the momentum theory if the direction in which the opening degree x of the throttle portion 9 is reduced is made positive. It becomes as follows. F = ρQ (V 2 cos θ 2 −V 1 cos θ 1 ) In this equation, the fluid force F decreases as the inflow angle θ 1 is reduced and the outflow angle θ 2 is increased. But,
The inflow angle θ 1 does not change much even when the shape of the valve chamber 6 is changed. Therefore, the shape of the valve chamber 6 that increases the outflow angle θ 2 will be considered. As shown in FIG. 1, the valve chamber 6 has an end face at the outflow end which is smoothly curved to form an indentation 21 having an arcuate cross-section in an axially symmetric manner. The angle θ between the outer peripheral surfaces of the outer peripheral surface 8 is an acute angle, preferably 80 degrees or less. Fluid flows into a smooth depression 21 at the outflow end of the valve chamber 6.
Flows out, the outflow angle θ 2 becomes larger than in the conventional case where the angle θ is a right angle without a depression. However, a recess 2 is formed in the end face of the outflow end of the valve chamber 6.
When 1 is formed, a secondary vortex may be generated in the depression 21 even if the depression 21 has a smooth bow-shaped cross section. Hollow 2
When a secondary vortex occurs in 1, the flow tends to separate from the depression 21, and the fluid does not easily flow along the depression 21. Therefore, in order to prevent the generation of the secondary vortex that suppresses the turning of the flow and to cause the fluid to flow along the depression 21, as shown in FIG.
3 is a speed increasing flow path in which the flow velocity gradually increases as approaching the depression 21. For example, the outflow end side portion 22 of the valve chamber 6
, The bottom is gradually reduced axially symmetrically as approaching the depression 21. Ru gradually reduced as approaching to the recess 21 the effective channel cross section. [0017] Then, flows into the recess 21 becomes Re accelerated flow in the flow path 23 of the 21 immediately preceding recesses fluid hardly secondary vortices in the recesses 21 occurs and easily separated from the fluid recess 21 recess 21
, The outflow angle θ 2 increases, and the fluid force F decreases. According to the present invention, an inflow passage and an outflow passage are communicated with each other at two locations separated in the axial direction of a spool hole, and a valve chamber having a circumferential groove is formed at the center of the spool. fitted movably spool in the axial direction in the spool bore, fluid or inlet channel
Flows into the valve chamber, passes through the communication between the valve chamber and the
In the spool valve that controls the pressure or flow rate of the inflow path or the outflow path by the opening degree of the communicating portion between the valve chamber and the outflow path , the valve chamber forms a smooth depression by bending the end face of the outflow end, the angle between the outer peripheral surface of the outlet end and the outlet roadside land of the recess is at an acute angle, the flow path just before the depression, and the accelerated flow path gradually reduces the effective channel cross section toward the recess, the flow
The body gradually accelerates in the speed increasing channel just before the dent and flows into the dent
And change the direction along the dent, and connect the communication between the valve chamber and the outflow passage.
It is characterized by passing through . The depression can be axially symmetrical with an arcuate cross section. It is preferable that the angle between the outflow end of the recess and the outer peripheral surface of the outflow path side land is 80 degrees or less. The bottom of the valve chamber at the outflow end can be gradually reduced axially symmetrically as it approaches the depression. It is preferable that the central portion of the valve chamber be a speed increasing flow path or a constant velocity flow path. According to the present invention, the outflow angle of the fluid flowing out of the valve chamber to the outflow path increases, and the fluid force decreases. It is easy to move the spool to a desired position, and it is easy to control the pressure and flow rate of the inflow path or the outflow path. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Example (See FIGS. 1 to 9) The spool valve of the present example has a valve chamber 6 having a circumferential groove having a cross-sectional shape different from that of the related art at the center of the spool 5. Are formed axially symmetrically. As shown in FIG. 1, a part of the valve chamber 6 is curved at the outflow end so as to form a smooth bow-shaped cross section 21 axially symmetrically.
Θ between the outflow end of the lands and the outer peripheral surface of the outflow path 4 side land 8;
That is, the angle θ of the outflow end of the depression 21 is set to 80 degrees or less. As shown in FIG. 1, the outflow end portion 22 of the valve chamber 6 gradually becomes shallower axially symmetrically as it approaches the depression 21. Channel 23 having a ring-shaped cross section immediately before depression 21
Is a speed-increasing flow path that gradually decreases as the effective flow path cross section approaches the depression 21 and gradually increases as the flow velocity approaches the depression 21. The outflow end at the bottom of the valve chamber 6 is
1 is smoothly connected to the inflow end. As shown in FIG. 1, the remaining portion of the valve chamber 6 except for the outflow end side portion 22 gradually becomes deeper axially symmetrically as it approaches the depression 21. The central part of the valve chamber 6
The speed increasing channel 24 or the constant speed channel is connected to the speed increasing channel 23 on the outflow end side portion of the valve chamber 6. The other structure is the same as that of the conventional example shown in FIG. As shown in FIG. 1, a fluid such as hydraulic oil flows from the inflow passage 3 into the inflow end portion of the valve chamber 6 and passes through the speed increasing flow path 24 or the constant velocity flow path. Flows into 23,
The speed increases in the speed increasing flow path 23 and flows into the depression 21, changes its direction along the smooth depression 21, passes through the communication portion 9 between the valve chamber 6 and the outflow passage 4, that is, the throttle portion 9, and has a large outflow angle θ. Outflow channel 4 at 2
Leaked to In the hydraulic control circuit of the automatic transmission for an automobile, an oil pump directly connected to the engine and a line pressure passage for operating the transmission mechanism are connected to the inflow passage 3 of the spool valve of this embodiment, and the outflow passage 4 is connected to the outflow passage 4. In the drain passage, spool 5
When the line pressure is applied to one end to move the spool 5 by the line pressure or the like and the line pressure is controlled by the position of the spool 5, that is, the opening x of the throttle unit 9, the direction in which the opening x of the throttle unit 9 is decreased. FIG. 2 shows the fluid force F acting on
As shown in FIG. 12, the shape changes into a V-shape depending on the degree of opening x of the throttle unit 9, but as compared with the conventional example F shown in FIG.
The absolute value is small, and the change due to the opening x of the throttle unit 9 is small. The angle θ of the outflow end of the depression 21 is 70 degrees in the present embodiment and 90 degrees in the conventional example. The diameter D of each of the spools 5 is 12.5 mm. Both fluids have a temperature of 7
0 ° C., density 0.834 kgf / cm 3 , kinematic viscosity 0.15 cm 2 / s. In the spool valve of this embodiment, the embodiment A in which the angle θ of the outflow end of the recess 21 is 70 degrees, the embodiment B in which the angle θ is 80 degrees, and the valve chamber in which the recess 21 is eliminated as shown in FIG. In Comparative Example C in which the outflow end angle θ of No. 6 was 90 degrees,
The fluid force F is obtained under the same conditions, and the fluid force F and the angle θ between the outflow end are obtained.
FIG. 4 shows the relationship. As is clear from this figure, when the angle θ of the outflow end becomes 80 degrees or less,
The fluid force F is greatly reduced. Further, the above-mentioned Examples A, B and Comparative Examples C, Comparative Example D as shown in FIG. 5, Comparative Example E as shown in FIG. 6, and the conventional example shown in FIG. About F
When the fluid force F is obtained under the same conditions, as shown in FIG. 7, the fluid force F is small in Example A and Example B, but large in Comparative Example C, Comparative Example D, Comparative Example E, and Conventional Example F. . The reason is that there is no depression in Comparative Examples C, E and Conventional Example F, and in Comparative Example D, the flow path 23 immediately before the depression 21 is a deceleration flow path and not a speed-up flow path. It is recognized that it is. For each of Examples A and B, Comparative Examples C, D and E, and Conventional Example F, a flow diagram of time-average values of axially symmetric, unsteady, incompressible and viscous flows under the same conditions is obtained. , As shown in FIG. As is clear from this figure, Example A
In Example B, the generation of the secondary vortex in the depression 21 is suppressed, and the outflow angle θ 2 is increased. In Comparative Example D, a secondary vortex is generated in the depression 21 to suppress the turning of the flow, and the outflow angle θ 2 is reduced. In Comparative Example C, Comparative Example E and Conventional Example F, the outflow angle θ 2 is small. For Comparative Example G as shown in FIG. 9, the fluid force F is smaller than that of Conventional Example F but larger than that of Example A, as shown as Comparative Example G in FIG. In the embodiment A, in the range where the opening degree x of the throttle unit 9 is small, that is, in the range where the fluid force F is large, the fluid force F
Is greatly reduced. <Second and third examples (see FIGS. 10 and 11)
> The spool valve of the second example is, as shown in FIG.
Outflow end of recess 21 formed in the end face of outflow end and outflow path 4
A narrow flat portion 31 orthogonal to the outer peripheral surface of the land 8 is formed axially symmetrically between the outer peripheral surfaces of the side lands 8. Valve room 6
A stepped concave portion 32 is formed axially symmetrically at the inflow end side portion. The other points are the same as in the first example. In the spool valve of the third example, as shown in FIG. 11, the depth of the portion other than the outflow end side portion of the valve chamber 6 is made constant. The other points are the same as in the first example. The spool valves of the first to third examples are also used in hydraulic control circuits other than the automatic transmission hydraulic control circuit described above. For example, the pressure of the fluid acting on one end of the spool 5 of the spool valve is increased or decreased by a proportional pressure reducing valve that controls an adjustment pressure by an electric signal, and the pressure or flow rate of the inflow passage 3 or the outflow passage 4 of the spool valve is proportionally increased. It is used for a hydraulic control circuit that controls in proportion to the electric signal input to the pressure reducing valve. Then, the control error based on the fluid force F decreases.

