JP3406083B2 - Molding mold design method and design support system - Google Patents

Molding mold design method and design support system

Info

Publication number
JP3406083B2
JP3406083B2 JP23920494A JP23920494A JP3406083B2 JP 3406083 B2 JP3406083 B2 JP 3406083B2 JP 23920494 A JP23920494 A JP 23920494A JP 23920494 A JP23920494 A JP 23920494A JP 3406083 B2 JP3406083 B2 JP 3406083B2
Authority
JP
Japan
Prior art keywords
data
heat
deterioration degree
temperature
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23920494A
Other languages
Japanese (ja)
Other versions
JPH08103932A (en
Inventor
浩次 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP23920494A priority Critical patent/JP3406083B2/en
Publication of JPH08103932A publication Critical patent/JPH08103932A/en
Application granted granted Critical
Publication of JP3406083B2 publication Critical patent/JP3406083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7693Measuring, controlling or regulating using rheological models of the material in the mould, e.g. finite elements method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、最も熱負荷量の多い昇
降温時の樹脂の熱劣化量を定量的に評価可能な成形用金
型の設計方法及び設計支援システムに関し、プロセス・
金型・材料設計用CAE(CAD)システムに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding die designing method and a design support system capable of quantitatively evaluating the thermal deterioration amount of resin during temperature increase / decrease with the largest heat load.
It is related to CAE (CAD) system for mold / material design.

【0002】[0002]

【従来の技術】従来より、熱劣化性樹脂の劣化度予測を
行うものとして、例えば特開平5−189526号公報
に記載された射出成形用金型の流動解析評価システムが
ある。
2. Description of the Related Art Conventionally, as a method for predicting the degree of deterioration of a heat-degradable resin, for example, there is a flow analysis evaluation system for an injection molding die described in Japanese Patent Application Laid-Open No. 5-189526.

【0003】このシステムは、射出形成時に発生する外
観不良であるヤケを防止するためのゲート寸法を評価す
るシステムであって、樹脂のゲート通過流量とゲート径
とを各パラメータとして樹脂充填解析を行うことによ
り、圧力、温度等の分布を算出する充填解析部と、この
解析結果に基づき、ゲート通過流量を一定としてゲート
径毎のヤケを表す指標値の算出を行う指標算出部と、算
出された指標値と各パラメータとの関係から、横軸に樹
脂のゲート通過量、縦軸にヤケを表す指標値を記した図
表を作成して表示する表示部とを備えた構成となってい
る。
This system is a system for evaluating a gate size for preventing burnout, which is a defective appearance that occurs at the time of injection molding, and performs a resin filling analysis by using a resin gate passage flow rate and a gate diameter as parameters. As a result, a filling analysis unit that calculates the distribution of pressure, temperature, etc., and an index calculation unit that calculates an index value that represents the burn for each gate diameter with a constant gate passage flow rate, based on the analysis result, were calculated. Based on the relationship between the index value and each parameter, the display unit is configured to create and display a chart in which the horizontal axis represents the amount of resin passing through the gate and the vertical axis represents the index value representing the burn.

【0004】つまり、射出成形における充填過程の樹脂
温度変化を算出し、充填時の最高温度を基にして、製品
の外観品質であるヤケを予測するものである。
That is, the change in resin temperature during the filling process in injection molding is calculated, and the burnout, which is the appearance quality of the product, is predicted based on the maximum temperature during filling.

【0005】[0005]

【発明が解決しようとする課題】このように、従来の射
出成形用金型の流動解析評価システムは、成形プロセス
内の充填過程という短時間の現象をシミュレートし、そ
の結果の瞬間的な温度(充填時の最大温度)のみを用い
てヤケの発生を評価するようになっている。
As described above, the conventional flow analysis and evaluation system for injection molding dies simulates a short-time phenomenon called the filling process in the molding process, and the instantaneous temperature of the result is simulated. Only the (maximum temperature during filling) is used to evaluate the occurrence of burns.

【0006】つまり、従来のシステムでは、樹脂に対し
て熱負荷量の最も多い(すなわち、熱劣化の最も発生し
やすい)、非定常過程(例えば、スタート時やストップ
時等)の熱履歴を予測し、これを熱劣化予測用データと
して用いる構成とはなっていないので、非定常過程をも
考慮した金型設計が行えないといった問題があった。つ
まり、充填という高温、短時間の現象に対しては、従来
のシステムで十分対応可能であるが、樹脂の熱劣化現象
は温度と時間との関数であり、最も熱劣化の発生しやす
いスタート、ストップ時(昇降温時)などの、低温、長
時間の熱劣化現象の予測には適用できない。
That is, in the conventional system, the thermal history of the largest heat load on the resin (that is, the most likely thermal degradation) and the unsteady process (for example, at the start or stop) is predicted. However, since it is not configured to use this as the data for predicting thermal deterioration, there is a problem that it is not possible to design a mold that also considers unsteady processes. In other words, the conventional system can sufficiently cope with the phenomenon of filling, which is a high temperature and a short time, but the thermal deterioration phenomenon of the resin is a function of temperature and time. It cannot be applied to the prediction of low temperature and long term thermal deterioration phenomena such as when stopped (when the temperature is raised or lowered).

【0007】また、従来のシステムは、ヤケの発生の有
無の評価のみであり、ヤケが発生する前の樹脂の劣化度
合いの評価が行えず、従ってヤケに対するプロセス安定
性の評価が行えないといった問題があった。
Further, the conventional system only evaluates the occurrence of burns, and cannot evaluate the degree of deterioration of the resin before the burns occur. Therefore, the process stability against burns cannot be evaluated. was there.

【0008】本発明はこのような問題点を解決すべく創
案されたもので、その目的は、最も熱負荷量の多い昇降
温時の樹脂の熱劣化量を定量的に評価可能な成形用金型
の設計方法及び設計支援システムを提供することにあ
る。
The present invention was devised to solve such a problem, and an object thereof is a molding metal capable of quantitatively evaluating the thermal deterioration amount of the resin at the time of temperature increase / decrease with the largest heat load. To provide a mold design method and a design support system.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1記載の成形用金型の設計方法は、
金型装置データ、樹脂物性データ、初期温度データ及び
冷却条件データの各種データに基づいて、金型及び樹脂
の各時刻の温度データである昇降温時の熱履歴データを
算出する一方、測定により得られた温度、時間をパラメ
ータとした熱劣化特性データに基づいて、各温度毎の熱
劣化度と熱劣化度変化量との関係を示す第1の近似式、
及び熱劣化度変化量と温度との関係を示す第2の近似式
を求め、前記熱履歴データのある時間の温度データに基
づいて前記第2の近似式より熱劣化度変化量を算出し、
この算出した熱劣化度変化量と前記熱履歴データの時間
データとに基づいて前記第1の近似式より熱劣化度を算
出し、これを積算することにより、現計算時間までの熱
劣化度を算出し、これを最終時間まで繰り返して各時刻
の熱劣化度を算出し、その後、前記金型装置データ、前
記最終時間の熱劣化データ及び熱劣化限界値に基づい
て、金型装置の良否判定を行うとともに、金型装置パラ
メータに対する熱劣化度相関データを算出するものであ
る。
In order to solve the above-mentioned problems, the method of designing a molding die according to claim 1 of the present invention comprises:
Based on various data such as mold equipment data, resin physical property data, initial temperature data, and cooling condition data, heat history data during temperature increase / decrease, which is temperature data of the mold and resin at each time, is calculated, and obtained by measurement. A first approximation formula showing the relationship between the degree of thermal deterioration and the amount of change in the degree of thermal deterioration for each temperature, based on the thermal deterioration characteristic data with the temperature and time as parameters.
And a second approximate expression indicating the relationship between the thermal deterioration degree change amount and the temperature is obtained, and the thermal deterioration degree change amount is calculated from the second approximate expression based on the temperature data at a certain time of the thermal history data,
The heat deterioration degree is calculated from the first approximation formula based on the calculated heat deterioration degree change amount and the time data of the heat history data, and the heat deterioration degree up to the current calculation time is calculated by integrating the heat deterioration degree. Calculate the heat deterioration degree at each time by repeating this until the final time, and then, based on the mold device data, the heat deterioration data of the final time, and the heat deterioration limit value, the quality of the mold device is determined. In addition to performing the above, the heat deterioration degree correlation data with respect to the mold device parameters is calculated.

【0010】また、本発明の請求項2記載の成形用金型
の設計支援システムは、金型装置データ、樹脂物性デー
タ、初期温度データ及び冷却条件データの各種データを
入力データとして、金型及び樹脂の各時刻の温度データ
である昇降温時の熱履歴データを算出する熱履歴算出部
と、測定により得られた温度、時間をパラメータとした
熱劣化特性データを入力データとして、各温度毎の熱劣
化度と熱劣化度変化量との関係を示す第1の近似式、及
び熱劣化度変化量と温度との関係を示す第2の近似式を
求める熱劣化特性算出部と、前記熱履歴算出部により得
られた熱履歴データのある時間の温度データに基づいて
前記第2の近似式より熱劣化度変化量を算出し、この算
出した熱劣化度変化量と前記熱履歴データの時間データ
とに基づいて前記第1の近似式より熱劣化度を算出し、
これを積算することにより、現計算時間までの熱劣化度
を算出し、これを最終時間まで繰り返して各時刻の熱劣
化度を算出する熱劣化度算出部と、金型装置データ、前
記熱劣化度算出部により得られた最終時間の熱劣化デー
タ及び熱劣化限界値を各入力データとして、金型装置の
良否判定を行うとともに、金型装置パラメータに対する
熱劣化度相関データを算出する最適金型設計部とを備え
た構成とする。
Further, according to a second aspect of the present invention, there is provided a molding die design support system in which various data such as mold equipment data, resin physical property data, initial temperature data and cooling condition data are used as input data. The heat history calculation unit that calculates the heat history data when the temperature is rising and falling, which is the temperature data of the resin at each time, and the temperature deterioration characteristics data with the temperature and time obtained by the measurement as parameters are input data, and A heat deterioration characteristic calculation unit that obtains a first approximate expression indicating a relationship between the heat deterioration degree and the change amount of the heat deterioration degree, and a second approximate expression indicating a relationship between the change amount of the heat deterioration degree and the temperature, and the heat history. The heat deterioration degree change amount is calculated from the second approximation formula based on the temperature data of the heat history data obtained at a certain time by the calculation unit, and the calculated heat deterioration degree change amount and the time data of the heat history data are calculated. And based on the above Calculating a degree of thermal degradation than one approximation formula,
By accumulating this, the heat deterioration degree up to the current calculation time is calculated, and this is repeated until the final time to calculate the heat deterioration degree at each time, the mold device data, the heat deterioration degree. The optimum mold that determines the quality of the mold device and calculates the heat deterioration degree correlation data for the mold device parameters, using the heat deterioration data and the heat deterioration limit value of the final time obtained by the temperature calculation unit as input data. And a design section.

【0011】[0011]

【作用】熱履歴算出部では、金型装置データ、樹脂物性
データ、初期温度データ及び冷却条件データの各種デー
タを入力データとして、金型及び樹脂の各時刻の温度デ
ータである昇降温時の熱履歴データを算出する。
In the heat history calculation unit, various data such as mold device data, resin physical property data, initial temperature data and cooling condition data are used as input data, and the temperature data of the mold and the resin at each time is a temperature rise / fall temperature. Calculate historical data.

【0012】ここで、金型装置データとは、例えば金型
部品の形状や熱容量、熱伝導率等の材料物性のデータを
いう。また、樹脂物性データとは、樹脂の熱容量、熱伝
導率等のデータをいう。また、初期温度データとは、金
型及び樹脂の初期温度データをいう。また、冷却条件デ
ータとは、例えば外気温度等のデータをいう。
Here, the mold device data means, for example, data on material properties such as the shape, heat capacity, and thermal conductivity of mold parts. Further, the resin physical property data refers to data such as heat capacity and thermal conductivity of the resin. The initial temperature data means initial temperature data of the mold and the resin. Further, the cooling condition data refers to data such as the outside air temperature.

【0013】熱履歴算出部では、これらの入力データに
基づき、有限要素法、差分法、境界要素法、FAN法等
を含む数値解析手法を用いて、昇降温時(非定常過程)
の金型もしくは樹脂の熱履歴データを算出する。
The thermal history calculation unit uses a numerical analysis method including a finite element method, a difference method, a boundary element method, a FAN method, etc., based on these input data, during temperature increase / decrease (unsteady process).
Calculate the heat history data of the mold or resin.

【0014】熱劣化特性算出部では、測定により得られ
た温度、時間をパラメータとした熱劣化特性データを入
力データとして、各温度毎の熱劣化度と熱劣化度変化量
との関係を示す第1の近似式、及び熱劣化度変化量と温
度との関係を示す第2の近似式を求める。すなわち、熱
劣化特性算出部は、熱劣化度を定量化するとともに、定
式化するブロックである。
The heat deterioration characteristic calculation unit uses the heat deterioration characteristic data obtained by the measurement as parameters for the temperature and the time, as input data, and shows the relationship between the heat deterioration degree and the change amount of the heat deterioration degree for each temperature. An approximate expression 1 and a second approximate expression indicating the relationship between the amount of change in the degree of thermal deterioration and the temperature are obtained. That is, the heat deterioration characteristic calculation unit is a block that quantifies the heat deterioration degree and formulates it.

【0015】まず、熱劣化度を定量化する方法について
説明する。
First, a method for quantifying the degree of thermal deterioration will be described.

【0016】熱劣化性樹脂は、ヤケ現象として見られる
ように、熱負荷によって着色する。しかし、目視などの
判断では、ヤケと呼ばれるようにはっきりとした着色状
態と着色していない状態との判断しか行えない。
The heat-degradable resin is colored by a heat load, as seen as a burn phenomenon. However, the visual judgment or the like can only make a judgment as to whether it is a clear colored state or a non-colored state, which is called discoloration.

【0017】そこで、本発明では、ギアオーブン等の熱
負荷装置により、熱負荷温度及び時間が既知のサンプル
(初期色は白色が望ましい)を作成し、そのサンプルの
色の変化量(色差)を色差計等によって測定することに
より、目視によるサンプルの未着色領域の色彩変化(劣
化度合い)を定量化している。
Therefore, in the present invention, a sample having a known heat load temperature and time (preferably an initial color is white) is prepared by a heat load device such as a gear oven, and the amount of color change (color difference) of the sample is calculated. The color change (deterioration degree) of the uncolored region of the sample is quantified visually by measuring with a color difference meter or the like.

【0018】図9は、この方法によって定量化した樹脂
の熱劣化特性の一例を示すグラフである。このグラフか
ら、熱劣化限界値(着色限界色差)が決定される。図で
は、YI=22が熱劣化限界値となっている。
FIG. 9 is a graph showing an example of the heat deterioration characteristics of the resin quantified by this method. From this graph, the thermal deterioration limit value (coloring limit color difference) is determined. In the figure, YI = 22 is the thermal deterioration limit value.

【0019】次に、熱劣化度を定式化する方法について
説明する。
Next, a method for formulating the degree of thermal deterioration will be described.

【0020】図9から分かるように、熱劣化度は時間に
対して1次で近似可能であり、その近似式を(1)式と
して示す。
As can be seen from FIG. 9, the degree of thermal deterioration can be approximated to the first order with respect to time, and its approximate expression is shown as the expression (1).

【0021】[0021]

【数1】 ΔYI(t)=k(T)×t+YI0 ・・・(1) ここで、ΔYI:熱劣化度(増分)、k:熱劣化度変化
量、t:時間、YI0:定数、である。
## EQU1 ## ΔYI (t) = k (T) × t + YI0 (1) where ΔYI: thermal deterioration degree (increment), k: thermal deterioration degree change amount, t: time, YI0: constant is there.

【0022】定量化された樹脂の熱劣化特性より、定数
YI0及び各温度毎の熱劣化度変化量k(T)を求め
る。
From the quantified heat deterioration characteristics of the resin, the constant YI0 and the heat deterioration degree change amount k (T) at each temperature are obtained.

【0023】図10は、(1)式で得られた熱劣化度変
化量kの対数と、温度の逆数1/Tとの関係を示すグラ
フである。
FIG. 10 is a graph showing the relationship between the logarithm of the thermal deterioration degree change amount k obtained by the equation (1) and the reciprocal 1 / T of the temperature.

【0024】図10に示すグラフより、熱劣化度変化量
kと温度Tとの関係は、(2)式で示される。
From the graph shown in FIG. 10, the relationship between the thermal deterioration degree change amount k and the temperature T is expressed by the equation (2).

【0025】[0025]

【数2】 k(T)=A×EXP(B/T) ・・・(2) ここで、A,B:定数、である。[Equation 2] k (T) = A × EXP (B / T) (2) Here, A and B are constants.

【0026】この定数A,Bを求めることにより、熱劣
化度(増分)ΔYIを温度T、時間tの関数として定式
化している。
By obtaining the constants A and B, the thermal deterioration degree (increment) ΔYI is formulated as a function of the temperature T and the time t.

【0027】熱劣化度算出部では、熱履歴算出部により
得られた熱履歴データのある時間の温度データに基づい
て前記(2)式より熱劣化度変化量kを算出し、この算
出した熱劣化度変化量kと熱履歴データの時間データと
に基づいて前記(1)式より熱劣化度(増分)ΔYIを
求める。そして、この求めた熱劣化度(増分)ΔYI
を、(3)式を用いて積算することにより、現計算時間
までの熱劣化度YIを算出する。
In the heat deterioration degree calculation unit, the heat deterioration degree change amount k is calculated from the equation (2) based on the temperature data of the heat history data obtained by the heat history calculation unit at a certain time, and the calculated heat is calculated. Based on the deterioration degree change amount k and the time data of the heat history data, the heat deterioration degree (increment) ΔYI is obtained from the equation (1). Then, the obtained thermal deterioration degree (increment) ΔYI
Is calculated using the equation (3) to calculate the heat deterioration degree YI up to the current calculation time.

【0028】[0028]

【数3】 以上の計算を、温度が安定する時間tend まで繰り返す
ことにより、最終的な熱劣化度YIを得ることができ
る。
[Equation 3] By repeating the above calculation until the time t end at which the temperature stabilizes, the final degree of thermal deterioration YI can be obtained.

【0029】最適金型設計部では、金型装置データ、熱
劣化度算出部により得られた最終時間の熱劣化データ及
び熱劣化限界値を各入力データとして、金型装置の良否
判定を行うとともに、金型装置パラメータに対する熱劣
化度相関データを算出する。
The optimum mold designing unit judges whether the mold device is good or bad, by using the mold device data, the heat deterioration data of the final time obtained by the heat deterioration degree calculating unit, and the heat deterioration limit value as input data. , The thermal deterioration degree correlation data for the mold device parameters is calculated.

【0030】すなわち、(3)式で求めたYIの値が熱
劣化限界値である22を超えている場合には、金型装置
の不良と判定する。
That is, when the value of YI obtained by the equation (3) exceeds the thermal deterioration limit value of 22, it is determined that the mold device is defective.

【0031】また、昇降温時の熱履歴データを金型装置
容量、熱容量、熱伝導率など、昇降温時の履歴に影響を
与える因子をパラメータとして、各パラメータ毎に、昇
降温時の熱履歴データを求め、上記した熱劣化特性算出
部での熱劣化度定量化方法及び熱劣化度定式化方法によ
って、それぞれの熱劣化度を求める。そして、これらの
データを基に、熱劣化度のパラメータ(例えば、容量、
熱容量、熱伝導率の3水準)の関数近似し、各パラメー
タを軸とした熱劣化等高線を得る。
Further, the thermal history data during temperature raising and lowering is used as a parameter for factors such as mold device capacity, heat capacity, and thermal conductivity, which influence the history during temperature raising and lowering. The data is obtained, and the respective heat deterioration degrees are obtained by the heat deterioration degree quantifying method and the heat deterioration degree formulation method in the heat deterioration characteristic calculating section. Then, based on these data, parameters of the thermal deterioration degree (for example, capacity,
Function approximation of heat capacity and thermal conductivity (three levels) is performed to obtain a thermal deterioration contour line with each parameter as an axis.

【0032】[0032]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0033】図1は、本発明に係わる成形用金型の設計
支援システムの電気的構成を示すブロック図である。
FIG. 1 is a block diagram showing an electrical configuration of a molding die design support system according to the present invention.

【0034】同図において、金型装置データ、樹脂物性
データ、初期温度データ及び冷却条件データの各種デー
タが入力される熱履歴算出部1の出力、及び測定により
得られた温度、時間をパラメータとした熱劣化特性デー
タが入力される熱劣化特性算出部2の出力は、それぞれ
熱劣化度算出部3に与えられており、熱劣化度算出部3
の出力は、最適金型設計部4に導かれた構成となってい
る。
In the figure, the temperature and time obtained by the measurement and the output of the heat history calculation section 1 to which various data such as mold equipment data, resin physical property data, initial temperature data and cooling condition data are input are used as parameters. The outputs of the heat deterioration characteristic calculating unit 2 to which the heat deterioration characteristic data is input are given to the heat deterioration degree calculating unit 3, respectively.
The output of is configured to be guided to the optimum mold design unit 4.

【0035】熱履歴算出部1は、上記各入力データに基
づいて、金型及び樹脂の各時刻の温度データである昇降
温時の熱履歴データを算出する。
The heat history calculation unit 1 calculates the heat history data during temperature increase / decrease, which is the temperature data of the mold and the resin at each time, based on the above input data.

【0036】熱劣化特性算出部2は、各温度毎の熱劣化
度ΔYIと熱劣化度変化量kとの関係を示す第1の近似
式〔(1)式〕、及び熱劣化度変化量kと温度Tとの関
係を示す第2の近似式〔(2)式〕を求める。
The thermal deterioration characteristic calculation unit 2 uses the first approximate expression [Equation (1)] indicating the relationship between the thermal deterioration degree ΔYI and the thermal deterioration degree change amount k for each temperature, and the thermal deterioration degree change amount k. The second approximate expression [Expression (2)] showing the relationship between the temperature T and the temperature T is obtained.

【0037】熱劣化度算出部3は、熱履歴算出部1によ
り得られた熱履歴データのある時間の温度データに基づ
いて、第2の近似式〔(2)式〕より熱劣化度変化量k
を算出し、この算出した熱劣化度変化量kと熱履歴デー
タの時間データとに基づいて、第1の近似式〔(1)
式〕より熱劣化度(増分)ΔYIを算出する。そして、
この求めた熱劣化度(増分)ΔYIを、(3)式を用い
て積算することにより、現計算時間までの熱劣化度YI
を算出する。さらに、この計算を、温度が安定する時間
end まで繰り返すことにより、最終的な熱劣化度YI
を得るようになっている。
The heat deterioration degree calculation unit 3 calculates the heat deterioration degree change amount from the second approximate expression [Equation (2)] based on the temperature data of the heat history data obtained by the heat history calculation unit 1 at a certain time. k
Based on the calculated thermal deterioration degree change amount k and the time data of the thermal history data, the first approximate expression [(1)
The heat deterioration degree (increment) ΔYI is calculated by the following equation. And
The thermal deterioration degree (increment) ΔYI thus obtained is integrated using the equation (3) to obtain the thermal deterioration degree YI up to the current calculation time.
To calculate. Further, by repeating this calculation until the time t end at which the temperature stabilizes, the final thermal deterioration degree YI
To get.

【0038】最適金型設計部4は、金型装置データ、熱
劣化度算出部3により得られた最終時間の熱劣化データ
及び熱劣化限界値を各入力データとして、(3)式で求
めたYIの値が熱劣化限界値である22を超えている場
合には、金型装置の不良と判定する。また、熱劣化特性
算出部3で求めた熱劣化度データを基に、熱劣化度のパ
ラメータ(本実施例では、容量、熱容量、熱伝導率)の
関数近似し、各パラメータを軸とした熱劣化等高線を得
るようになっている。
The optimum mold designing unit 4 obtains the mold device data, the heat deterioration data of the final time obtained by the heat deterioration degree calculating unit 3 and the heat deterioration limit value as the respective input data, and obtains the formula (3). If the YI value exceeds the thermal deterioration limit value of 22, it is determined that the mold device is defective. Further, based on the heat deterioration degree data obtained by the heat deterioration characteristic calculating unit 3, a function approximation of the parameters of the heat deterioration degree (capacity, heat capacity, thermal conductivity in this embodiment) is performed, and heat is obtained with each parameter as an axis. It is designed to obtain a deterioration contour line.

【0039】次に、上記構成の設計支援システムを用い
てパラメータ設計を行った一例を示す。
Next, an example of parameter design using the design support system having the above configuration will be shown.

【0040】まず始めに、熱劣化特性算出部2におい
て、上述の熱劣化度定量化方法により、樹脂熱劣化特性
データを測定する。その測定結果が図9及び図10であ
ったとする。そして、図9に示すグラフから、熱劣化限
界値を22に決定する。
First, in the heat deterioration characteristic calculation unit 2, the resin heat deterioration characteristic data is measured by the above-described heat deterioration degree quantification method. It is assumed that the measurement results are shown in FIGS. 9 and 10. Then, the thermal deterioration limit value is determined as 22 from the graph shown in FIG.

【0041】また、図9に示す熱劣化特性データから、
(2)式の定数A,Bを算出する。
From the heat deterioration characteristic data shown in FIG.
The constants A and B in the equation (2) are calculated.

【0042】一方、熱履歴算出部1に、金型装置デー
タ、樹脂物性データ、初期温度データ、冷却条件データ
を入力して、金型及び樹脂の履歴を計算する。
On the other hand, the mold history data of the mold and the resin is calculated by inputting the mold apparatus data, the resin physical property data, the initial temperature data, and the cooling condition data to the heat history calculation unit 1.

【0043】ここで、本実施例では、金型装置形状を図
2に示す形状(図中の符号7は樹脂流路である)とし、
加熱・冷却条件を図3に示す条件とし、金型装置設計パ
ラメータを図4に示す条件とする。そして、これらの条
件により得られた熱履歴データを、図5及び図6に示
す。図5は昇温時の熱履歴データ、図6は降温時の熱履
歴データを示している。
Here, in the present embodiment, the shape of the mold device is the shape shown in FIG. 2 (reference numeral 7 in the drawing is a resin flow path),
The heating / cooling conditions are the conditions shown in FIG. 3, and the mold device design parameters are the conditions shown in FIG. The thermal history data obtained under these conditions are shown in FIGS. 5 and 6. FIG. 5 shows heat history data at the time of temperature rise, and FIG. 6 shows heat history data at the time of temperature decrease.

【0044】次に、この熱履歴算出部1より得られた熱
履歴データ(図5及び図6)と、熱劣化特性算出部2よ
り得られた定数A,B、及び熱劣化度限界値(YI=2
2)とを熱劣化度算出部3に入力して、各条件での熱劣
化度を算出する。そして、この算出した各条件での熱劣
化度と、熱劣化限界値とを比較することにより、良否の
判定を行う。この判定結果の一例を図7に示す。
Next, the heat history data (FIGS. 5 and 6) obtained by the heat history calculation unit 1, the constants A and B obtained by the heat deterioration characteristic calculation unit 2, and the heat deterioration degree limit value ( YI = 2
2) and are input to the heat deterioration degree calculation unit 3 to calculate the heat deterioration degree under each condition. Then, the quality is judged by comparing the calculated thermal deterioration degree under each condition with the thermal deterioration limit value. An example of this determination result is shown in FIG.

【0045】次に、熱劣化度算出部3により得られた判
定結果(図7)と、設計パラメータ(図4)とを最適金
型設計部4に入力する。最適金型設計部4では、与えら
れた設計パラメータに対する熱劣化度の等高線を作成
し、出力する(図8参照)。
Next, the determination result (FIG. 7) obtained by the thermal deterioration degree calculation unit 3 and the design parameter (FIG. 4) are input to the optimum mold design unit 4. The optimum mold design unit 4 creates and outputs a contour line of the degree of thermal deterioration for the given design parameter (see FIG. 8).

【0046】そして、この図8に示された等高線を用い
て、金型設計の検討を行う。つまり、金型材料として例
えば熱伝導率100W/m・Kのものを選択したとす
る。ここで、熱劣化限界値は22であるので、安全を考
慮して熱劣化限界値を20とすると、合格領域は図8の
斜線部となる。これより、金型厚みDは、45mm以下に
設計しなければならないということが分かる。
Then, the mold design is examined using the contour lines shown in FIG. That is, it is assumed that a mold material having a thermal conductivity of 100 W / m · K is selected. Here, since the thermal deterioration limit value is 22, if the thermal deterioration limit value is 20 in consideration of safety, the pass region is the hatched portion in FIG. 8. From this, it is understood that the mold thickness D must be designed to be 45 mm or less.

【0047】[0047]

【発明の効果】本発明に係わる成形用金型の設計方法及
び設計支援システムによれば、樹脂に対して熱劣化の最
も発生しやすい非定常過程の熱履歴を予測し、これを熱
劣化予測用データとして用いる構成としているので、熱
劣化樹脂の劣化度合いの予測、良否判断及びパラメータ
設計が、金型作成前に実行可能となる。そのため、金型
開発時の構造、条件変更に伴う時間的ロス、コスト的ロ
スが削減できるといった効果を奏する。
According to the molding die design method and the design support system of the present invention, the thermal history of the unsteady process in which thermal degradation is most likely to occur in the resin is predicted, and the thermal history is predicted. Since the configuration is used as the use data, it is possible to perform the prediction of the deterioration degree of the heat-deteriorated resin, the quality judgment, and the parameter design before the mold is made. Therefore, it is possible to reduce the time loss and the cost loss due to the structure at the time of mold development, the condition change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる成形用金型の設計支援システム
の電気的構成を示すブロック図である。
FIG. 1 is a block diagram showing an electrical configuration of a molding die design support system according to the present invention.

【図2】金型装置形状の一例を示す図である。FIG. 2 is a diagram showing an example of a die device shape.

【図3】冷却、加熱条件の一例を示す図表である。FIG. 3 is a chart showing an example of cooling and heating conditions.

【図4】設計パラメーターの一例を示す図表である。FIG. 4 is a chart showing an example of design parameters.

【図5】昇温時の熱履歴データの一例を示すグラフであ
る。
FIG. 5 is a graph showing an example of thermal history data during temperature rise.

【図6】降温時の熱履歴データの一例を示すグラフであ
る。
FIG. 6 is a graph showing an example of thermal history data during temperature reduction.

【図7】熱劣化度の算出結果を示す図表である。FIG. 7 is a chart showing a calculation result of a thermal deterioration degree.

【図8】金型装置設計パラメータと熱劣化度との相関関
係を示す図である。
FIG. 8 is a diagram showing a correlation between a mold device design parameter and a thermal deterioration degree.

【図9】樹脂の熱劣化特性データの一例を示すグラフで
ある。
FIG. 9 is a graph showing an example of heat deterioration characteristic data of resin.

【図10】熱劣化度変化量と温度との関係を示すグラフ
である。
FIG. 10 is a graph showing the relationship between the amount of change in thermal deterioration and temperature.

【符号の説明】[Explanation of symbols]

1 熱履歴算出部 2 熱劣化特性算出部 3 熱劣化度算出部 4 最適金型設計部 1 Heat history calculator 2 Thermal deterioration characteristic calculation unit 3 Thermal deterioration degree calculation unit 4 Optimal mold design department

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−148062(JP,A) 特開 平5−329905(JP,A) 特開 平5−329903(JP,A) 特開 平5−189526(JP,A) 特開 平4−345818(JP,A) 特開 平4−331125(JP,A) 特開 昭60−252251(JP,A) 特開 平7−214629(JP,A) 特開 平6−344368(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 45/76 B29C 33/38 B29C 45/78 G06F 17/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-148062 (JP, A) JP-A-5-329905 (JP, A) JP-A-5-329903 (JP, A) JP-A-5- 189526 (JP, A) JP 4-345818 (JP, A) JP 4-331125 (JP, A) JP 60-252251 (JP, A) JP 7-214629 (JP, A) JP-A-6-344368 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B29C 45/76 B29C 33/38 B29C 45/78 G06F 17/50

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金型装置データ、樹脂物性データ、初期
温度データ及び冷却条件データの各種データに基づい
て、金型及び樹脂の各時刻の温度データである昇降温時
の熱履歴データを算出する一方、測定により得られた温
度、時間をパラメータとした熱劣化特性データに基づい
て、各温度毎の熱劣化度と熱劣化度変化量との関係を示
す第1の近似式、及び熱劣化度変化量と温度との関係を
示す第2の近似式を求め、前記熱履歴データのある時間
の温度データに基づいて前記第2の近似式より熱劣化度
変化量を算出し、この算出した熱劣化度変化量と前記熱
履歴データの時間データとに基づいて前記第1の近似式
より熱劣化度を算出し、これを積算することにより、現
計算時間までの熱劣化度を算出し、これを最終時間まで
繰り返して各時刻の熱劣化度を算出し、その後、前記金
型装置データ、前記最終時間の熱劣化データ及び熱劣化
限界値に基づいて、金型装置の良否判定を行うととも
に、金型装置パラメータに対する熱劣化度相関データを
算出することを特徴とする成形用金型の設計方法。
1. Thermal history data during temperature increase / decrease, which is temperature data of mold and resin at respective times, is calculated based on various data such as mold device data, resin physical property data, initial temperature data, and cooling condition data. On the other hand, based on the heat deterioration characteristic data obtained by the measurement using temperature and time as parameters, the first approximation formula showing the relationship between the heat deterioration degree and the heat deterioration degree change amount for each temperature, and the heat deterioration degree. A second approximate expression indicating the relationship between the amount of change and the temperature is obtained, the amount of change in the degree of thermal deterioration is calculated from the second approximate expression based on the temperature data of the thermal history data at a certain time, and the calculated heat is calculated. The heat deterioration degree is calculated from the first approximate expression based on the deterioration degree change amount and the time data of the heat history data, and the heat deterioration degree up to the current calculation time is calculated by integrating the heat deterioration degree. Repeat until the final time and heat at each time Deterioration degree is calculated, then, based on the mold device data, the heat deterioration data of the final time and the heat deterioration limit value, the quality of the mold device is determined, and the heat deterioration degree correlation data for the mold device parameters. A method for designing a molding die, which comprises:
【請求項2】 金型装置データ、樹脂物性データ、初期
温度データ及び冷却条件データの各種データを入力デー
タとして、金型及び樹脂の各時刻の温度データである昇
降温時の熱履歴データを算出する熱履歴算出部と、 測定により得られた温度、時間をパラメータとした熱劣
化特性データを入力データとして、各温度毎の熱劣化度
と熱劣化度変化量との関係を示す第1の近似式、及び熱
劣化度変化量と温度との関係を示す第2の近似式を求め
る熱劣化特性算出部と、 前記熱履歴算出部により得られた熱履歴データのある時
間の温度データに基づいて前記第2の近似式より熱劣化
度変化量を算出し、この算出した熱劣化度変化量と前記
熱履歴データの時間データとに基づいて前記第1の近似
式より熱劣化度を算出し、これを積算することにより、
現計算時間までの熱劣化度を算出し、これを最終時間ま
で繰り返して各時刻の熱劣化度を算出する熱劣化度算出
部と、 金型装置データ、前記熱劣化度算出部により得られた最
終時間の熱劣化データ及び熱劣化限界値を各入力データ
として、金型装置の良否判定を行うとともに、金型装置
パラメータに対する熱劣化度相関データを算出する最適
金型設計部とを備えたことを特徴とする成形用金型の設
計支援システム。
2. Thermal history data during temperature rising / falling, which is temperature data of mold and resin at each time, is calculated by using various data such as mold device data, resin physical property data, initial temperature data, and cooling condition data as input data. A heat history calculation unit that performs the above, and a first approximation that indicates the relationship between the degree of thermal deterioration and the amount of change in the degree of thermal deterioration for each temperature, using the thermal deterioration characteristic data obtained by measurement as parameters as the thermal deterioration characteristic data. And a heat deterioration characteristic calculation unit that obtains a second approximate expression indicating the relationship between the amount of change in heat deterioration degree and temperature, and based on temperature data of the heat history data obtained by the heat history calculation unit at a certain time. A thermal deterioration degree change amount is calculated from the second approximate expression, and a thermal deterioration degree is calculated from the first approximate expression based on the calculated thermal deterioration degree change amount and the time data of the thermal history data, By accumulating this
It was obtained by the heat deterioration degree calculation unit that calculates the heat deterioration degree up to the current calculation time and repeats this until the final time to calculate the heat deterioration degree at each time, the mold device data, and the heat deterioration degree calculation unit. An optimum mold designing unit was provided which, using the heat deterioration data of the final time and the heat deterioration limit value as input data, determines the quality of the mold device and calculates the heat deterioration degree correlation data for the mold device parameters. A design support system for molding dies.
JP23920494A 1994-10-03 1994-10-03 Molding mold design method and design support system Expired - Fee Related JP3406083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23920494A JP3406083B2 (en) 1994-10-03 1994-10-03 Molding mold design method and design support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23920494A JP3406083B2 (en) 1994-10-03 1994-10-03 Molding mold design method and design support system

Publications (2)

Publication Number Publication Date
JPH08103932A JPH08103932A (en) 1996-04-23
JP3406083B2 true JP3406083B2 (en) 2003-05-12

Family

ID=17041288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23920494A Expired - Fee Related JP3406083B2 (en) 1994-10-03 1994-10-03 Molding mold design method and design support system

Country Status (1)

Country Link
JP (1) JP3406083B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742432B2 (en) * 2011-04-27 2015-07-01 宇部興産株式会社 Method for predicting deterioration of molded product, method for producing molded product based on design obtained thereby, and molded product
JP6483049B2 (en) * 2016-05-26 2019-03-13 日精樹脂工業株式会社 Injection molding machine setting support method

Also Published As

Publication number Publication date
JPH08103932A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
Lord et al. Mold‐filling studies for the injection molding of thermoplastic materials. Part II: The transient flow of plastic materials in the cavities of injection‐molding dies
Isayev Orientation development in the injection molding of amorphous polymers
EP1439046B1 (en) Automated molding technology for thermoplastic injection molding
US5608637A (en) Method for designing a profile extrusion die plate
KR100369572B1 (en) An apparatus and method for analyzing an injection molding process, and a method for producing an injection molded product
CN110308059A (en) A kind of welding process material circulation Temperature measurement test method
CN115034114A (en) Numerical simulation-based extrusion finite element simulation model optimization method
JP3406083B2 (en) Molding mold design method and design support system
JP3442126B2 (en) Degradation degree prediction device and material physical property prediction device for thermally degraded resin
US5722772A (en) Quench cooling effectiveness apparatus for continous monitoring
Ahmed et al. Experimental centreline planar extension of polyethylene melt flowing into a slit die
JP6525026B2 (en) Method and apparatus for determining molten metal around pressure casting
JP2771195B2 (en) Resin flow hardening characteristic measuring method, thermosetting resin viscosity prediction method using the same, and thermosetting resin flow prediction method
Luchini et al. Modeling transient rolling resistance of tires
JP3236069B2 (en) Flow analysis evaluation system for injection molds
Wu et al. Predicting the Response of Aluminum Casting Alloys to Heat Treatment
Beiter et al. Design for injection molding: balancing mechanical requirements, manufacturing costs, and material selection
TW202205161A (en) Quality prediction method for injection modeling
JPH05329902A (en) Flow analyzing and estimating system of injection mold
CN110968934A (en) Computer simulation method for aluminum extrusion process
CN101648430A (en) Mould, method for evaluating product and method for determining forming condition
Covas et al. Designing extrusion dies for thermoplastics
JPH05329903A (en) Flow analyzing and estimating system of injection mold
EP3706148B1 (en) Electric transformer assembly, method for determining a thermal state of an electric transformer assembly, and determination device
CN113792470B (en) Method for obtaining direct-current potential calibration function based on finite element simulation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees