JP3406399B2 - Electrode for electrochemical and electrolytic method using the electrode - Google Patents

Electrode for electrochemical and electrolytic method using the electrode

Info

Publication number
JP3406399B2
JP3406399B2 JP23591194A JP23591194A JP3406399B2 JP 3406399 B2 JP3406399 B2 JP 3406399B2 JP 23591194 A JP23591194 A JP 23591194A JP 23591194 A JP23591194 A JP 23591194A JP 3406399 B2 JP3406399 B2 JP 3406399B2
Authority
JP
Japan
Prior art keywords
electrode
conductive material
electrochemical
conductive
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23591194A
Other languages
Japanese (ja)
Other versions
JPH0874085A (en
Inventor
勉 野中
恭史 小野
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP23591194A priority Critical patent/JP3406399B2/en
Publication of JPH0874085A publication Critical patent/JPH0874085A/en
Application granted granted Critical
Publication of JP3406399B2 publication Critical patent/JP3406399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、水系の電解溶媒を使用
する電解反応に使用し、酸素ガス及び水素ガスの発生を
抑制しながら効率良く目的の電解生成物を得るための電
気化学用電極及び該電極を使用する電解方法に関し、よ
り詳細には有機電解に使用し、高選択率で目的の有機化
合物を得るための電気化学用電極及び該電極を使用する
電解方法に関する。 【0002】 【従来技術とその問題点】水は電導性、安全性、安価
性、安定性及びその他の全ての観点からみて最良の電解
溶媒であることに疑いはない。しかし唯一の問題点は水
自身の電解酸化及び還元による酸素ガス及び水素ガス発
生が併起して目的電解反応の効率が低下することであ
る。これは水分子に比べて疎水(撥水)的である有機分
子を出発原料とする電解では特に著しく、有機電解工業
における重大問題となっている。この問題を解決する方
法として古くから採用されているのは非水溶媒の使用で
あるが、非水溶媒は上記の全ての点において水に劣り、
非水溶媒電解液を用いる電解で実用化されたものは皆無
に等しい。 【0003】水系電解液を用いて、なおかつ酸素ガス及
び水素ガスの発生を抑制する方法として、疎水性電極を
使用して電解を行う方法が近年提案されている(特開平
3−131585号)。しかしこれらの技術では、酸素ガス及
び水素ガスの発生抑制に対して一定の効果は認められる
ものの、極めて限られたものである。即ち、多くの電解
反応、特に有機物の電解反応では酸素及び水素源が必要
であり、水がその任を果たしている場合が殆んどであ
る。しかし、従来の疎水性電極では、水を電解反応の反
応場である電極表面から排除しているため、酸素ガス及
び水素ガス発生の抑制効果はあるものの、酸素及び水素
源として必須な水が電極表面に存在しないため、好まし
からざる副反応の生起による反応選択率の低下が余儀な
くされ、前述の問題の原因となっている。 【0004】これに応える一法として疎水性物質と親水
性物質とから成る被膜を電極表面に形成する技術が開示
されている(特開平3−56684 号)。しかし、この電極
は所謂被覆電極であり、被覆膜が非電導性であるため膜
厚を極めて薄くする必要があり、かつ経済性からみて高
い電流密度が求められるにもかかわらず、浴電圧や膜剥
離の問題があり限界が生じている。つまり長期間、安定
に機能を発揮できないのである。 【0005】電解反応を好ましく行うためには、水を
電解溶媒とする、水自体の電解反応による酸素ガス及
び水素ガス発生を抑制する、電解反応に必須な酸素及
び水素源としての水を電極表面に確保する、反応基質
(殆んどが水より疎水的)を電極表面に誘引確保する、
電極の電導性及び耐久性を保持する、の5要件があげ
られる。これらの要因を同時に満たすためには、電極は
その実体内に、疎水性、親水性及び電導性という相互背
反する性質を持たねばならない。これは、分子レベルで
は原理的に不可能である。 【0006】 【発明の目的】本発明は、上記背反する性質を兼備し、
上述の電解反応を好ましく行うための諸要件を具備する
電気化学用電極を提供することを目的とする。 【0007】 【問題点を解決するための手段】本発明は、電導性物
質、疎水性非電導物質及び親水性非電導物質の3成分が
微細に分散したことを特徴とする電気化学用電極、及び
前記3成分から成る電極物質を導電性基体上に形成させ
た電気化学用電極、及びこれらの電極を使用する電解方
法である。更に分散された前記3成分の粒度が0.1 から
50μmであり、それらの体積比率は1:(0.1 〜0.8
):(0.1 〜0.8 )であることが望ましい。 【0008】以下、本発明を詳細に説明する。本発明の
電気化学用電極は、電導性物質、疎水性非電導物質及び
親水性非電導物質の3成分から成り、これらを相互に微
細に分散させたものであり、又、それら3成分が微細に
分散した電極物質を導電性基体上に形成させたものであ
る。電極電導性物質としては、ニッケル、亜鉛、鉛、銀
等の金属、金属酸化物及び炭素等を、又疎水性非電導物
質としてはフッ素樹脂、フッ化黒鉛及びフッ化ピッチ等
を、又、親水性非電導物質としては、シリカゲル、アル
ミナ、ジルコニア、ポリビニルアルコール、セルロース
等を使用できる。 【0009】前記3種類の物質のうち、電導性を有する
物質つまり金属、金属酸化物及び炭素は電極触媒として
所定の電解反応を生起させ、疎水性を有する物質つまり
フッ素樹脂、フッ化黒鉛及びフッ化ピッチ等は水より疎
水性である電解反応の出発物質を前記電極触媒の表面に
誘引して前記所望の電解反応に関与させ、前記親水性を
有する物質つまりシリカゲル、アルミナ、ジルコニア、
ポリビニルアルコール、セルロース等は前記電解反応に
必要とされる酸素及び水素源である水をそれ自身が電解
されて酸素及び水素ガスが発生しない状態で電極表面に
誘引して確保する。 【0010】従って、前記3種類の物質の粒子等を組み
合わせ混在させて電導性、疎水性及び親水性を具備する
電極物質を構成すると、該電極物質は前述の電解反応に
使用する電極として好ましい諸条件を満足することにな
る。つまり本発明に係わる電気化学用電極は、疎水性と
親水性という分子レベルでは不可能である相反する物性
を粒子レベルで具備し、前記両物性に加えて電導性も有
するため、酸素ガス及び水素ガスの発生を抑制しながら
高い電流効率を獲得し、更に反応選択性を合目的的に制
御できる。更に本発明に係わる電極は実質的な電解電圧
の上昇を伴わず電解プロセスのコストの増加を抑制でき
る。 【0011】前記電極物質は通常電極基体表面に層状に
形成されるが、該電極物質自体で電極を構成するように
してもよい。いずれにしても各物質粒子等が均一に分散
して混在することが必要であり、例えば次の3種類のい
ずれかにより電極物質を構成する。 【0012】 各粒子を十分に混合し必要ならば少量
のバインダーを加えて加圧及び/又は加熱により所定形
状に成型する。この場合には、例えば、金属あるいは金
属酸化物を電導性物質として疎水性非電導物質粒子及び
バインダーとして0.1 〜10μmのPTFE粒子を用い、
親水性非電導物質としてシリカゲル微粒子等を使用し、
それぞれ体積比で1:(0.1 〜0.8 ):(0.1 〜0.8 )
となるように混合した後、溶剤としてソルベントナフサ
を用いて均一なペースト状物質とし、電極基体上に塗布
し、350 ℃前後の温度で焼結して電極基体上に電極物質
層を形成する。この際に強度を高めるために10〜1000k
g/cm2 で加圧してもよい。又前記ペースト物質を型
に入れて成型して単独の電極としてもよい。又バインダ
ーとは別に疎水性非電導物質としてフッ化黒鉛あるいは
フッ化ピッチを添加してもよい。 【0013】の方法におけるペースト物質を型に
入れてシート状に成型し、このシートをホットプレス法
により電極基体表面に薄膜状に接合する。 【0014】 非電導物質の粒子を複合めっき法によ
り、電導性物質とともに電極基体上に電着する。この場
合には、金属あるいは金属酸化物のめっき用に通常使用
されるめっき浴中に、例えば0.1 〜50μm程度の疎水性
非電導物質粒子と親水性非電導物質粒子を100 〜10g/
リットル、カチオン性又は中性界面活性剤を1〜20g/
リットル均一に懸濁させ、かつ不溶性対極を使用して電
極基体表面に適切なめっき条件下で複合めっきを行い、
電極活性物質層を形成する。 【0015】 【実施例】次に本発明に係わる電気化学用電極の製造及
び該電極を使用する電解に関する実施例を記載するが、
該実施例は本発明を限定するものではない。 【実施例1】Ni(NH2SO2)2.4H2O を350 g/リットル、
NiCl2 を30g/リットル、H3BO3 を40g/リットル、 C
8F18SO2NH(CH2)3N+ CH3 ・I - を4g/リットル含むめ
っき浴中に、PTFE(1次粒子0.2 μm、2次粒子7
μm)40g/リットル及びシリカゲル(5μm)を均一
に懸濁させ、ニッケル板(3×3cm)を作用極とし、
これを2枚の白金対極で挟み、温度33℃、電流密度20m
A/cm2 で2000クーロンを通電して前記ニッケル面の
両面に複合めっきを行った。このようにして得られた電
極はその表面に、電導性物質であるニッケル、疎水性非
電導物質であるPTFE及び親水性非電導物質であるシ
リカゲルから成る複合めっき層を形成したニッケル板
(電極No.1)であり、前記複合めっき層は高い電導性を
示した。 【0016】 【比較例1】実施例1で使用したメッキ浴からシリカゲ
ルを除いたこと以外は実施例1と同一操作で、ニッケル
板表面に電導性物質であるニッケル及び疎水性非電導物
質であるPTFEから成る複合めっき層を形成して電極
No.2を製造した。又、実施例1で使用したメッキ浴から
PTFEを除いたこと以外は実施例1と同一操作で、ニ
ッケル板表面に電導性物質であるニッケル及び親水性非
電導物質であるシリカゲルから成る複合めっき層を形成
して電極No.3を製造した。 【0017】同様に実施例1で使用したメッキ浴からシ
リカゲル及びPTFEを除いたこと以外は実施例1と同
一操作で、ニッケル板表面に電導性物質であるニッケル
から成るめっき層を形成して電極No.4を製造した。実施
例1及び比較例1で製造した電極No.1〜4のそれぞれの
疎水性を水との接触角により相互に比較すると表1のよ
うになる。表1から分かるように、疎水性非電導物質で
あるPTFEを含む電極では接触角が大きく、PTFE
を含まない電極では接触角が小さくなっている。 【0018】 【表1】 【0019】 【実施例2】実施例1で製造した、電導性物質であるニ
ッケル、疎水性非電導物質であるPTFE及び親水性非
電導物質であるシリカゲルから成る複合めっき層を有す
る電極No.1を使用して次の条件で、ベンズアルデヒド、
p−メチルベンズアルデヒド及びブチルアルデヒドの電
解還元を行った。150 mMモルの前記アルデヒドの1種
を含む50mMの1M硫酸の溶液(メタノール:水=1:
1)中に前記電極No.1を陰極として浸漬し、かつ白金電
極を陽極として浸漬し、両電極間に10mA/cm2 の電
流密度で0.33F/モルの電流を通電した。これにより対
応する還元2量体及び還元1量体のいずれか一方が生成
した。その結果を表2に示した。 【0020】 【比較例2】比較例1の電極NO.2〜4を使用して実施例
2と同一条件でアルデヒドの電解を行ったところ、表2
に示すように対応する還元2量体及び還元1量体のいず
れか一方が又は両方が生成した。表2から分かるよう
に、実施例1におけるニッケル、PTFE及びシリカゲ
ルから成る複合めっき層を有する電極は、3種類全ての
アルデヒドに対して100 %の選択率で還元2量体又は還
元1量体を電解的に合成し、その電流効率も63〜75%と
高いのに対し、比較例1の電極では電流効率が低く、選
択率も劣るものが多かった。 【0021】 【表2】 【0022】 【発明の効果】本発明は、電導性物質、疎水性非電導物
質及び親水性非電導物質の3成分が微細に分散したこと
を特徴とする電気化学用電極、及びこれら3成分が微細
に分散した電極物質を導電性基体上に形成させたことを
特徴とする電気化学用電極である。つまり本発明の電極
物質は、そのまま電極として使用してもあるいは電極基
体上に薄膜状に形成して使用しても良い。 【0023】本発明に係わる電気化学用電極の電極活性
物質は、電導性、疎水性及び親水性の全ての性質を有す
る。これらの性質のうち電導性は電極触媒として所定の
電解反応を生起させる機能を、前記疎水性は水より疎水
性である電解反応の出発物質を前記電極触媒の表面に誘
引して前記所望の電解反応に関与させる機能を、又前記
親水性は電解反応に必要とされる酸素及び水素源である
水をそれ自身が電解されて酸素及び水素ガスが発生しな
い状態で電極表面に誘引して確保する機能を、それぞれ
有する。 【0024】本発明の電極は、前記3種類の特性を有す
る物質が粒子レベルで混在しているため、前述した電解
反応を好ましく行うための諸要件を全て具備し、つまり
水を電解液溶媒とし、水自体の電解反応による酸素ガス
及び水素ガス発生を抑制し、電解反応に必須な酸素及び
水素源としての水を電極表面に確保し、殆んどが水より
疎水的である反応基質を電極表面に誘引確保し、かつ電
導性及び耐久性を保持する、という各要件を本発明の電
極が具備している。従って本発明の電極を電解反応、特
に有機電解反応に使用すると、従来技術では達成しえな
かった酸素ガス及び水素ガス発生を抑制しながら高い反
応選択率で目的の化合物を得ることが可能になる。 【0025】前記3成分つまり電導性物質、疎水性非電
導物質及び親水性非電導物質の粒度は、0.1 から50μm
であり、それらの体積比率は1:(0.1 〜0.8 ):(0.
1 〜0.8 )であることが望ましい。前記電極活性物質を
構成する各粒子等として、金属、金属酸化物及び炭素か
ら選択される電導性物質、フッ素樹脂、フッ化黒鉛及び
フッ化ピッチから選択される疎水性非電導物質、及びシ
リカゲル、アルミナ、ジルコニア、ポリビニルアルコー
ル、セルロースから選択される親水性非電導物質を使用
すると最適の機能を有する電気化学用電極を提供でき
る。 【0026】従って前述の2種類の電気化学用電極のい
ずれを使用しても、各種電解反応、特に水系の電解溶媒
を使用する電解反応を効率良く進行させることができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an electrolytic reaction using an aqueous electrolytic solvent, and efficiently suppresses the generation of oxygen gas and hydrogen gas. Electrochemical electrode for obtaining a product and an electrolysis method using the electrode, more particularly, used for organic electrolysis, an electrochemical electrode and an electrode for obtaining a target organic compound with high selectivity. It relates to the electrolysis method used. 2. Description of the Prior Art Water is without doubt the best electrolytic solvent in view of conductivity, safety, low cost, stability and all other aspects. However, the only problem is that the efficiency of the target electrolytic reaction is reduced due to the simultaneous occurrence of oxygen gas and hydrogen gas due to the electrolytic oxidation and reduction of water itself. This is particularly remarkable in electrolysis using organic molecules that are hydrophobic (water repellent) as compared with water molecules as a starting material, and is a serious problem in the organic electrolysis industry. The use of non-aqueous solvents has long been adopted as a method to solve this problem, but non-aqueous solvents are inferior to water in all of the above points,
There is no practical application of electrolysis using a non-aqueous solvent electrolyte. As a method for suppressing the generation of oxygen gas and hydrogen gas using an aqueous electrolytic solution, a method of performing electrolysis using a hydrophobic electrode has recently been proposed (JP-A-3-131585). However, these techniques have a certain effect on suppressing the generation of oxygen gas and hydrogen gas, but are extremely limited. That is, many electrolysis reactions, particularly electrolysis reactions of organic substances, require an oxygen and hydrogen source, and in most cases, water plays the role. However, in the conventional hydrophobic electrode, since water is excluded from the electrode surface, which is a reaction field of the electrolytic reaction, although it has the effect of suppressing the generation of oxygen gas and hydrogen gas, water, which is essential as a source of oxygen and hydrogen, is not used. Since it is not present on the surface, the reaction selectivity must be reduced due to the occurrence of undesired side reactions, causing the aforementioned problems. As one method for responding to this, there has been disclosed a technique of forming a coating made of a hydrophobic substance and a hydrophilic substance on the surface of an electrode (JP-A-3-56684). However, this electrode is a so-called coated electrode, and the coating film is non-conductive, so that it is necessary to make the film thickness extremely thin. There is a problem of film peeling, and there is a limit. That is, the function cannot be stably exhibited for a long period of time. [0005] In order to preferably carry out the electrolytic reaction, water is used as an electrolytic solvent, the generation of oxygen gas and hydrogen gas by the electrolytic reaction of water itself is suppressed, and water as a source of oxygen and hydrogen essential for the electrolytic reaction is used on the electrode surface. Attracting the reaction substrate (mostly more hydrophobic than water) to the electrode surface,
There are five requirements for maintaining the conductivity and durability of the electrode. In order to satisfy these factors at the same time, the electrodes must have mutually contradictory properties of hydrophobicity, hydrophilicity and electrical conductivity in the body. This is impossible in principle at the molecular level. [0006] The object of the present invention is to combine the above contradictory properties,
It is an object of the present invention to provide an electrochemical electrode having various requirements for preferably performing the above-described electrolytic reaction. [0007] The present invention provides an electrochemical electrode characterized in that three components of a conductive substance, a hydrophobic non-conductive substance and a hydrophilic non-conductive substance are finely dispersed, And an electrode for electrochemical use in which an electrode material composed of the three components is formed on a conductive substrate, and an electrolytic method using these electrodes. Further, the particle size of the three components dispersed is from 0.1
50 μm, and their volume ratio is 1: (0.1 to 0.8
): Desirably (0.1 to 0.8). Hereinafter, the present invention will be described in detail. The electrochemical electrode of the present invention comprises three components of a conductive material, a hydrophobic non-conductive material, and a hydrophilic non-conductive material, and these are finely dispersed in each other. Are formed on a conductive substrate. Examples of the electrode conductive material include metals such as nickel, zinc, lead, and silver, metal oxides and carbon, and examples of the hydrophobic non-conductive material include fluororesin, fluorinated graphite, and fluorinated pitch. Silica gel, alumina, zirconia, polyvinyl alcohol, cellulose and the like can be used as the conductive non-conductive substance. Among the above three substances, a substance having conductivity, that is, a metal, a metal oxide, and carbon causes a predetermined electrolytic reaction as an electrode catalyst, and a substance having hydrophobicity, that is, a fluororesin, fluorinated graphite, and fluorine. Activated pitch or the like attracts a starting material of an electrolysis reaction that is more hydrophobic than water to the surface of the electrode catalyst and participates in the desired electrolysis reaction, and the hydrophilic material, that is, silica gel, alumina, zirconia,
Polyvinyl alcohol, cellulose, and the like attract and secure the water required as the oxygen and hydrogen sources required for the electrolytic reaction to the electrode surface in a state where the water itself is electrolyzed and oxygen and hydrogen gas are not generated. Therefore, when an electrode material having conductivity, hydrophobicity, and hydrophilicity is formed by mixing and mixing particles of the above three types of materials, the electrode material is preferably used as an electrode used in the above-mentioned electrolytic reaction. The condition will be satisfied. In other words, the electrochemical electrode according to the present invention has, at the particle level, contradictory physical properties such as hydrophobicity and hydrophilicity, which are impossible at the molecular level, and also has electrical conductivity in addition to the above physical properties. High current efficiency can be obtained while suppressing generation of gas, and further, the reaction selectivity can be appropriately controlled. Further, the electrode according to the present invention can suppress an increase in the cost of the electrolytic process without substantially increasing the electrolytic voltage. The electrode material is usually formed in a layer on the surface of the electrode substrate, but the electrode material itself may constitute an electrode. In any case, it is necessary that the respective material particles and the like are uniformly dispersed and mixed. For example, the electrode material is constituted by any of the following three types. The respective particles are sufficiently mixed, and if necessary, a small amount of a binder is added, and the mixture is molded into a predetermined shape by pressing and / or heating. In this case, for example, a metal or a metal oxide is used as a conductive material, and hydrophobic non-conductive material particles are used as binders, and 0.1 to 10 μm PTFE particles are used as a binder.
Using silica gel fine particles etc. as a hydrophilic non-conductive substance,
1: (0.1-0.8) :( 0.1-0.8) by volume ratio respectively
Then, a uniform paste-like substance is formed using solvent naphtha as a solvent, applied on an electrode substrate, and sintered at a temperature of about 350 ° C. to form an electrode substance layer on the electrode substrate. 10-1000k to increase strength
g / cm 2 may be applied. Alternatively, the paste substance may be put into a mold and molded to form a single electrode. In addition to the binder, graphite fluoride or fluoride pitch may be added as a hydrophobic non-conductive substance. [0013] The paste material in the above method is put into a mold and molded into a sheet, and this sheet is joined to the surface of the electrode substrate in a thin film by hot pressing. The particles of the non-conductive substance are electrodeposited on the electrode substrate together with the conductive substance by a composite plating method. In this case, for example, 100 to 10 g of hydrophobic non-conductive substance particles and hydrophilic non-conductive substance particles of about 0.1 to 50 μm are added to a plating bath usually used for plating metal or metal oxide.
Liter, 1-20 g of cationic or neutral surfactant /
Liters, and perform composite plating under appropriate plating conditions on the electrode substrate surface using an insoluble counter electrode,
An electrode active material layer is formed. EXAMPLES Next, examples relating to the production of an electrode for electrochemical use according to the present invention and electrolysis using the electrode will be described.
The examples do not limit the invention. EXAMPLE 1 Ni (NH 2 SO 2) 2 .4H 2 O and 350 g / l,
NiCl 2 at 30 g / liter, H 3 BO 3 at 40 g / liter, C
8 F 18 SO 2 NH (CH 2) 3 N + CH 3 · I - a plating bath containing 4g / l, PTFE (1 primary particles 0.2 [mu] m, 2 primary particles 7
μm) 40 g / l and silica gel (5 μm) were uniformly suspended, and a nickel plate (3 × 3 cm) was used as a working electrode.
This is sandwiched between two platinum counter electrodes, at a temperature of 33 ° C and a current density of 20m.
By applying 2000 coulombs at A / cm 2 , composite plating was performed on both sides of the nickel surface. The electrode thus obtained had a nickel plate (electrode No.) on the surface of which a composite plating layer composed of nickel as a conductive substance, PTFE as a hydrophobic non-conductive substance, and silica gel as a hydrophilic non-conductive substance was formed. .1), and the composite plating layer showed high conductivity. Comparative Example 1 The procedure of Example 1 was repeated except that silica gel was removed from the plating bath used in Example 1. Nickel as a conductive substance and a hydrophobic non-conductive substance were formed on the nickel plate surface. Forming a composite plating layer made of PTFE and forming an electrode
No.2 was manufactured. Further, the same operation as in Example 1 was performed except that PTFE was removed from the plating bath used in Example 1, and a composite plating layer comprising nickel as a conductive material and silica gel as a hydrophilic non-conductive material was formed on the surface of a nickel plate. Was formed to produce electrode No. 3. In the same manner as in Example 1 except that silica gel and PTFE were removed from the plating bath used in Example 1, a plating layer made of a conductive material, nickel, was formed on the surface of the nickel plate to form an electrode. No.4 was manufactured. Table 1 shows the comparison between the hydrophobicity of each of the electrodes Nos. 1 to 4 produced in Example 1 and Comparative Example 1 based on the contact angle with water. As can be seen from Table 1, the electrode containing PTFE which is a hydrophobic non-conductive substance has a large contact angle,
In the electrode containing no, the contact angle is small. [Table 1] EXAMPLE 2 Electrode No. 1 having a composite plating layer made of nickel as a conductive substance, PTFE as a hydrophobic non-conductive substance, and silica gel as a hydrophilic non-conductive substance, produced in Example 1. Under the following conditions, using benzaldehyde,
Electrolytic reduction of p-methylbenzaldehyde and butyraldehyde was performed. A solution of 50 mM 1 M sulfuric acid containing 150 mM of one of the above aldehydes (methanol: water = 1:
In 1), the electrode No. 1 was immersed as a cathode, and a platinum electrode was immersed as an anode, and a current of 0.33 F / mol was passed between both electrodes at a current density of 10 mA / cm 2 . Thereby, either one of the corresponding reduced dimer and reduced monomer was produced. The results are shown in Table 2. Comparative Example 2 Electrolysis of aldehyde was performed under the same conditions as in Example 2 using the electrodes Nos. 2 to 4 of Comparative Example 1.
As shown in (1), either one or both of the corresponding reduced dimer and reduced monomer were formed. As can be seen from Table 2, the electrode having a composite plating layer composed of nickel, PTFE and silica gel in Example 1 was prepared by reducing 100% selectivity to all three aldehydes with reduced dimer or reduced monomer. Electrolytically synthesized, the current efficiency was as high as 63 to 75%, whereas the electrode of Comparative Example 1 had low current efficiency and poor selectivity in many cases. [Table 2] According to the present invention, there is provided an electrode for electrochemical use wherein three components of a conductive material, a hydrophobic non-conductive material and a hydrophilic non-conductive material are finely dispersed, and the three components are An electrochemical electrode characterized in that a finely dispersed electrode material is formed on a conductive substrate. That is, the electrode substance of the present invention may be used as an electrode as it is, or may be used in the form of a thin film formed on an electrode substrate. The electrode active material of the electrochemical electrode according to the present invention has all the properties of conductivity, hydrophobicity and hydrophilicity. Among these properties, the conductive property has a function of inducing a predetermined electrolytic reaction as an electrode catalyst, and the hydrophobic property attracts a starting material of the electrolytic reaction, which is more hydrophobic than water, to the surface of the electrode catalyst, and the desired electrolysis occurs. The function to participate in the reaction, and the hydrophilicity is secured by attracting water, which is a source of oxygen and hydrogen required for the electrolytic reaction, to the electrode surface in a state where itself is electrolyzed and oxygen and hydrogen gas are not generated. Each has a function. The electrode of the present invention has all of the above-mentioned requirements for favorably carrying out the electrolytic reaction because the substances having the three kinds of properties are mixed at the particle level, that is, water is used as the electrolyte solvent. Suppress the generation of oxygen gas and hydrogen gas due to the electrolytic reaction of water itself, secure water on the electrode surface as a source of oxygen and hydrogen essential for the electrolytic reaction, and use the reaction substrate, which is mostly hydrophobic than water, on the electrode. The electrode of the present invention has the requirements of ensuring attraction on the surface and maintaining conductivity and durability. Therefore, when the electrode of the present invention is used for an electrolytic reaction, particularly for an organic electrolytic reaction, it becomes possible to obtain a target compound with a high reaction selectivity while suppressing the generation of oxygen gas and hydrogen gas, which cannot be achieved by the prior art. . The particle size of the three components, ie, the conductive material, the hydrophobic non-conductive material and the hydrophilic non-conductive material, is from 0.1 to 50 μm.
And their volume ratio is 1: (0.1-0.8) :( 0.
1 to 0.8). As each particle or the like constituting the electrode active material, a metal, a conductive material selected from metal oxides and carbon, a fluororesin, a hydrophobic nonconductive material selected from graphite fluoride and pitch fluoride, and silica gel, When a hydrophilic non-conductive substance selected from alumina, zirconia, polyvinyl alcohol, and cellulose is used, an electrochemical electrode having an optimal function can be provided. Therefore, regardless of which of the above two types of electrochemical electrodes is used, various kinds of electrolytic reactions, particularly electrolytic reactions using an aqueous electrolytic solvent, can be efficiently advanced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−84387(JP,A) 特開 昭58−123887(JP,A) 特開 平1−139785(JP,A) 特開 平4−83890(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-61-84387 (JP, A) JP-A-58-123887 (JP, A) JP-A-1-139785 (JP, A) JP-A-4- 83890 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 電導性物質、疎水性非電導物質及び親水
性非電導物質の3成分が微細に分散したことを特徴とす
る電気化学用電極。 【請求項2】 電導性物質、疎水性非電導物質及び親水
性非電導物質の3成分が微細に分散した電極物質を導電
性基体上に形成させたことを特徴とする電気化学用電
極。 【請求項3】 分散された3成分の粒度が0.1 μmから
50μmである請求項1又は2に記載の電気化学用電極。 【請求書4】 電導性物質、疎水性非電導物質及び親水
性非電導物質の構成比が、体積で1:(0.1 〜0.8 ):
(0.1 〜0.8 )である請求項1又は2に記載の電気化学
用電極。 【請求項5】 電導性物質が金属、金属酸化物及び炭素
から選択され、疎水性非電導物質がフッ素樹脂、フッ化
黒鉛及びフッ化ピッチから選択され、更に親水性非電導
物質がシリカゲル、アルミナ、ジルコニア、ポリビニル
アルコール、セルロースから選択される請求項1又は2
に記載の電気化学用電極。 【請求項6】 電導性物質、疎水性非電導物質及び親水
性非電導物質の3成分が微細に分散した電気化学用電極
を使用して電解液の電解を行なうことを特徴とする電解
方法。 【請求項7】 電導性物質、疎水性非電導物質及び親水
性非電導物質の3成分が微細に分散した電極物質を導電
性基体上に形成させた電気化学用電極を使用して電解液
の電解を行なうことを特徴とする電解方法。
(57) [Claim 1] An electrochemical electrode characterized in that three components of a conductive material, a hydrophobic non-conductive material and a hydrophilic non-conductive material are finely dispersed. 2. An electrode for electrochemical use wherein an electrode material in which three components of a conductive material, a hydrophobic non-conductive material and a hydrophilic non-conductive material are finely dispersed is formed on a conductive substrate. 3. The particle size of the dispersed three components is from 0.1 μm.
3. The electrode for electrochemical use according to claim 1, wherein the thickness is 50 μm. The composition ratio of the conductive material, the hydrophobic non-conductive material and the hydrophilic non-conductive material is 1: (0.1 to 0.8) by volume:
The electrode for electrochemical use according to claim 1 or 2, wherein (0.1 to 0.8). 5. The conductive material is selected from metals, metal oxides and carbon, the hydrophobic non-conductive material is selected from fluororesins, fluorinated graphite and fluorinated pitch, and the hydrophilic non-conductive materials are silica gel and alumina. 3. The method according to claim 1, wherein said zirconia is selected from the group consisting of zirconia, polyvinyl alcohol and cellulose.
The electrode for electrochemical use according to claim 1. 6. An electrolysis method comprising electrolyzing an electrolytic solution using an electrochemical electrode in which three components of a conductive material, a hydrophobic non-conductive material and a hydrophilic non-conductive material are finely dispersed. 7. An electrolytic solution using an electrochemical electrode in which an electrode material in which three components of a conductive material, a hydrophobic non-conductive material and a hydrophilic non-conductive material are finely dispersed is formed on a conductive substrate. An electrolysis method comprising performing electrolysis.
JP23591194A 1994-09-05 1994-09-05 Electrode for electrochemical and electrolytic method using the electrode Expired - Lifetime JP3406399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23591194A JP3406399B2 (en) 1994-09-05 1994-09-05 Electrode for electrochemical and electrolytic method using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23591194A JP3406399B2 (en) 1994-09-05 1994-09-05 Electrode for electrochemical and electrolytic method using the electrode

Publications (2)

Publication Number Publication Date
JPH0874085A JPH0874085A (en) 1996-03-19
JP3406399B2 true JP3406399B2 (en) 2003-05-12

Family

ID=16993069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23591194A Expired - Lifetime JP3406399B2 (en) 1994-09-05 1994-09-05 Electrode for electrochemical and electrolytic method using the electrode

Country Status (1)

Country Link
JP (1) JP3406399B2 (en)

Also Published As

Publication number Publication date
JPH0874085A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
KR910001140B1 (en) Electrode and method for preparing thereof
EP0026979B1 (en) Electrolytic cell and process for producing an alkali metal hydroxide and chlorine
EP0603175A1 (en) High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it
HU195679B (en) Electrode for electrochemical processis first of all for elctrochemical celles for producing halogenes and alkali-hydroxides and process for producing them
US5538585A (en) Process for producing gas electrode
JP4190026B2 (en) Gas diffusion electrode
DE3612666A1 (en) METHOD FOR PRODUCING AN ANODE WITH A NICO (DOWN ARROW) 2 (DOWN ARROW) O (DOWN ARROW) 4 (DOWN ARROW) CATALYST FOR THE ELECTROLYSIS OF POTASSIUM HYDROXIDE SOLUTIONS AND THEIR USE
KR910001950B1 (en) Electrode structure and process for fabricating the same
Tarantseva et al. Catalytic Activity of Bimetallic Catalysts with a Heterogeneous Structure Based on Copper Foam, Graphene Oxide, and Silver in Alkaline Alcohol Electrolytes
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
JPH0248632B2 (en)
JP3406399B2 (en) Electrode for electrochemical and electrolytic method using the electrode
US4871703A (en) Process for preparation of an electrocatalyst
WO2012115180A1 (en) Anode catalyst and manufacturing method therefor
JP3078570B2 (en) Electrochemical electrode
JPS6167787A (en) Production of joined body of ion exchange resin film and electrode
JP3257831B2 (en) Lead dioxide electrode and method for producing the same
JP2749861B2 (en) Gas diffusion electrode
JPS6125790B2 (en)
JPS61223189A (en) Production of cathode
JPS61230266A (en) New gas diffusion electrode
JP2004149867A (en) Gas diffusion electrode and manufacturing method therefor
JPS609595B2 (en) Manufacturing method of gas diffusion electrode
JP2001234379A (en) Electrolytic cathode
KR910002101B1 (en) Electrolytic metallic electrode and process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10