JP3405473B2 - Laser processing of heat-resistant resin - Google Patents

Laser processing of heat-resistant resin

Info

Publication number
JP3405473B2
JP3405473B2 JP06283994A JP6283994A JP3405473B2 JP 3405473 B2 JP3405473 B2 JP 3405473B2 JP 06283994 A JP06283994 A JP 06283994A JP 6283994 A JP6283994 A JP 6283994A JP 3405473 B2 JP3405473 B2 JP 3405473B2
Authority
JP
Japan
Prior art keywords
processing
treatment
resistant resin
heat
laser processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06283994A
Other languages
Japanese (ja)
Other versions
JPH07266076A (en
Inventor
聡夫 山崎
良明 坪松
佳弘 高橋
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP06283994A priority Critical patent/JP3405473B2/en
Publication of JPH07266076A publication Critical patent/JPH07266076A/en
Application granted granted Critical
Publication of JP3405473B2 publication Critical patent/JP3405473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プリント配線板、マル
チチップモジュール、イオンフロープリンターヘッドな
どレーザ加工を利用した製品に広く利用される耐熱性樹
脂のレ−ザ加工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing method for a heat resistant resin which is widely used in products such as printed wiring boards, multi-chip modules and ion flow printer heads which utilize laser processing.

【0002】[0002]

【従来の技術】ポリイミド樹脂、エポキシ樹脂等の耐熱
性樹脂の加工方式として、機械的加工法、化学エッチン
グ加工法、プラズマ加工法、レーザ加工法等が行われて
おり、特に最近の微細加工を要求される分野では、レー
ザ加工法が用いられている。レーザ加工に用いられるレ
ーザー種として主に炭酸ガスレーザ、エキシマレーザ等
がある。このうちエキシマレーザは、紫外線領域や真空
紫外線領域の発振波長、短パルス、1パルス当りのエネ
ルギー密度が高いという特徴を有している。従って、こ
のエキシマレーザを用いた加工機構は「瞬間的光吸
収、光化学反応による分子結合開裂、切断されたフ
ラグメントによる体積増大、飛散」という過程による
もので、一般にはアブレーション機構と呼ばれている。
従ってエキシマレーザを用いた加工においては、熱加工
プロセスではないために加工領域及びその周囲に与える
熱的損傷が少なく加工形状に優れるいう特徴を有す反
面、飛散したフラグメントが加工部周囲に付着し加工残
査になるという問題がある。加工残査によっては導電性
があり、イオン・フロー・プリンター・ヘッド等、穴間
に絶縁性が必要とされる加工分野では穴内部に付着した
加工残査の除去が必要となる。また、配線板やマルチ・
チップ・モジュール等におけるスルー・ホール加工やブ
ラインド・スルー・ホール加工などにエキシマレーザ加
工を用いた場合、層間の電気的接続信頼性を確保するた
めに穴内部及び穴周囲に付着した加工残査の除去が必要
となる。従来よりこの加工残査の除去方法としてプラズ
マ処理を利用する方法が一般的である。
2. Description of the Related Art Mechanical processing methods, chemical etching processing methods, plasma processing methods, laser processing methods, etc. are used as processing methods for heat resistant resins such as polyimide resins and epoxy resins. Laser processing methods are used in required fields. Carbon dioxide laser, excimer laser and the like are mainly used as laser species for laser processing. Of these, the excimer laser is characterized in that it has a high oscillation wavelength in the ultraviolet region or vacuum ultraviolet region, short pulse, and high energy density per pulse. Therefore, the processing mechanism using this excimer laser is based on the process of "instantaneous light absorption, molecular bond cleavage due to photochemical reaction, volume increase due to cut fragments, and scattering", and is generally called ablation mechanism.
Therefore, in processing using an excimer laser, since it is not a thermal processing process, it has the characteristic that it does not cause thermal damage to the processing area and its surroundings and excels in the processed shape, but scattered fragments adhere to the periphery of the processed part. There is a problem that it becomes a processing residue. Depending on the processing residue, it is electrically conductive, and in the processing field where insulation between the holes is required such as ion flow printer head, it is necessary to remove the processing residue attached inside the holes. In addition, wiring boards and multi
When excimer laser processing is used for through-hole processing or blind through-hole processing in chips and modules, etc., the processing residue adhered inside and around the holes is ensured to ensure the reliability of electrical connection between layers. Removal is required. Conventionally, as a method of removing this processing residue, a method of utilizing plasma treatment is generally used.