【図面の簡単な説明】 【図1】本発明の実施形態の第1例のスプール弁の部分
縦断端面図。 【図2】スプール弁における流体力と絞り部の開度の関
係を示す線図。 【図3】比較例Cのスプール弁の部分縦断端面図。 【図4】スプール弁における流体力と流出端の角度の関
係を示す線図。 【図5】比較例Dのスプール弁の部分縦断端面図。 【図6】比較例Eのスプール弁の部分縦断端面図。 【図7】スプール弁における流体力と弁室の断面形状の
関係を示す線図。 【図8】スプール弁における流線図。 【図9】比較例Gのスプール弁の部分縦断端面図。 【図10】本発明の実施形態の第2例のスプール弁の部
分縦断端面図。 【図11】本発明の実施形態の第3例のスプール弁の部
分縦断端面図。 【図12】従来例Fのスプール弁の部分縦断面図。 【図13】従来例Fのスプール弁を使用した油圧制御回
路の部分図。 【符号の説明】 2 スプール孔 3 流入路 4 流出路 5 スプール 6 弁室 9 弁室と流出路の連通部,絞り部 21 窪み 22 弁室の流出端側部分 23 窪み直前の増速流路 θ 窪みの流出端と流出路側ランドの外周面の間の角度 x 絞り部の開度
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial longitudinal sectional end view of a spool valve according to a first example of an embodiment of the present invention. FIG. 2 is a diagram showing a relationship between a fluid force in a spool valve and an opening degree of a throttle portion. FIG. 3 is a partial longitudinal sectional end view of a spool valve of Comparative Example C. FIG. 4 is a diagram showing the relationship between the fluid force and the angle of the outflow end in the spool valve. FIG. 5 is a partial longitudinal sectional end view of a spool valve of Comparative Example D. FIG. 6 is a partial longitudinal sectional end view of a spool valve of Comparative Example E. FIG. 7 is a diagram showing the relationship between the fluid force in the spool valve and the cross-sectional shape of the valve chamber. FIG. 8 is a streamline diagram of a spool valve. FIG. 9 is a partial longitudinal sectional end view of a spool valve of Comparative Example G. FIG. 10 is a partial longitudinal sectional end view of a spool valve according to a second example of the embodiment of the present invention. FIG. 11 is a partial longitudinal sectional end view of a spool valve according to a third example of the embodiment of the present invention. FIG. 12 is a partial longitudinal sectional view of a spool valve of a conventional example F. FIG. 13 is a partial view of a hydraulic control circuit using the spool valve of the conventional example F. [Description of Signs] 2 Spool hole 3 Inflow path 4 Outflow path 5 Spool 6 Valve chamber 9 Communication part between valve chamber and outflow path, constriction 21 Recess 22 Outflow end side portion of valve chamber 23 Speed-increase flow path θ immediately before depression Angle x between the outflow end of the depression and the outer peripheral surface of the outflow path side land x Opening of the throttle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 俊哉 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭60−125471(JP,A) 特開 昭60−172784(JP,A) 実開 昭62−126668(JP,U) 実開 昭57−163057(JP,U) 特公 昭63−668(JP,B2) 実公 昭59−12458(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) F16K 3/24 F16K 47/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshiya Yamashita 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-60-125471 (JP, A) JP-A-60-172784 (JP, A) Japanese Utility Model Showa 62-126668 (JP, U) Japanese Utility Model Showa 57-163057 (JP, U) Japanese Patent Publication No. 63-668 (JP, B2) Japanese Utility Model Showa 59-12458 (JP, Y1) ( 58) Field surveyed (Int.Cl. 7 , DB name) F16K 3/24 F16K 47/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 流入路と流出路をスプール孔の軸芯方向
に離れた2個所に連通し、スプールの中央部に周溝の弁
室を形成し、スプール孔にスプールを軸芯方向に移動可
能に嵌合し、流体が流入路から弁室に流入して弁室と流
出路の連通部を経て流出路に流出し、弁室と流出路の連
通部の開度によって流入路または流出路の圧力や流量を
制御するスプール弁において、 弁室は、流出端の端面を湾曲して滑らかな窪みを形成
し、窪みの流出端と流出路側ランドの外周面との間の角
度を鋭角にし、 窪み直前の流路、窪みに近付くに従って実効流路断面
を徐々に減少させて増速流路にし、 流体は、窪み直前の増速流路で徐々に増速して窪みに流
入し、窪みに沿って向きを変え 、弁室と流出路の連通部
を通過する構成にしたことを特徴とするスプール弁。
(57) [Claim 1] An inflow passage and an outflow passage communicate with two locations separated in the axial direction of a spool hole, and a valve chamber having a circumferential groove is formed in a center portion of the spool. The spool is fitted in the hole so as to be movable in the axial direction, and the fluid flows into the valve chamber from the inflow path and flows into the valve chamber.
In the spool valve, which flows out to the outflow path through the outflow path and controls the pressure and flow rate of the inflow path or outflow path by the degree of opening of the communication section between the valve chamber and the outflow path, the valve chamber has a curved end face at the outflow end the effective flow path cross-section according to form a smooth depression, the angle between the outer peripheral surface of the outlet end and the outlet roadside land of the recess at an acute angle, the flow path just before the depression, to approach the recess
Is gradually reduced to form a speed increasing flow path, and the fluid gradually increases in speed in the speed increasing flow path immediately before the depression and flows into the depression.
A spool valve which is adapted to enter and change its direction along the depression so as to pass through a communicating portion between the valve chamber and the outflow passage.
JP28483496A 1996-10-28 1996-10-28 Spool valve Expired - Fee Related JP3407565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28483496A JP3407565B2 (en) 1996-10-28 1996-10-28 Spool valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28483496A JP3407565B2 (en) 1996-10-28 1996-10-28 Spool valve

Publications (2)

Publication Number Publication Date
JPH10132096A JPH10132096A (en) 1998-05-22
JP3407565B2 true JP3407565B2 (en) 2003-05-19

Family

ID=17683624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28483496A Expired - Fee Related JP3407565B2 (en) 1996-10-28 1996-10-28 Spool valve

Country Status (1)

Country Link
JP (1) JP3407565B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431043B2 (en) * 2005-03-17 2008-10-07 Borgwarner Inc. Automatic transmission having a pressure regulator with flow force compensation
US7770597B2 (en) 2005-08-17 2010-08-10 Aisin Aw Co., Ltd. Spool valve device
DE102013014671A1 (en) 2013-09-03 2015-03-05 Hydac Technology Gmbh Ventilbaukomponenten
JP2015169212A (en) 2014-03-04 2015-09-28 株式会社デンソー fluid control valve
WO2018125321A1 (en) * 2016-12-30 2018-07-05 Parker-Hannifin Corporation Valve with gradual flow area changes
KR102108161B1 (en) * 2018-12-21 2020-05-07 주식회사 현대케피코 Solenoid valve

Also Published As

Publication number Publication date
JPH10132096A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
US3972345A (en) Pilot operated relief valve
JP4107074B2 (en) Flow control valve
US9068660B2 (en) Valve device with a flow guiding device
JP2015169212A (en) fluid control valve
JP3506409B2 (en) Spool type flow control valve
JP3407565B2 (en) Spool valve
US5979862A (en) Pilot-operated proportional pressure limiting valve
JPH102415A (en) Flow control valve for automatic transmission
JP2836163B2 (en) Flow control valve
JPS6088283A (en) Flow-rate controller for power steering apparatus
CN100385156C (en) Precisively regulating ball gate
JPH06173997A (en) Damping stopper
JP4199644B2 (en) Spool valve with a structure that reduces fluid force due to notches
JPS60125471A (en) Spool valve
JP4816583B2 (en) Spool valve
JPH10160002A (en) Spool type hydraulic control valve
JPS6032395Y2 (en) Pump discharge amount control device
CN112709724B (en) Electrohydraulic pressure servo valve power stage structure
JPS6131244Y2 (en)
JP3659702B2 (en) Power steering device
JPS5912645Y2 (en) flow control valve
JPS59137673A (en) Flow-rate control valve
SU1734081A1 (en) Indirect acting reducing valve
JPS6135823Y2 (en)
JPH0242926Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees