JP3406323B2 - DC high voltage generator - Google Patents

DC high voltage generator

Info

Publication number
JP3406323B2
JP3406323B2 JP24648991A JP24648991A JP3406323B2 JP 3406323 B2 JP3406323 B2 JP 3406323B2 JP 24648991 A JP24648991 A JP 24648991A JP 24648991 A JP24648991 A JP 24648991A JP 3406323 B2 JP3406323 B2 JP 3406323B2
Authority
JP
Japan
Prior art keywords
electrode
shield electrode
high voltage
shield
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24648991A
Other languages
Japanese (ja)
Other versions
JPH0564453A (en
Inventor
邦彦 武山
Original Assignee
日新ハイボルテージ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新ハイボルテージ株式会社 filed Critical 日新ハイボルテージ株式会社
Priority to JP24648991A priority Critical patent/JP3406323B2/en
Publication of JPH0564453A publication Critical patent/JPH0564453A/en
Application granted granted Critical
Publication of JP3406323B2 publication Critical patent/JP3406323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シェンケル型整流逓倍
方式の直流高電圧発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Schenkel type rectifying and multiplying type DC high voltage generator.

【0002】[0002]

【従来の技術】図3は静電型加速器におけるMV(メガ
ボルト)級の高電圧電源として用いられているシェンケ
ル型整流逓倍方式の直流高電圧発生装置の回路図を示
す。高周波発振器1からの数10kHzの高周波出力は
昇圧コイル部2の1次コイル21に印加され、中点が接
地された2次コイル22は高周波(RF)電極31及び3
2に接続する。これらRF電極は、円筒を二つ割した半
円筒状のものであり、RF電極の内側にこれら電極に対
向して同じく半円筒状であるが幅の狭いn個のシ−ルド
電極41、42、43……4nが配置され、RF電極とシ
−ルド電極間に静電容量が形成される。シ−ルド電極4
1は接地され、各シ−ルド電極間にはそれぞれ整流器5
を図示極性で接続する。高周波発振器1を除くこれら整
流逓倍部全体はSF6ガスが充填された密封容器内に配
置されている。第3シ−ルド電極43以降のシ−ルド電
極には、2次コイル22の電圧を順次増圧した直流電圧
が生じ、最終段の第nシ−ルド電極4nに得られた直流
高電圧は加速器の高電圧タ−ミナル6に印加される。
2. Description of the Related Art FIG. 3 is a circuit diagram of a Schenkel-type rectifying and multiplying type DC high voltage generator used as an MV (megavolt) class high voltage power source in an electrostatic accelerator. Frequency power of several 10kHz from the high-frequency oscillator 1 is applied to the primary coil 2 1 booster coil 2, the secondary coil 2 2 midpoint is grounded high-frequency (RF) electrodes 3 1 and 3
Connect to 2 . These RF electrodes are intended cylindrical semi-cylindrical shape with two split, shea but inside which is also semi-cylindrical so as to face the electrodes to a narrow number n of the width of the RF electrode - field electrode 4 1, 4 2 , 4 3, ... 4n are arranged, and an electrostatic capacitance is formed between the RF electrode and the shield electrode. Shield electrode 4
1 is grounded, and a rectifier 5 is placed between each shield electrode.
Are connected with the polarities shown. The entire rectifying and multiplying unit except the high frequency oscillator 1 is arranged in a sealed container filled with SF 6 gas. The third sheet - the shield electrode 4 3 subsequent sheet - the shield electrode, sequentially DC voltage is generated which boosts the secondary coil 2 2 voltage, the n-th sheet of the last stage - the DC high obtained in shield electrode 4n The voltage is applied to the high voltage terminal 6 of the accelerator.