【0003】[0003]

【発明が解決しようとする課題】しかし、このプラズマ
処理には以下に述べるいくつかの問題点がある。第一に
は、加工残査の付着量や付着状態、また、処理に用いる
プラズマ処理装置内のプラズマエネルギー等にばらつき
があるため、プラズマ処理の終点を厳密に管理できない
ことである。そのため一般には処理時間を長くすること
で対応しているが、先に加工残査が除去された部分の樹
脂がエッチバックされることになる。これは、マルチ・
チップ・モジュール等のブラインド・ビア・ホール等の
加工に用いた場合、接続信頼性を著しく低下させる原因
になる。第二にプラズマ処理を行うと処理基板の表面温
度が上昇し、寸法的精度が著しく低下することがある。
本発明は、これらの問題を解決ししかも加工残査を良好
に除去することができ小径穴あけ等に広く利用される耐
熱性樹脂のレ−ザ加工法を提供するものである。
However, this plasma processing has some problems as described below. Firstly, the end point of the plasma processing cannot be strictly controlled because there are variations in the adhesion amount and adhesion state of the processing residue, the plasma energy in the plasma processing apparatus used for the processing, and the like. Therefore, in general, the treatment time is lengthened, but the resin in the portion where the processing residue is removed first is etched back. This is multi
When it is used for processing blinds, vias, holes, etc. of chips, modules, etc., it causes a significant decrease in connection reliability. Secondly, when the plasma treatment is performed, the surface temperature of the treated substrate rises, and the dimensional accuracy may be significantly reduced.
The present invention provides a laser processing method for a heat-resistant resin which can solve these problems and can remove the processing residue satisfactorily and which is widely used for drilling small diameter holes and the like.

【0004】[0004]

【問題点を解決するための手段】本発明者らは数々の実
験を行った結果、(a)耐熱性樹脂にエキシマレーザビ
−ムを照射する工程、(b)過マンガン酸塩のアルカリ
溶液で処理する工程、()析出したマンガン化合物
還元剤を含む溶液による中和処理によって除去する工程
を含み、(b)、(c)工程を少なくとも2回以上行う
理方法がエキシマレーザ加工残査の除去ができ耐熱性樹
脂のレーザ加工に有効であることがわかった。
As a result of various experiments conducted by the present inventors, (a) a step of irradiating a heat-resistant resin with an excimer laser beam, (b) an alkaline solution of permanganate. in the process step of the manganese compound precipitated (c)
A treatment method including a step of removing by a neutralization treatment with a solution containing a reducing agent, wherein the steps (b) and (c) are performed at least twice is capable of removing the excimer laser processing residue and is a heat-resistant resin. It was found to be effective for laser processing of.

【0005】過マンガン酸塩としては、例えば過マンガ
ン酸ナトリウム、過マンガン酸カリウムなどの酸化剤が
よく、アルカリ剤として、水酸化ナトリウム、水酸化カ
リウム、炭酸カリウム、炭酸ナトリウム等がよく、これ
らの過マンガン酸塩とアルカリ剤を一つ以上づつ適当に
組み合わせて用いればよい。最適濃度は処理液の種類、
加工した処理基材の種類、レーザ種により異なるが、例
えば、エキシマレーザ加工後の残査除去を過マンガン酸
カリウムと水酸化ナトリウムの混合水溶液で行う場合、
その処理液濃度は過マンガン酸カリウムが40〜80g
/l程度、水酸化ナトリウムが20〜50g/l程度が
よく、好ましくは過マンガン酸カリウムが50〜70g
/l、水酸化ナトリウムが28〜48g/lがよい。ま
た、液温は50〜70℃程度がよい。処理時間として
は、5〜30分程度がよい。処理法は浸漬、スプレ−吹
付等がある。
The permanganate is preferably an oxidizing agent such as sodium permanganate or potassium permanganate, and the alkaline agent is preferably sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate or the like. One or more permanganate and one alkaline agent may be appropriately combined and used. The optimum concentration is the type of processing solution,
The type of processed substrate processed, depending on the laser type, for example, when the residual removal after excimer laser processing is performed with a mixed aqueous solution of potassium permanganate and sodium hydroxide,
The concentration of the treatment liquid is 40-80 g of potassium permanganate.
/ L, sodium hydroxide 20-50g / l is good, preferably potassium permanganate 50-70g
/ L, sodium hydroxide 28-48g / l is good. The liquid temperature is preferably about 50 to 70 ° C. The processing time is preferably about 5 to 30 minutes. Treatment methods include dipping and spraying.

【0006】また、上記処理によって処理基板表面に析
出したマンガン化合物が析出する。このマンガン化合物
は、還元剤を含む溶液による中和処理によって容易に除
去できる。還元剤としては、例えば硫酸ヒドロキシルア
ミン、硫酸ヒドラジン等があり、好ましくはこれらに酸
を加えた溶液を用いるのがよい。酸としては、例えば硫
酸、塩酸、硝酸等が挙げられる。場合によっては還元剤
溶液処理と酸処理を別々に行ったり、また、還元剤に酸
を加えた溶液処理の後、さらに別に酸処理を行ったりす
る処理方法も有効である。
Further, the manganese compound deposited on the surface of the treated substrate by the above treatment is deposited. This manganese compound can be easily removed by a neutralization treatment with a solution containing a reducing agent. Examples of the reducing agent include hydroxylamine sulfate and hydrazine sulfate, and it is preferable to use a solution obtained by adding an acid to these. Examples of the acid include sulfuric acid, hydrochloric acid, nitric acid and the like. In some cases, a treatment method in which the reducing agent solution treatment and the acid treatment are performed separately, or after the solution treatment in which an acid is added to the reducing agent is further performed, an acid treatment is additionally performed is also effective.

【0007】また、上記過マンガン酸のアルカリ溶液浸
蹟処理に先立ち、有機溶剤に浸蹟する等の有機溶剤処理
することも有効である。有機溶剤の種類としては,例え
ばN−メチルピロリドン等複素環状系有機溶剤、ディメ
チルホルムアミド等のアミド化合物、ヒドラジン、アセ
トン等のケトン類、イソプロピルアルコール等のアルコ
ール類、エチレングリコールモノブチルエーテル等のエ
ーテル類が挙げられる。これらは適当に混合して処理し
ても良いし、さらに数種類の処理液で処理してもよい。
また、適宜30〜80℃程度に加熱して使用される。エ
キシマレーザ加工後の残査除去を行い、過マンガン酸処
理工程に先立ち処理する場合の処理条件として、95%
アセトンを用いた場合、液温20℃、処理時間5〜10
分程度、95%イソプロピルアルコールを用いた場合、
液温20℃、処理時間2〜20分程度、N−メチルピロ
リドンの場合、液温40〜70℃程度、処理時間2〜1
0分程度がよい。これらの処理液数種で順に処理する方
法も可能である。
It is also effective to carry out an organic solvent treatment such as immersion in an organic solvent prior to the alkaline solution immersion treatment of permanganate. Examples of the organic solvent include heterocyclic organic solvents such as N-methylpyrrolidone, amide compounds such as dimethylformamide, ketones such as hydrazine and acetone, alcohols such as isopropyl alcohol, and ethers such as ethylene glycol monobutyl ether. Is mentioned. These may be appropriately mixed and treated, or may be treated with several kinds of treatment liquids.
Moreover, it heats suitably at about 30-80 degreeC, and is used. 95% as the processing condition when the residue is removed after excimer laser processing and the processing is performed prior to the permanganate processing step.
When acetone is used, the liquid temperature is 20 ° C. and the treatment time is 5 to 10
When using 95% isopropyl alcohol,
Liquid temperature 20 ° C., processing time about 2 to 20 minutes, in the case of N-methylpyrrolidone, liquid temperature 40 to 70 ° C., processing time 2-1
About 0 minutes is good. A method of sequentially treating with several kinds of these treatment liquids is also possible.

【0008】これらの処理、及びこれらの処理を行った
後の水洗等に超音波洗浄槽を使用することは残査の除去
に対して有効である。特に微細でアスペクト比が大きい
穴内部等の残査を除去する時は非常に有効である。その
他これらの薬液や水洗水をスプレ等で吹き付けることも
有効である。また、これらの薬液処理を順次、複数回行
うことも効率よく確実に加工残査を除去できる方法であ
る。本発明の方法は、耐熱性樹脂が少なくともポリイミ
ドを含むものである場合とくに有効である。
It is effective to remove the residue by using an ultrasonic cleaning tank for these treatments and for washing with water after these treatments. Especially, it is very effective when removing a residue such as inside of a hole having a fine aspect ratio and a large aspect ratio. It is also effective to spray these chemicals and washing water with a spray or the like. Further, it is also a method that the processing residue can be efficiently and surely removed by sequentially performing the chemical solution treatment a plurality of times. The method of the present invention is particularly effective when the heat resistant resin contains at least polyimide.

【0009】[0009]

【実施例】【Example】

実施例1 75マイクロメータ厚ポリイミドフィルム(宇部興産
製、商品名;ユーピレックスS)にKrFエキシマレー
ザ光(発振波長254nm)を照射し、フィルムの一部
を穴明け加工した。照射したエキシマレーザ光のエネル
ギー密度は加工面上で1.0mJ/cm2 、周波数は5
0Hz、照射したパルス数は30パルスである。また、
この加工の加工方式はいわゆるマスクイメージング法と
し、レーザ光路途中に角状(開口部の大きさ1mm×1
mm)のマスクをおき、縮小率3.0でポリイミド加工
面上に縮小投影した。加工後、金属顕微鏡及び走査型電
子顕微鏡で表面を観察したところ、加工部近辺のポリイ
ミド表面上にスス状の加工残査が観察された。次に、ア
ルカリ性過マンガン酸カリウム水溶液浸蹟処理(「過マ
ンガン酸処理」)、中和処理を順に行った。条件を第1
表に示した。この実施例ではこの処理を2回行った。処
理後金属顕微鏡及び走査型電子顕微鏡で観察したとこ
ろ、ポリイミド加工部周辺に観察された加工残査は除去
されていた。この実施例では各処理を効果的に行うた
め、それぞれ超音波洗浄槽を使用して行ったが、使用し
なくても処理時間を長くする等、条件を変更することに
よって結果として同様な処理結果が得られる。また、ス
プレ等により薬液、洗浄水を処理基板にスプレ等で吹き
付ける等の方法も超音波洗浄槽を使用する方法と同様に
処理を効果的に行うことができる。またこの実施例に示
すように「過マンガン酸処理→中和処理」を数回繰り返
し実施することは、過マンガン酸処理時間を長くするこ
とに比べて効果的処理であった。
Example 1 A 75 micrometer thick polyimide film (Ube Industries, trade name; Upilex S) was irradiated with KrF excimer laser light (oscillation wavelength 254 nm), and a part of the film was perforated. The energy density of the irradiated excimer laser light is 1.0 mJ / cm 2 on the processed surface, and the frequency is 5
0 Hz, the number of pulses irradiated is 30 pulses. Also,
The processing method of this processing is the so-called mask imaging method, and a square shape (opening size 1 mm × 1
mm) mask was placed, and reduction projection was performed on the polyimide processed surface at a reduction ratio of 3.0. After the processing, when the surface was observed with a metallographic microscope and a scanning electron microscope, soot-like processing residues were observed on the polyimide surface near the processed portion. Next, an alkaline potassium permanganate aqueous solution immersion treatment (“permanganate treatment”) and a neutralization treatment were sequentially performed. First condition
Shown in the table. In this example, this treatment was performed twice. After the treatment, it was observed with a metallurgical microscope and a scanning electron microscope. As a result, the processing residue observed around the polyimide processed portion was removed. In this example, in order to effectively perform each treatment, the treatment was performed using an ultrasonic cleaning tank.However, even if the treatment is not used, the treatment time is lengthened, and the same treatment result is obtained by changing the conditions. Is obtained. In addition, a method of spraying a chemical solution or cleaning water onto the treated substrate by spraying or the like can effectively carry out the treatment similarly to the method using the ultrasonic cleaning tank. Further, as shown in this Example, repeating the "permanganate treatment → neutralization treatment" several times was more effective than increasing the permanganate treatment time.

【0010】実施例2 まず、2層MCFフィルム(日立化成工業株式会社製、
商品名;MCF-5510I(両面銅層厚み;各18μm、中央ポ
リイミド層厚み;75μm))の銅配線パターン及び穴
を通常のフォトリソ工程で形成し、評価用配線板(穴
数;512個、穴径;120μm)を作製した。この評
価用配線板の片側からエキシマレーザ光(KrFレー
ザ、発振波長;254nm)を照射した。照射したエキ
シマレーザ光のエネルギー密度は加工面上で1.0J/
cm2 、周波数は200Hzとした。また、加工方式は
銅穴パターンをコンフォーマルマスクとし、レーザ光を
往復走査するスキャニング加工とした。加工条件はスキ
ャン速度200mm/cm2 、照射回数20回とした。
レーザ加工後の評価用配線板を金属顕微鏡及び走査型電
子顕微鏡で観察したところ、銅表面、銅穴側壁部及びポ
リイミド穴側部共にエキシマレーザ加工によって飛散付
着した加工残査が観察された。さらに、両面それぞれの
測定用端子に測定用導線を半田付けにより電気的に接続
し、絶縁抵抗をテスタで測定した結果、4.0オームで
あった。次に、過マンガン酸処理、中和処理を順に行っ
た。条件は第1表に示すものである。この実施例ではこ
の処理を2回行った。処理後の抵抗値は通常のテスタで
測定し、10メガオーム以上であることを確認した。さ
らに、絶縁抵抗計にて測定端子間に電圧250V、2分
印加した時の電流値より絶縁抵抗を算出したところ、
1.2×10 12 オームであった。この結果から、穴内
部に付着したレーザ加工により飛散付着した導電的加工
残査が除去されたことがわかった。また、処理後の評価
用配線板について金属顕微鏡及び走査型電子顕微鏡で観
察したところ、銅表面、銅穴側壁部及びポリイミド穴側
部共に加工前に観察された加工残査は除去されていた。
Example 2 First, a two-layer MCF film (manufactured by Hitachi Chemical Co., Ltd.,
Product name: MCF-5510I (double-sided copper layer thickness: 18 μm each, central polyimide layer thickness: 75 μm)) copper wiring patterns and holes are formed by a normal photolithography process, and an evaluation wiring board (number of holes: 512, holes) The diameter was 120 μm). Excimer laser light (KrF laser, oscillation wavelength: 254 nm) was irradiated from one side of this evaluation wiring board. The energy density of the irradiated excimer laser light is 1.0 J / on the machined surface.
cm 2 and frequency were 200 Hz. Further, the processing method was a scanning processing in which a copper hole pattern was used as a conformal mask and reciprocal scanning with laser light was performed. The processing conditions were a scan speed of 200 mm / cm 2 and an irradiation frequency of 20 times.
When the wiring board for evaluation after laser processing was observed with a metallographic microscope and a scanning electron microscope, processing residues scattered and adhered by excimer laser processing were observed on the copper surface, the copper hole side wall and the polyimide hole side. Further, a measurement lead wire was electrically connected to each of the measurement terminals on both sides by soldering, and the insulation resistance was measured by a tester. As a result, it was 4.0 ohms. Next, a permanganate treatment and a neutralization treatment were sequentially performed. The conditions are shown in Table 1. In this example, this treatment was performed twice. The resistance value after the treatment was measured by an ordinary tester and confirmed to be 10 megohm or more. Further, when the insulation resistance was calculated from the current value when a voltage of 250 V was applied for 2 minutes between the measurement terminals with an insulation resistance meter,
It was 1.2 × 10 12 ohms. From this result, it was found that the conductive processing residue scattered and adhered by the laser processing adhered inside the hole was removed. Further, when the wiring board for evaluation after the treatment was observed with a metallographic microscope and a scanning electron microscope, the processing residues observed before the processing were removed on the copper surface, the copper hole side wall portion and the polyimide hole side portion.

【0011】実施例3 ブラインドビアホールで接続した配線板(ビアホール
数;32個、ビアホール径;80マイクロメータ)を作
製した。製造工程は次の通り。ベース基材として片面銅
張り積層板を用意した。次にこの積層板の銅を通常のフ
ォトリソ工程を用い、エッチングで第1の配線を作製し
た。この上部に厚み25マイクロメータのポリイミド接
着フィルム(日立化成工業株式会社製、商品名AS−2
200)2枚を介して銅箔(日本電解株式会社製、商品
名SLP−12)を真空プレスで積層プレスした。この
銅箔のブラインドビアホール接続部となる部分を通常の
フォトリソ工程を用い、エッチングで除去した。さら
に、この銅箔の上部からエキシマレーザ光(発振波長:
254nm、エネルギー密度)を照射し、レーザ光をス
キャニングする方式でブラインドビアとなるべき部分を
除去した。加工に用いたレーザ光の照射領域の大きさは
15mm×8mmで、照射領域の短尺方向に走査した。
レーザ光のエネルギー密度1.0J/cm2 でレーザ光
の周波数200Hz、走査速度300mm/min、走
査回数10回とし、下部配線パッドまでのブラインドス
ルーホールが形成されていることを金属顕微鏡及び走査
型電子顕微鏡で確認した。また、加工したビアホール周
辺の銅箔上、ブラインドビアホール内のポリイミド樹脂
上にスス状の加工残査が観察された。この配線板に対し
て、A:第1表に示した処理を2回連続して繰り返し行
う、B:処理条件総圧0.8Torr(酸素分圧/フレ
オン分圧=50/20)、150Wで2分間プラズマ処
理、C:処理無し の処理をした。A、Bの場合につい
ては顕微鏡及び走査型電子顕微鏡で観察すると、上記の
加工残査が除去されていた。次に無電解めっきを2マイ
クロメータ厚、硫酸銅電気めっき15マイクロメータ厚
のパネルメッキを施し、第二の配線を通常のフォトリソ
法で形成した。断面を金属顕微鏡で観察したところ、B
の場合は銅穴直下のポリイミドがエッチバックされてお
り、穴全体の銅めっき厚みも薄く、特に銅穴直下の銅め
っき厚がかなり薄かったが、それに対してAの場合はポ
リイミド層のエッチバックも観察されず、銅メッキ層が
他の部分に比べてかなり薄くなっていないことがわかっ
た。またCの場合は穴内部の一部にメッキ析出不良が観
察された。A、B、Cの場合を各々20サンプル(20
0測定数)作製し、熱衝撃試験による接続信頼性を評価
した。試験条件は、−65℃(30分)→室温(2分)
→150℃(30分)→室温(2分)→−65℃の繰り
返しサイクルとした。初期の導通抵抗を基準として±1
0%以上の抵抗変化が発生した時断線とし、1000サ
イクル後の導通率=導通数/試験数を求めた。その結
果、A、B、Cの場合それぞれ98%、17%、15%
であった。このようにレーザ加工後の後処理として本発
明で示した過マンガン酸処理を施すことにより、接続信
頼性の大幅な向上が図られた。
Example 3 A wiring board (number of via holes: 32, via hole diameter: 80 micrometers) connected by blind via holes was produced. The manufacturing process is as follows. A single-sided copper-clad laminate was prepared as a base material. Next, the copper of this laminated plate was etched by a normal photolithography process to form a first wiring. On top of this, a polyimide adhesive film having a thickness of 25 micrometers (trade name AS-2, manufactured by Hitachi Chemical Co., Ltd.)
200) A copper foil (manufactured by Nippon Denshoku Co., Ltd., trade name SLP-12) was laminated and pressed by a vacuum press through two sheets. A portion of the copper foil, which is to be a blind via hole connection portion, was removed by etching using a normal photolithography process. In addition, excimer laser light (oscillation wavelength:
254 nm, energy density), and a portion to be a blind via was removed by a method of scanning laser light. The size of the irradiation area of the laser beam used for processing was 15 mm × 8 mm, and scanning was performed in the short direction of the irradiation area.
The energy density of the laser light was 1.0 J / cm 2 , the frequency of the laser light was 200 Hz, the scanning speed was 300 mm / min, and the number of scans was 10 times. It was confirmed that the blind through hole to the lower wiring pad was formed. Confirmed with an electron microscope. Further, soot-like processing residues were observed on the copper foil around the processed via hole and on the polyimide resin in the blind via hole. For this wiring board, A: the treatment shown in Table 1 is continuously repeated twice, B: treatment condition total pressure 0.8 Torr (oxygen partial pressure / Freon partial pressure = 50/20), 150 W Plasma treatment was performed for 2 minutes, and C: no treatment was performed. In the cases of A and B, when observed with a microscope and a scanning electron microscope, the above-mentioned processing residue was removed. Next, electroless plating was applied to panel plating having a thickness of 2 micrometers and copper sulfate electroplating having a thickness of 15 micrometers, and the second wiring was formed by a normal photolithography method. When the cross section was observed with a metallographic microscope, B
In the case of, the polyimide immediately below the copper hole was etched back, and the copper plating thickness of the entire hole was thin, and especially the thickness of the copper plating immediately below the copper hole was considerably thin, whereas in case of A, the polyimide layer was etched back. also not observed, the copper plating layer was found not to be much thinner than the other portions. In the case of C, defective plating deposition was observed in a part of the inside of the hole. In case of A, B and C, 20 samples each (20
(0 measurement number) was produced and the connection reliability was evaluated by a thermal shock test. The test conditions are -65 ° C (30 minutes) → room temperature (2 minutes).
→ 150 ° C. (30 minutes) → room temperature (2 minutes) → −65 ° C. Repeat cycle. ± 1 based on the initial conduction resistance
When the resistance change of 0% or more occurred, the wire was broken and the conductivity after 1000 cycles = the number of conduction / the number of tests was determined. As a result, in case of A, B and C, 98%, 17% and 15% respectively
Met. Thus, by performing the permanganate treatment shown in the present invention as the post-treatment after laser processing, the connection reliability was significantly improved.

【0012】[0012]

【表1】 ─────────────────────────────────── 処理順 処理名 処 理 液 成 分 液温(℃) 時間(分) ─────────────────────────────────── 1 水 洗 純水 25 ─────────────────────────────────── 2 過マンカン酸処理 過マンカン酸カリウム 60g/l 60 15 水酸化ナトリウム 38g/l 純水 残り ─────────────────────────────────── 3 水 洗 純水 25 ─────────────────────────────────── 4 水 洗 純水 25 ─────────────────────────────────── 5 中和処理 硫酸ヒトロキシルアミン 5wt% 25 4 硫酸 3vol% 純水 残り ─────────────────────────────────── 6 水 洗 純水 25 ─────────────────────────────────── 7 水 洗 純水 25 ─────────────────────────────────── [Table 1] ───────────────────────────────────   Processing order Processing name Processing liquid component Liquid temperature (℃) Time (min) ───────────────────────────────────     1 Water washing Pure water 25 ───────────────────────────────────     2 Permancanic acid treatment Potassium permancanate 60g / l 60 15                           Sodium hydroxide 38g / l                           Pure water remaining ───────────────────────────────────     3 Washing with pure water 25 ───────────────────────────────────     4 Washing with pure water 25 ───────────────────────────────────     5 Neutralization treatment Humanxylamine sulfate 5wt% 25 4                           Sulfuric acid 3vol%                           Pure water remaining ───────────────────────────────────     6 Washing with pure water 25 ───────────────────────────────────     7 Washing with pure water 25 ───────────────────────────────────

【0013】[0013]

【発明の効果】本発明により、配線板製造工程の小径穴
あけ等、耐熱性樹脂のレ−ザ加工の精度、加工製品の信
頼性を飛躍的に向上することができる。
According to the present invention, the precision of laser processing of heat-resistant resin and the reliability of processed products such as drilling small diameter holes in the wiring board manufacturing process can be dramatically improved.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23K 26/00 - 26/42 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) B23K 26/00-26/42

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)耐熱性樹脂にエキシマレーザ光を照
射する工程、 (b)過マンガン酸塩のアルカリ溶液で処理する工程、 ()析出したマンガン化合物を還元剤を含む溶液によ
る中和処理によって除去する工程を含み、(b)、(c)
工程を少なくとも2回以上行うことを特徴とする耐熱性
樹脂のレ−ザ加工法。
1. A step of: (a) irradiating a heat-resistant resin with an excimer laser beam; (b) a step of treating with a permanganate alkaline solution; ( c ) a precipitated manganese compound in a solution containing a reducing agent.
(B), (c) including a step of removing by neutralization treatment
A method of laser-processing a heat-resistant resin, characterized in that the step is performed at least twice .
【請求項2】耐熱性樹脂が少なくともポリイミドを含む
ものである請求項1記載の耐熱性樹脂のレ−ザ加工法。
2. The laser processing method for heat-resistant resin according to claim 1, wherein the heat-resistant resin contains at least polyimide.
JP06283994A 1994-03-31 1994-03-31 Laser processing of heat-resistant resin Expired - Lifetime JP3405473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06283994A JP3405473B2 (en) 1994-03-31 1994-03-31 Laser processing of heat-resistant resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06283994A JP3405473B2 (en) 1994-03-31 1994-03-31 Laser processing of heat-resistant resin

Publications (2)

Publication Number Publication Date
JPH07266076A JPH07266076A (en) 1995-10-17
JP3405473B2 true JP3405473B2 (en) 2003-05-12

Family

ID=13211886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06283994A Expired - Lifetime JP3405473B2 (en) 1994-03-31 1994-03-31 Laser processing of heat-resistant resin

Country Status (1)

Country Link
JP (1) JP3405473B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10121561A1 (en) * 2001-05-03 2002-11-07 Heidelberger Druckmasch Ag Imaging and deletion of a printing form made of polymer material with imide groups

Also Published As

Publication number Publication date
JPH07266076A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
US6591495B2 (en) Manufacturing method of a multilayered printed circuit board having an opening made by a laser, and using electroless and electrolytic plating
KR101277390B1 (en) Manufacturing method of printed wiring board, copper-clad laminate and treatment solutions used therefor
JP3506002B2 (en) Manufacturing method of printed wiring board
JP5724468B2 (en) Method for producing polyimide metal laminate
KR102009255B1 (en) Manufacturing method of wiring board, wiring board and wiring board manufacturing apparatus
JP3251515B2 (en) Resin etching solution and etching method
JP5125183B2 (en) Manufacturing method of build-up multilayer wiring board
JP3405473B2 (en) Laser processing of heat-resistant resin
JP2790956B2 (en) Manufacturing method of multilayer wiring board
JP2005050999A (en) Wiring board and method of forming wiring
JP3062142B2 (en) Method for manufacturing multilayer printed wiring board
KR20000047911A (en) Methods for manufacture of electronic devices
JP6401136B2 (en) Wiring board manufacturing method, wiring board, and wiring board manufacturing apparatus
JP4377641B2 (en) Wiring board manufacturing method
JP5109285B2 (en) Manufacturing method of multilayer wiring board
JP2004235222A (en) Method for manufacturing printed wiring board
JP2017092498A (en) Method for manufacturing wiring board, wiring board, and wiring board manufacturing apparatus
JP4180192B2 (en) Manufacturing method of multilayer printed wiring board
JP2002237666A (en) Wiring board and method of manufacturing the same
JPH0722472A (en) Manufacture of processed film
JPH1117351A (en) Manufacture of multilayer wiring board
JPH04111497A (en) Method of opening via hole in multilayer wiring board
JP2007281089A (en) Manufacturing method of buildup multilayer wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10