【0003】ところで、かかる直流高電圧発生装置の整
流逓倍部はかなり大型のものである。発生電圧3MVの
ものについて逓倍整流部のRF電極とシ−ルド電極の寸
法、配置の一例を図4に示す。RF電極の印加電圧は±
200kV、同電極の内径は2140mmであり、シ−
ルド電極は、外径1300mm、電極幅55mm、電極
間隔20mm、電極数は56である。これから、整流逓
倍部の長さ(シ−ルド電極42から456までとする)
は、(55+20)×(56/2)−20=2080m
mに達する。
By the way, the rectifying and multiplying unit of such a DC high voltage generator is quite large. FIG. 4 shows an example of dimensions and arrangement of the RF electrode and the shield electrode of the multiplying rectification unit for the generated voltage of 3 MV. The voltage applied to the RF electrode is ±
200 kV, the inner diameter of the electrode is 2140 mm,
The field electrode has an outer diameter of 1300 mm, an electrode width of 55 mm, an electrode interval of 20 mm, and the number of electrodes is 56. Now, the length of the rectifying multiplier (sheet - and the shield electrode 4 2 to 4 56)
Is (55 + 20) × (56/2) −20 = 2080 m
reach m.

【0004】[0004]

【発明が解決しようとする課題】本発明は、整流逓倍部
を小型化したシェンケル型の直流高電圧発生装置を提供
することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a Schenkel type DC high voltage generator in which the rectifying and multiplying unit is downsized.

【0005】[0005]

【課題を解決するための手段】本発明は、シェンケル型
の直流高電圧発生装置において、整流逓倍部のシ−ルド
電極の径を、高圧側から接地側に向かうにつれて大きく
し、かつシ−ルド電極の幅を、高圧側から接地側に向か
うにつれて小さくなるように構成したことを主たる特徴
とするものである。かかる構成により、整流逓倍部の長
さ寸法におけるシ−ルド電極の幅の合計が従来例より減
少し、整流逓倍部の小型化が実現される。そして、各シ
−ルド電極とRF電極間の電場の大きさは最終段部の電
場の最大値内に抑えられており、各電極間の静電容量を
従来例における値と同じに保つことができ、回路的にも
従来例と同じにすることができる。
According to the present invention, in a Schenkel type DC high voltage generator, the diameter of the shield electrode of the rectifying and multiplying section is increased from the high voltage side to the ground side, and the shield is provided. The main feature is that the width of the electrode becomes smaller from the high voltage side toward the ground side. With such a configuration, the total width of the shield electrodes in the length dimension of the rectifying and multiplying unit is reduced as compared with the conventional example, and the rectifying and multiplying unit can be downsized. The magnitude of the electric field between each shield electrode and the RF electrode is suppressed within the maximum value of the electric field at the final stage, and the capacitance between the electrodes can be kept the same as the value in the conventional example. The circuit can be the same as the conventional example.

【0006】 更に、同一寸法である適数個の整流逓倍
部のシールド電極を一つのブロックとし、全シールド電
極を複数の前記ブロックに分割し高圧側から接地側に
向かうにつれて、各ブロック毎にシールド電極の径を順
次大きくし、かつ高圧側から接地側に向かうにつれて各
ブロックごとにシールド電極の幅を小さくなるように構
成したことを特徴とする。これにより、各ブロック内で
は同一寸法のシールド電極を使用できることとなり、整
流逓倍部の小型化に当たり、その製作を容易にする。
Furthermore, the shield electrode of several rectifier multiplier applied is the same size as one of the block, dividing the entire shield electrode to the plurality of blocks, the ground side from the high pressure side
Toward the forward diameter of the shield electrode in each block
Next, increase the size, and increase from the high voltage side to the grounding side.
Designed to reduce the width of the shield electrode for each block.
It is characterized in that form. As a result, the shield electrodes having the same size can be used in each block, which facilitates the production of the rectifying and multiplying unit when it is downsized.

【0007】[0007]

【実施例】整流逓倍部の小型化への方策、全体の長さを
短縮することを考えるとき、シ−ルド電極とRF電極間
の静電容量は少なくとも従来のものの値を維持しなけれ
ばならない。この点、整流逓倍部全長の短縮に際し、シ
−ルド電極の幅を狭くするには、シ−ルド電極とRF電
極の間隔を狭くできれば、その実現が可能となる。前示
図4において、RF電極31、32は昇圧コイル部2の2
次コイル22により±200kVの電位にあり、最終の
直流発生電圧は3MV、シ−ルド電極数56から、第k
シ−ルド電極4kの電位は3000×(k−1)/55
〔kV〕となる。シ−ルド電極とRF電極間における最
大の電場は第56シ−ルド電極456部に生じ、第56シ
−ルド電極電位をV、シ−ルド電極外径の半径をR1
RF電極内径の半径をR2とすると、電場の最大値は、 (V/R1)/ln(R2/R1)=(3200/650)/ln(1070/650) =9.8〔kV/mm〕 となり、第55シ−ルド電極以前のシ−ルド電極とRF
電極間の電場はこの値より小さく、第1シ−ルド電極4
1とRF電極間の電場の最大値は、 9.8×200/3200=0.61〔kV/mm〕 に過ぎない。したがって、電場が9.8〔kV/mm〕
を超えない限度まで第1シ−ルド電極41ないし第55
シ−ルド電極455の径をそれぞれ大きくすることがで
き、そうすれば各シ−ルド電極の幅を各シ−ルド電極と
RF電極との間隔に逆比例した値まで小さくすることが
できる。つまり、シ−ルド電極とRF電極間の静電容量
を従来のものと同じ値に保ったまま整流逓倍部を小型化
できることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When considering a measure for reducing the size of a rectifying and multiplying unit, and shortening the overall length, the capacitance between the shield electrode and the RF electrode must be maintained at least at the conventional value. . In this respect, in order to reduce the width of the shield electrode when shortening the total length of the rectifying / multiplying unit, it is possible to realize it by narrowing the interval between the shield electrode and the RF electrode. In FIG. 4 shown above, the RF electrodes 3 1 and 3 2 are the same as those of the booster coil unit 2.
The potential is ± 200 kV due to the next coil 2 2 , the final DC voltage is 3 MV, and the number of shield electrodes is 56.
The potential of the shield electrode 4k is 3000 × (k-1) / 55
[KV]. Sheet - maximum of the electric field 56 sheet between the shield electrode and the RF electrode - occur shield electrode 4 56 parts of a 56 - a shield electrode potential V, sheet - the radius of the shield electrode outer diameter R 1,
When the radius of the inner diameter of the RF electrode is R 2 , the maximum value of the electric field is (V / R 1 ) / ln (R 2 / R 1 ) = (3200/650) / ln (1070/650) = 9.8 [ kV / mm] and the shield electrode and RF before the 55th shield electrode
The electric field between the electrodes is smaller than this value, and the first shield electrode 4
The maximum value of the electric field between 1 and the RF electrode is only 9.8 × 200/3200 = 0.61 [kV / mm]. Therefore, the electric field is 9.8 [kV / mm].
The first sheet to the extent not exceeding - shield electrode 4 1 to 55
Sheet - it is possible to increase the diameter of the shield electrode 4 55 respectively, each sheet if so - can be reduced to inversely proportional value to the distance between the shield electrode and the RF electrode - the width of the shield electrode each sheet. That is, the rectifying and multiplying unit can be miniaturized while keeping the electrostatic capacitance between the shield electrode and the RF electrode at the same value as the conventional one.

【0008】図1はシ−ルド電極群全体の外形を円錐状
に形成した実施例を示す。n個のシ−ルド電極41ない
し4nの径は、高圧側から接地側に向かうにつれて、順
次大きくなるように構成し、全体の外形形状は円錐状と
されている。また、各シ−ルド電極の幅は、高圧側から
低圧側に向かうにつれ、小さくなるように構成されてい
る。一具体例として、RF電極内径φr=2140〔m
m〕、シ−ルド電極外径の最小値φsn=1300〔m
m〕、同じく最大値φs1=1988〔mm〕、シ−ル
ド電極数n=56、シ−ルド電極間隔を20〔mm〕と
し、 第kシ−ルド電極の外径φskを 1988−12.5(k−1)〔mm〕、 幅 Wkを 10+0.82(k−1)〔mm〕 に選ぶ。このとき第1シ−ルド電極41とRF電極3間
の電場の最大値は2.7〔kv/mm〕に過ぎず、他の
シ−ルド電極とRF電極間についても9.8〔kV/m
m〕を超えることがない。また、各シ−ルド電極とRF
電極間隔と各シ−ルド電極の幅との積はほぼ一定に保た
れるので、各シ−ルド電極とRF電極間の静電容量は一
定である。したがって、回路的には図4に示した従来例
と同等である。整流逓倍部長さLは約1450mmとな
り、従来例より630mm短く、大幅に短縮される。
FIG. 1 shows an embodiment in which the outer shape of the entire shield electrode group is formed in a conical shape. The diameters of the n shield electrodes 4 1 to 4 n are configured so as to gradually increase from the high voltage side toward the ground side, and the overall outer shape is a conical shape. Further, the width of each shield electrode is configured to become smaller from the high voltage side toward the low voltage side. As a specific example, the inner diameter of the RF electrode φr = 2140 [m
m], the minimum value of the shield electrode outer diameter φsn = 1300 [m
m], the maximum value φs 1 = 1988 [mm], the number of shield electrodes n = 56, the shield electrode spacing is 20 mm, and the outer diameter φsk of the kth shield electrode is 1988-12. 5 (k-1) [mm], and the width Wk is selected to be 10 + 0.82 (k-1) [mm]. At this time, the first sheet - the maximum value of the electric field between the shield electrodes 4 1 and the RF electrode 3 is only 2.7 [kv / mm], other sheet - 9.8 [kV also between shield electrodes and the RF electrode / M
m] is not exceeded. In addition, each shield electrode and RF
Since the product of the electrode spacing and the width of each shield electrode is kept substantially constant, the capacitance between each shield electrode and the RF electrode is constant. Therefore, the circuit is equivalent to the conventional example shown in FIG. The length L of the rectifying and multiplying unit is about 1450 mm, which is 630 mm shorter than that of the conventional example, which is a great reduction.

【0009】図2は他の実施例を示し、上述の実施例の
ように、全てのシ−ルド電極の外径、幅を異ならせるの
は実際上不便であるから、適数個のシ−ルド電極を1ブ
ロックとし、全シ−ルド電極を複数のブロックA、B、
……Nに分割し、各ブロック内ではシ−ルド電極の外
径、幅を一定とし、ブロック毎に、外径を高圧側から低
圧側に向かうにつれ大きくし、幅については高圧側から
低圧側に向かうにつれ小さくなるように構成する。
FIG. 2 shows another embodiment. Since it is practically inconvenient to make the outer diameters and widths of all shield electrodes different from each other as in the above-mentioned embodiment, a proper number of shields are used. The shield electrode is one block, and all shield electrodes are a plurality of blocks A, B,
...... Divided into N, keeping the outer diameter and width of the shield electrode constant in each block, increasing the outer diameter from the high pressure side to the low pressure side in each block, and the width from the high pressure side to the low pressure side. It will be configured to become smaller as it goes to.

【0010】[0010]

【発明の効果】本発明は以上説明したように構成されて
いるので、整流逓倍部の長さ寸法におけるシ−ルド電極
の幅の合計が従来例より減少し、シェンケル型直流高電
圧発生装置の小型化が実現される。そして、各シ−ルド
電極とRF電極間の電場の大きさは最終段部、最高圧部
の電場の最大値内に抑えられ、各電極間の静電容量を従
来例における値と同じに保つことができ、回路的にも従
来例と同じにすることができる。
Since the present invention is constructed as described above, the total width of the shield electrodes in the length dimension of the rectifying and multiplying section is reduced as compared with the conventional example, and the Schenkel type DC high voltage generator is provided. Miniaturization is realized. Then, the magnitude of the electric field between each shield electrode and the RF electrode is suppressed within the maximum value of the electric field at the final stage portion and the highest pressure portion, and the capacitance between the electrodes is kept the same as the value in the conventional example. The circuit can be the same as the conventional example.

【0011】 更に、同一寸法である適数個の整流逓倍
部のシールド電極を一つのブロックとし、全シールド電
極を複数の前記ブロックに分割し高圧側から接地側に
向かうにつれて、各ブロック毎にシールド電極の径を順
次大きくし、かつ高圧側から接地側に向かうにつれて各
ブロックごとにシールド電極の幅を小さくなるように構
成したことにより、各ブロック内では同一寸法のシール
ド電極を使用できるから、整流逓倍部の小型化を、その
製作上からも容易に実施することができる。
Furthermore, the shield electrode of several rectifier multiplier applied is the same size as one of the block, dividing the entire shield electrode to the plurality of blocks, the ground side from the high pressure side
Toward the forward diameter of the shield electrode in each block
Next, increase the size, and increase from the high voltage side to the grounding side.
Designed to reduce the width of the shield electrode for each block.
Since the shield electrodes having the same size can be used in each block by the construction, it is possible to easily reduce the size of the rectifying and multiplying unit from the viewpoint of manufacturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】他の実施例の構成図である。FIG. 2 is a configuration diagram of another embodiment.

【図3】シェンケル型直流高電圧発生装置の回路図であ
る。
FIG. 3 is a circuit diagram of a Schenkel type DC high voltage generator.

【図4】従来例の構成図である。FIG. 4 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 高周波発振器 2 昇圧コイル部 31,32 RF(高周波)電極 41〜4n シ−ルド電極 5 整流器1 High frequency oscillator 2 Step-up coil section 3 1 , 3 2 RF (high frequency) electrode 4 1 to 4n shield electrode 5 Rectifier

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シェンケル型の直流高電圧発生装置にお
いて、整流逓倍部のシールド電極の径を、高圧側から接
地側に向かうにつれて順次大きくし、かつシールド電極
の幅を、高圧側から接地側に向かうにつれて小さくなる
ように構成したことを特徴とする直流高電圧発生装置
1. In a Schenkel type DC high voltage generator, the diameter of the shield electrode of the rectifying and multiplying part is gradually increased from the high voltage side to the ground side, and the width of the shield electrode is changed from the high voltage side to the ground side. DC high voltage generator characterized in that it becomes smaller as it goes toward
【請求項2】 シェンケル型の直流高電圧発生装置にお
いて、同一寸法である適数個の整流逓倍部のシールド電
極を一つのブロックとし、全シールド電極を複数の前記
ブロックに分割し高圧側から接地側に向かうにつれ
て、各ブロック毎にシールド電極の径を順次大きくし、
かつ高圧側から接地側に向かうにつれて各ブロックごと
にシールド電極の幅を小さくなるように構成したことを
特徴とする直流高電圧発生装置。
2. A Schenkel-type DC high voltage generator , comprising a suitable number of rectifying and multiplying parts of the same size, each having a shield voltage.
As the single block poles, dividing the entire shield electrode to the plurality of <br/> block, directed from the high pressure side to the ground side
The diameter of the shield electrode for each block ,
And each block goes from the high voltage side to the ground side
A DC high voltage generator characterized in that the width of the shield electrode is reduced .
JP24648991A 1991-09-02 1991-09-02 DC high voltage generator Expired - Fee Related JP3406323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24648991A JP3406323B2 (en) 1991-09-02 1991-09-02 DC high voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24648991A JP3406323B2 (en) 1991-09-02 1991-09-02 DC high voltage generator

Publications (2)

Publication Number Publication Date
JPH0564453A JPH0564453A (en) 1993-03-12
JP3406323B2 true JP3406323B2 (en) 2003-05-12

Family

ID=17149164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24648991A Expired - Fee Related JP3406323B2 (en) 1991-09-02 1991-09-02 DC high voltage generator

Country Status (1)

Country Link
JP (1) JP3406323B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966872B2 (en) * 2010-06-01 2018-05-08 Koninklijke Philips N.V. Voltage rectifier with specific diode arrangement

Also Published As

Publication number Publication date
JPH0564453A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US4266269A (en) Fly-back transformer
US3723846A (en) High voltage power supply
JP3406323B2 (en) DC high voltage generator
SU673205A3 (en) Voltage transformer high-voltage winding
EP0084912A1 (en) High-voltage supply for an X-ray generator
JPH0350508B2 (en)
JP2789187B2 (en) Mobile object static elimination method
US5426345A (en) High voltage electronic tube with intermediate electrode
JPH07320897A (en) Tandem accelerating device
JP2809923B2 (en) Flyback transformer
JP2004281170A (en) High voltage device for x-ray tube
JPS58166707A (en) High voltage generating device
SU712979A1 (en) Pulsed x-ray generator
JPS63178767A (en) High-voltage generator
JP3451859B2 (en) Cathode ray tube device
JPH0282166A (en) Voltage divider
JPH0568370A (en) Dc high voltage generator and x-ray system using same
JP2776910B2 (en) Schenkel type booster
RU2226031C2 (en) High-voltage pulse generator
SU599738A1 (en) X-ray generator
RU893113C (en) Controlled gas-filled discharger
US2127218A (en) Transformer
KR820002215B1 (en) Fly back transformer
JPH08316071A (en) Flyback transformer
JPH03150816A (en) Voltage divider

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees