JP3404571B2 - Spherical rotating piston engine - Google Patents

Spherical rotating piston engine

Info

Publication number
JP3404571B2
JP3404571B2 JP2000174278A JP2000174278A JP3404571B2 JP 3404571 B2 JP3404571 B2 JP 3404571B2 JP 2000174278 A JP2000174278 A JP 2000174278A JP 2000174278 A JP2000174278 A JP 2000174278A JP 3404571 B2 JP3404571 B2 JP 3404571B2
Authority
JP
Japan
Prior art keywords
axis
housing
spherical
shaft
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000174278A
Other languages
Japanese (ja)
Other versions
JP2001355402A (en
Inventor
富美夫 大倉
Original Assignee
富美夫 大倉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富美夫 大倉 filed Critical 富美夫 大倉
Priority to JP2000174278A priority Critical patent/JP3404571B2/en
Publication of JP2001355402A publication Critical patent/JP2001355402A/en
Application granted granted Critical
Publication of JP3404571B2 publication Critical patent/JP3404571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/005Oscillating-piston machines or engines the piston oscillating in the space, e.g. around a fixed point

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Reciprocating Pumps (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、摺動球面を有す
るハウジング10内に回転ピストン30と斜行板40
(又は筐体斜行板61)との2枚1対の回転板を組込
み、その板面間を回転に伴い接近と離間させて内燃ピス
トン機関における吸気、圧縮、膨張、及び排気の各行程
を行わせ、その膨張仕事のガス圧力を回転ピストン30
の板面が受けて回転ピストン30の回転力に変換し、そ
の回転ピストン30に連結させた出力軸を回転させる極
めてピストンスピードが高く、軽量コンパクトで高出力
の新規な回転ピストン機関に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary piston 30 and a skew plate 40 in a housing 10 having a sliding spherical surface.
(Or housing skew plate 61) and a pair of rotary plates are incorporated, and the plate surfaces are moved toward and away from each other with the rotation so that intake, compression, expansion, and exhaust strokes in the internal combustion piston engine can be performed. The gas pressure of the expansion work is performed and the rotating piston 30
The present invention relates to a novel rotary piston engine that receives a plate surface of the rotary piston 30, converts it into a rotational force of the rotary piston 30, and rotates an output shaft connected to the rotary piston 30, has a very high piston speed, is lightweight, is compact, and has a high output. .

【0002】[0002]

【従来の技術】現在、2行程サイクル、又は4行程サイ
クルの原動機は、レシプロカッティングピストン機関
(以下、往復ピストン機関という)の火花点火機関とデ
ィーゼル機関が各種汎用機関として存在する。また、極
一部ではあるが50〜100ps程度の小型ガソリン自動
車機関として2節エピトロコイド曲線の包絡線と、その
内包絡線とを組合わせた4行程サイクルのヴァンケル機
関がある。
2. Description of the Related Art At present, as a prime mover of a two-stroke cycle or a four-stroke cycle, a spark ignition engine of a reciprocating piston engine (hereinafter referred to as a reciprocating piston engine) and a diesel engine exist as various general-purpose engines. Further, as a small gasoline automobile engine of about 50 to 100 ps, which is a very small portion, there is a four-stroke cycle Wankel engine that combines the envelope of the 2-section epitrochoid curve and its inner envelope.

【0003】往復ピストン機関は、シリンダーとピスト
ン、コネクティングロット(連接棒)、クランクシャフ
ト、フライホイール(はずみ車)等の主要構成部品から
なり、シリンダー内の媒体燃焼に伴う膨張圧力をピスト
ン頭部に受けてピストンが熱エネルギーを機械エネルギ
ーの直線運動として往復動に変換し、その往復動はピス
トンピンを介して連接棒に伝達され、更にその連接棒に
連結するクランク軸がピストンの直線往復運動を円運動
に変換するものである。その為、その作動においてピス
トン、コネクティングロット、バルブ(弁)等の往復運
動部分の慣性質量による障害が発生する。つまり、往復
ピストン機関の不具合は、ピストンがシリンダー内を直
線的に往復動することに起因する。即ち周期的に繰り返
すピストンの往復加速運動は、往復質量の慣性力、及び
慣性偶力の効果を無にすべき平衡が損われて機関振動が
発生する。
A reciprocating piston engine is composed of main components such as a cylinder and a piston, a connecting rod (connecting rod), a crankshaft, a flywheel (flywheel), and the piston head receives expansion pressure due to combustion of a medium in the cylinder. The piston converts the thermal energy into reciprocating motion as linear motion of mechanical energy, and the reciprocating motion is transmitted to the connecting rod through the piston pin, and the crankshaft connected to the connecting rod circles the linear reciprocating motion of the piston. It is converted into movement. Therefore, in the operation, a failure occurs due to the inertial mass of the reciprocating parts such as the piston, the connecting lot, and the valve. That is, the malfunction of the reciprocating piston engine results from the fact that the piston reciprocates linearly in the cylinder. That is, the reciprocating acceleration motion of the piston which is periodically repeated impairs the balance of the inertial force of the reciprocating mass and the inertia couple, so that the engine vibration is generated.

【0004】また、その慣性質量の低減、出力増大やト
ルク変動を少なくする為に多気筒機関にする必要があ
り、必然的に多気筒機関は重量・寸法等の機関全体の容
積が大きくなり、各々のピストンがピストンピン、コネ
クティングロット、クランクを経て回転軸に連結される
為に同一部品の点数を多くしている。その上、吸、排気
バルブの取付け箇所が円筒シリンダーの頂部に限られて
いることにより吸入空気重量が制限されると共に、吸、
排気効率の向上と動弁装置の慣性質量を低減する為の多
バルブ化の傾向はその分解と組立ての作業性、及び部品
数において不利である。或は、同じ内燃機関におけるガ
スタービンの動圧に対して、往復ピストン機関は静圧を
回転力に変えるもので容積/面積比が小さい為に最高燃
焼温度が高く、有害排気ガスである窒素酸化物(NO
x)の生成が多い。
Further, it is necessary to use a multi-cylinder engine in order to reduce the inertial mass, increase in output and torque fluctuation. Inevitably, the multi-cylinder engine has a large volume, such as weight and size, as a whole. Since each piston is connected to the rotary shaft through the piston pin, connecting lot, and crank, the number of identical parts is increased. In addition, the intake / exhaust valve is attached to the top of the cylindrical cylinder, which limits the intake air weight, and
The tendency to increase the number of valves for improving the exhaust efficiency and reducing the inertial mass of the valve operating device is disadvantageous in disassembly and assembly workability and the number of parts. Or, in the same internal combustion engine, the reciprocating piston engine converts static pressure into rotational force in response to the dynamic pressure of the gas turbine, and since the volume / area ratio is small, the maximum combustion temperature is high and the harmful exhaust gas, nitrogen oxidation. Thing (NO
x) is often generated.

【0005】また、往復ピストン機関のピストンスピー
ドは、行程/内径比における行程長が小さいほど高く出
来るが、それが余りにも速いと潤滑の追従が困難となっ
てピストンは元より機関は破壊しやすくなり、ピストン
スラップ、及び上述した往復動の慣性質量増加による振
動、騒音も増大する。同様に、バルブ装置も機関回転数
を高めるほどに異常振動を発生して機関の高回転化を阻
止し、平均ピストンスピードの実用回転範囲を狭くして
いる。以上のことから往復ピストン機関の欠点は、往復
運動部分の慣性質量による障害が避けられないことであ
り、高出力の為の高回転化が阻止されて使用回転範囲が
狭く、機関振動・騒音が大きく、構造が複雑で機関容積
が大きい上に、浄化の困難な窒素酸化物(NOx)の生
成が多いことである。
Further, the piston speed of the reciprocating piston engine can be increased as the stroke length in the stroke / inner diameter ratio becomes smaller. However, if it is too fast, it becomes difficult to follow the lubrication, and the engine is more likely to be damaged than the piston. Therefore, the vibration and noise due to the increase in the inertial mass of the piston slap and the reciprocating motion described above also increase. Similarly, the valve device also causes abnormal vibration as the engine speed increases to prevent the engine from rotating at a high speed, thereby narrowing the practical rotation range of the average piston speed. From the above, the disadvantage of the reciprocating piston engine is that the obstacle due to the inertial mass of the reciprocating motion part is unavoidable, the high rotation for high output is prevented, the operating rotation range is narrow, and the engine vibration and noise are generated. It is large, has a complicated structure, has a large engine volume, and produces a large amount of nitrogen oxides (NOx) that are difficult to purify.

【0006】また、前記ヴァンケル機関は、2節エピト
ロコイドの内周面を持つ筒状のローターハウジング内
に、その2節エピトロコイドの内包絡線からなる弓形輪
郭面の3辺を持った3角形のローターが、中央部分を貫
く円孔のローター軸受とその円孔内に内歯歯車を取付け
たトロコイド位相歯車とを有して設けられている。ま
た、3角形ローターの各頂点に取付けられた棒状のシー
ルエレメントがローターハウジングの内周面に接触し、
その内周面とローターの弓形輪郭面と両側を覆っている
サイドハウジングの壁面により三つの作動室が形成され
るもので、ローターはトロコイド位相歯車と噛み合うサ
イドハウジングに取付けた固定外歯歯車によって、頂点
を常にローターハウジングのエピトロコイド曲線に沿っ
て自転し公転する遊星運動の回転をするものである。
Further, the Wankel engine is a triangular rotor housing having a two-node epitrochoid inner peripheral surface, and a triangular shape having three sides of an arcuate contour surface formed by the inner envelope of the two-node epitrochoid. Is provided with a rotor bearing having a circular hole passing through the central portion and a trochoidal phase gear having an internal gear mounted in the circular hole. In addition, the rod-shaped sealing elements attached to each vertex of the triangular rotor come into contact with the inner peripheral surface of the rotor housing,
Three working chambers are formed by the inner peripheral surface, the arcuate contour surface of the rotor, and the wall surfaces of the side housings that cover both sides, and the rotor is a fixed external tooth gear attached to the side housing that meshes with the trochoidal phase gear. The apex always rotates along the epitrochoidal curve of the rotor housing and revolves around a planetary motion.

【0007】このヴァンケル機関の欠点は、ハウジング
とローターからなる作動室が平面、平板から構成されて
いることであり、吸気部分と燃焼部分とが同一箇所でな
いことである。即ち、高温の燃焼室壁が吸入新気によっ
て冷却されることがなく機関の吸気側と燃焼側との温度
差が大きく、バイメタル的に熱変形したその壁面にロー
ター頂点のアペックスシール等では追従出来ない。ま
た、作動室が方形断面であり、その断面積が変化するこ
とにより完全な気密保持が不可能であり、著しいリーク
ロスと油膜潤滑の油膜生成の不可能による著しい摩擦摩
耗がある。
The disadvantage of this Wankel engine is that the working chamber consisting of the housing and the rotor is composed of a flat surface or a flat plate, and the intake portion and the combustion portion are not at the same location. That is, the high temperature combustion chamber wall is not cooled by the fresh intake air, and the temperature difference between the intake side and the combustion side of the engine is large, and it is possible to follow the wall that is thermally deformed like a bimetal with an apex seal at the rotor apex. Absent. In addition, the working chamber has a rectangular cross section, and it is impossible to maintain the airtightness completely due to the change of the cross-sectional area, and there is a remarkable leakage and a significant friction wear due to the inability to generate an oil film for oil film lubrication.

【0008】当然それらは、原理上の不具合と相俟って
燃料や潤滑油の消費率の増大、悪化を示すものであり、
不完全燃焼、吹き抜け、ダイリューションガス、火炎伝
播不良等による未燃焼ガスの強制排出で有害COやオキ
シダント、いわゆる光化学スモッグの原因であるHC価
を極度に高くしている。また、部品・機構が簡単さを欠
いて難解で、より少ない製作誤差と高い組立て精度が求
められ、コスト高で耐久性は劣り、気密保持の不良、燃
焼室形の不良等によりディーゼル機関には適合しない。
Naturally, they show an increase and a deterioration in the consumption rate of fuel and lubricating oil in combination with the problems in principle.
The HC value, which is a cause of harmful CO and oxidant, so-called photochemical smog, is extremely increased by the forced discharge of unburned gas due to incomplete combustion, blow-through, dilution gas, and poor flame propagation. In addition, the parts and mechanism are difficult to understand due to lack of simplicity, require less manufacturing error and high assembly accuracy, cost is high and durability is inferior. not compatible.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、上述
した従来の内燃ピストン機関の限界と問題点とに鑑み、
出力、燃料消費、排出ガス、静粛性、耐久性、重量寸
法、生産費等の内燃機関に不可欠の諸条件を充分満たす
と共に、ピストン、即ち受圧片の往復動を排除して従来
の内燃ピストン機関とは全く異なった基本構造を有し、
且つ従来機関よりも優れた各種性能を有する新規な内燃
ピストン機関を提供するものである。
Therefore, the present invention has been made in view of the above-mentioned limitations and problems of the conventional internal combustion piston engine.
The conventional internal combustion piston engine is capable of satisfying various conditions essential to the internal combustion engine, such as output, fuel consumption, exhaust gas, quietness, durability, weight size, production cost, etc. Has a completely different basic structure from
The present invention also provides a new internal combustion piston engine having various performances superior to those of conventional engines.

【0010】[0010]

【課題を解決するための手段】本発明は、相互に関係す
る点、線、面の幾何学的構成の幾何図形上において成り
立つ基本的な構造の特質がある。また本発明は、上記課
題を解決する為に基本的な構造の相違を示す8通りの解
決手段を有すると共に、その8通りの解決手段の各々に
3種類(共通の解決手段1乃至3)ずつの実施可能な形
態がある。
SUMMARY OF THE INVENTION The present invention has a basic structural feature that is established on a geometrical figure of interrelated points, lines, and surfaces. Further, the present invention has eight kinds of solving means showing a difference in basic structure in order to solve the above problems, and three kinds (common solving means 1 to 3) are provided for each of the eight solving means. There are possible forms of implementation.

【0011】[0011]

【解決手段1】本発明は、上記課題を解決する一つ目の
手段として、球心Oをハウジング10の中心として半径
rの球面Gを有し、角度θをなし球心Oにおいて交差す
る二つの直線のそれぞれをX軸線、Y軸線とし、そのX
軸線が球面Gに交わる点をPとし、またY軸線が球面G
に交わる点をQとし、その点P、点Q間を底面の直径と
して球心Oを頂点とする円錐形の軌跡を円錐軌跡Uと
し、更に点P,Q間を底面直径の半分として球心Oを頂
点とする円錐形の軌跡を円錐軌跡Jとし、また球心Oに
おいてX軸線に直交する軸直線をM軸線とし、そしてX
軸線に水平面をなしてその直径線分の軸線Lを自転軸と
する球面G内の大円平面をR円面とし、且つY軸線を鉛
直軸線として球面G内に球心Oを通って形成される大円
平面をS円面とし、そのR円面とS円面とが球心Oにお
いて交差し、且つM軸線の垂線をなす交差割線を軸線K
とし、その交差割線Kの両端を点Ka、点Kbとする。
As a first means for solving the above problems, the present invention has a spherical surface G having a radius r with the spherical center O as the center of the housing 10 and having an angle θ and intersecting at the spherical center O. Let each of the two straight lines be the X-axis line and the Y-axis line.
The point where the axis intersects the spherical surface G is P, and the Y axis is the spherical surface G.
Is Q, the point P is between the points Q and the bottom is the diameter of the bottom surface, and the conical locus is the conical locus U with the spherical center O as the apex, and the points P and Q are half the bottom diameter. A conical locus having an apex at O is a conical locus J, and an axis line orthogonal to the X axis at the spherical center O is an M axis, and X
It is formed by passing through a ball center O in the spherical surface G with a great circle plane in the spherical surface G having a horizontal plane as its axis and having the axis L of its diameter segment as the axis of rotation, and the Y axis as the vertical axis. The great circle plane is the S circle surface, and the R circle surface and the S circle surface intersect at the spherical center O, and the intersecting secant forming the perpendicular line of the M axis line is the axis line K.
Then, both ends of the intersection secant K are defined as points Ka and Kb.

【0012】上記のように点、線、面の各関係を設定し
たハウジング10内において、S円面の延長平面に沿っ
たハウジング10内壁の部分を周回する溝に削成した軌
道隙12と、Y軸線上の対向両壁の各々を円形凹みに欠
切形成した軸板室15とを球面Gの外側に設け、且つ各
軸板室15の側壁中心部に主軸受13を貫設する。その
両主軸受13には、前記軸板室15の各々に回転可能に
収納される軸板24の各々をX軸線上の連結棒26が連
結してZ字形をなすZ軸23の両軸頸を軸承させ、この
連結棒26に管状の転がり軸72を外嵌させ、且つこの
転がり軸72の中心部分にM軸線を連結軸とするピン継
手関節55の円形体からなる軸央枢74を有する。
In the housing 10 in which the respective relations of points, lines, and surfaces are set as described above, a raceway gap 12 cut into a groove surrounding the inner wall portion of the housing 10 along the extension plane of the S circle surface, A shaft plate chamber 15 in which both opposing walls on the Y axis are cut out in a circular recess is provided outside the spherical surface G, and a main bearing 13 is provided at the center of the side wall of each shaft plate chamber 15. In both the main bearings 13, a shaft bar 24 rotatably housed in each of the shaft chambers 15 is connected to a connecting rod 26 on the X-axis to form a Z-shaped double shaft neck of a Z-axis 23. A tubular rolling shaft 72 is fitted onto the connecting rod 26, and a central portion of the rolling shaft 72 has an axial center 74 formed of a circular body of a pin joint joint 55 having the M axis as a connecting shaft.

【0013】R円面上には、球面Gに摺接する外周面の
球弧面32とその球弧面32の弓形輪郭平面をなして前
記K軸線側を弦とする弓形面31とを有し、且つその弓
形面31の弦側に円柱状のピストン中間軸33を合体さ
せた略板状の回転ピストン30が前記転がり軸72を挿
通させて配置される。この回転ピストン30の内部中央
に前記軸央枢74の円形体を受容するピストン枢35を
形成し、そのピストン枢35を軸央枢74にX軸線上の
転がり軸72を基軸として角度θ×2の範囲を揺動可能
に枢着させ、且つピストン中間軸33両端の前記点K
a、点Kb側に交差割線Kを関節基軸線とする蝶番関節
50のピンか、又はピン受孔からなる何れかの連結素子
を設ける。
On the R circular surface, there is a spherical arc surface 32 of an outer peripheral surface which is in sliding contact with the spherical surface G, and an arcuate surface 31 which forms an arcuate contour plane of the spherical arc surface 32 and has a chord on the K axis side. Further, a substantially plate-shaped rotary piston 30 in which a cylindrical piston intermediate shaft 33 is united is arranged on the chord side of the arcuate surface 31 with the rolling shaft 72 inserted. A piston center 35 for receiving the circular body of the shaft center 74 is formed at the center of the inside of the rotary piston 30, and the piston center 35 is used as the center center 74 with the rolling axis 72 on the X axis as the base axis and an angle θ × 2. Is pivotally attached in a range of
On the side of a and the point Kb, either the pin of the hinge joint 50 having the intersection secant K as the joint base axis or the connecting element including the pin receiving hole is provided.

【0014】また、S円面上には、弓形面41とその弓
形面41の弓形輪郭面と弦側面42とを有し、且つ弓形
輪郭面に内周面側を固着させて一体構造をなす環状の斜
行板環43を外周面として形成した円形板状の斜行板4
0を配置する。その斜行板40の斜行板環43を前記軌
道隙12に回転可能に嵌合させ、尚その斜行板環43の
点Ka、点Kbに位置する対向部分に前記蝶番関節50
素子に対応する連結素子を設けて嵌合させると、斜行板
40と前記回転ピストン30が前記交差割線Kを蝶着の
軸として角度θ×2範囲を擺動可能に連結する。
On the S circle surface, there is an arcuate surface 41, an arcuate contour surface of the arcuate surface 41, and a chordal side surface 42, and the inner peripheral surface side is fixed to the arcuate contour surface to form an integral structure. Circular plate-shaped skew plate 4 formed with an annular skew plate ring 43 as an outer peripheral surface
Place 0. The slanting plate ring 43 of the slanting plate 40 is rotatably fitted in the orbital space 12, and the hinge joint 50 is provided at the facing portion located at the points Ka and Kb of the slanting plate ring 43.
When a connecting element corresponding to the element is provided and fitted, the skew plate 40 and the rotary piston 30 are connected so as to be slidable in an angle θ × 2 range with the intersecting secant K as the hinge axis.

【0015】その上、前記軸板室15の周壁を固定歯車
の固定位相歯車14に刻設し、且つ転がり軸72端部に
外歯歯車の転がり歯車76を設けて固定位相歯車14に
歯合させる。すると、S円面上の斜行板40がハウジン
グ10内の球面Gをなす内側凹面を閉鎖して半球状空間
の半月状作動室Haを形成し、その半月状作動室Haを
R円面上の回転ピストン30が櫛形状空間をなす櫛形状
作動室Fuに形成する。更に、その櫛形状作動室Fuに
臨ませて吸入孔Inと排出孔Exとを設け、且つ燃焼室
を窺って点火具Ig、或は燃料噴射弁を挿着したことを
特徴とする球形の回転ピストン機関である。
In addition, the peripheral wall of the shaft plate chamber 15 is engraved on the fixed phase gear 14 of the fixed gear, and the rolling gear 76 of the external gear is provided at the end of the rolling shaft 72 to mesh with the fixed phase gear 14. . Then, the oblique plate 40 on the S circle surface closes the inner concave surface forming the spherical surface G in the housing 10 to form the half moon-shaped working chamber Ha in the hemispherical space, and the half moon shaped working chamber Ha is formed on the R circle surface. The rotary piston 30 is formed in the comb-shaped working chamber Fu forming a comb-shaped space. Further, a spherical rotation characterized in that an intake hole In and an exhaust hole Ex are provided so as to face the comb-shaped working chamber Fu, and an ignition tool Ig or a fuel injection valve is inserted into the combustion chamber by inspection. It is a piston engine.

【0016】[0016]

【解決手段2】解決手段の二つ目として、上記解決手段
1と同様にハウジング10の内部において球心O、半径
r、球面G、角度θ、軸線X、軸線Y、点P、点Q、円
錐軌跡U、円錐軌跡J、軸線M、軸線L、R円面、S円
面、交差割線K、点Ka、点Kbの点、線、面の各関係
を設定する。
As a second solution, a spherical center O, a radius r, a spherical surface G, an angle θ, an axis X, an axis Y, a point P, and a point Q are provided inside the housing 10 as in the case of the above solution 1. Conical locus U, conical locus J, axis M, axis L, R circular surface, S circular surface, intersecting secant K, point Ka, point Kb, line, surface are set.

【0017】そのように点、線、面の各関係を設定した
ハウジング10内において、S円面の延長平面に沿った
ハウジング10内壁の部分を周回する溝に削成した軌道
隙12と、Y軸線上の対向両壁の各々を円形凹みに欠削
形成した軸板室15とを球面Gの外側に設け、且つ各軸
板室15の側壁中心部に主軸受13を貫設する。その両
主軸受13には、前記軸板室15の各々に回転可能に嵌
合する軸板24の各々をX軸線上の連結棒26が連結し
てZ字形をなすZ軸23の両軸頸を軸承させ、このZ軸
23の球心Oに位置する連結棒26の中心部分にM軸線
を連結軸とするピン継手関節55の円形体素子からなる
枢結子88を取付ける。
In the housing 10 in which the respective relationships of points, lines, and planes are set in this way, orbital gaps 12 cut into grooves surrounding the inner wall of the housing 10 along the extension plane of the S-circle, and Y A shaft plate chamber 15 in which both opposing walls on the axis are cut out in a circular recess is provided outside the spherical surface G, and a main bearing 13 is provided at the center of the side wall of each shaft plate chamber 15. A shaft bar 24, which is rotatably fitted in each of the shaft plate chambers 15, is connected to both main bearings 13 by a connecting rod 26 on the X axis to form a Z-shaped double shaft neck of a Z shaft 23. The shaft is supported, and a pivot connector 88 composed of a circular body element of a pin joint joint 55 having the M axis as a connecting shaft is attached to the central portion of the connecting rod 26 located at the spherical center O of the Z axis 23.

【0018】R円面上には、球面Gに摺接する外周面の
球弧面32とその球弧面32の弓形輪郭平面をなして前
記K軸線側を弦とする弓形面31とを有し、且つその弓
形面31の弦側に円柱状のピストン中間軸33を合体さ
せた略板状の回転ピストン30が前記Z軸23の前記連
結棒26を挿通させて配置される。この回転ピストン3
0の内部中央に前記枢結子88の円形体素子を受容する
ピストン枢35を形成し、そのピストン枢35を枢結子
88にX軸線上の連結棒26を基軸として角度θ×2の
範囲を揺動可能に枢着させ、且つピストン中間軸33両
端の前記点Ka、点Kb側に交差割線Kを関節基軸線と
する蝶番関節50のピンか、又はピン受孔からなる連結
素子を設ける。
On the R circular surface, there are provided an outer peripheral spherical arc surface 32 which is in sliding contact with the spherical surface G, and an arcuate surface 31 which forms an arcuate contour plane of the spherical arc surface 32 and has the K axis side as a chord. Further, a substantially plate-shaped rotary piston 30 in which a cylindrical piston intermediate shaft 33 is united on the chord side of the arcuate surface 31 is arranged by inserting the connecting rod 26 of the Z-axis 23. This rotating piston 3
A piston pivot 35 for receiving the circular body element of the pivot connector 88 is formed in the inner center of 0, and the piston pivot 35 is pivoted on the pivot connector 88 in the range of an angle θ × 2 with the connecting rod 26 on the X axis as the base axis. A pin of the hinge joint 50 having a joint base axis of the intersecting secant K or a connecting element composed of a pin receiving hole is provided on the ends of the piston intermediate shaft 33 so as to be movably pivotally attached.

【0019】また、S円面上には、弓形面41とその弓
形面41の弓形輪郭面と弦側面42とを有し、且つ弓形
輪郭面に内周面側を固着させて一体構造をなす環状の斜
行板環43を外周として形成した円形板状の斜行板40
を配置する。その斜行板環43を前記軌道隙12に回転
可能に嵌合させ、尚その斜行板環43の点Ka、点Kb
に位置する対向部分に前記蝶番関節50の連結素子に対
応する連結素子を設けて嵌合させると、斜行板40と前
記回転ピストン30が前記交差割線Kを蝶着の軸として
角度θ×2範囲を擺動可能に連結する。
Further, on the S circle surface, there is an arcuate surface 41, an arcuate contour surface of the arcuate surface 41 and a chordal side surface 42, and the inner peripheral surface side is fixed to the arcuate contour surface to form an integral structure. Circular plate-shaped skew plate 40 formed with an annular skew plate ring 43 as the outer circumference
To place. The slanting plate ring 43 is rotatably fitted in the raceway gap 12, and the points Ka and Kb of the slanting plate ring 43 are arranged.
When a connecting element corresponding to the connecting element of the hinge joint 50 is provided and fitted in the facing portion located at, the skew plate 40 and the rotary piston 30 make the angle θ × 2 with the intersecting secant K as the axis of hinge attachment. The ranges are connected slidably.

【0020】その上、前記Z軸23軸頸に外歯歯車のZ
軸歯車27を装着して斜行板環43縁部円周も斜行板環
歯車44に刻設し、且つそれらに噛み合う中間歯車54
を介在させる。すると、S円面上の斜行板40がハウジ
ング10内の球面Gをなす内側凹面を閉鎖して半球状空
間の半月状作動室Haを形成し、その半月状作動室Ha
をR円面上の回転ピストン30が櫛形状空間をなす櫛形
状作動室Fuに形成する。更に、その櫛形状作動室Fu
に臨ませて吸入孔Inと排出孔Exとを設け、且つ燃焼
室を窺って点火具Ig、或は燃料噴射弁を挿着したこと
を特徴とする球形の回転ピストン機関である。
In addition, the Z-axis 23-axis neck has an external gear Z
The shaft gear 27 is mounted, the circumference of the edge of the skew plate ring 43 is also engraved on the skew plate ring gear 44, and the intermediate gear 54 meshes with them.
Intervene. Then, the oblique plate 40 on the S circle surface closes the inner concave surface forming the spherical surface G in the housing 10 to form the half-moon-shaped working chamber Ha in the hemispherical space, and the half-moon-shaped working chamber Ha.
Is formed in the comb-shaped working chamber Fu in which the rotary piston 30 on the R circular surface forms a comb-shaped space. Furthermore, the comb-shaped working chamber Fu
The spherical rotary piston engine is characterized in that an intake hole In and an exhaust hole Ex are provided facing each other, and an ignition tool Ig or a fuel injection valve is inserted and attached by checking the combustion chamber.

【0021】[0021]

【解決手段3】解決手段の三つ目として、上記解決手段
1と同様にハウジング10の内部において球心O、半径
r、球面G、角度θ、軸線X、軸線Y、点P、点Q、円
錐軌跡U、円錐軌跡J、軸線M、軸線L、R円面、S円
面、交差割線K、点Ka、点Kbの点、線、面の各関係
を設定する。
As a third solution, a ball center O, a radius r, a spherical surface G, an angle θ, an axis X, an axis Y, a point P, and a point Q are provided inside the housing 10 as in the case of the solution 1. Conical locus U, conical locus J, axis M, axis L, R circular surface, S circular surface, intersecting secant K, point Ka, point Kb, line, surface are set.

【0022】そのように点、線、面の各関係を設定した
ハウジング10内において、そのハウジング10内壁面
を前記球面Gをなす内壁面に形成してS円面の延長平面
に沿った内壁の部分を周回する溝の軌道隙12に削成
し、且つY軸線上の対向両壁に主軸受13を貫設する。
その両主軸受13には、任意形状からなる軸腕25の各
々をX軸線上の連結棒26が連結してZ字形をなすZ軸
23の両軸頸を軸承させ、このZ軸23の球心Oに位置
する連結棒26の中心部分にM軸線を連結軸とするピン
継手関節55の円形体素子からなる枢結子88を取付け
る。
In the housing 10 in which the respective relationships of points, lines, and surfaces are set in this way, the inner wall surface of the housing 10 is formed as the inner wall surface forming the spherical surface G, and the inner wall surface along the extension plane of the S circle surface is formed. A raceway gap 12 of a groove that surrounds the portion is cut, and a main bearing 13 is provided through both opposing walls on the Y axis.
The two main bearings 13 each have a shaft arm 25 of an arbitrary shape connected by a connecting rod 26 on the X-axis to support a Z-shaped Z-axis 23 shaft neck. At the center of the connecting rod 26 located at the center O, a pivot connector 88 made of a circular body element of a pin joint joint 55 having an M axis as a connecting axis is attached.

【0023】R円面上には、球面Gに摺接する外周面の
球弧面32とその球弧面32の弓形輪郭平面をなしてK
軸線側を弦とする弓形面31とを有し、且つその弓形面
31の弦側に円柱状のピストン中間軸33を合体させた
略板状の回転ピストン30が前記軸腕25と連結棒26
とのZ軸23の中間部分を挿通させて配置される。この
回転ピストン30の内部中央に前記枢結子88の円形体
素子を受容するピストン枢35を形成し、そのピストン
枢35を枢結子88にX軸線上の連結棒26を基軸とし
て角度θ×2の範囲を揺動可能に枢着させ、且つピスト
ン中間軸33両端の前記点Ka、点Kb側に交差割線K
を関節基軸線とする蝶番関節50のピンか、又はピン受
孔からなる連結素子を設ける。
On the R circular surface, a spherical arc surface 32 of the outer peripheral surface which is in sliding contact with the spherical surface G and an arcuate contour plane of the spherical arc surface 32 are formed to form K.
A substantially plate-shaped rotary piston 30 having an arcuate surface 31 having an axial line as a chord and having a cylindrical piston intermediate shaft 33 joined to the chordal side of the arcuate surface 31 is a shaft arm 25 and a connecting rod 26.
And the Z-axis 23 is inserted through the intermediate portion of the Z-axis 23. A piston pivot 35 for receiving the circular body element of the pivot connector 88 is formed at the center of the inside of the rotary piston 30. The range is pivotally attached so that the range is swingable, and the secant line K is provided on both ends of the piston intermediate shaft 33 at the points Ka and Kb.
A connecting element composed of a pin or a pin receiving hole of the hinge joint 50 having a joint base axis.

【0024】また、S円面上には、弓形面41とその弓
形面41の弓形輪郭面と弦側面42とを有し、且つ弓形
輪郭面に内周面側を固着させて一体構造をなす環状の斜
行板環43を外周面として形成した円形板状の斜行板4
0を配置する。その斜行板環43を前記軌道隙12に回
転可能に嵌合させ、尚その斜行板環43の点Ka、点K
bに位置する対向部分に前記蝶番関節50の連結素子に
対応する連結素子を設けて嵌合させると、斜行板40と
前記回転ピストン30が前記交差割線Kを蝶着の軸とし
て角度θ×2範囲を擺動可能に連結する。
Further, on the S circle surface, there is an arcuate surface 41, an arcuate contour surface of the arcuate surface 41 and a chordal side surface 42, and the inner peripheral surface side is fixed to the arcuate contour surface to form an integral structure. Circular plate-shaped skew plate 4 formed with an annular skew plate ring 43 as an outer peripheral surface
Place 0. The slanting plate ring 43 is rotatably fitted in the raceway gap 12, and the points Ka and K of the slanting plate ring 43.
When a connecting element corresponding to the connecting element of the hinge joint 50 is provided and fitted in the facing portion located at b, the oblique plate 40 and the rotary piston 30 make the angle θ × with the intersecting secant K as the hinge axis. Connect the two ranges so that they can slide.

【0025】その上、前記Z軸23軸頸に外歯歯車のZ
軸歯車27を装着して斜行板環43縁部円周も斜行板環
歯車44に刻設し、且つそれらに噛み合う中間歯車54
を介在させる。すると、S円面上の斜行板40が球面G
をなすハウジング10の凹面内壁11を閉鎖して半球状
空間の半月状作動室Haを形成し、その半月状作動室H
aをR円面上の回転ピストン30が櫛形状空間をなす櫛
形状作動室Fuに形成する。更に、その櫛形状作動室F
uに臨ませて吸入孔Inと排出孔Exとを設け、且つ燃
焼室を窺って点火具Ig、或は燃料噴射弁を挿着したこ
とを特徴とする球形の回転ピストン機関である。
In addition, the Z-axis 23-axis neck has a Z-shaped external gear.
The shaft gear 27 is mounted, the circumference of the edge of the skew plate ring 43 is also engraved on the skew plate ring gear 44, and the intermediate gear 54 meshes with them.
Intervene. Then, the oblique plate 40 on the S-circular surface becomes the spherical surface G
The concave inner wall 11 of the housing 10 is closed to form a hemispherical working chamber Ha having a hemispherical space.
A is formed in the comb-shaped working chamber Fu in which the rotary piston 30 on the R circular surface forms a comb-shaped space. Furthermore, the comb-shaped working chamber F
The spherical rotary piston engine is characterized in that an intake hole In and an exhaust hole Ex are provided so as to face u, and an ignition tool Ig or a fuel injection valve is inserted and attached to the combustion chamber.

【0026】[0026]

【解決手段4】解決手段の四つ目として、上記解決手段
1と同様にハウジング10の内部において球心O、半径
r、球面G、角度θ、軸線X、軸線Y、点P、点Q、円
錐軌跡U、円錐軌跡J、軸線M、軸線L、R円面、S円
面、交差割線K、点Ka、点Kbの点、線、面の各関係
を設定する。
As a fourth solution, a ball center O, a radius r, a spherical surface G, an angle θ, an axis X, an axis Y, a point P, and a point Q are provided inside the housing 10 as in the solution 1. Conical locus U, conical locus J, axis M, axis L, R circular surface, S circular surface, intersecting secant K, point Ka, point Kb, line, surface are set.

【0027】そのように点、線、面の各関係を設定した
ハウジング10内において、そのハウジング10内壁面
を球面G同心の球面Gより大きい球面に形成し、且つX
軸線上のハウジング10対向壁に主軸受13を貫設す
る。その両主軸受13には、直軸状をなす回転主軸20
の両側軸頸を軸承させ、この回転主軸20の球心Oに位
置する中心部分にM軸線を連結軸線とするピン継手関節
55の円形体からなる軸央枢21を有する。
In the housing 10 in which the respective relationships of points, lines, and surfaces are set in this way, the inner wall surface of the housing 10 is formed into a spherical surface larger than the spherical surface G concentric spherical surface G, and X
A main bearing 13 is provided so as to extend through the axially opposed wall of the housing 10. The two main bearings 13 include a rotary spindle 20 having a straight shaft shape.
The shaft central shaft 21 is formed by a circular body of a pin joint joint 55 having the M axis as a connecting axis at the central portion of the rotary main shaft 20 which is located at the spherical center O of the rotary main shaft 20.

【0028】R円面上には、球面Gに摺接する外周面の
球弧面32とその球弧面32の弓形輪郭平面をなして前
記K軸線側を弦とする弓形面31とを有し、且つその弓
形面31の弦側に円柱状のピストン中間軸33を合体さ
せた略板状の回転ピストン30が前記回転主軸20を遊
挿させて配置される。この回転ピストン30の内部中央
に前記軸央枢21の円形体を受容するピストン枢35を
形成し、そのピストン枢35を軸央枢21にX軸線上の
回転主軸20を基軸として角度θ×2の範囲を揺動可能
に枢着させ、且つピストン中間軸33両端の前記点K
a、点Kb側に交差割線Kを関節の基軸線とする蝶番関
節50のピンか、又はピン受孔からなる連結素子を設け
る。
On the R-circular surface, there are provided an outer peripheral spherical arc surface 32 which is in sliding contact with the spherical surface G, and an arcuate surface 31 which forms an arcuate contour plane of the spherical arc surface 32 and has a chord on the K axis side. Further, a substantially plate-shaped rotary piston 30 in which a cylindrical piston intermediate shaft 33 is united on the chord side of the arcuate surface 31 is arranged with the rotary main shaft 20 being loosely inserted. A piston center 35 for receiving the circular body of the shaft center 21 is formed in the center of the inside of the rotary piston 30, and the piston center 35 is used as the center center 21 of the rotary main shaft 20 on the X-axis to form an angle θ × 2. Is pivotally attached in the range of the above-mentioned range, and the point K at both ends of the piston intermediate shaft 33 is
a, a connecting element composed of a pin of the hinge joint 50 or a pin receiving hole having the intersection secant K as the base axis of the joint is provided on the side of the point Kb.

【0029】そして、S円面上には、弓形面41とその
弓形面41の弓形輪郭面と弦側面42とを有し、且つ弓
形輪郭面に内周面側を一体構造に結合してハウジング1
0内壁面に回転可能に契合する環状の斜行板環43を外
周面として形成した円形板状の斜行板40が配置され、
尚その斜行板環43の点Ka、点Kbに位置する対向部
分に前記蝶番関節50の連結素子に対応する連結素子を
設けて嵌合させると、斜行板40と前記回転ピストン3
0が前記交差割線Kを蝶着の軸として角度θ×2範囲を
擺動可能に連結する。
On the S circle surface, there is an arcuate surface 41, an arcuate contour surface of the arcuate surface 41 and a chordal side surface 42, and the inner peripheral surface side is connected to the arcuate contour surface in an integral structure to form a housing. 1
A circular plate-shaped skew plate 40 formed with an annular skew plate ring 43 rotatably engaged with the 0 inner wall surface as an outer peripheral surface is arranged,
Incidentally, when a connecting element corresponding to the connecting element of the hinge joint 50 is provided and fitted at opposing portions located at the points Ka and Kb of the slanting plate ring 43, the slanting plate 40 and the rotary piston 3 are fitted.
0 connects the crossing secant K so as to be slidable in the range of the angle θ × 2 with the axis of the hinge.

【0030】また、斜行板環43を挟む両側の各々に球
面Gの内側面を有する凹面板の位相板56を組込み、且
つその位相板56の各々に点P上を貫通する位相板軸受
57を設けて回転主軸20を嵌挿させる。その上、位相
板56の外側面に位相板軸受57の孔を中心として外歯
傘歯車の位相板歯車58を取付け、回転主軸20の軸頸
にも外歯傘歯車の主軸歯車22を取付け、且つそれらに
噛み合う中間歯車54を介在させる。すると、S円面上
の斜行板40がハウジング10内の球面Gをなす内側凹
面を閉鎖して半球状空間の半月状作動室Haを形成し、
その半月状作動室HaをR円面上の回転ピストン30が
櫛形状空間をなす櫛形状作動室Fuに形成する。更に、
その櫛形状作動室Fuに臨ませて吸入孔Inと排出孔E
xとを設け、且つ燃焼室を窺って点火具Ig、或は燃料
噴射弁を挿着したことを特徴とする球形の回転ピストン
機関である。
A phase plate 56, which is a concave plate having an inner surface of a spherical surface G, is incorporated on each of both sides of the skew plate ring 43, and each of the phase plates 56 has a phase plate bearing 57 penetrating on the point P. Is provided and the rotary spindle 20 is fitted therein. Furthermore, the phase plate gear 58 of the external bevel gear is attached to the outer surface of the phase plate 56 around the hole of the phase plate bearing 57, and the main shaft gear 22 of the external bevel gear is also attached to the shaft neck of the rotary main shaft 20. In addition, the intermediate gear 54 that meshes with them is interposed. Then, the oblique plate 40 on the S circle surface closes the inner concave surface forming the spherical surface G in the housing 10 to form the half-moon-shaped working chamber Ha of the hemispherical space,
The half-moon-shaped working chamber Ha is formed in the comb-shaped working chamber Fu in which the rotary piston 30 on the R circular surface forms a comb-shaped space. Furthermore,
The suction hole In and the discharge hole E are made to face the comb-shaped working chamber Fu.
x is provided and an ignition tool Ig or a fuel injection valve is inserted and attached by checking the combustion chamber, and is a spherical rotary piston engine.

【0031】[0031]

【解決手段5】解決手段の五つ目として、上記解決手段
1と同様にハウジング10の内部において球心O、半径
r、球面G、角度θ、軸線X、軸線Y、点P、点Q、円
錐軌跡U、円錐軌跡J、軸線M、軸線L、R円面、S円
面、交差割線K、点Ka、点Kbの点、線、面の各関係
を設定する。
As a fifth solution, a ball center O, a radius r, a spherical surface G, an angle θ, an axis X, an axis Y, a point P, and a point Q are provided inside the housing 10 as in the case of the solution 1. Conical locus U, conical locus J, axis M, axis L, R circular surface, S circular surface, intersecting secant K, point Ka, point Kb, line, surface are set.

【0032】そのように点、線、面の各関係を設定した
ハウジング10内において、そのハウジング10内壁面
をY軸線に同心の球面Gより大きい回転面に形成してY
軸線上のハウジング10対向壁に主軸受13を貫設し、
そのハウジング10内には球面Gをなす内側面とY軸線
上の対向両側に軸止めした柄状の筺体軸71とを有する
球体状のZ軸筺体70を回転可能に嵌合させて筺体軸7
1を主軸受13に軸承させる。このZ軸筺体70には、
S円面の延長平面に沿った内部面の部分を周回する溝に
削成した軌道隙87とX軸線上の対向両側に転がり軸受
73とを設け、その転がり軸受73に直軸状をなす転が
り軸72の両軸頸を軸承させ、この転がり軸72の球心
Oに位置してM軸線を連結軸とするピン継手関節55の
円形体からなる軸央枢74を有する。
In the housing 10 in which the respective relations of points, lines, and surfaces are set in this way, the inner wall surface of the housing 10 is formed as a rotation surface larger than a spherical surface G concentric with the Y axis and Y is formed.
The main bearing 13 is pierced through the opposite wall of the housing 10 on the axis,
In the housing 10, a spherical Z-axis housing 70 having an inner side surface forming a spherical surface G and a handle-shaped housing shaft 71 that is axially fixed on opposite sides on the Y-axis is rotatably fitted to the housing shaft 7.
1 is supported on the main bearing 13. In this Z-axis housing 70,
An orbital gap 87 formed in a groove that circulates a portion of an inner surface along an extension plane of the S-circle and rolling bearings 73 provided on both sides facing each other on the X axis are provided, and the rolling bearing 73 has a straight-axis rolling shape. It has both axial necks of the shaft 72, and has an axial center 74 composed of a circular body of a pin joint joint 55 located at the spherical center O of the rolling shaft 72 and having the M axis as a connecting shaft.

【0033】前記Z軸筐体70内のR円面上には、球面
Gに摺接する外周面の球弧面32とその球弧面32の弓
形輪郭平面をなして前記K軸線側を弦とする弓形面31
とを有し、且つその弓形面31の弦側に円柱状のピスト
ン中間軸33を合体させた略板状の回転ピストン30が
前記転がり軸72を遊挿させて配置される。この回転ピ
ストン30の内部中央に前記軸央枢74の円形体を受容
するピストン枢35を形成し、そのピストン枢35を軸
央枢74にX軸線上の転がり軸72を基軸として角度θ
×2の範囲を揺動可能に枢着させ、且つピストン中間軸
33両端の前記点Ka、点Kb側に交差割線Kを関節の
基軸線とする蝶番関節50のピンか、又はピン受孔から
なる連結素子を設ける。
On the R circular surface inside the Z-axis housing 70, a spherical arc surface 32 of an outer peripheral surface which is in sliding contact with the spherical surface G and an arcuate contour plane of the spherical arc surface 32 are formed, and the K axis side is a chord. Bow surface 31
And a substantially plate-shaped rotary piston 30 having a cylindrical piston intermediate shaft 33 united with the arcuate surface 31 on the chord side thereof is disposed with the rolling shaft 72 loosely inserted. A piston center 35 for receiving the circular body of the shaft center 74 is formed at the center of the inside of the rotary piston 30, and the piston center 35 is used as the center center 74 with the rolling axis 72 on the X-axis as the base axis.
From the pin of the hinge joint 50 or the pin receiving hole which pivotally supports the range of × 2 and pivots on both ends of the piston intermediate shaft 33 at the points Ka and Kb with the intersecting secant K as the base axis of the joint. A connecting element is provided.

【0034】そして、Z軸筐体70内のS円面上には、
弓形面41とその弓形面41の弓形輪郭面と弦側面42
とを有し、且つ弓形輪郭面に内周面側を一体構造に結合
してZ軸筺体70の軌道隙87に回転可能に契合する環
状の斜行板環43を外周面として形成した円形板状の斜
行板40が配置され、尚その斜行板環43の点Ka、点
Kbに位置する対向部分に前記蝶番関節50の連結素子
に対応する連結素子を設けて嵌合させると、斜行板40
と前記回転ピストン30が前記交差割線Kを蝶着の軸と
して角度θ×2範囲を擺動可能に連結する。
Then, on the S circle surface in the Z-axis housing 70,
The arcuate surface 41, the arcuate contour surface of the arcuate surface 41, and the chord side surface 42.
And a circular plate having an arcuate contour surface, the inner peripheral surface side of which is integrally connected, and which is rotatably engaged with the track gap 87 of the Z-axis housing 70 as an outer peripheral surface. When a slanting plate 40 is arranged, and a connecting element corresponding to the connecting element of the hinge joint 50 is provided and fitted at opposing portions of the slanting plate ring 43 located at points Ka and Kb, the slanting plate 40 is slanted. Board 40
And the rotary piston 30 slidably connects the angle θ × 2 range with the intersecting secant K as the hinge axis.

【0035】その上、S円面を挟むハウジング10内の
対向両壁に固定した歯車の固定位相歯車14をY軸線同
心に刻設し、且つ前記転がり軸72軸頸端部に外歯歯車
の転がり歯車76を設けて固定位相歯車14に歯合させ
る。すると、S円面上の斜行板40が球面GをなすZ軸
筺体70の内側凹面を閉鎖して半球状空間の半月状作動
室Haを形成し、その半月状作動室HaをR円面上の回
転ピストン30が櫛形状空間をなす櫛形状作動室Fuに
形成する。更に、その櫛形状作動室Fuに臨ませて吸入
孔Inと排出孔Exとを設け、且つ燃焼室を窺って点火
具Ig、或は燃料噴射弁を挿着したことを特徴とする球
形の回転ピストン機関である。
In addition, fixed phase gears 14 of gears fixed to opposite walls in the housing 10 sandwiching the S circle surface are engraved concentrically with the Y axis, and the rolling shaft 72 has a neck end portion of an external gear. A rolling gear 76 is provided to mesh with the fixed phase gear 14. Then, the oblique plate 40 on the S-circle closes the inner concave surface of the Z-axis housing 70 forming the spherical surface G to form the half-moon-shaped working chamber Ha in the hemispherical space, and the half-moon-shaped working chamber Ha is formed into the R-circular surface. The upper rotary piston 30 forms a comb-shaped working chamber Fu that forms a comb-shaped space. Further, a spherical rotation characterized in that an intake hole In and an exhaust hole Ex are provided so as to face the comb-shaped working chamber Fu, and an ignition tool Ig or a fuel injection valve is inserted into the combustion chamber by inspection. It is a piston engine.

【0036】[0036]

【解決手段6】解決手段の六つ目として、上記解決手段
1と同様にハウジング10の内部において球心O、半径
r、球面G、角度θ、軸線X、軸線Y、点P、点Q、円
錐軌跡U、円錐軌跡J、軸線M、軸線L、R円面、S円
面、交差割線K、点Ka、点Kbの点、線、面の各関係
を設定する。
As a sixth solution, a spherical center O, a radius r, a spherical surface G, an angle θ, an axis X, an axis Y, a point P, and a point Q are provided inside the housing 10 as in the case of the above solution 1. Conical locus U, conical locus J, axis M, axis L, R circular surface, S circular surface, intersecting secant K, point Ka, point Kb, line, surface are set.

【0037】そのように点、線、面の各関係を設定した
ハウジング10内において、そのハウジング10内壁面
を球面G同心、又はY軸線同心の球面Gより大きい回転
面に形成してY軸線上のハウジング10対向壁に主軸受
13を設け、そのハウジング10内には球面Gをなす内
側面を有し、且つその内側面のS円面上に仕切り板状の
筺体斜行板61と、S円面を挟む対向面に円形凹みに欠
切形成した軸板室64と、その軸板室64の側壁中心部
に筺体軸受63とを有して回転可能に嵌合する球体状の
筺体60をY軸線を回転軸線として組入れる。また、両
側の主軸受13と筺体軸受63には、前記軸板室64の
各々と回転可能に嵌合する軸板24の各々をX軸線上の
連結棒26が連結してZ字形をなすZ軸23の両軸頸を
軸承させ、このZ軸23の球心Oに位置する連結棒26
の中心部分にM軸線を連結軸とするピン継手関節55の
円形体素子からなる枢結子88を外嵌する。
In the housing 10 in which the respective relationships of points, lines, and surfaces are set in this way, the inner wall surface of the housing 10 is formed as a spherical G concentric surface or a rotation surface larger than the Y-axis concentric spherical surface G and on the Y-axis. A main bearing 13 is provided on a wall opposite to the housing 10, and the housing 10 has an inner side surface forming a spherical surface G, and a partition plate-shaped housing skew plate 61 and S on the S circular surface of the inner side surface. A spherical housing 60 having a shaft plate chamber 64, which is formed by cutting out circular recesses on opposing surfaces sandwiching a circular surface, and a housing bearing 63 at the center of a side wall of the shaft plate chamber 64, is rotatably fitted to a spherical housing 60. Is incorporated as the axis of rotation. Further, in the main bearing 13 and the housing bearing 63 on both sides, each of the shaft plates 24 rotatably fitted in each of the shaft plate chambers 64 is connected by a connecting rod 26 on the X axis to form a Z-shaped Z axis. A connecting rod 26 that supports both shaft necks of 23 and is located at the spherical center O of the Z axis 23.
A pivot connector 88 formed of a circular body element of the pin joint joint 55 having the M axis as a connecting shaft is fitted on the central portion of the.

【0038】前記筐体60内のR円面上には、球面Gを
なす筺体60の内側面に摺接する外周面の球弧面32と
その球弧面32の弓形輪郭平面をなして前記K軸線側を
弦とする弓形面31とを有し、且つその弓形面31の弦
側に円柱状のピストン中間軸33を合体させた略板状の
回転ピストン30が前記Z軸23の前記連結棒26を挿
通させて配置される。この回転ピストン30の内部中央
に前記枢結子88の円形体素子を受容するピストン枢3
5を形成し、そのピストン枢35を枢結子88にX軸線
上の連結棒26を基軸として角度θ×2の範囲を揺動可
能に枢着させ、且つピストン中間軸33両端の前記点K
a、点Kb側に交差割線Kを関節の基軸線とする蝶番関
節50のピンか、又はピン受孔からなる連結素子を設け
る。
On the R circular surface inside the casing 60, a spherical arc surface 32 of an outer peripheral surface which is in sliding contact with the inner surface of the housing 60 forming a spherical surface G, and an arcuate contour plane of the spherical arc surface 32 are formed, and The connecting rod of the Z-axis 23 is a substantially plate-shaped rotary piston 30 that has an arcuate surface 31 having a chord on the axis side, and a cylindrical piston intermediate shaft 33 is integrated on the chord side of the arcuate surface 31. 26 is inserted and arranged. In the center of the inside of the rotary piston 30, a piston pivot 3 for receiving the circular body element of the pivot connector 88 is provided.
5, the piston pivot 35 is pivotally attached to the pivot connector 88 so as to be swingable in the range of the angle θ × 2 with the connecting rod 26 on the X-axis as the base axis, and the points K on both ends of the piston intermediate shaft 33.
a, a connecting element composed of a pin of the hinge joint 50 or a pin receiving hole having the intersection secant K as the base axis of the joint is provided on the side of the point Kb.

【0039】そして、筐体60内のS円面上には、弓形
面41とその弓形面41の弓形輪郭面と弦側面42とを
有する前記筺体斜行板61が、その弓形輪郭面を筺体6
0の内部面に固着させて一体構造に形成され、尚その筺
体60の点Ka、点Kb側に位置する対向部分に前記蝶
番関節50の連結素子に対応する連結素子を設けて嵌合
させると、筺体60内の筺体斜行板61と前記回転ピス
トン30が前記交差割線Kを蝶着の軸として角度θ×2
範囲を擺動可能に連結する。
Then, on the S-circular surface in the housing 60, the housing slanting plate 61 having an arcuate surface 41, an arcuate contour surface of the arcuate surface 41, and a chordal side surface 42, is formed by housing the arcuate contour surface. 6
When it is fixedly attached to the inner surface of 0 and is formed as an integral structure, a connecting element corresponding to the connecting element of the hinge joint 50 is provided and fitted to the opposing portion located on the side of the points Ka and Kb of the housing 60. An angle θ × 2 between the skewed plate 61 of the casing in the casing 60 and the rotary piston 30 with the intersecting secant K as the axis of the hinge.
The ranges are connected slidably.

【0040】その上、筺体60外部面に筺体軸受63孔
を中心として取付けた外歯傘歯車の筺体歯車62と、Z
軸23軸頸に取付けた外歯傘歯車のZ軸歯車27とを有
し、且つそれらに噛み合う中間歯車54を介在させる。
すると、S円面上の筺体斜行板61が筺体60内の球面
Gをなす内側凹面を閉鎖して半球状空間の半月状作動室
Haを形成し、その半月状作動室HaをR円面上の回転
ピストン30が櫛形状空間をなす櫛形状作動室Fuに形
成する。更に、その櫛形状作動室Fuに臨ませて吸入孔
Inと排出孔Exとを設け、且つ燃焼室を窺って点火具
Ig、或は燃料噴射弁を挿着したことを特徴とする球形
の回転ピストン機関である。
In addition, the external gear bevel gear housing gear 62 mounted on the outer surface of the housing 60 around the housing bearing 63 hole, and Z
The shaft 23 has a Z-axis gear 27, which is an externally toothed bevel gear attached to the shaft neck, and an intermediate gear 54 meshing with them is interposed.
Then, the housing oblique plate 61 on the S-circle closes the inner concave surface forming the spherical surface G in the housing 60 to form the half-moon-shaped working chamber Ha in the hemispherical space, and the half-moon-shaped working chamber Ha is formed into the R-circular surface. The upper rotary piston 30 forms a comb-shaped working chamber Fu that forms a comb-shaped space. Further, a spherical rotation characterized in that an intake hole In and an exhaust hole Ex are provided so as to face the comb-shaped working chamber Fu, and an ignition tool Ig or a fuel injection valve is inserted into the combustion chamber by inspection. It is a piston engine.

【0041】[0041]

【解決手段7】解決手段の七つ目として、上記解決手段
1と同様にハウジング10の内部において球心O、半径
r、球面G、角度θ、軸線X、軸線Y、点P、点Q、円
錐軌跡U、円錐軌跡J、軸線M、軸線L、R円面、S円
面、交差割線K、点Ka、点Kbの点、線、面の各関係
を設定する。
As a seventh solution, a ball center O, a radius r, a spherical surface G, an angle θ, an axis X, an axis Y, a point P, and a point Q are provided inside the housing 10 as in the case of the solution 1. Conical locus U, conical locus J, axis M, axis L, R circular surface, S circular surface, intersecting secant K, point Ka, point Kb, line, surface are set.

【0042】そのように点、線、面の各関係を設定した
ハウジング10内において、そのハウジング10内壁面
を球面G同心、又はY軸線同心の球面Gより大きい回転
面に形成してY軸線上のハウジング10対向壁に主軸受
13を設け、そのハウジング10内には球面Gをなす内
側面を有し、且つその内側面のS円面上に仕切り板状の
筺体斜行板61と、Y軸線が貫通する対向両側に筺体軸
受63とを有して回転可能に嵌合する球体状の筺体60
をY軸線を回転軸線として組入れる。また、両側の主軸
受13と筺体軸受63には、任意形状からなる軸腕25
の各々をX軸線上の連結棒26が連結してZ字形をなす
Z軸23の両軸頸を軸承させ、このZ軸23の球心Oに
位置する連結棒26の中心部分にM軸線を連結軸とする
ピン継手関節55の円形体素子からなる枢結子88を外
嵌する。
In the housing 10 in which the respective relationships of points, lines, and surfaces are set in this way, the inner wall surface of the housing 10 is formed as a spherical G concentric surface or a rotational surface larger than the Y-axis concentric spherical surface G and on the Y-axis. Is provided with a main bearing 13 on a wall facing the housing 10, and the housing 10 has an inner side surface that forms a spherical surface G, and a partition plate-like skewed board 61 on the S circular surface of the inner side surface, and Y. A spherical housing 60 having rotatably fitted housing bearings 63 on opposite sides through which the axis passes.
Is incorporated with the Y axis as the axis of rotation. Further, the main bearing 13 and the housing bearing 63 on both sides are provided with the shaft arm 25 having an arbitrary shape.
The connecting rods 26 on the X-axis are connected to each other to support both necks of the Z-axis 23 of the Z-axis 23, and the M-axis is attached to the central portion of the connecting rod 26 located at the spherical center O of the Z-axis 23. A pivot connector 88, which is a circular body element of the pin joint joint 55 serving as a connecting shaft, is externally fitted.

【0043】前記筐体60内のR円面上には、球面Gを
なす筺体60の内側面に摺接する外周面の球弧面32と
その球弧面32の弓形輪郭平面をなして前記K軸線側を
弦とする弓形面31とを有し、且つその弓形面31の弦
側に円柱状のピストン中間軸33を合体させた略板状の
回転ピストン30が前記軸腕25と前記連結棒26との
Z軸23の中間部分を挿通させて配置される。この回転
ピストン30の内部中央に前記枢結子88の円形体素子
を受容するピストン枢35を形成し、そのピストン枢3
5を枢結子88にX軸線上の連結棒26を基軸として角
度θ×2の範囲を揺動可能に枢着させ、且つピストン中
間軸33両端の前記点Ka、点Kb側に交差割線Kを関
節の基軸線とする蝶番関節50のピンか、又はピン受孔
からなる連結素子を設ける。
On the R circular surface inside the housing 60, a spherical arc surface 32 of the outer peripheral surface which is in sliding contact with the inner surface of the housing 60 forming the spherical surface G and an arcuate contour plane of the spherical arc surface 32 are formed, and the K A substantially plate-shaped rotary piston 30 having an arcuate surface 31 having a chord on the axis side and having a cylindrical piston intermediate shaft 33 joined to the chord side of the arcuate surface 31 is the shaft arm 25 and the connecting rod. An intermediate portion of Z axis 23 with respect to 26 is inserted and arranged. A piston center 35 for receiving the circular body element of the pivot connector 88 is formed in the center of the inside of the rotary piston 30, and the piston center 3 is formed.
5 is pivotally attached to the pivot 88 so as to be swingable in the range of the angle θ × 2 with the connecting rod 26 on the X-axis as the base axis, and the intersection secant K is provided on both ends of the piston intermediate shaft 33 at the points Ka and Kb. A pin of the hinge joint 50, which is the base axis of the joint, or a connecting element composed of a pin receiving hole is provided.

【0044】そして、筐体60内のS円面上には、弓形
面41とその弓形面41の弓形輪郭面と弦側面42とを
有する前記筺体斜行板61が、その弓形輪郭面を筺体6
0の内部面に固着させて一体構造に形成され、尚その筺
体60の点Ka、点Kb側に位置する対向部分に前記蝶
番関節50の連結素子に対応する連結素子を設けて嵌合
させると、筺体60内の筺体斜行板62と前記回転ピス
トン30が前記交差割線Kを蝶着の軸として角度θ×2
範囲を擺動可能に連結する。
On the S-circle inside the housing 60, the above-mentioned housing slanting plate 61 having an arcuate surface 41, an arcuate contour surface of the arcuate surface 41, and a chordal side surface 42, is formed by housing the arcuate contour surface. 6
When it is fixedly attached to the inner surface of 0 and is formed as an integral structure, a connecting element corresponding to the connecting element of the hinge joint 50 is provided and fitted to the opposing portion located on the side of the points Ka and Kb of the housing 60. An angle θ × 2 between the skewed plate 62 of the casing in the casing 60 and the rotary piston 30 with the intersecting secant K as the axis of the hinge.
The ranges are connected slidably.

【0045】その上、筺体60外部面に筺体軸受63孔
を中心として取付けた外歯傘歯車の筺体歯車62と、Z
軸23軸頸に取付けた外歯傘歯車のZ軸歯車27とを有
し、且つそれらに噛み合う中間歯車54を介在させる。
すると、S円面上の筺体斜行板61が球面Gをなす筺体
60の内側凹面を閉鎖して半球状空間の半月状作動室H
aを形成し、その半月状作動室HaをR円面上の回転ピ
ストン30が櫛形状空間をなす櫛形状作動室Fuに形成
する。更に、その櫛形状作動室Fuに臨ませて吸入孔I
nと排出孔Exとを設け、且つ燃焼室を窺って点火具I
g、或は燃料噴射弁を挿着したことを特徴とする球形の
回転ピストン機関である。
In addition, an external bevel gear housing gear 62 mounted on the outer surface of the housing 60 centering on a housing bearing 63 hole, and Z.
The shaft 23 has a Z-axis gear 27, which is an externally toothed bevel gear attached to the shaft neck, and an intermediate gear 54 meshing with them is interposed.
Then, the skew board 61 on the S-circle closes the inner concave surface of the housing 60 forming the spherical surface G, and the half-moon-shaped working chamber H of the hemispherical space.
a is formed, and the half-moon-shaped working chamber Ha is formed into a comb-shaped working chamber Fu in which the rotary piston 30 on the R circular surface forms a comb-shaped space. Further, the suction hole I is made to face the comb-shaped working chamber Fu.
n and the discharge hole Ex are provided, and the ignition chamber I
g, or a spherical rotary piston engine having a fuel injection valve inserted therein.

【0046】[0046]

【解決手段8】解決手段の八つ目として、上記解決手段
1と同様にハウジング10の内部において球心O、半径
r、球面G、角度θ、軸線X、軸線Y、点P、点Q、円
錐軌跡U、円錐軌跡J、軸線M、軸線L、R円面、S円
面、交差割線K、点Ka、点Kbの点、線、面の各関係
を設定する。
As an eighth solution, a ball center O, a radius r, a spherical surface G, an angle θ, an axis X, an axis Y, a point P, and a point Q are provided inside the housing 10 as in the solution 1. Conical locus U, conical locus J, axis M, axis L, R circular surface, S circular surface, intersecting secant K, point Ka, point Kb, line, surface are set.

【0047】そのように点、線、面の各関係を設定した
ハウジング10内において、そのハウジング10内壁面
を球面G同心、又はY軸線同心の球面Gより大きい回転
面に形成してX軸線上のハウジング10対向壁に主軸受
13を設け、そのハウジング10内には球面Gをなす内
側面を有し、且つS円面の延長平面に沿った内側の部分
を周回する溝に削成した軌道隙87と、X軸線が貫通す
る対向両側に筺体軸受83とを有して回転可能に嵌合す
る球体状の位相筺体80をX軸線を回転軸線として組入
れる。また、両側の主軸受13と筺体軸受83には、直
軸状をなす回転主軸20の両軸頸を軸承させ、この回転
主軸20の球心Oに位置する中心部分にM軸線を連結軸
とするピン継手関節55の円形体からなる軸央枢21を
有する。
In the housing 10 in which the respective relationships of points, lines, and surfaces are set in this way, the inner wall surface of the housing 10 is formed concentrically with the spherical surface G, or with a rotation surface larger than the spherical surface G concentric with the Y axis, and on the X axis. The main bearing 13 is provided on the opposite wall of the housing 10, and the inside surface of the housing 10 has a spherical surface G and is cut into a groove that encircles an inner portion along the extension plane of the S circle surface. A spherical phase housing 80 having a gap 87 and housing bearings 83 on opposite sides through which the X axis penetrates and rotatably fitted is incorporated with the X axis as the rotation axis. Further, the main bearing 13 and the housing bearing 83 on both sides support both shaft necks of the rotary spindle 20 having a straight shaft shape, and the M axis is connected to the connecting shaft with the central portion located at the ball center O of the rotary spindle 20. It has an axial center 21 which is a circular body of a pin joint joint 55.

【0048】前記位相筺体80内のR円面上には、球面
Gをなす位相筺体80の内側面に摺接する外周面の球弧
面32とその球弧面32の弓形輪郭平面をなして前記K
軸線側を弦とする弓形面31とを有し、且つその弓形面
31の弦側に円柱状のピストン中間軸33を合体させた
略板状の回転ピストン30が前記回転主軸20を挿通さ
せて配置される。この回転ピストン30の内部中央に前
記軸央枢21の円形体を受容するピストン枢35を形成
し、そのピストン枢35を軸央枢21にX軸線上の回転
主軸20を基軸として角度θ×2の範囲を揺動可能に枢
着させ、且つピストン中間軸33両端の前記点Ka、点
Kb側に交差割線Kを関節の基軸線とする蝶番関節50
のピンか、又はピン受孔からなる連結素子を設ける。
On the R-circular surface in the phase housing 80, a spherical arc surface 32 of an outer peripheral surface which is in sliding contact with the inner surface of the phase housing 80 forming a spherical surface G and an arcuate contour plane of the spherical arc surface 32 are formed. K
A substantially plate-shaped rotary piston 30 having an arcuate surface 31 having a chord on the axis side and having a cylindrical piston intermediate shaft 33 united on the chord side of the arcuate surface 31 is inserted through the rotary main shaft 20. Will be placed. A piston center 35 for receiving the circular body of the shaft center 21 is formed in the center of the inside of the rotary piston 30, and the piston center 35 is used as the center center 21 of the rotary main shaft 20 on the X-axis to form an angle θ × 2. Of the hinge joint 50, which is pivotally attached in the range of ∘, and whose intersection secant K is the joint base axis on the points Ka and Kb at both ends of the piston intermediate shaft 33.
A connecting element consisting of a pin or a pin receiving hole is provided.

【0049】そして、位相筺体80内のS円面上には、
弓形面41とその弓形面41の弓形輪郭面と弦側面42
とを有して弓形輪郭面に内周面側を固着させて一体構造
をなす環状の斜行板環43を外周に形成した円形板状の
斜行板40を配置する。その斜行板環43を前記軌道隙
72に回転可能に嵌合させると共に、その斜行板環43
の点Ka、点Kbに位置する対向部分に前記蝶番関節5
0の連結素子に対応する連結素子を設けて嵌合させる
と、斜行板40と前記回転ピストン30が前記交差割線
Kを蝶着の軸として角度θ×2範囲を擺動可能に連結す
る。
Then, on the S circle surface in the phase housing 80,
The arcuate surface 41, the arcuate contour surface of the arcuate surface 41, and the chord side surface 42.
A circular plate-shaped skew plate 40 having an annular skew plate ring 43 formed on the outer periphery and having an inner peripheral surface side fixed to the arcuate contour surface and having an integrated structure is disposed. The slanting plate ring 43 is rotatably fitted in the raceway gap 72, and the slanting plate ring 43 is
Of the hinge joint 5 at the facing portions located at points Ka and Kb of
When a connecting element corresponding to the connecting element of 0 is provided and fitted, the oblique plate 40 and the rotary piston 30 are connected so as to be slidable in the angle θ × 2 range with the intersecting secant K as the hinge axis.

【0050】その上、位相筺体80外側面に筺体軸受8
3孔を中心として取付けた外歯傘歯車の筺体歯車82
と、回転主軸20軸頸に取付けた外歯傘歯車の主軸歯車
22とを有し、且つそれらに噛み合う中間歯車54を介
在させる。すると、S円面上の斜行板40が球面Gをな
す位相筺体80の内側凹面を閉鎖して半球状空間の半月
状作動室Haを形成し、その半月状作動室HaをR円面
上の回転ピストン30が櫛形状空間をなす櫛形状作動室
Fuに形成する。更に、その櫛形状作動室Fuに臨ませ
て吸入孔Inと排出孔Exとを設け、且つ燃焼室を窺っ
て点火具Ig、或は燃料噴射弁を挿着したことを特徴と
する球形の回転ピストン機関である。
In addition, the housing 8 is provided on the outer surface of the phase housing 80.
External gear bevel gear housing gear 82 mounted around three holes
And the main spindle gear 22 of the external bevel gear attached to the rotary main spindle 20 shaft neck, and the intermediate gear 54 meshing with them is interposed. Then, the oblique plate 40 on the S-circle closes the inner concave surface of the phase housing 80 forming the spherical surface G to form the half-moon-shaped working chamber Ha in the hemispherical space, and the half-moon-shaped working chamber Ha is located on the R-circle. The rotary piston 30 is formed in the comb-shaped working chamber Fu forming a comb-shaped space. Further, a spherical rotation characterized in that an intake hole In and an exhaust hole Ex are provided so as to face the comb-shaped working chamber Fu, and an ignition tool Ig or a fuel injection valve is inserted into the combustion chamber by inspection. It is a piston engine.

【0051】[0051]

【共通の解決手段1】前記解決手段1乃至8の構成にお
いて、前記回転ピストン30は対向両側に前記球弧面3
2,32と両側の表裏に前記弓形面31,31、31,
31とを有する二つの弓形板の弦側面に、前記ピストン
中間軸33を介在合体させて円形状板に形成されると共
に、前記S円面上の前記斜行板40がハウジング10内
を両側に隔てるか、又は前記筺体斜行板61が前記筺体
60内を両側に隔てるかして球面Gをなす互いの凹面を
対面させた前記半月状作動室Ha,Haを形成し、その
半月状作動室Ha,Haの各々を前記R円面上の回転ピ
ストン30が二つずつの前記櫛形状作動室Fu,Fu、
Fu,Fuに形成する。
[Common Solution Means 1] In the structure of the solution means 1 to 8, the rotary piston 30 has the spherical arc surface 3 on opposite sides thereof.
2, 32 and the arcuate surfaces 31, 31, 31, on both sides
31 is formed into a circular plate by interposing the piston intermediate shaft 33 on the chordal side surfaces of two arcuate plates having 31 and, and the oblique plates 40 on the S circular surface are formed on both sides inside the housing 10. The crescent-shaped working chambers Ha and Ha are formed by facing each other with concave surfaces forming a spherical surface G by separating the crooked plates 61 from each other or by separating the inside of the casing 60 on both sides. Each of Ha and Ha has the comb-shaped working chamber Fu, Fu in which two rotary pistons 30 on the R circular surface are provided,
Formed on Fu and Fu.

【0052】[0052]

【共通の解決手段2】又は、前記解決手段1乃至8の構
成において、前記回転ピストン30は前記S円面を跨ぐ
半球面より大きい前記球弧面32とK軸線を挟む同一平
面上の両側に前記弓形面31,31とを有し、その弓形
面31,31間に前記ピストン中間軸33を介在合体さ
せて半球状の略円形板に形成されると共に、S円面上の
前記斜行板40がハウジング10内を両側に隔てるか、
又は前記筺体斜行板61が前記筺体60内を両側に隔て
るかして球面Gをなす互いの凹面を対面させた前記半月
状作動室Ha,Haを形成し、その半月状作動室Ha,
Haの互いを前記R円面上の回転ピストン30が前記櫛
形状作動室Fu,Fuに形成する。
[Common Solution Means 2] Alternatively, in the configuration of the solution means 1 to 8, the rotary piston 30 is provided on both sides on the same plane sandwiching the K-axis with the spherical arc surface 32 larger than a hemispherical surface straddling the S circle surface. The arcuate surfaces 31 and 31 are formed into a semi-spherical substantially circular plate by interposing the piston intermediate shaft 33 between the arcuate surfaces 31 and 31, and the oblique plate on the S circular surface is formed. 40 divides the inside of the housing 10 on both sides,
Alternatively, the skewed plate 61 of the housing divides the inside of the housing 60 on both sides to form the half-moon-shaped working chambers Ha, Ha in which concave surfaces forming a spherical surface G face each other, and the half-moon-shaped working chamber Ha,
The rotating pistons 30 on the R-circle form the respective Has in the comb-shaped working chambers Fu, Fu.

【0053】[0053]

【共通の解決手段3】又は、前記解決手段1乃至8の構
成において、前記回転ピストン30はK軸線を挟む両側
の何れか一方側に前記球弧面32と表裏の前記弓形面3
1,31とを有する弓形板の弦側面に前記ピストン中間
軸33を合体させて略半円板に形成されると共に、S円
面上の前記斜行板40がハウジング10内の球面Gをな
す凹面を密閉するか、又は前記筺体斜行板61が前記筺
体60内の球面Gをなす凹面を密閉するかして前記半月
状作動室Haを形成し、その半月状作動室Haを前記R
円面上の回転ピストン30が二つの前記櫛形状作動室F
u,Fuに形成する。
[Common Solution Means 3] Alternatively, in the configuration of the solution means 1 to 8, the rotary piston 30 has the spherical arc surface 32 and the arcuate surface 3 on the front and back sides on either side of the K axis.
The piston intermediate shaft 33 is united with the chordal side of an arcuate plate having the numbers 1 and 31 to form a substantially semicircular plate, and the oblique plate 40 on the S circular surface forms a spherical surface G in the housing 10. The half-moon-shaped working chamber Ha is formed by sealing the concave surface or by sealing the concave surface forming the spherical surface G in the housing 60 by the diagonal plate 61 of the housing.
The rotary piston 30 on the circular surface has two comb-shaped working chambers F.
It is formed in u and Fu.

【0054】[0054]

【幾何学的構成】本発明は、相互に関係する点、線、面
の幾何学的構成の幾何図形上において成り立つ基本的構
造の特質と作動原理とを有する。以下、幾何図形上にお
ける構造原理と作動形態を図面を参照して説明する。
Geometrical Structure The present invention has the characteristics and operating principle of the basic structure which is established on the geometrical structure of the geometrical structure of the points, lines and surfaces which are related to each other. Hereinafter, a structural principle and an operation mode on a geometrical figure will be described with reference to the drawings.

【0055】まず、本発明の球形の回転ピストン機関を
規定する相互関係の図形を前述した解決手段1乃至3と
解決手段5乃至7においては図1に示し、解決手段4と
8においては図18に示すと、球心Oをハウジング10
の中心として半径rの球面Gを有し、角度θをなし球心
Oにおいて交差する二つの直線のそれぞれをX軸線、Y
軸線とし、そのX軸線が球面Gに交わる点を点Pとし、
またY軸線が球面Gに交わる点を点Qとし、その点P、
点Q間を底面の直径として球心Oを頂点とする円錐形の
軌跡を円錐軌跡Uとし、更に点P,Q間を底面直径の半
分として球心Oを頂点とする円錐形の軌跡を円錐軌跡J
とし、また球心OにおいてX軸線に直交する軸直線をM
軸線とし、そしてX軸線に水平面をなしてその直径線分
の軸線Lを自転軸とする球面G内の大円平面をR円面と
し、且つY軸線を鉛直軸線として球面G内に球心Oを通
って形成される大円平面をS円面とし、そのR円面とS
円面とが球心Oにおいて交差し、且つM軸線の垂線をな
す交差割線を軸線Kとし、その交差割線Kの両端を点K
a、点Kbとし、そのように点、線、面の各関係を設定
する。
First, the relationship diagram defining the spherical rotary piston engine of the present invention is shown in FIG. 1 in the solving means 1 to 3 and the solving means 5 to 7, and in FIG. 18 in the solving means 4 and 8. As shown in FIG.
Has a spherical surface G with a radius r as the center of the X axis, forms an angle θ, and intersects two straight lines at the spherical center O with the X-axis line and the Y-axis line, respectively.
An axis is defined as a point, and a point where the X axis intersects the spherical surface G is defined as a point P,
The point where the Y axis intersects the spherical surface G is defined as point Q, and the point P,
A conical locus with a diameter of the bottom surface between the points Q and the apex of the spherical center O is defined as a conical locus U, and a point between the points P and Q is a half of the diameter of the bottom surface and a conical locus with the apex of the spherical center O is a conical shape. Trail J
And the axis line orthogonal to the X axis at the center O of the ball is M
A great circle plane within a spherical surface G having an axis line and a horizontal plane along the X axis line with the axis L of the diameter segment as the axis of rotation is the R circle surface, and the Y axis line is the vertical axis line. Let the great circle plane formed through the circle be an S circle, and the R circle and S
An axis K is defined as an intersecting secant that intersects the circle surface at the spherical center O and is perpendicular to the M axis, and both ends of the intersecting secant K are designated as points K.
a and a point Kb, and the respective relationships of the point, the line, and the surface are set in this way.

【0056】そして、図1、及び図18におけるX軸線
とY軸線とを共に固定した位置の定位な軸線と見なして
X,Y軸線に同時に同速、同方向の回転を与えると、Y
軸線の垂直平面であるS円面は、Y軸線を回転軸として
その位相を保持したまま転回するが、そのS円面にK軸
線上で蝶着交差し、且つX軸線にM軸線を連結基軸線と
して連結するR円面は、X軸線上を(θ×2)範囲を反
転往復しながら表裏を入れ替える回転をする。即ち、S
円面の回転に伴ってR円面の自転軸Lは、X,Y軸線上
の点P,Q間を底面直径として球心Oを頂点とする円錐
形の側面円周を、その円錐母線が周回する前記円錐軌跡
U上を自転しながら旋回する。
When the X-axis and the Y-axis in FIGS. 1 and 18 are both regarded as the localization axis at a fixed position, the X and Y axes are simultaneously rotated at the same speed and in the same direction.
The S-circle, which is the vertical plane of the axis, turns around the Y-axis as a rotation axis while maintaining its phase, but it intersects with the S-circle on the K-axis and the M-axis is connected to the X-axis. The R circular surface connected as a line is rotated so as to switch the front and back while reciprocating in the range of (θ × 2) on the X axis. That is, S
With the rotation of the circular surface, the rotation axis L of the R circular surface has a conical side surface whose conical generatrix has a conical side circumference with a spherical center O as an apex with a bottom diameter between points P and Q on the X and Y axes. It turns while rotating on the above-mentioned circular conical locus U.

【0057】その円錐軌跡U上を回転するR円面の自・
公転を一次回転Poとすると、R円面はその自転90度
分の転回において自転軸LがX軸線上から円錐軌跡Uの
半円分を公転してY軸線上に移動し、更に90度分の自
転においてそのY軸線上から円錐軌跡Uの残りの半円軌
跡を描いて元のX軸線上に戻る。即ち、R円面の自転軸
Lが円錐軌跡Uの円周分を公転すれば、その1公転に伴
ってR円面は180度分の自転をして表裏を替える。更
に、円錐軌跡U上をR円面の自転軸Lが1周回して合わ
せて2公転すると、R円面は1回転分の自転をして表裏
を元に戻す。
The self of the R circle rotating on the conical locus U
When the revolution is the primary rotation Po, the rotation axis L of the R circular surface revolves a semicircle of the conical locus U from the X-axis line to the Y-axis line in the rotation of 90 ° of the rotation, and further 90 degrees. In the rotation of, the remaining semicircular locus of the conical locus U is drawn from the Y-axis line to return to the original X-axis line. That is, if the rotation axis L of the R circle surface revolves around the circumference of the conical locus U, the R circle surface will rotate by 180 degrees and the front and back will be changed in association with the one revolution. Further, when the rotation axis L of the R circular surface makes one revolution on the conical locus U and makes two revolutions, the R circular surface rotates for one rotation and returns the front and back sides.

【0058】その一次回転PoにおけるR円面の自転軸
線Lと交差割線Kとは球心Oにおいて常に直交し、交差
するR円面とS円面間の間隙はR円面の自転軸LとX軸
線とが重なった時に創出されるR,S円面の交差角度に
おいて、(90+θ)角度を有する鈍角の対頂角側が最
大の間隙範囲(図1、図18の空間B,D)となり、
(90−θ)角度を有する鋭角の対頂角側が最小の間隙
範囲(図1、図18の空間A,C)であるが、R円面と
S円面とが交差割線Kを蝶着の軸として互いの半回転で
接近し、次の半回転で離間し、その1回転毎において近
付いたり離れたりを組とする離合を繰り返す。
The rotation axis L of the R circle surface and the intersecting secant K in the primary rotation Po are always orthogonal to each other at the spherical center O, and the gap between the intersecting R circle surface and S circle surface is the rotation axis L of the R circle surface. In the intersection angle of the R and S circles created when the X axis line overlaps, the maximum gap range (spaces B and D in FIGS. 1 and 18) is the vertical angle side of the obtuse angle having the (90 + θ) angle.
The minimum gap range (spaces A and C in FIG. 1 and FIG. 18) is on the side of the vertical angle of the acute angle having the (90−θ) angle, but the R circle surface and the S circle surface have the intersection secant K as the axis of the hinge. They approach each other by half a rotation and separate from each other by the next half rotation, and each time the rotation is repeated, the separation and engagement in which the pair approaches and separates is repeated.

【0059】また、球面GとR円面とS円面とで囲われ
て密閉された空間A,B,C,Dをみると、図1、及び
図18の空間Aは収縮して空間Bは拡張し、空間Cは収
縮していて空間Dは拡張している。それが図2,3、及
び図19,20の方向に回転が進行すると、空間Aは拡
張して空間Bは収縮して行き、空間Cは拡張して空間D
は収縮して行く。つまり、空間Aが拡張すると空間Bは
収縮し、空間Cが拡張すると空間Dは収縮をすると共
に、空間Aの拡張に対して空間Dが収縮し、空間Bの収
縮に対して空間Cが拡張をする関係にある。従って、空
間AとBは互いの体積の増減を反比例に変化させて対を
なし、空間CとDも互いの体積の増減を反比例に変化さ
せて対偶し、空間AとC、空間BとDは互いの体積変化
を正比例させる順と逆の関係にある。
Looking at the spaces A, B, C, and D enclosed by the spherical surface G, the R circular surface, and the S circular surface, the space A in FIG. 1 and FIG. Is expanded, the space C is contracted, and the space D is expanded. When the rotation progresses in the directions of FIGS. 2 and 3 and FIGS. 19 and 20, the space A expands and the space B contracts, and the space C expands and the space D expands.
Contracts. That is, when the space A expands, the space B contracts, and when the space C expands, the space D contracts. At the same time, the space D contracts as the space A expands, and the space C expands as the space B contracts. Have a relationship to Therefore, the spaces A and B are changed in inverse proportion to each other to form a pair, and the spaces C and D are also changed in inverse proportion to each other to be paired, and the spaces A and C and the spaces B and D are combined. Has the inverse relationship to the order in which the mutual volume changes are directly proportional.

【0060】そこで、図1乃至図13に示す上記解決手
段1乃至3と上記解決手段5乃至7においてはX軸線が
Y軸線を中心軸としてY軸線の廻りを、又は図18乃至
図30に示す上記解決手段4と8においてはY軸線がX
軸線を中心軸としてX軸線の廻りを、何れも角度θを保
持したまま一次回転Poの逆方向に前記円錐軌跡J上を
旋回する二次回転Neを一次回転Poと同時に与える。
すると、その順逆の回転をする正逆回転の比によって、
一次回転Poの1回転につき二次回転Neが1回転を含
む1回転以上の任意回数分を回転するか、又は二次回転
Neの1回転につき一次回転Poが1回転を含む1回転
以上の任意回数分を回転するかし、円錐軌跡U自体も二
次回転Ne方向に回転する。
Therefore, in the solving means 1 to 3 and the solving means 5 to 7 shown in FIGS. 1 to 13, the X axis is shown around the Y axis with the Y axis as the central axis, or in FIGS. 18 to 30. In the above solving means 4 and 8, the Y axis is X.
A secondary rotation Ne that turns on the conical locus J in the opposite direction of the primary rotation Po while maintaining the angle θ around the axis is provided at the same time as the primary rotation Po.
Then, according to the ratio of forward and reverse rotations that rotate in the reverse direction,
The secondary rotation Ne rotates one or more times including one rotation for one rotation of the primary rotation Po, or any one or more rotations including one rotation of the primary rotation Po for one rotation of the secondary rotation Ne. Whether or not it rotates the number of times, the conical locus U itself also rotates in the secondary rotation Ne direction.

【0061】或は又、上記解決手段1乃至3と上記解決
手段5乃至7においてはX軸線がY軸線を中心軸として
Y軸線の廻りを、又は上記解決手段4,8においてはY
軸線がX軸線を中心軸としてX軸線の廻りを、何れも角
度θを保持したまま一次回転Poの回転方向と同一方向
に前記円錐軌跡J上を旋回する二次回転Neを一次回転
Poと同時に与える。すると、互いが同一方向に回転は
するが、互いの回転速度が異なる一次、二次回転Po,
Neの順転比によって、一次回転Poの1回転につき二
次回転Neが3回転以上の任意回数分を回転するか、又
は二次回転Neの1回転につき一次回転Poが3回転以
上の任意回数分を回転するかし、円錐軌跡U自体も二次
回転Ne方向に回転する。
Alternatively, in the solving means 1 to 3 and the solving means 5 to 7, the X axis is around the Y axis with the Y axis as the central axis, or in the solving means 4 and 8 is Y.
The secondary rotation Ne, which turns on the conical locus J in the same direction as the rotation direction of the primary rotation Po while keeping the angle θ around the X axis as the central axis, simultaneously with the primary rotation Po. give. Then, the primary and secondary rotations Po, which rotate in the same direction but have different rotational speeds,
Depending on the forward rotation ratio of Ne, the secondary rotation Ne rotates 3 times or more per one rotation of the primary rotation Po, or the primary rotation Po rotates 3 or more times per rotation of the secondary rotation Ne. Whether or not the minute is rotated, the conical locus U itself is also rotated in the secondary rotation Ne direction.

【0062】以上のように本発明の球形の回転ピストン
機関には、一次回転Poと二次回転Neとが順逆の回転
をする正逆回転の形態と、その正逆回転に対置して一次
回転Poと二次回転Neが同方向に回転する順転同士の
形態とがある。而も、その正逆回転の形態と順転同士の
形態の各々は、一次回転Poと二次回転Neとの速度比
の変更が可能であるが、二次回転Neの回転比が一次回
転Poよりも高い正逆回転の形態〔正逆回転(形態6,
7及び形態2,3,4の各実施例)〕と、一次回転Po
の回転比が二次回転Neよりも高い正逆回転の形態〔正
逆回転(形態5,8及び形態1,2,4の各実施例)〕
と、一次回転Poと二次回転Neとが同一方向に回転す
る順転同士の形態〔順転(形態1乃至8の各実施例)〕
とは後述において補足することにし、以下一次回転Po
と二次回転Neとの回転比が等しい正逆回転の形態に基
づいて詳しく述べる。
As described above, in the spherical rotary piston engine of the present invention, the primary rotation Po and the secondary rotation Ne rotate in the forward and reverse directions, and the primary rotation in confrontation with the forward and reverse rotation. There is a form of forward rotation in which Po and the secondary rotation Ne rotate in the same direction. In addition, in each of the normal rotation mode and the forward rotation mode, the speed ratio between the primary rotation Po and the secondary rotation Ne can be changed, but the rotation ratio of the secondary rotation Ne is the primary rotation Po. Higher forward / reverse rotation (forward / reverse rotation (form 6,
7 and embodiments 2, 3, and 4)], and the primary rotation Po
Of normal / reverse rotation having a higher rotation ratio than the secondary rotation Ne (forward / reverse rotation (Embodiments of forms 5 and 8 and forms 1, 2 and 4))
And a mode of forward rotation in which the primary rotation Po and the secondary rotation Ne rotate in the same direction [forward rotation (each embodiment of modes 1 to 8)]
Will be supplemented in the following description, and the primary rotation Po will be described below.
Will be described in detail based on the form of forward / reverse rotation in which the rotation ratio of the secondary rotation Ne is equal.

【0063】[0063]

【幾何図形上の作動原理1】この幾何図形上の作動原理
1は、上記解決手段1,2,3,5,6,7の何れかの
構成である。上述した一次回転Poの逆向き回転をする
二次回転Neにおいては、図1乃至図13に示すように
Y軸線が固定された位置で回転する定位軸線であり、X
軸線がY軸線の周囲を旋回する浮動の可動軸線である。
[Operational principle 1 on geometrical figure] The operational principle 1 on geometrical figure is any one of the above-mentioned solving means 1, 2, 3, 5, 6, 7. In the above-described secondary rotation Ne that rotates in the opposite direction of the primary rotation Po, the Y axis is a localization axis that rotates at a fixed position as shown in FIGS.
The axis is a floating movable axis that orbits around the Y axis.

【0064】従って、この幾何図形上の作動原理1で
は、正逆回転の一次、二次回転Po,Neが合成されて
もY軸線を回転軸とするS円面が常に位相を変えずに回
転し、R円面がX軸線上を水平方向に(θ×2)範囲を
反復しながら回転する。即ち、R円面はS円面に対して
離合を伴った回転をするもので、その離合は交差割線K
を蝶着の軸としてS円面を擺動の対向面とするR円面の
擺動によって生じ、そのR円面の擺動がR,S円面の2
面間に存在する間隙を変化させ、その間隙変化がそのま
ま空間A,B,C,Dの容積大小の変化となる。
Therefore, according to the operating principle 1 on this geometrical figure, even if the forward and reverse rotation primary and secondary rotations Po and Ne are combined, the S circle surface having the Y axis as the rotation axis always rotates without changing the phase. Then, the R circle surface rotates in the horizontal direction on the X axis while repeating the range of (θ × 2). That is, the R circle surface rotates with respect to the S circle surface, and the separation is performed by the intersection secant K.
Is caused by the swing of the R circle surface with the S circle surface as the opposing surface of the swing movement, with the swing of the R circle surface as 2 of the R and S circle surfaces.
The gap existing between the surfaces is changed, and the change in the gap directly changes the volume of the spaces A, B, C, and D.

【0065】その図形の動きを基準とするX軸線の回転
から説明すると、図14、及び図15に示す一次回転P
oは、図14(イ)のX軸線に与える矢印方向の回転が
球心OにおいてX軸線と十字に交差するM軸線を回転さ
せる。すると、M軸線を中心の鉛直軸とするX軸線上の
R円面が、図14(イ)から(ロ)、(ハ)の順に自転
軸Lを回転軸として球心Oを頂点、点P,Q間を底面直
径とする円錐軌跡U上を転回し、そのR円面の回転に伴
って軸線Kで連結交差するS円面がY軸線を回転軸とし
てR円面の回転方向に連動する。即ち、R円面は半回転
につき自らの自転軸Lを図14(イ)に示すX軸線上か
ら(ロ)と(ハ)、(ニ)に示すY軸線上を経て、更に
(ホ)、(ヘ)と図15(ト)に示すX軸線上に戻る角
度θ分の円錐軌跡U上の円周を1周回し、1回転で2θ
分の2周回をする。
Explaining from the rotation of the X-axis based on the movement of the figure, the primary rotation P shown in FIG. 14 and FIG.
o rotates the M-axis line that crosses the X-axis line at the spherical center O in the direction of the arrow given to the X-axis line of FIG. Then, the R circular surface on the X axis centered on the vertical axis of the M axis is the spherical center O as the apex and the point P as the apex with the rotation axis L as the rotation axis in the order of FIG. , Q is rotated on a conical locus U having a bottom diameter between them, and as the R circle rotates, the S circle that intersects and intersects with the axis K interlocks with the rotation direction of the R circle with the Y axis as the rotation axis. . That is, the R-circle of the half circle rotates its own rotation axis L from the X-axis line shown in FIG. 14 (a) to (b) and (c), the Y-axis line shown in (d), and then (e), (F) and FIG. 15 (g), the circle on the conical locus U corresponding to the angle θ returning to the X-axis line is rotated once, and one rotation is 2θ.
2 laps per minute.

【0066】その時、R円面は直交するM軸線とK軸線
との十字軸線を有してX軸線とS円面の中間に位置し、
そのX軸線とS円面とに連結して連動するが、R円面の
自転軸Lは図14(イ)に示すようにX軸線にK軸線が
直交する時にはX軸線上にあって(ニ)に示すようにY
軸線にM軸線が直交する時にはY軸線上にある。結局、
R円面はX軸線上を半回転で角度θ分を水平方向に反転
揺動して1回転で2θ範囲分を往復する前述の一次回転
Poをする。また、角度θはX,Y軸線間の鋭角側にで
きる交差角度であると共に、X軸線の回転に伴うM軸線
の回転面とS円面との鋭角側の開角度でもある。
At that time, the R circle plane is located in the middle of the X axis plane and the S circle plane with the cross axis line of the M axis line and the K axis line orthogonal to each other.
The X axis and the S circle surface are linked and interlocked, but the rotation axis L of the R circle surface is on the X axis line when the K axis line is orthogonal to the X axis line as shown in FIG. ) As shown in Y
When the M axis is orthogonal to the axis, it is on the Y axis. After all,
The R circular surface makes a half rotation on the X-axis and reversely oscillates by an angle θ in the horizontal direction, and performs the above-described primary rotation Po that reciprocates within the 2θ range in one rotation. Further, the angle θ is an intersection angle formed on the acute angle side between the X and Y axis lines, and is also an open angle on the acute angle side between the rotation surface of the M axis line and the S circle surface due to the rotation of the X axis line.

【0067】次に、そのようにX軸線を基準として一次
回転PoをするR,S円面と各関係の全体分に、Y軸線
を回転軸として一次回転Poの逆方向に回転する二次回
転Neを一次回転Poと同時に与える。その時、正逆回
転比を例えば1:1(1/1〜分子が正回転の一次回転
Po、分母が逆回転である二次回転Neを示す)に設定
すれば、図14(イ)を起点として一次回転Poをする
R円面とS円面とが、(90度−θ)の最小間隙から半
回転して(ロ)乃至(ヘ)を経て図15(ト)に示す
(90度+θ)の最大間隙となるべきY軸線の回転角位
置を、その図15(ト)より90度分を後退させた一
次、二次回転Po,Neの正逆回転を示す図7において
なされる。
Then, the secondary rotation which rotates in the opposite direction of the primary rotation Po with the Y axis as the axis of rotation for the whole of each relation with the R and S circles which make the primary rotation Po with the X axis as the reference. Ne is given simultaneously with the primary rotation Po. At that time, if the forward / reverse rotation ratio is set to, for example, 1: 1 (1/1 to the numerator indicate the forward rotation primary rotation Po, and the denominator indicates the secondary rotation Ne that is the reverse rotation), FIG. As shown in FIG. 15G, (90 degrees + θ) is shown in FIG. 15G after the R and S circles that perform the primary rotation Po as shown in FIG. The rotation angle position of the Y-axis line which should be the maximum gap of (4) is set in FIG. 7 which shows the forward and reverse rotations of the primary and secondary rotations Po and Ne, which are set back by 90 degrees from that of FIG.

【0068】つまり、Y軸線を回転軸として一次回転P
oの逆転をさせる二次回転NeはR円面の位相は変える
がR円面に回転はさせず、正逆回転比が1:1(1/
1)における半回転(180度)毎にR円面とS円面と
の間隙を最小から最大に、若しくは最大から最小へと変
化させる。従って、一次回転PoのみではY軸線の1回
転につきR,S円面の間隙変化が1増1減の1往復であ
るのに対し、図1から図2乃至図12を経て図13の順
に示すように、正逆回転比1:1(1/1)の二次回転
Neを加えると、Y軸線の半回転にR,S円面の間隙変
化が1増1減の1往復分をする。そして更に、その図1
3のY軸線を回転方向に半回転させると、再びR,S円
面の間隙が1増1減の1往復分をして元の図1に戻る。
That is, the primary rotation P with the Y axis as the axis of rotation
The secondary rotation Ne for reversing o changes the phase of the R circle surface but does not rotate the R circle surface, and the forward / reverse rotation ratio is 1: 1 (1 /
The gap between the R circle surface and the S circle surface is changed from the minimum to the maximum or from the maximum to the minimum every half rotation (180 degrees) in 1). Therefore, in the case of only the primary rotation Po, the change in the gap between the R and S circular surfaces is one reciprocation of 1 increment and decrement per revolution of the Y-axis, whereas it is shown in the order of FIG. 13 from FIG. 1 to FIG. 2 to FIG. As described above, when the secondary rotation Ne having the forward / reverse rotation ratio of 1: 1 (1/1) is added, the change in the gap between the R and S circles corresponds to one reciprocation for one half rotation of the Y axis. And, furthermore, the figure 1
When the Y-axis of 3 is rotated a half turn in the rotation direction, the gap between the R and S circular surfaces makes one reciprocation of 1 increase / decrease and returns to the original FIG.

【0069】即ち、正逆回転比1:1(1/1)の二次
回転Neを加えたY軸線の1回転におけるR,S円面の
間隙変化は2増2減の2往復分である。その時、一次回
転PoにおけるR,S円面の間隙変化の過程を示す図1
4(イ)乃至(ヘ)と図15(ト)乃至(ヲ)は、一次
回転Poと二次回転Neとの複合回転におけるR,S円
面の間隙変化の過程を示す図1乃至図12に対比し、正
逆回転を示す図13は一次回転Poの図14(イ)に再
び符合する。
That is, the change in the gap between the R and S circles in one rotation of the Y-axis including the secondary rotation Ne of the forward / reverse rotation ratio of 1: 1 (1/1) is 2 reciprocations of 2 increases and 2 decreases. . At that time, FIG. 1 showing the process of changing the gap between the R and S circular surfaces in the primary rotation Po.
FIGS. 4 (a) to (f) and FIGS. 15 (g) to 15 (w) show the process of changing the gap between the R and S circular surfaces in the combined rotation of the primary rotation Po and the secondary rotation Ne. 13 showing the forward and reverse rotation again corresponds to FIG. 14A of the primary rotation Po.

【0070】本発明における幾何図形上の作動原理1で
は、この順逆の回転におけるR,S円面間の間隙変化を
作動室Fuの行程体積、いわゆる気室空間の容積変化に
置き換えて各気室A,B,C,Dの各行程とし、その容
積を増減させることによってX軸線上の転がり軸72
(解決手段1,5)、又は枢結子88(解決手段2,
3,6,7)とK軸線上のピストン中間軸33上におい
て交差するR,S円面上の回転ピストン30と斜行板4
0(解決手段1,2,3,5)、又は筺体斜行板61
(解決手段6,7)を回転させると共に、出力軸として
装着するY軸線上のZ軸23(解決手段1,2,3,
6,7)、又は筺体軸71(解決手段5)を回転させよ
うとするものである。尚、この場合の正逆回転における
(正)は一次回転Poをする回転ピストン30と斜行板
40(解決手段1,2,3,5)、又は回転ピストン3
0と筐体60(解決手段6,7)の回転を示し、(逆)
は二次回転NeをするZ軸23(解決手段1,2,3,
6,7)、又はZ軸筺体70(解決手段5)の回転を示
す。
In the operating principle 1 on the geometrical figure in the present invention, the change in the gap between the R and S circular planes in the forward and reverse rotations is replaced with the stroke volume of the working chamber Fu, that is, the change in the volume of the so-called air chamber space. Rolling shaft 72 on the X-axis is set by increasing or decreasing the volume of each stroke of A, B, C, D.
(Solution 1, 5) or pivot 88 (Solution 2,
3, 6, 7) and the rotary piston 30 on the R and S circles that intersect on the piston intermediate shaft 33 on the K axis and the skew plate 4
0 (solving means 1, 2, 3, 5), or the diagonal board 61 of the housing
(Solutions 6, 7) are rotated, and Z-axis 23 on the Y-axis to be mounted as an output shaft (Solutions 1, 2, 3,
6, 7) or the housing shaft 71 (solution means 5) is to be rotated. In this case, (forward) in forward / reverse rotation is the rotary piston 30 that makes the primary rotation Po and the skew plate 40 (solving means 1, 2, 3, 5) or the rotary piston 3.
0 and rotation of the housing 60 (solving means 6, 7) are shown (inverse)
Is the Z-axis 23 that performs the secondary rotation Ne (solving means 1, 2, 3,
6, 7) or rotation of the Z-axis housing 70 (solution means 5).

【0071】[0071]

【幾何図形上の作動原理2】この幾何図形上の作動原理
2は、上記解決手段4,8の何れかの構成であり、この
幾何図形上の作動原理2における前記一次回転Poの逆
回転をする前記二次回転Neは、図18乃至図30に示
すようにX軸線が固定位置で回転する定位軸線であり、
その定位軸線Xに対してY軸線がX軸線を中心軸として
X軸線の周囲を旋回する浮動の可動軸線である。
[Operating principle 2 on geometrical figure] The operating principle 2 on geometrical figure is any one of the constitutions of the solving means 4 and 8 described above, and the reverse rotation of the primary rotation Po in the operating principle 2 on this geometrical figure is performed. The secondary rotation Ne is a localization axis line in which the X axis line rotates at a fixed position, as shown in FIGS. 18 to 30,
With respect to the localization axis X, the Y axis is a floating movable axis that turns around the X axis as the central axis.

【0072】従って、この幾何図形上の作動原理2は、
順逆の回転をする一次回転Poと二次回転Neとが合成
されれば、R円面に加えてY軸線を回転軸とするS円面
も位相を変えつつ回転し、そのS円面の位相の変化と共
にR円面がX軸線上を水平方向に(θ×2)範囲を反復
してS円面に離合する。即ち、そのR円面とS円面の離
合は交差割線Kを蝶着の軸とするS円面に対するR円面
の擺動によって生じ、そのR円面の擺動はR,S円面の
2面間に存在する間隙を変化させ、そのR,S円面間の
間隙変化がそのまま空間A,B,C,Dの容積大小の変
化となる。
Therefore, the operating principle 2 on this geometrical figure is
If the primary rotation Po and the secondary rotation Ne that rotate in the reverse direction are combined, the S circle surface having the Y axis as the rotation axis in addition to the R circle surface also rotates while changing the phase, and the phase of the S circle surface With the change of, the R circle surface is separated from the S circle surface by repeating the range (θ × 2) in the horizontal direction on the X axis. That is, the separation of the R circle surface and the S circle surface is caused by the oscillating movement of the R circle surface with respect to the S circle surface having the intersection secant K as the axis of the hinge, and the oscillating movement of the R circle surface is the two surfaces of the R and S circle surfaces. The gap existing between them is changed, and the change in the gap between the R and S circular surfaces directly changes the volume of the spaces A, B, C, and D.

【0073】その図形の動きを図31、及び図32に示
すX軸線の回転を基準にした一次回転Poから説明する
と、図31(イ)のX軸線に与える矢印方向の回転は球
心OにおいてX軸線と十字に交差するM軸線を回転させ
る。すると、M軸線を中心の鉛直軸とするX軸線上のR
円面が、図31(イ)から(ロ)、(ハ)の順に自転軸
Lを回転軸として球心Oを頂点、点P,Q間を底面直径
とする前記円錐軌跡U上を転回し、そのR円面の回転に
伴ってR円面と軸線Kで連結交差するS円面がY軸線を
中心軸として回転連動する。即ち、R円面は半回転につ
き自らの自転軸Lを図31(イ)に示すX軸線上から
(ロ)と(ハ)、(ニ)に示すY軸線上を経て、更に
(ホ)、(ヘ)と図32(ト)に示すX軸線上に戻る角
度θ分の円錐軌跡U上の円周を1周回し、1回転で2θ
分の2周回をする。
Explaining the movement of the figure from the primary rotation Po based on the rotation of the X axis shown in FIGS. 31 and 32, the rotation in the arrow direction given to the X axis of FIG. Rotate the M axis that intersects the X axis and the cross. Then, R on the X-axis centered on the M-axis
A circular surface rolls on the conical locus U having the spherical center O as the apex and the point P, Q as the bottom diameter with the axis of rotation L as the axis of rotation in the order of FIG. 31A to B). With the rotation of the R circle surface, the S circle surface that connects and intersects with the R circle surface at the axis K is rotationally interlocked about the Y axis. That is, the R circle surface is rotated by half its rotation about its own rotation axis L from the X-axis line shown in FIG. 31 (a) to (b) and (c), the Y-axis line shown in (d), and then (e) (F) and FIG. 32 (g), the circle on the conical locus U having an angle θ returning to the X-axis line is rotated once, and one rotation is 2θ.
2 laps per minute.

【0074】その時、R円面は直交するM,K軸線の十
字軸線を有してX軸線とS円面との中間に位置し、その
X軸線とS円面とに連結して連動するが、R円面の自転
軸Lは図31(イ)に示すようにX軸線にK軸線が直交
する時にはX軸線上にあり、(ニ)に示すようにY軸線
にM軸線が直交する時にはY軸線上にある。結局、R円
面はX軸線上を半回転で角度θ分を水平方向に反転揺動
して1回転で2θ範囲分を往復する前述の一次回転Po
をする。また、角度θはX,Y軸線間の鋭角側にできる
交差角度であると共に、X軸線の回転に伴うM軸線の回
転面とS円面との鋭角側の開角度でもある。
At this time, the R circle surface is located in the middle of the X axis line and the S circle surface with the cross axis lines of the M and K axis lines orthogonal to each other, and is linked and linked with the X axis line and the S circle surface. , The rotation axis L of the circular surface is on the X axis when the K axis is orthogonal to the X axis as shown in FIG. 31A, and is Y when the M axis is orthogonal to the Y axis as shown in FIG. It is on the axis. In the end, the R circular surface makes a half rotation on the X-axis line by reversing and oscillating the angle θ by the horizontal direction, and reciprocates within the 2θ range by one rotation.
do. Further, the angle θ is an intersection angle formed on the acute angle side between the X and Y axis lines, and is also an open angle on the acute angle side between the rotation surface of the M axis line and the S circle surface due to the rotation of the X axis line.

【0075】次に、そのようにX軸線を基準として一次
回転PoをするR,S円面と各関係の全体分に、X軸線
を回転軸として一次回転Poの逆方向に回転する二次回
転Neを一次回転Poと同時に与える。その時、その正
逆回転比を例えば1:1(1/1〜分子が正の回転の一
次回転Po、分母が逆回転である二次回転Neを示す)
に設定すれば、図31(イ)を起点として一次回転Po
をするR円面とS円面とが、(90度−θ)の最小間隙
から半回転して(ロ)乃至(ヘ)を経て図32(ト)に
示す(90度+θ)の最大間隙となるべきX軸線の回転
角位置を、その図32(ト)より90度分後退させた一
次、二次回転Po,Neの順逆回転を示す図24におい
てなされる。
Next, the secondary rotation which rotates in the opposite direction of the primary rotation Po with the X axis as the axis of rotation for the whole of each relationship with the R and S circles which make the primary rotation Po with the X axis as a reference. Ne is given simultaneously with the primary rotation Po. At that time, the forward / reverse rotation ratio is, for example, 1: 1 (1/1 to the numerator indicate a positive rotation primary rotation Po, and the denominator indicates a reverse rotation secondary rotation Ne).
If it is set to
The R-circle surface and the S-circle surface that perform The rotation angle position of the X axis to be set is set back in FIG. 32 (g) by 90 degrees, and is shown in FIG. 24 showing the forward and reverse rotations of the primary and secondary rotations Po and Ne.

【0076】つまり、X軸線を回転軸として一次回転P
oの逆転をする二次回転Neは、S円面の位相は変える
がS円面に回転はさせず、正逆回転比が1:1(1/
1)における半回転(180度)毎にR円面とS円面と
の間隙を最小から最大に、若しくは最大から最小へと変
化させる。従って、一次回転PoのみではX軸線の1回
転につきR,S円面の間隙変化が1増1減の1往復であ
るのに対し、図18から図19乃至図29を経て図30
の順に示すように、正逆回転比が1:1(1/1)の二
次回転Neを加えると、X軸線の半回転毎にR,S円面
の間隙変化が1増1減の1往復分をする。そして更に、
その図30のX軸線を回転方向に半回転させると、再び
R,S円面の間隙が1増1減の1往復分をして元の図1
8に戻る。
That is, the primary rotation P with the X axis as the axis of rotation
The secondary rotation Ne for reversing o changes the phase of the S circle surface but does not rotate the S circle surface, and the forward / reverse rotation ratio is 1: 1 (1 /
The gap between the R circle surface and the S circle surface is changed from the minimum to the maximum or from the maximum to the minimum every half rotation (180 degrees) in 1). Therefore, in the case of only the primary rotation Po, the change in the gap between the R and S circular surfaces is 1 reciprocation of 1 increment / decrement per revolution of the X axis, while FIG.
As shown in the order of, when a secondary rotation Ne having a forward / reverse rotation ratio of 1: 1 (1/1) is added, the change in the gap between the R and S circles is increased by 1 and decreased by 1 for each half rotation of the X axis. Make a round trip. And further,
When the X-axis of FIG. 30 is rotated half a turn in the rotation direction, the gap between the R and S circular surfaces makes one reciprocation of 1 increase and 1 decrease, and the original FIG.
Return to 8.

【0077】即ち、正逆回転比1:1(1/1)の二次
回転Neを加えたX軸線の1回転におけるR,S円面の
間隙変化は2増2減の2往復分である。その時、一次回
転PoにおけるR,S円面の間隙変化の過程を示す図3
1,32(イ)乃至(ヲ)は、一次回転Poと二次回転
Neとの複合回転におけるR,S円面の間隙変化の過程
を示す図18乃至図29に対比し、順逆の回転を示す図
30は一次回転Poの図31(イ)に再び符合する。
That is, the change in the gap between the R and S circular surfaces in one rotation of the X-axis line to which the secondary rotation Ne of the forward / reverse rotation ratio of 1: 1 (1/1) is added is 2 reciprocations of 2 increase and 2 decrease. .. At that time, FIG. 3 showing the process of changing the gap between the R and S circular surfaces in the primary rotation Po.
1, 32 (a) to (o) are compared with FIGS. 18 to 29 showing the process of the gap change of the R and S circular surfaces in the combined rotation of the primary rotation Po and the secondary rotation Ne, and the reverse rotation is performed. The illustrated FIG. 30 corresponds again to FIG. 31A of the primary rotation Po.

【0078】本発明におけるこの幾何図形上の作動原理
2では、この順逆の回転におけるR円面とS円面間の間
隙変化を作動室Fuの行程体積、いわゆる気室空間の容
積変化に置き換えて各気室A,B,C,Dの各行程と
し、その容積を増減させることによってK軸線上のピス
トン中間軸33上において交差するR,S円面上の回転
ピストン30と斜行板40とを回転させると共に、X軸
線上に出力軸として置かれる前記回転主軸20を回転さ
せようとするものである。尚、この場合の正逆回転にお
ける(正)は一次回転Poをする回転主軸20と回転ピ
ストン30と斜行板40の回転を示し、(逆)は二次回
転Neをする位相板56(解決手段4)、又は位相筐体
80(解決手段8)の回転を示す。
In the operating principle 2 on this geometrical figure in the present invention, the change in the gap between the R-circle surface and the S-circle surface in this forward and reverse rotation is replaced by the stroke volume of the working chamber Fu, that is, the so-called air chamber volume change. Each of the air chambers A, B, C, D has its own stroke, and by increasing or decreasing the volume thereof, the rotary piston 30 and the skew plate 40 on the R and S circles intersecting on the piston intermediate shaft 33 on the K axis. It is intended to rotate the rotating main shaft 20 placed as an output shaft on the X-axis while rotating the rotating shaft. In this case, in the normal / reverse rotation, (positive) indicates the rotation of the rotary main shaft 20 that performs the primary rotation Po, the rotary piston 30, and the skew plate 40, and (reverse) indicates the phase plate 56 that performs the secondary rotation Ne (solved). The rotation of the means 4) or the phase housing 80 (solution means 8) is shown.

【0079】[0079]

【発明の実施の形態】本発明は、幾何学的構成における
幾何図形上の上記作動原理1か、又は上記作動原理2の
何れかに属して前記解決手段1乃至8に分類される基本
的な構造上の相違を有し、その各解決手段1乃至8の構
成に基づく実施の形態1乃至8(解決手段1は形態1、
解決手段2は形態2、、、解決手段8は形態8)の実施
の形態を有するが、その実施の形態の分類において、外
部殻のハウジング10内に内部殻としての前記Z軸筺体
70、又は前記筺体60、又は前記位相筺体80の組込
みがあるか否かの構造上の相違はあるものの、形態1,
5は共に前記転がり軸72を有して共通し、形態2,6
は共にZ軸23が前記軸板24を有し、形態3,7では
前記Z軸23が軸腕25を有し、また形態4,8は直軸
状の前記回転主軸20であるから、それら両者の作動は
同一の変化を示す特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention belongs to either the above-mentioned operating principle 1 or the above-mentioned operating principle 2 on a geometrical figure in a geometrical structure and is classified into the above-mentioned solving means 1 to 8. Embodiments 1 to 8 that have structural differences and are based on the configurations of the respective solving means 1 to 8 (the solving means 1 is the form 1,
The solving means 2 has an embodiment of form 2, and the solving means 8 has an embodiment of form 8). In the classification of the embodiment, the Z-axis housing 70 as the inner shell in the housing 10 of the outer shell, or Although there is a structural difference whether or not the housing 60 or the phase housing 80 is incorporated, the form 1,
5 has the rolling shaft 72 and is common, and forms 2, 6
Both have the Z-axis 23 having the shaft plate 24, the Z-axis 23 has the shaft arm 25 in the forms 3 and 7, and the forms 4 and 8 are the rotary main shaft 20 having a straight shaft shape. Both operations are characterized by the same change.

【0080】以下、上述した幾何図形の各関係と、その
図形の相互に係わり合う動きを基に実施の形態を各種実
施例によって図面を参照して説明する。尚、この各種実
施例を説明する以下の図35乃至図64において、図3
5,36,50を除き作動媒体が流出入する吸気孔In
と排気孔Ex、点火具(又は燃料噴射弁)Ig等の図示
は省略し、且つ本発明を説明する全図面においても、ガ
スシール、オイルシール等の密閉具(往復ピストン機関
おけるピストンリング)、及び冷却装置、及び潤滑装置
等の図示は省略した。
Embodiments will be described below with reference to the drawings by various examples based on the above-mentioned relationships among geometric figures and the interrelated movements of the figures. It should be noted that, in FIGS.
Intake hole In through which the working medium flows in and out except 5, 36, 50
Illustration of the exhaust hole Ex, the igniter (or fuel injection valve) Ig, etc. is omitted, and in all the drawings for explaining the present invention, a sealing tool (piston ring in a reciprocating piston engine) such as a gas seal or an oil seal, Illustration of the cooling device, the cooling device, the lubricating device, etc. is omitted.

【0081】[0081]

【形態1の実施例】まず初めに、前記解決手段1の構成
に基づき前記幾何図形上の作動原理1の作動形態に属す
る実施の形態1において、回転ピストン30を円形状板
に形成して球面G内のR,S円面間を四つの空間A,
B,C,Dに形成した前記共通の解決手段1による構成
の図35と図36に示す実施例を説明する。
First Embodiment First, in the first embodiment which belongs to the operation mode of the operating principle 1 on the geometrical figure based on the configuration of the solving means 1, the rotary piston 30 is formed into a circular plate to form a spherical surface. Four spaces A between R and S circles in G,
An embodiment shown in FIGS. 35 and 36 of the configuration by the common solving means 1 formed in B, C and D will be described.

【0082】この実施例では、球状をなすハウジング1
0を仮に図35に示すようなS円面を等間隔で挟む平行
な二つの切り口平面a−a,b−bによって中央部分と
その両側部分との3個数に分離すると、その中央の部分
は、S円面より大きいS円面同心円の内壁面を前記軌道
隙12の溝底とした筒状になり、両側部分の各々は、球
面Gをなす凹面内壁11の縁部円周を残すと共にY軸線
を中心として球面Gの内壁が円形凹みに切り欠かれた前
記軸板室15と、その軸板室15のY軸線上の側壁中心
部に軸受円孔の主軸受13とを有する略半球体になる。
In this embodiment, a spherical housing 1 is used.
If 0 is assumed to be divided into three parts, that is, a central part and both side parts thereof by two parallel cut planes aa and bb that sandwich the S circle surface at equal intervals as shown in FIG. 35, the central part becomes , The inner wall surface of an S-circular concentric circle that is larger than the S-circular surface is formed into a cylindrical shape with the groove bottom of the orbital gap 12, and both side portions leave an edge circumference of the concave inner wall 11 forming a spherical surface G and Y A substantially hemispherical body having the shaft plate chamber 15 in which the inner wall of the spherical surface G is cut out in a circular recess around the axis and the main bearing 13 of the bearing circular hole at the center of the side wall of the shaft plate chamber 15 on the Y axis. .

【0083】上記のように構成したハウジング10にお
いて、図35に示すように両側の主軸受13,13に
は、柄状の丸棒を外側面の中心部に軸止め固着させて前
記軸板室15,15に回転可能に収納される凹面円形板
の内側凹面が球面Gをなす軸板24,24と、その軸板
24,24の各々を中間斜軸に架け渡して固着するX軸
線上の連結棒26とによって全体形をZ字形の一体構造
にしたZ軸23を設け、そのZ軸23の両側軸頸をジャ
ーナル部分に形成すると共に、そのジャーナルを嵌挿さ
せて回転自由に軸承させる。このZ軸23の連結棒26
には、球心Oに位置する中心部分にM軸線を連結軸とし
てピン継手関節55を構成するピン柱状からなる連結素
子の軸央枢74と、両端部に転がり歯車76,76とを
備えた全体が管状の転がり軸72をX軸線を回転軸とし
て外嵌させる。
In the housing 10 constructed as described above, as shown in FIG. 35, the main bearings 13, 13 on both sides have shaft rod chambers 15 in which handle-like round rods are fixedly attached to the central portion of the outer surface by axial fixing. , 15 rotatably housed in the concave circular plate, the inner concave surface of which is a spherical surface G, and the axial plates 24 and 24, which are connected to each other on the X-axis by bridging and fixing each of the axial plates 24 and 24 to the intermediate oblique shaft. A Z-axis 23 having an overall Z-shaped integral structure is provided by the rod 26, both side shaft necks of the Z-axis 23 are formed in the journal portion, and the journal is fitted and rotatably supported. This Z-axis 23 connecting rod 26
At the center portion located at the ball center O, a shaft center 74 of a connecting element having a pin columnar shape that constitutes a pin joint joint 55 with the M axis as a connecting shaft, and rolling gears 76, 76 at both ends are provided. The rolling shaft 72, which is entirely tubular, is externally fitted with the X axis as the rotation axis.

【0084】R円面上には、S円面を挟む対向両側の各
々に球面Gをなすハウジング10内壁面を含む両軸板2
4,24の内側凹面に回転可能に接する回転外周面の球
弧面32,32と、その両球弧面32,32の弓形輪郭
平面をなしてK軸線側を弦とする表裏の弓形面31,3
1、31,31とを有する対称形の二つの弓形板に、K
軸線を取付け軸線として円柱状のピストン中間軸33を
合体させた円形状板の回転ピストン30を配置する。
On the R circle surface, both shaft plates 2 including the inner wall surface of the housing 10 forming a spherical surface G on each of the opposite sides sandwiching the S circle surface.
Rotating outer peripheral spherical arc surfaces 32, 32 rotatably contacting the inner concave surfaces of 4, 24, and the arcuate surfaces 31 on the front and back sides forming the arcuate contour planes of both spherical arc surfaces 32, 32 and having the K axis side as a chord. , 3
K, on two symmetrical arcuate plates with 1, 31, 31
A rotary piston 30 having a circular plate, in which a cylindrical piston intermediate shaft 33 is united, is arranged with the axis as a mounting axis.

【0085】この回転ピストン30には、ピストン中間
軸33両端の前記点Ka、点Kb側に交差割線Kを穿孔
軸線とした蝶番関節50の円孔からなる蝶番ピン受5
2,52を設けると共に、R円面に沿ってX軸線上の両
球弧面32,32からピストン中間軸33内中央に貫き
穿つ偏平な孔状空隙のピストン通軸孔34を開口させて
前記Z軸23中間の連結棒26に外嵌させた転がり軸7
2を遊挿させ、且つそのピストン通軸孔34のピストン
中間軸33内中央部に位置して前記軸央枢74のピン状
素子に対応するピン受孔のピストン枢35を設ける。そ
のピストン枢35に軸央枢74を枢着させると、X軸線
上の転がり軸72を基軸として回転ピストン30が(θ
×2)の角度範囲を揺動可能な前記ピン継手関節55が
組成される。
The rotary piston 30 has a hinge pin receiver 5 consisting of a circular hole of a hinge joint 50 with the intersecting secant K on the sides of the piston intermediate shaft 33 on the side of the points Ka and Kb.
2, 52 are provided, and the piston shaft hole 34 having a flat hole-like hole that penetrates from the spherical arc surfaces 32, 32 on the X-axis along the R circle to the center of the piston intermediate shaft 33 is opened, and Rolling shaft 7 fitted onto connecting rod 26 in the middle of Z axis 23
2 is loosely inserted, and a piston pivot 35 of a pin receiving hole corresponding to the pin-shaped element of the shaft center 74 is provided at the center of the piston passage shaft hole 34 inside the piston intermediate shaft 33. When the shaft center 74 is pivotally attached to the piston center 35, the rotary piston 30 with the rolling shaft 72 on the X-axis as the base shaft (θ
The pin joint joint 55 that can swing in the angular range of x2) is composed.

【0086】また、S円面上には、交差割線K上のピス
トン中間軸33を挟む対向両側の各々に回転ピストン3
0の前記弓形面31,31、31,31に対応する表裏
の弓形面41,41、41,41と、その弓形面41,
41、41,41表裏の外周輪郭をなす弓形輪郭面と、
ピストン中間軸33の軸柱面に摺接可能に契合する弦側
面42,42とから半円より小さい対称形の二つの弓形
板を形成すると共に、その両弓形板の弓形輪郭面に前記
軌道隙12と回転可能に嵌合する環状をなす斜行板環4
3の内周面を結合させてK軸線上に対面する上下の弦側
面42,42と左右の斜行板環43内周面との4辺から
なる矩形に突き抜けた窓を持つ円形板状の斜行板40を
配置する。
Further, on the S-circle surface, the rotary pistons 3 are provided on opposite sides of the piston intermediate shaft 33 on the intersecting secant K, respectively.
0 front and back arcuate surfaces 41, 41, 41, 41 corresponding to the arcuate surfaces 31, 31, 31, 31 and the arcuate surface 41,
41, 41, 41 arcuate contour surfaces forming outer peripheral contours on the front and back sides,
Two arcuate plates having a symmetry smaller than a semicircle are formed from the chord side surfaces 42, 42 that slidably contact the shaft surface of the piston intermediate shaft 33, and the orbital gaps are formed on the arcuate contour surfaces of the arcuate plates. The slanted plate ring 4 which has an annular shape and is rotatably fitted to the plate 12.
A circular plate-like shape having a window penetrating into a rectangle consisting of four sides of upper and lower chord side surfaces 42, 42 facing each other on the K axis and inner peripheral surfaces of the oblique plate rings 43 on the left and right sides by connecting the inner peripheral surfaces of 3 to each other. The skew plate 40 is arranged.

【0087】この斜行板40には、回転ピストン30の
前記蝶番ピン受52,52の各々に与する蝶番関節50
の蝶番ピン51,51を窓枠の点Ka、点Kb側に位置
する斜行板環43の対向内側に突設形成すると共に、そ
のK軸線上を突き抜けた窓枠にピストン中間軸33を軸
柱に沿って嵌め込むと、互いに与する蝶番ピンと蝶番ピ
ン受51,52、51,52とが連結嵌合して蝶番関節
50を組成し、斜行板40と回転ピストン30との互い
が交差割線Kを蝶着連結の基軸線として(θ×2)範囲
を擺動可能に連結する。
On this slanting plate 40, a hinge joint 50 is provided for each of the hinge pin receivers 52, 52 of the rotary piston 30.
Hinge pins 51, 51 are formed so as to project inside the diagonal plate ring 43 located on the points Ka and Kb sides of the window frame, and the piston intermediate shaft 33 is mounted on the window frame that penetrates the K axis. When fitted along the pillar, the hinge pins and the hinge pin receivers 51, 52, 51, 52 which are given to each other are connected and fitted to form the hinge joint 50, and the oblique plate 40 and the rotary piston 30 intersect each other. The secant K is used as a base axis of the hinged connection so that the range (θ × 2) can be slidably connected.

【0088】すると、S円面上の斜行板40が、ハウジ
ング10内壁面を含むかする前記軸板24,24の球面
Gをなす各々の内側凹面を閉鎖してハウジング10内に
互いの凹面を対面させた半球状の定積空間からなる二つ
の半月状作動室Ha,Haを形成し、更にR円面上の回
転ピストン30が、その半月状作動室Ha,Haの各々
を反比例に体積変化をさせる二つずつの密閉した櫛形状
の空間をなす気室A,B,C,Dに形成する。
Then, the oblique plates 40 on the S-circular surface close the respective inner concave surfaces forming the spherical surface G of the shaft plates 24, 24 including the inner wall surface of the housing 10 to form concave surfaces in the housing 10. To form two half-moon-shaped working chambers Ha and Ha, each of which is composed of a hemispherical constant-volume space, and the rotary piston 30 on the R-circular surface inversely proportions the volume of each half-moon-shaped working chamber Ha or Ha. It is formed in air chambers A, B, C and D that form two closed comb-shaped spaces that change.

【0089】而も、前記軸板室15,15周壁の各々を
固定位相歯車14,14の内歯歯車からなる固定歯車に
刻設形成し、また各々の前記軸板24,24のX軸線上
には側面円周に開口部を有する袋状空隙の歯車ポケット
28,28を設け、その歯車ポケット28,28内部に
連結棒26の両端部を固着させる。尚、前記転がり軸7
2は、前記軸央枢74の対向両側の各々に管(中空円
柱)状の軸袖を固着させ、且つその両軸袖の端部に前記
固定位相歯車14,14よりも小さいピッチ円径の外歯
歯車からなる前記転がり歯車76,76を固着させて自
らの回転軸線上を貫通する管孔を有する直軸であるが、
その管孔にZ軸23の連結棒26を回転自由に嵌挿させ
て転がり歯車76,76を軸板24,24の歯車ポケッ
ト28,28に遊離関係に収納すると、その転がり歯車
76,76の歯車歯先のみが歯車ポケット28,28の
前記側面円周開口部から露出するから、その転がり歯車
76,76の露出歯先を互いに与する固定位相歯車1
4,14に転がり可能に内接歯合させる。
In addition, each of the shaft plate chambers 15 and 15 is formed by engraving a fixed gear consisting of the internal gear of the fixed phase gears 14 and 14 on the X axis of each of the shaft plates 24 and 24. Is provided with gear pockets 28, 28 having a bag-like void having an opening on the side circumference, and both ends of the connecting rod 26 are fixed inside the gear pockets 28, 28. In addition, the rolling shaft 7
2 is a tube (hollow cylinder) -shaped shaft sleeve fixed to each of the opposite sides of the shaft center 74, and has a pitch circle diameter smaller than that of the fixed phase gears 14, 14 at the ends of both shaft sleeves. It is a straight shaft having a tube hole that penetrates on its own rotation axis by fixing the rolling gears 76, 76 formed of external gears,
When the connecting rod 26 of the Z-axis 23 is freely rotatably inserted into the tube hole and the rolling gears 76, 76 are housed in the gear pockets 28, 28 of the shaft plates 24, 24 in a free relation, the rolling gears 76, 76 Since only the tooth tops of the gears are exposed from the side circumferential openings of the gear pockets 28, 28, the fixed phase gear 1 which gives the exposed tooth tops of the rolling gears 76, 76 to each other.
The inscribed meshing is made possible so that it can be rolled over.

【0090】そこで、その転がり軸72に矢印方向の回
転を与えると、転がり軸72にピン継手関節55を介し
て連結する回転ピストン30は、前記円錐軌跡U上を一
次回転Poすると同時に転がり歯車76,76のピッチ
円径が基円とする固定位相歯車14,14のピッチ円径
に内接して転円するから、転がり軸72と共に自転をし
ながら自転の反対方向にZ軸23の軸板24,24を引
き連れて前記円錐軌跡J上に沿った二次回転Neをす
る。即ち、転がり歯車76,76に連動する転がり軸7
2の歳差運動(円錐運動)は、円錐軌跡J上を回転ピス
トン30の逆方向回転である二次回転Neをして転がり
軸72自らの位相を変化させる。その二次回転Neにお
ける転がり軸72の位相の変化は、半回転につきR円面
の自転軸LをX軸線上からY軸線上に、そして再びX軸
線上に戻るように働くもので一次回転Poと同様にR,
S円面間の間隙を変化させる。
Then, when the rolling shaft 72 is rotated in the direction of the arrow, the rotary piston 30 connected to the rolling shaft 72 via the pin joint joint 55 makes a primary rotation Po on the conical locus U and at the same time the rolling gear 76. , 76 are inscribed in the pitch circle diameters of the fixed-phase gears 14 and 14 which are base circles, so that they rotate while rotating with the rolling shaft 72, while rotating in the opposite direction to the rotation, the shaft plate 24 of the Z-axis 23. , 24, the secondary rotation Ne along the conical locus J is performed. That is, the rolling shaft 7 interlocking with the rolling gears 76, 76.
The precession movement of 2 (conical movement) causes the secondary rotation Ne which is the reverse rotation of the rotary piston 30 on the cone locus J to change the phase of the rolling shaft 72 itself. The change in the phase of the rolling shaft 72 in the secondary rotation Ne acts so as to return the rotation axis L of the R circular surface from the X-axis line to the Y-axis line and then back to the X-axis line again per half rotation. As well as R,
The gap between the S circles is changed.

【0091】その時、互いに与する固定位相歯車14と
転がり歯車76とのピッチ円径比を例えば図35に示す
ように2:1とすると、転がり歯車76の自転量と逆向
きの転円量とが等しくなって転がり軸72は球心Oを旋
回の中心とし、Y軸線を旋回の軸とする円錐軌跡J上を
図16(A)から(B)、(C)(幾何図形では図1か
ら図2,3)の順に自転の逆方向に歳差運動の二次回転
Neをする。つまり、転がり軸72における自転の90
度分は、転がり軸72に前記軸央枢74を経て繋がる回
転ピストン30と斜行板40とを同一方向に90度分を
回転させると共に、転がり軸72自体が円錐軌跡J上を
自転の逆方向に90度分を旋回して自らの位相を変化さ
せ、その正逆90度分ずつの回転が図16(A)乃至
(F)を経て図17(G)(幾何図形では図1乃至図6
を経て図7)の順に示す如くに正逆回転比1:1(1/
1)を成立させて回転ピストン30と斜行板40との間
隙差を最小から最大に、又は最大から最小に変化させ
る。
At that time, if the pitch circle diameter ratio between the fixed phase gear 14 and the rolling gear 76, which are given to each other, is 2: 1 as shown in FIG. 35, the rolling amount of the rolling gear 76 and the rolling amount in the opposite direction are calculated. Are equal to each other, the rolling axis 72 has the center O of the ball as the center of the turning, and the conical locus J with the Y axis as the axis of the turning is shown in FIGS. 16A to 16B and 16C. The secondary rotation Ne of the precession is performed in the opposite direction of the rotation in the order of FIGS. In other words, 90 degrees of rotation of the rolling shaft 72
As for the degree of rotation, the rotary piston 30 connected to the rolling shaft 72 via the shaft center 74 and the skew plate 40 are rotated by 90 degrees in the same direction, and the rolling shaft 72 itself rotates in reverse on the conical locus J. Direction is rotated by 90 degrees to change its own phase, and its forward and reverse rotations of 90 degrees each go through FIG. 16 (A) to (F) and then to FIG. 17 (G). 6
As shown in the order of FIG. 7), the forward / reverse rotation ratio is 1: 1 (1 /
1) is established and the gap difference between the rotary piston 30 and the skew plate 40 is changed from the minimum to the maximum or from the maximum to the minimum.

【0092】そこから更に転がり軸72に90度分の正
・逆回転の自・公転をさせると、図17(G)から
(H)乃至(K)を経て(L)(幾何図形では図7から
図8乃至図12を経て図13)に至って回転ピストン3
0と斜行板40との間に形成される気室A,B,C,D
の気室体積が再び最大範囲の変化をする。そして更に転
がり軸72に90度+90度分に相当する自転(半回
転)を与えると、90度+90度分の自転の逆向き回転
の旋回(半回転)をもさせて各気室A,B,C,Dに上
記と同様な最大範囲の容積変化の2回数を行って出発と
なった図16(A)(幾何図形では図1)に戻る。
From there, when the rolling shaft 72 is further orbitally rotated in the forward / reverse direction for 90 degrees, it goes from (G) to (H) to (K) in FIG. 8 through 12 to FIG. 13), the rotary piston 3
0, the air chambers A, B, C, D formed between the skew plate 40
The volume of the air chamber of the subject changes again within the maximum range. When the rolling shaft 72 is further given a rotation (half rotation) corresponding to 90 ° + 90 °, a rotation (half rotation) of the opposite rotation of 90 ° + 90 ° is also given to each air chamber A, B. , C, D are subjected to the same maximum range of volume change twice as described above, and the process returns to FIG. 16A (the geometrical figure is FIG. 1) which is the starting point.

【0093】結局、正逆回転比を1:1(1/1)に設
定した転がり軸72の1回転分の自転はZ軸23の全体
を逆向きに1回転させる転がり軸72の1公転分に相当
し、その間に回転ピストン30は斜行板40に対して2
往復の擺動を行い、気室A,B,C,Dの各々が4行程
分に相当する容積の4変化をする。その気室空間A,
B,C,Dの4変化において、最小から最大体積への推
移に作動媒体を吸入させ、その体積最大から縮小過程に
作動媒体を圧縮し、その終了間際に点火、或は燃料を噴
射して作動媒体を燃焼させ、次の気室間隙の拡張時に作
動媒体が膨張して次の収縮時に廃気排出を行わせる。
After all, one rotation of the rolling shaft 72 whose forward / reverse rotation ratio is set to 1: 1 (1/1) corresponds to one revolution of the rolling shaft 72 which makes the Z-axis 23 rotate in the opposite direction one revolution. And the rotary piston 30 is 2 with respect to the skew plate 40 in the meantime.
By reciprocating swinging, each of the air chambers A, B, C, D makes four changes in volume corresponding to four strokes. The air chamber space A,
In the four changes of B, C and D, the working medium is sucked in the transition from the minimum volume to the maximum volume, the working medium is compressed in the reduction process from the maximum volume, and ignition or fuel is injected just before the end. The working medium is burned, the working medium expands at the next expansion of the air chamber gap, and the waste air is discharged at the next contraction.

【0094】本実施例は、四つの気室A,B,C,Dの
各々がX軸線上の転がり軸72とY軸線上のZ軸23と
の正逆回転角(作用角)において、その気室体積を90
度毎に変化させて軸1回転につき気室体積の増減を2往
復させる。その軸1回転における気室体積の4変化に吸
気、圧縮、膨張、排気の各行程仕事を当てはめて作動さ
せれば、本実施例の回転ピストン機関は4行程サイクル
往復ピストン機関における(4気筒×2)機関に相当す
るが、その為には気室A,B,C,Dに臨ませて適宜、
作動媒体を流出入させる吸入孔Inと排出孔Exとを設
け、且つ燃焼室部分を窺って点火具Ig、ディーゼル機
関の態様においては燃料噴射弁(以下、燃料噴射弁は上
記点火具Igに含ませて点火具Igのみ記載する)を挿
着する。
In this embodiment, each of the four air chambers A, B, C, and D has its normal / reverse rotation angle (working angle) between the rolling axis 72 on the X axis and the Z axis 23 on the Y axis. 90 air chamber volume
The air chamber volume is increased / decreased twice per revolution of the shaft by changing each time. If the intake stroke, compression stroke, expansion stroke and exhaust stroke stroke work are applied to the four changes in the air chamber volume per one rotation of the shaft to operate, the rotary piston engine of the present embodiment is a four stroke cycle reciprocating piston engine (4 cylinders x 2) It corresponds to an engine, but for that purpose, it faces the air chambers A, B, C, D as appropriate.
An intake hole In and an exhaust hole Ex for letting the working medium flow in and out are provided, and the ignition chamber Ig is examined by inspecting the combustion chamber portion. In the mode of a diesel engine, a fuel injection valve (hereinafter, the fuel injection valve is included in the ignition device Ig). Insert only the igniter Ig).

【0095】その作動媒体の流出入孔In,Exは、各
気室A,B,C,Dに面する斜行板40の前記弓形面4
1,41、41,41の各々から斜行板環43の外周面
に別々に連通して開口する斜行板流路孔49,49、4
9,49と、その外周面孔口の回転円周上のハウジング
10内壁面からハウジング10外壁に貫通する各々が溝
状の孔からなる2筋のハウジング流路孔19,19とを
設ける。また点火具Igは、左右の半月状作動室Ha,
Haの各々にハウジング流路孔19,19の穿孔箇所と
対向する位置のハウジング10壁に2本ずつを挿着し、
又は図示はしないがその2本の中間位置に挿着すれば各
半月状作動室Haに1本ずつでよい。
The working medium inflow / outflow holes In and Ex are the arcuate surfaces 4 of the oblique plate 40 facing the air chambers A, B, C and D, respectively.
Oblique plate flow passage holes 49, 49, 4 which communicate with and open to the outer peripheral surface of the oblique plate ring 43 from each of 1, 41, 41, 41 separately.
9 and 49, and two streak housing flow passage holes 19 and 19 each formed of a groove-shaped hole that penetrates from the inner wall surface of the housing 10 on the rotation circumference of the hole of the outer peripheral surface to the outer wall of the housing 10. Further, the igniter Ig includes the left and right half-moon shaped operation chambers Ha,
Two pieces of each Ha are inserted into the wall of the housing 10 at positions facing the perforated portions of the housing flow passage holes 19 and 19,
Alternatively, although not shown, one may be provided in each half-moon-shaped working chamber Ha by inserting the two in an intermediate position.

【0096】尚、斜行板流路孔49,49、49,49
は、各々が吸気孔Inと排気孔Exとを共用していて、
その外周面孔口の各々を斜行板40の中心角で90度分
ずつの均等間隔を隔てた同一回転円周上に開口させると
共に、2筋のハウジング流路孔19,19は、ハウジン
グ10内壁面円周の概ね1/4円周長ずつの筋長を有し
て同一円周に連なって穿設され、その2筋のうち斜行板
40の回転方向に対して進み側が吸気孔Inであり、遅
れ側が排気孔Exである。而も四つの斜行板流路孔4
9,49、49,49は、ハウジング流路孔19,19
の内部側孔口の開口円周上を回転しているから、その連
接を各気室A,B,C,Dの気室空間の増減に同期させ
ると、その連接にあたる気室A,B,C,Dでは吸、排
気孔In,Exの何れかが開放されて吸、排気の何れか
の行程を行い、連接が過ぎれば圧縮、膨張の何れかの行
程を行うが、点火具Igによる作動媒体の点火は圧縮仕
事の最高時に同期させる。
The oblique plate flow passage holes 49, 49, 49, 49
Each share the intake hole In and the exhaust hole Ex,
Each of the outer peripheral surface hole openings is opened on the same rotation circumference at regular intervals of 90 degrees at the central angle of the skew plate 40, and the two housing flow passage holes 19, 19 are formed in the housing 10. Intake holes In are provided on the leading side of the two lines with respect to the rotation direction of the oblique plate 40, with the line lengths being approximately 1/4 of the circumference of the wall surface and being continuously formed in the same circle. The exhaust side Ex is on the delayed side. Also, four oblique plate flow path holes 4
9, 49, 49 and 49 are housing flow passage holes 19 and 19
Since it is rotating on the opening circumference of the inner side hole mouth, when the connection is synchronized with the increase or decrease of the air chamber space of each air chamber A, B, C, D, the air chambers A, B In C and D, either intake or exhaust holes In or Ex are opened to perform either intake or exhaust stroke, and if connection is over, either compression or expansion stroke is performed, but operation by ignition tool Ig Media ignition is synchronized at the peak of compression work.

【0097】つまり、各気室A,B,C,Dが順を追っ
て1回転するうちの90度分毎の進行において、最初の
90度分では先行する吸気孔Inのハウジング流路孔1
9と接続して吸気行程をし、次の90度分ではその吸気
孔Inとの連接から外れると共に圧縮行程をして作動媒
体が点火され、更に次の閉鎖された90度分では膨張行
程が行われ、残る90度分が排気孔Exのハウジング流
路孔19と連接して排気行程が行われるから、気室A,
B,C,Dの各々は90度分の進行毎に1行程ずつを行
い、各々が同一回転角の位置において互いに競合するこ
とのない同一以外の行程を進行させる。
That is, as the air chambers A, B, C, and D are sequentially rotated once every 90 degrees, the housing passage hole 1 of the preceding intake hole In is advanced for the first 90 degrees.
9, the intake stroke is performed, and in the next 90 degrees, the working medium is ignited by being disconnected from the connection with the intake hole In and the compression stroke, and the expansion stroke is performed in the next 90 degrees closed. Since the remaining 90 degrees is connected to the housing flow path hole 19 of the exhaust hole Ex and the exhaust stroke is performed, the air chamber A,
Each of B, C, and D performs one stroke every 90 degrees of progress, and each progresses a stroke other than the same stroke that does not conflict with each other at the position of the same rotation angle.

【0098】上記作動の連繋から図35に示す四つの気
室A,B,C,Dは、気室Aが排気行程を終了して吸気
行程を開始し、気室Bが膨張行程を終了して排気行程を
開始し、気室Cが膨張行程、気室Dが圧縮行程開始の回
転角位置にある。即ち、この形態1の実施例を示す図3
5では、膨張行程を終了した気室Bに換わって次の気室
Cにおける膨張圧力が回転ピストン30と斜行板40と
の間隙を押し広げると共に、回転ピストン30に力の方
向である一次回転PoをさせつつZ軸23に二次回転N
eをさせ、その二次回転NeをするZ軸23を内燃ピス
トン機関における出力軸とするものである。
From the connection of the above operations, in the four air chambers A, B, C and D shown in FIG. 35, the air chamber A ends the exhaust stroke and starts the intake stroke, and the air chamber B ends the expansion stroke. The exhaust stroke is started, the air chamber C is in the expansion stroke, and the air chamber D is in the rotation angle position where the compression stroke is started. That is, FIG. 3 showing an example of this mode 1
In Fig. 5, the expansion pressure in the next air chamber C instead of the air chamber B that has completed the expansion stroke spreads the gap between the rotary piston 30 and the skew plate 40, and the primary rotation that is the direction of force to the rotary piston 30 is performed. Secondary rotation N on the Z-axis 23 while making Po
The Z-axis 23, which is caused to e and makes its secondary rotation Ne, is used as the output shaft in the internal combustion piston engine.

【0099】[0099]

【形態2の実施例】上記形態1の実施例の構成におい
て、Z軸23の連結棒26に取付ける前記転がり軸72
を円形体素子の枢結子88に換えても、回転ピストン3
0、及び斜行板40に対してZ軸23を逆回転させるこ
とが可能である。次に、前記解決手段2の構成と前記幾
何図形上の作動原理1による図39に示す形態2の実施
例を説明する。尚この実施例は、回転ピストン30を円
形状板に形成して球面G内のR,S円面間を四つの空間
A,B,C,Dに形成した前記共通の解決手段1に基づ
く構成である。
Embodiment 2 of Embodiment 2 In the configuration of the embodiment of Embodiment 1 described above, the rolling shaft 72 mounted on the connecting rod 26 of the Z-axis 23.
Is replaced with a pivot 88 of a circular element, the rotary piston 3
It is possible to reversely rotate the Z axis 23 with respect to 0 and the skew plate 40. Next, an embodiment of the form 2 shown in FIG. 39 according to the structure of the solving means 2 and the operating principle 1 on the geometrical figure will be described. This embodiment is based on the common solving means 1 in which the rotary piston 30 is formed into a circular plate and the R and S circles in the spherical surface G are formed into four spaces A, B, C and D. Is.

【0100】この形態2の実施例において、ピン継手関
節55を構成する円形体素子の前記枢結子88には、そ
の側面を鉛直に貫通する孔を有してZ軸23の連結棒2
6を挿通させるが、そのZ軸23は、柄状の丸棒を外側
面の中心部に固着させて対面する内側面の各々が球面G
をなす並立させた両凹面円形板の軸板24,24と、そ
の軸板24,24の各々を中間斜軸に架け渡すX軸線上
の連結棒26とから全体をZ字形の一体構造に形成した
ものであり、球心Oに位置する連結棒26の中心部にX
軸線を取付け軸線として枢結子88を外嵌させ、その枢
結子88は回転ピストン30の内部中心に設けられた円
孔のピストン枢35に連結嵌合する。
In the embodiment of the second embodiment, the pivot connector 88 of the circular body element forming the pin joint joint 55 has a hole vertically penetrating the side surface thereof, and the connecting rod 2 of the Z axis 23 is formed.
6 is inserted, but the Z-axis 23 has a spherical bar G on each of the inner side surfaces facing each other by fixing a handle-shaped round bar to the center of the outer side surface.
Forming a Z-shaped integral structure from the shaft plates 24, 24, which are biconcave circular plates arranged side by side, and the connecting rod 26 on the X axis that bridges each of the shaft plates 24, 24 to the intermediate oblique axis. X is attached to the center of the connecting rod 26 located at the ball center O.
The pivot 88 is externally fitted with the axis as a mounting axis, and the pivot 88 is connected and fitted to the piston pivot 35 having a circular hole provided at the inner center of the rotary piston 30.

【0101】また、Y軸線が貫通するハウジング10の
球面Gをなす対向内壁の各々を円形凹みに切り欠いた軸
板室15,15と、その両軸板室15,15の側壁中心
部に貫通孔からなる主軸受13,13とを設け、その両
軸板室15,15に前記軸板24,24を回転可能に収
納すると共に、主軸受13,13にZ軸23の両軸頸を
嵌挿させて軸承させる。尚、Z軸23の一方の軸頸に外
歯傘歯車のZ軸歯車27を装着し、斜行板40にも斜行
板環43の縁部円周をZ軸歯車27と同一のピッチ円径
を持たせた外歯傘歯車に刻設形成した斜行板環歯車44
を有し、且つそのZ軸歯車27と斜行板環歯車44との
間にその互いを逆回転させる中間噛み合いの中間歯車5
4を介在させてそれらに歯合させ、その上でZ軸23に
矢印方向の回転を与えると、中間歯車54を介して斜行
板環歯車44がZ軸歯車27の反対方向に回転する。
Further, the shaft plate chambers 15 and 15 are formed by notching each of the opposing inner walls forming the spherical surface G of the housing 10 through which the Y axis passes through into circular recesses, and the through holes in the side wall center portions of both shaft plate chambers 15 and 15. The main bearings 13 and 13 are provided, the shaft plates 24 and 24 are rotatably accommodated in the shaft plate chambers 15 and 15, and the two shaft necks of the Z shaft 23 are fitted into the main bearings 13 and 13. Let the bearing. The Z-axis gear 27, which is an external bevel gear, is attached to one shaft neck of the Z-axis 23, and the edge circle of the skew plate ring 43 is also attached to the skew plate 40 at the same pitch circle as the Z-axis gear 27. Bevel plate ring gear 44 formed by engraving on an externally toothed bevel gear having a diameter
And an intermediate meshing gear 5 having an intermediate mesh between the Z-axis gear 27 and the skew plate ring gear 44, which rotate in opposite directions.
When 4 is interposed and meshed with them, and the Z-axis 23 is rotated in the direction of the arrow, the skewed plate ring gear 44 rotates in the opposite direction of the Z-axis gear 27 via the intermediate gear 54.

【0102】その斜行板環歯車44の回転は、斜行板4
0に連結する回転ピストン30を前記連結棒26上にお
いて一次回転Poをさせると同時に、連結棒26が前記
円錐軌跡J上をZ軸23の回転方向に二次回転Neをす
る。その一次回転Poの逆向きの回転をする二次回転N
eは、半回転につきR円面の自転軸LをX軸線上からY
軸線上に、そして再びX軸線上に戻るように働くもので
一次回転Poと同様にR,S円面間の間隙を変化させ
る。その時、前記Z軸歯車27と前記斜行板環歯車44
とのピッチ円径比が例えば図39に示すような1:1の
等しい比であれば、Z軸23と斜行板40とが同一の回
転速度を有して図39の基準位置から互いに逆方向に等
しい距離を移動し、その正逆90度分ずつの回転におい
て回転ピストン30と斜行板40との間隙が最大変化を
示すから、以下の作動と作動媒体の流出入機構は上記形
態1の実施例における場合と全く同じである。
The rotation of the skew plate ring gear 44 causes the skew plate 4 to rotate.
At the same time that the rotary piston 30 connected to 0 makes a primary rotation Po on the connecting rod 26, the connecting rod 26 makes a secondary rotation Ne on the conical locus J in the rotation direction of the Z axis 23. Secondary rotation N rotating in the opposite direction of the primary rotation Po
e is the rotation axis L of the R circle per half rotation from the X-axis to Y
It acts so as to return to the axial line and then to the X-axis line again, and changes the gap between the R and S circular surfaces in the same manner as the primary rotation Po. At that time, the Z-axis gear 27 and the oblique plate ring gear 44
If the ratio of the pitch circle diameters is equal to, for example, 1: 1 as shown in FIG. Since the gap between the rotary piston 30 and the skew plate 40 shows the maximum change when moving the same distance in the direction and rotating by 90 degrees in the forward and reverse directions, the following operation and working medium inflow / outflow mechanism have the above-described modes. This is exactly the same as the case in the above embodiment.

【0103】[0103]

【形態3の実施例】この形態3の実施例は、図44,4
5に示すように上記形態2の実施例におけるZ軸23の
軸板24,24を任意形状からなる腕棒の軸腕25,2
5に置き換えて作動させるもので前記解決手段3に基づ
く構成であり、上記形態2の実施例の場合と同じく前記
幾何図形上の作動原理1に属し、且つ回転ピストン30
を円形状板に形成して球面G内のR,S円面間を四つの
空間A,B,C,Dに形成した前記共通の解決手段1に
基づく。
[Embodiment 3 of Embodiment 3] An embodiment of Embodiment 3 is shown in FIGS.
As shown in FIG. 5, the shaft plates 24, 24 of the Z-axis 23 in the embodiment of the above-described mode 2 are replaced by shaft arms 25, 2 of arm bars of arbitrary shapes.
5 and is operated based on the solving means 3, which belongs to the operating principle 1 on the geometrical figure as in the case of the embodiment of the above-mentioned mode 2, and the rotary piston 30.
Is based on the common solving means 1 in which a circular plate is formed and the R and S circular surfaces in the spherical surface G are formed into four spaces A, B, C and D.

【0104】この実施例におけるZ軸23は、両軸板2
4,24を球面Gの外側に並立させた上記形態2の実施
例に対して、球面Gの内側直ぐに配置した板状、又は棒
状の軸腕25,25の各々を中間斜軸をなす丸棒の連結
棒26が一体的に連結固定したものであるが、上記形態
2の実施例における構成と同じく前記枢結子88を球心
Oに位置する連結棒26の中心部分に回転自由に外嵌さ
せる。尚、この実施例のハウジング10壁には、Z軸2
3を軸承する主軸受13,13は貫設されるが軸板室1
5,15の形成はなく、軌道隙12の両側壁面は球面G
をなして対面するハウジング10の凹面内壁11,11
である。
The Z-axis 23 in this embodiment is the double shaft plate 2
In contrast to the embodiment of the above-described embodiment 2 in which 4 and 24 are arranged side by side on the outer side of the spherical surface G, each of the plate-shaped or rod-shaped shaft arms 25, 25 arranged immediately inside the spherical surface G forms a middle rod. The connecting rod 26 is integrally connected and fixed, but the pivot connector 88 is rotatably fitted onto the central portion of the connecting rod 26 located at the ball center O similarly to the configuration in the embodiment of the second embodiment. . The Z-axis 2 is attached to the wall of the housing 10 of this embodiment.
The main bearings 13, 13 for supporting the shaft 3 are provided through the shaft plate chamber 1
There is no formation of Nos. 5 and 15, and both side walls of the orbital gap 12 are spherical surfaces G
Concave inner walls 11, 11 of the housing 10 facing each other
Is.

【0105】従って、気室A,B,C,Dの各々は、ハ
ウジング10の凹面内壁11面とピストン中間軸33の
軸柱面を含む回転ピストン30と斜行板40との両弓形
面31,41とに囲われて密閉された空間であり、この
場合の軸腕25,25の各々は連結棒26と共に前記ピ
ストン通軸孔34内に遊離関係に収容される。また、こ
の実施例においても、Z軸23軸頸にZ軸歯車27、斜
行板40に斜行板環歯車44を与え、且つそれらに歯合
する中間歯車54を介在させるから、これらの構成によ
る作動は上記形態2の実施例の場合と同様であり、作動
媒体の流出入機構においても上記形態1,2の実施例の
場合と全く同様である。
Therefore, each of the air chambers A, B, C and D has an arcuate surface 31 of the rotary piston 30 including the concave inner wall 11 of the housing 10 and the shaft surface of the piston intermediate shaft 33, and the oblique plate 40. , 41, and is a sealed space. In this case, each of the shaft arms 25, 25 is accommodated together with the connecting rod 26 in the piston through hole 34 in a free relation. Also in this embodiment, the Z-axis gear 27 is provided to the Z-axis 23-axis neck, the oblique plate ring gear 44 is provided to the oblique plate 40, and the intermediate gear 54 that meshes with them is interposed. The operation according to the above is the same as in the case of the embodiment of the second aspect, and the working medium inflow / outflow mechanism is exactly the same as in the case of the embodiments of the first and second aspects.

【0106】[0106]

【形態4の実施例】次に、前記解決手段4と前記共通の
解決手段1の構成に基づき前記幾何図形上の作動原理2
に属する作動形態の形態4の実施例を説明する。この実
施例は、上記実施例における曲軸のZ軸23に対して直
軸状をなす回転主軸20が取付けられ、而もZ軸23の
軸板24,24、又は軸腕25,25に換えてX軸線を
回転軸とする凹面円形板の位相板56,56がY軸線を
中心として取付けられるが、R,S円面上に取付けられ
る円形状板の回転ピストン30と斜行板40は上記実施
例における構成と同じである。
[Embodiment 4] Next, based on the configuration of the solving means 4 and the common solving means 1, the operating principle 2 on the geometrical figure.
An example of the fourth form of the operation form belonging to the above will be described. In this embodiment, the rotary spindle 20 having a straight axis is attached to the Z axis 23 which is the curved axis in the above embodiment, and instead of the shaft plates 24 and 24 of the Z axis 23 or the shaft arms 25 and 25. The phase plates 56, 56, which are concave circular plates having the X axis as the axis of rotation, are attached about the Y axis, but the rotary piston 30 and the skew plate 40, which are circular plates attached on the R and S circle planes, are the same as those described above. The configuration is the same as in the example.

【0107】図49と図50とに示されるこの実施例で
は、外形が球状をなすハウジング10の内壁面を球面G
に同心の球面Gより大きい球面に形成してX軸線が貫通
するハウジング10の対向両壁に円孔からなる主軸受1
3,13を設け、その主軸受13,13に前記回転主軸
20の両軸頸を嵌挿させて軸承させる。その回転主軸2
0の球心Oに位置する中心部分にはピン受孔を有する円
形の軸央枢21を備えるが、この回転主軸20が回転ピ
ストン30のピストン通軸孔34を挿通してピストン枢
35のピン状素子に軸央枢21を枢着させると、M軸線
を連結の中心軸とし、且つX軸線上の回転主軸20を基
軸として回転ピストン30が(θ×2)角度の範囲を揺
動可能なピン継手関節55が組成される。
In this embodiment shown in FIGS. 49 and 50, the inner wall surface of the housing 10 having a spherical outer shape is spherical surface G.
A main bearing 1 formed of a spherical surface larger than the concentric spherical surface G and having circular holes in both opposing walls of the housing 10 through which the X axis passes.
3 and 13 are provided, and both shaft necks of the rotary main shaft 20 are fitted and supported on the main bearings 13 and 13, respectively. The rotating spindle 2
A circular shaft center 21 having a pin receiving hole is provided in the central portion located at the ball center O of 0, and the rotary main shaft 20 is inserted into the piston through shaft hole 34 of the rotary piston 30 and the pin of the piston center 35 is inserted. When the shaft center 21 is pivotally attached to the element, the rotary piston 30 can swing in the range of (θ × 2) angle with the M axis as the central axis of the connection and the rotary spindle 20 on the X axis as the base axis. The pin joint joint 55 is constructed.

【0108】また、斜行板環43の両側の各々には、そ
の斜行板環43側面円周とハウジング10球面内壁とに
回転可能に摺接して内側面が球面Gからなる凹面円形板
の前記位相板56,56を嵌合させ、その両位相板5
6,56の点P,P上に位相板軸受57,57の円孔を
貫設して回転主軸20を嵌挿させる。すると、S円面上
の斜行板40が、斜行板環43の内周面を含む位相板5
6,56の球面Gをなす内側凹面を閉鎖してハウジング
10内に互いの凹面を対面させた半球状の定積空間から
なる二つの半月状作動室Ha,Haを形成する。更に、
その半月状作動室Ha,Haの各々をR円面上の回転ピ
ストン30が、反比例に体積変化をさせる二つずつの密
閉した櫛形状の空間をなす気室A,B,C,Dに形成す
る。
Further, on each of both sides of the slanting plate ring 43, a concave circular plate whose inner surface is a spherical surface G is rotatably slidably in contact with the side surface circumference of the slanting plate ring 43 and the spherical inner wall of the housing 10. The phase plates 56, 56 are fitted to each other, and both phase plates 5
Circular holes of the phase plate bearings 57, 57 are provided on the points P, P of 6, 56 to insert the rotary spindle 20 therein. Then, the skew plate 40 on the S-circular surface is the phase plate 5 including the inner peripheral surface of the skew plate ring 43.
The inner concave surfaces of the spherical surfaces G of 6,56 are closed to form two half-moon-shaped working chambers Ha, Ha in the housing 10 which are hemispherical constant volume spaces facing each other. Furthermore,
Each of the half-moon-shaped working chambers Ha, Ha is formed by an air chamber A, B, C, D in which a rotary piston 30 on the R circular surface forms two closed comb-shaped spaces that change volume inversely proportionally. To do.

【0109】尚この実施例においては、位相板56の外
側面に外歯傘歯車の位相板歯車58を前記位相板軸受5
7の孔を中心として取付け、回転主軸20の軸頸にも位
相板歯車58と同一ピッチ円径の外歯傘歯車の主軸歯車
22を位相板歯車58の外側に並立させて設け、且つそ
の両歯車58,22間にその両者に歯合して両者を逆回
転させる中間噛み合いの中間歯車54を介在させた上で
回転主軸20に矢印方向の回転を与えると、その回転主
軸20に前記ピン継手関節55を介して連結する回転ピ
ストン30が前記円錐軌跡U上を一次回転Poすると同
時に、中間歯車54を介して位相板歯車58が主軸歯車
22の反対方向に回転する。
In this embodiment, a phase plate gear 58 of an external bevel gear is provided on the outer surface of the phase plate 56 with the phase plate bearing 5.
7, the main shaft gear 22 of the external bevel gear having the same pitch circle diameter as that of the phase plate gear 58 is provided in parallel with the shaft neck of the rotary main shaft 20 outside the phase plate gear 58. When the rotating main shaft 20 is rotated in the direction of the arrow after interposing an intermediate meshing intermediate gear 54 that meshes with both the gears 58 and 22 to rotate them in opposite directions, the pin joint is attached to the rotating main shaft 20. At the same time as the rotary piston 30 connected via the joint 55 makes a primary rotation Po on the conical locus U, the phase plate gear 58 rotates in the opposite direction of the main shaft gear 22 via the intermediate gear 54.

【0110】即ち、位相板歯車58に連動する位相板5
6が前記円錐軌跡J上を回転主軸20の逆回転である二
次回転Neをして斜行板40の位相を変化させるが、そ
の二次回転Neにおける斜行板40位相の変化は、半回
転につきR円面の自転軸LをX軸線上からY軸線上に、
そして再びX軸線上に戻るように働くもので一次回転P
oと同様にR,S円面間の間隙を変化させる。その時、
互いに与する主軸歯車22と位相板歯車58とのピッチ
円径が例えば図49に示すように1:1の等しい比であ
れば、回転主軸20と位相板56とが同一の回転比を有
して互いに逆方向に等しい距離を移動し、その正逆90
度分の回転において回転ピストン30と斜行板40との
間隙が最大変化を示す。
That is, the phase plate 5 interlocked with the phase plate gear 58.
6 makes a secondary rotation Ne, which is the reverse rotation of the rotation main shaft 20, on the conical locus J to change the phase of the skew plate 40. The phase change of the skew plate 40 in the secondary rotation Ne is half. With respect to the rotation, the rotation axis L of the R circle surface is changed from the X-axis line to the Y-axis line,
Then, it works so as to return to the X-axis again, and the primary rotation P
As with o, the gap between the R and S circles is changed. At that time,
When the pitch circle diameters of the main shaft gear 22 and the phase plate gear 58, which are given to each other, have the same ratio of 1: 1 as shown in FIG. 49, the rotary main shaft 20 and the phase plate 56 have the same rotation ratio. And move the same distance in opposite directions, and
The gap between the rotary piston 30 and the skew plate 40 shows the maximum change in the rotation of a degree.

【0111】つまり、回転主軸20に与える回転の90
度分は、回転主軸20に前記軸央枢21を経て繋がる回
転ピストン30と斜行板40とを同一方向に90度分を
回転させ、その逆方向に互いの位相板56,56を円錐
軌跡J上に90度分を旋回させて斜行板40の位相を変
化させ、その正逆90度分ずつの回転が図33(A)乃
至(F)を経て図34(G)(幾何図形では図18乃至
図23を経て図24)に示すように正逆回転比1:1
(1/1)を成立させて回転ピストン30と斜行板40
との間隙差を最小から最大に、又は最大から最小へと変
化させる。そこから更に90度分の回転を回転主軸20
に与えると、回転ピストン30と斜行板40との間隙で
ある気室空間A,B,C,Dは図34(G)から(H)
乃至(K)を経て(L)(幾何図形においては図24か
ら図25乃至図29を経て図30)の順に示すように再
び最大範囲の変化をする。
That is, 90 degrees of rotation given to the rotary main shaft 20.
As for the degree of rotation, the rotary piston 30 and the skew plate 40, which are connected to the rotary main shaft 20 via the shaft center 21, are rotated by 90 degrees in the same direction, and the phase plates 56, 56 are conical loci in the opposite direction. Rotate 90 degrees on J to change the phase of the skew plate 40, and the rotation of the forward and reverse directions by 90 degrees is performed through FIGS. 33 (A) to (F) to FIG. 34 (G). As shown in FIG. 24 through FIGS. 18 to 23, the forward / reverse rotation ratio is 1: 1.
By establishing (1/1), the rotary piston 30 and the skew plate 40
The gap difference between and is changed from the minimum to the maximum, or from the maximum to the minimum. From there, rotate 90 degrees to rotate the spindle 20.
, The air chamber spaces A, B, C and D, which are the gaps between the rotary piston 30 and the skew plate 40, are shown in FIGS. 34 (G) to (H).
Through (K) through (L) (in the case of the geometrical figure, FIG. 24 through FIG. 25 through FIG. 29 through FIG. 30), the maximum range is changed again.

【0112】そして更に回転主軸20に90度+90度
に相当する半回転分の回転を加えると、各気室A,B,
C,Dに上記と同様な最大範囲の容積変化の2回数を行
って出発となった図33(A)(幾何図形では図18)
に戻る。即ち、正逆回転比を1:1(1/1)に設定し
た回転主軸20の1回転は、各位相板56を回転主軸2
0の反対方向に1回転させ、その位相板56の1回転に
回転ピストン30が斜行板40に対して2往復分の擺動
を行い、各気室A,B,C,Dが4行程分に相当する容
積の4変化を行う。
Then, when a half-rotation equivalent to 90 ° + 90 ° is further applied to the rotary main shaft 20, each air chamber A, B,
FIG. 33 (A), which was started after performing the same maximum range of volume change twice for C and D (FIG. 18 for geometrical figures).
Return to. That is, one rotation of the rotary spindle 20 in which the forward / reverse rotation ratio is set to 1: 1 (1/1) causes the respective phase plates 56 to move through the rotary spindle 2.
One rotation is made in the opposite direction of 0, and one rotation of the phase plate 56 causes the rotary piston 30 to make two reciprocating movements with respect to the skew plate 40, so that each air chamber A, B, C, D has four strokes. 4 changes in volume corresponding to

【0113】本実施例は、気室A,B,C,Dの各々が
X軸線上の回転主軸20とY軸線上に取付けた位相板5
6との正逆の回転角(作用角)において、その90度毎
の回転に気室体積を変化させて軸1回転につき気室体積
の増減を2往復させる。結局、その軸1回転における気
室体積の4変化に吸気、圧縮、膨張、排気の各行程仕事
を当てはめて作動させれば、本実施例の回転ピストン機
関は4行程サイクル往復ピストン機関における(4気筒
×2)機関に相当する。その為に気室A,B,C,Dに
臨ませて作動媒体を流出入させる吸入孔Inと排出孔E
xとを設け、且つ燃焼室の部分を窺って点火具Igを挿
着する。
In the present embodiment, each of the air chambers A, B, C and D has a phase plate 5 mounted on the rotating main shaft 20 on the X axis and on the Y axis.
At a rotation angle (working angle) opposite to that of 6, the air chamber volume is changed at every 90 ° rotation, and the air chamber volume is reciprocated twice for one rotation of the shaft. After all, if the stroke work of intake, compression, expansion, and exhaust is applied to the four changes of the air chamber volume per one rotation of the shaft to operate, the rotary piston engine of the present embodiment is a four stroke cycle reciprocating piston engine (4 Cylinder x 2) Equivalent to an engine. Therefore, a suction hole In and a discharge hole E for letting the working medium flow in and out facing the air chambers A, B, C, D.
x is provided, and a portion of the combustion chamber is checked to insert the ignition tool Ig.

【0114】その吸、排気孔In,Exは、例えば各気
室A,B,C,Dに面する斜行板40の各弓形面41か
ら斜行板環43の外周面に連通して開口する斜行板流路
孔49,49、49,49と、その外周面孔口の回転円
周上のハウジング10内壁面からハウジング10外壁に
貫通する溝状孔の2筋を交差させて1組とした2組分の
ハウジング流路孔19,19とを設ける。また、点火具
Igは、左右の半月状作動室Ha,Ha分として各斜行
板流路孔49の外周面孔口を窺う各ハウジング流路孔1
9と対向する位置のハウジング10壁に少なくとも1本
ずつを挿着する。
The intake / exhaust holes In, Ex are opened, for example, from the arcuate surfaces 41 of the skew plate 40 facing the air chambers A, B, C, D to the outer peripheral surface of the skew plate ring 43. The oblique plate passage holes 49, 49, 49, 49 and the grooved holes penetrating from the inner wall surface of the housing 10 to the outer wall of the housing 10 on the rotation circumference of the hole opening on the outer peripheral surface are crossed to form one set. Two sets of housing flow passage holes 19 and 19 are provided. Further, the igniter Ig is provided for each of the left and right half-moon-shaped working chambers Ha, Ha, and each housing flow passage hole 1 for checking the outer peripheral surface hole of each oblique plate flow passage hole 49.
At least one piece is inserted into the wall of the housing 10 at a position opposite to 9.

【0115】尚、斜行板流路孔49,49、49,49
は、各々が吸気孔Inと排気孔Exとを共用していて、
その外周面孔口の各々を斜行板40の中心角で90度分
ずつの均等間隔を開けた同一回転円周上に開口させる。
また、2組分のハウジング流路孔19,19は、その各
々が各斜行板流路孔49の開口回転円周に沿ったハウジ
ング10内壁面円周の概ね1/4円周長ずつの筋長を有
する2筋を交差させ、且つ2組分がハウジング10内壁
面円周の概ね1/2円周長内に連なって開口し、その2
組のうち斜行板40回転方向の進み側が吸気孔In、遅
れ側が排気孔Exである。
The oblique plate flow passage holes 49, 49, 49, 49
Each share the intake hole In and the exhaust hole Ex,
Each of the outer peripheral surface hole openings is opened on the same rotation circumference at equal intervals of 90 degrees at the central angle of the oblique plate 40.
In addition, the two sets of housing flow passage holes 19, 19 each have a length of about ¼ of the circumference of the inner wall surface of the housing 10 along the opening rotation circumference of each oblique plate flow passage hole 49. The two lines having the line length are crossed, and two sets are continuously opened within the circumference length of 1/2 of the inner wall surface circumference of the housing 10.
In the set, the leading side in the rotation direction of the skew plate 40 is the intake hole In, and the trailing side is the exhaust hole Ex.

【0116】以上のように構成したこの実施例では、上
述したように回転主軸20に与える回転の90度分ずつ
において各気室A,B,C,Dの気室体積を増減させる
が、その時に各斜行板流路孔49がハウジング流路孔1
9,19の内部側孔口の開口円周上を回転するから、そ
の回転に伴う連接を気室A,B,C,Dの体積増減と同
期させると共に、点火具Igによる作動媒体の点火にお
いても圧縮行程の最高時に同期させると、各気室A,
B,C,Dが1回転するうちの90度分回転毎の進行に
おいて、最初の90度分の回転では先行する吸気孔In
のハウジング流路孔19と接続して吸気行程をし、次の
90度分ではその吸気孔Inとの連接から外れて圧縮行
程をし、且つその圧縮末期の作動媒体が点火され、更に
次の90度分の回転では膨張行程が行われ、残る90度
分の回転では排気孔Exのハウジング流路孔19と連接
して排気行程が行われるが、その時に各気室A,B,
C,Dが同一の回転角位置において同一以外の行程を進
行させる。
In this embodiment configured as described above, the air chamber volume of each air chamber A, B, C, D is increased or decreased by 90 degrees of rotation given to the rotary main shaft 20 as described above. Each skewed plate flow passage hole 49 has a housing flow passage hole 1
Since it rotates on the opening circumference of the inner side hole mouths of 9 and 19, the connection accompanying the rotation is synchronized with the volume increase / decrease of the air chambers A, B, C and D, and at the time of igniting the working medium by the igniter Ig. When synchronized with the highest compression stroke, each air chamber A,
In the progress of each rotation of 90 degrees during one rotation of B, C, and D, the intake hole In that precedes the first rotation of 90 degrees
Is connected to the housing flow path hole 19 to perform an intake stroke, and in the next 90 °, the working stroke at the end of compression is ignited by deviating from the connection with the intake hole In, and further The expansion stroke is performed by the rotation of 90 degrees, and the exhaust stroke is performed by being connected to the housing flow path hole 19 of the exhaust hole Ex in the remaining rotation of 90 degrees. At that time, the air chambers A, B, and
When C and D have the same rotation angle position, the strokes other than the same are advanced.

【0117】上記作動の連繋から図49に示す四つの気
室A,B,C,Dは、気室Aが排気行程を終了して吸気
行程を開始し、気室Bが膨張行程を終了して排気行程を
開始し、気室Cが膨張行程、気室Dが圧縮行程開始の回
転角位置にあるが、この図49においては、気室Bに換
わって気室Cの膨張圧力が回転ピストン30と斜行板4
0との間隙を押し広げて回転ピストン30に力の方向で
ある一次回転Poをさせつつ、前記位相板56に斜行板
40の位相を変化させる二次回転Neをさせて出力軸の
回転主軸20を回転させようとするものである。
From the connection of the above operations, in the four air chambers A, B, C and D shown in FIG. 49, the air chamber A ends the exhaust stroke and starts the intake stroke, and the air chamber B ends the expansion stroke. The exhaust stroke is started, the air chamber C is in the expansion stroke, and the air chamber D is in the rotation angle position of the compression stroke start. In FIG. 49, the expansion pressure of the air chamber C instead of the air chamber B is the rotary piston 30 and skew plate 4
The rotational main shaft of the output shaft is expanded by widening the gap between the rotational piston 30 and the primary rotation Po, which is the direction of the force, while the phase plate 56 is rotated by the secondary rotation Ne to change the phase of the skew plate 40. It is intended to rotate 20.

【0118】[0118]

【形態5の実施例】この形態5の実施例は、前記解決手
段5と前記共通の解決手段1とに基づく構成であるが、
上記形態1の実施例におけるZ軸23の軸板24,24
に換えて、球形状の空間を持つ球体殻のZ軸筺体70を
ハウジング10内に回転可能な嵌合状態に組込んだもの
であるから前記幾何図形上の作動原理1の作動形態に属
し、その作動はZ軸23と軸板24,24をZ軸筺体7
0に置き換えれば上記形態1の実施例の場合と同様であ
るが、この実施例においての気室A,B,C,DはZ軸
筐体70内に形成される。
[Embodiment of Form 5] The embodiment of form 5 is based on the solving means 5 and the common solving means 1,
Shaft plates 24, 24 of the Z-axis 23 in the embodiment of the above-mentioned mode 1
In place of the above, since the Z-axis housing 70 of a spherical shell having a spherical space is incorporated in the housing 10 in a rotatable fitting state, it belongs to the operating form of the operating principle 1 on the geometrical diagram, The operation is performed by connecting the Z-axis 23 and the shaft plates 24, 24 to the Z-axis housing 7.
If replaced with 0, it is similar to the case of the embodiment of the first embodiment, but the air chambers A, B, C, D in this embodiment are formed in the Z-axis housing 70.

【0119】即ち、図53に示されるこの実施例では、
外形が球状をなすハウジング10の内壁面を球面Gより
大きいY軸線に同心の回転面に形成してY軸線が貫通す
るそのハウジング10の対向両壁に主軸受13,13を
設ける。このように形成したハウジング10には、Y軸
線上の対向外側面の各々に柄状の丸棒からなる筺体軸7
1を軸止め固着させてR,S円面を内包する球面Gに形
成した内側面を有する球体状の前記Z軸筺体70を組込
むと共に、前記主軸受13,13に筺体軸71,71を
嵌挿させて軸承させると、このZ軸筐体70はハウジン
グ10内壁面内にY軸線を回転軸として回転自由に嵌合
する。
That is, in this embodiment shown in FIG.
The inner wall surface of the housing 10 having a spherical outer shape is formed as a rotation surface concentric with the Y axis larger than the spherical surface G, and main bearings 13 are provided on both opposing walls of the housing 10 through which the Y axis passes. In the housing 10 thus formed, the housing shaft 7 made of a handle-shaped round bar is provided on each of the opposing outer surfaces on the Y-axis.
Incorporating the spherical Z-axis housing 70 having an inner side surface formed into a spherical surface G enclosing the R and S circular surfaces by fixing 1 to the shaft, and fitting the housing shafts 71 and 71 into the main bearings 13 and 13. When inserted and supported by the shaft, the Z-axis housing 70 is freely rotatably fitted in the inner wall surface of the housing 10 with the Y-axis as the rotation axis.

【0120】このZ軸筺体70には、S円面の延長平面
に沿った内部面に周回する溝の軌道隙87を削成し、そ
の軌道隙87に斜行板環43を回転可能に嵌合させて斜
行板40を拘束し、更にX軸線が貫通する対向両側に転
がり軸受73,73を設けて直軸状をなす転がり軸72
の両側軸頸ジャーナルを軸承させる。尚、このZ軸筐体
70内のX軸線上には連結棒26の取付けがないから、
転がり軸72には自らの軸線上を貫通する管孔は必ずし
も必要としないが、この転がり軸72の球心Oに位置す
る中央部分は前記M軸線を穿孔軸線としてピン受円孔が
穿設された円形体の部分からなる軸央枢74であり、そ
の軸央枢74を回転ピストン30内部取付けのピン柱か
らなるピストン枢35に枢着させてピン継手関節55を
組成する。
On the Z-axis housing 70, an orbital gap 87 of a groove that circulates on the inner surface along the extension plane of the S-circle is cut, and the oblique plate ring 43 is rotatably fitted in the orbital gap 87. And the slanting plate 40 is constrained, and rolling bearings 73, 73 are provided on opposite sides through which the X axis penetrates to form a straight shaft-shaped rolling shaft 72.
Bearing the bilateral shaft neck journals. Since the connecting rod 26 is not mounted on the X-axis line in the Z-axis housing 70,
The rolling shaft 72 does not necessarily need a tube hole penetrating on its own axis, but the central portion of the rolling shaft 72 located at the ball center O is provided with a pin receiving hole with the M axis as a drilling axis. Is a central part 74 of a circular body, and the central part 74 is pivotally attached to a piston center 35 composed of a pin column mounted inside the rotary piston 30 to form a pin joint joint 55.

【0121】且つ、S円面を中心とするハウジング10
対向内壁の各々には、X,Y軸線の開き角を半径とした
円周よりも大きいピッチ円径を有する内歯歯車の固定位
相歯車14,14をY軸線を中心として固着させると共
に、その固定位相歯車14,14よりも小さいピッチ円
径からなる外歯歯車の転がり歯車76,76を前記転が
り軸72の両端部に固着させてその各々が与する固定位
相歯車14,14に転がり可能に内接歯合させ、その上
で転がり軸72に矢印方向の回転を与えると、その転が
り軸72にピン継手関節55を介して連結する回転ピス
トン30は、上記形態1の実施例の場合と同様に前記円
錐軌跡U上を一次回転Poすると同時に、転がり歯車7
6のピッチ円径が基円とする固定位相歯車14のピッチ
円径に内接して転円するから、転がり軸72と共に自転
をしながら自転の反対方向に前記円錐軌跡Jに沿って二
次回転Neをする。
Further, the housing 10 having the S circle surface as the center
Fixed phase gears 14, 14 of an internal gear having a pitch diameter larger than a circumference whose radius is the opening angle of the X and Y axes are fixed to each of the opposing inner walls with the Y axis as the center. Rolling gears 76, 76 of external gears having a pitch circle diameter smaller than that of the phase gears 14, 14 are fixed to both ends of the rolling shaft 72 so that they can roll on the fixed phase gears 14, 14 provided respectively. When the rolling shaft 72 is brought into contact with each other and is rotated in the direction of the arrow, the rotary piston 30 connected to the rolling shaft 72 via the pin joint joint 55 is the same as in the case of the embodiment 1 described above. At the same time as performing the primary rotation Po on the conical locus U, the rolling gear 7
Since the pitch circle diameter of 6 rotates inscribed in the pitch circle diameter of the fixed phase gear 14 serving as the base circle, the secondary circle rotates along the conical locus J in the opposite direction of the rotation while rotating with the rolling shaft 72. Ne.

【0122】また、上記作動に伴う回転ピストン30と
斜行板40との連繋と気室A,B,C,Dの体積変化
も、図53に示すように固定位相歯車14と転がり歯車
76とのピッチ円径比を2:1にとれば上記形態1の実
施例の場合と同じである。作動媒体の出入孔In,Ex
においては、図示はしないが半月状作動室Ha,Haの
各々に面する前記Z軸筺体70に、そのZ軸筺体70壁
を貫通する二つずつの筺体流路孔89,89、89,8
9を穿孔する。その同一半月状作動室Haに面する二つ
の筺体流路孔89,89は、Y軸線を回転軸とする同一
以外の回転円周面に一方を吸気孔In、他方を排気孔E
xとして互いが概ね対向する位置に穿孔され、両半月状
作動室Ha,Haに面する二つずつの筺体流路孔89,
89、89,89はX,Y軸線が共にK軸線と直交する
時のR円面を概ね基準とした同一平面上に穿設される。
Further, as shown in FIG. 53, the connection between the rotary piston 30 and the skew plate 40 and the volume change of the air chambers A, B, C and D caused by the above-mentioned operation are as shown in FIG. If the pitch circle diameter ratio is set to 2: 1, it is the same as the case of the embodiment of the above-mentioned form 1. In / out holes for working medium In, Ex
In the above, although not shown in the drawing, in the Z-axis housing 70 facing each of the half-moon shaped operation chambers Ha, Ha, two pairs of housing flow passage holes 89, 89, 89, 8 penetrating the Z-axis housing 70 wall
Drill 9 The two housing flow passage holes 89, 89 facing the same half-moon-shaped working chamber Ha have one of the intake holes In and the other of the exhaust holes E on the rotation circumferential surfaces other than the same with the Y axis as the rotation axis.
x are drilled at positions substantially opposite to each other, and each of the two crescent-shaped working chambers Ha, two housing flow passage holes 89 facing Ha.
89, 89, and 89 are drilled on the same plane with the R circular surface when the X and Y axis lines are orthogonal to the K axis line as a reference.

【0123】そしてハウジング10にも、筺体流路孔8
9,89、89,89が開口する四つの開口回転円周上
の内壁面から外壁に、その内壁面円周の概ね1/2円周
長分ずつを有する各々が溝状孔からなるハウジング流路
孔19,19、19,19を連通させて同一回転円周上
に与する各筺体流路孔89と連接させる。尚その時、同
一の半月状作動室Haに面して開口する2筋のハウジン
グ流路孔19,19は、互いの半分ずつの円周長分がハ
ウジング10の同一回転角内に穿設され、その2筋のう
ちのZ軸筐体70回転方向の遅れ側が吸気孔Inであ
り、進み側が排気孔Exであるが、両半月状作動室H
a,Haに面して開口する2筋ずつは同一の回転角内に
穿設されて並列する。
The housing flow path hole 8 is also provided in the housing 10.
Housing flow consisting of grooved holes each having a circumference length of about 1/2 of the circumference of the inner wall surface from the inner wall surface to the outer wall on the four opening rotation circles in which 9, 89, 89, 89 are opened. The passage holes 19, 19, 19, 19 are made to communicate with each other so as to be connected to the respective casing passage holes 89 provided on the same circumference of rotation. At that time, the two streak-shaped housing flow passage holes 19 and 19 that open toward the same half-moon-shaped working chamber Ha are bored in the same rotation angle of the housing 10 by half the circumference length of each other. The lag side of the two lines in the rotation direction of the Z-axis housing 70 is the intake hole In, and the lead side is the exhaust hole Ex.
The two lines that open toward a and Ha are drilled in the same rotation angle and arranged in parallel.

【0124】また、図示はしないが点火具Igは、まず
何れの半月状作動室Haに面してもZ軸筺体70壁を貫
く点火口の点火孔(ディーゼル機関の態様では燃料噴射
孔)86を二つの前記筺体流路孔89,89の中間位置
に、その筺体流路孔89,89の開口回転円周とは異な
る回転円周上に、且つ両半月状作動室Ha,Ha分にお
いては互いを対向させて設け、その上でその各点火孔8
6を窺う回転円周上のハウジング10壁に互いがハウジ
ング10の中心角で直角度分を隔てて少なくとも2本ず
つを挿着する。又はZ軸筺体70か、斜行板40にその
必要本数を埋め込み状に挿着する等、点火具Igの取付
けは自由であるがその場合には点火孔86は不要であ
る。
Although not shown, the igniter Ig has an ignition hole (a fuel injection hole in the case of a diesel engine) 86 of an ignition port that penetrates the Z-axis housing 70 wall regardless of which half-moon shaped operation chamber Ha is faced. At an intermediate position between the two housing flow passage holes 89, 89, on a rotation circumference different from the opening rotation circumference of the housing flow passage holes 89, 89, and in both half-moon-shaped working chambers Ha, Ha. They are provided so as to face each other, on which the respective ignition holes 8 are provided.
At least two pieces are inserted into the wall of the housing 10 on the circumference of rotation for checking 6 and separated from each other by the central angle of the housing 10 at right angles. Alternatively, the igniter Ig can be attached freely by, for example, inserting the required number of the Z-axis housing 70 or the slanting plate 40 in an embedded manner, but in that case, the ignition hole 86 is not necessary.

【0125】以上のように構成したこの実施例では、Z
軸筺体70、及び前記転がり軸72回転の90度分が各
気室A,B,C,Dの気室体積を最小から最大に、又は
最大から最小に変化させ、その体積変化に同期させて適
宜作動媒体の流出入孔In,Exを閉鎖、又は開放させ
る。即ち、Z軸筺体70の回転に伴って各筺体流路孔8
9がその与するハウジング流路孔19に連接すれば、そ
の連接空間にあたる気室A,B,C,Dの何れかでは
吸、排気孔In,Exの何れかが開放されて吸、排気の
何れかの行程を行い、連接が過ぎれば圧縮、膨張の何れ
かの行程を行う。尚、点火具Igによる作動媒体への点
火は各気室A,B,C,Dの圧縮行程の最高時に同期さ
せる。
In this embodiment constructed as described above, Z
90 degrees of rotation of the shaft housing 70 and the rolling shaft 72 changes the air chamber volume of each air chamber A, B, C, D from the minimum to the maximum or from the maximum to the minimum, and synchronizes with the volume change. The working medium inflow / outflow holes In and Ex are closed or opened as appropriate. That is, as the Z-axis housing 70 rotates, each housing flow path hole 8
When 9 is connected to the housing flow passage hole 19 provided thereto, intake is performed in any of the air chambers A, B, C, D corresponding to the connection space, and intake or exhaust is performed by opening any of the exhaust holes In, Ex. Either stroke is performed, and if connection is over, either stroke of compression or expansion is performed. It should be noted that the ignition of the working medium by the igniter Ig is synchronized with the maximum compression stroke of each of the air chambers A, B, C, D.

【0126】上記構成と作動の連繋から図53に示す四
つの気室A,B,C,Dは、気室Aが排気行程を終了し
て吸気行程、気室Bが膨張行程を終了して排気行程、気
室Cが膨張行程、気室Dが圧縮行程を何れも開始する回
転角位置にあるが、更にこの図53においては、気室B
に換わって気室Cの膨張圧力が回転ピストン30と斜行
板40との間隙を押し広げて回転ピストン30に力の方
向である一次回転Poをさせ、且つ転がり軸72の位相
を変化させる逆転の二次回転NeをもさせてZ軸筐体7
0取付けの前記筺体軸71を回転させようとするもので
ある。
From the connection of the above construction and operation, in the four air chambers A, B, C and D shown in FIG. 53, the air chamber A ends the exhaust stroke and the intake stroke, and the air chamber B ends the expansion stroke. The exhaust stroke, the air chamber C is in the expansion stroke, and the air chamber D is in the rotation angle position where both start the compression stroke.
Instead, the expansion pressure of the air chamber C widens the gap between the rotary piston 30 and the skew plate 40 to cause the rotary piston 30 to perform the primary rotation Po, which is the direction of the force, and to change the phase of the rolling shaft 72. The Z-axis housing 7 also as the secondary rotation Ne of
It is intended to rotate the housing shaft 71, which is attached to 0.

【0127】[0127]

【形態6の実施例】前記解決手段6、及び前記共通の解
決手段1の構成に基づき、前記幾何図形上の作動原理1
に属するこの実施例は、上記形態2の実施例における斜
行板40の外周として取付けた環状の斜行板環43に換
え、内側面が球面Gをなす内部中空に形成した球形状の
筺体60をハウジング10内に組込んだものである。
[Embodiment 6] Based on the configurations of the solving means 6 and the common solving means 1, the operating principle 1 on the geometrical figure
In this embodiment belonging to the above-mentioned embodiment, instead of the ring-shaped skew plate ring 43 attached as the outer periphery of the skew plate 40 in the embodiment of the above-mentioned mode 2, a spherical casing 60 having an inner hollow surface having a spherical surface G is formed. Is incorporated in the housing 10.

【0128】即ち、図56に示すこの実施例では、ハウ
ジング10内壁面を球面Gより大きい球面G同心の球面
か、又は球面Gより大きいY軸線に同心の回転面に形成
してY軸線上のハウジング10対向壁に主軸受13,1
3を貫設すると共に、R,S円面を内包して球面Gをな
す内側面を有する球体状の内部殻に形成した前記筺体6
0をY軸線を回転軸としてハウジング10に回転摺動可
能に組込む。この筺体60には、自らのS円面上に固着
して自らの内部空間を両側に隔てる対称配置の二つの弓
形板からなる仕切り板状の筺体斜行板61と、Y軸線上
の対向両内壁を円形凹みに切り欠いた軸板室64,64
と、その各軸板室64壁中心部に貫く円孔の筺体軸受6
3とを有する。
That is, in this embodiment shown in FIG. 56, the inner wall surface of the housing 10 is formed on the Y-axis by forming a spherical surface concentric with the spherical surface G larger than the spherical surface G or a rotating surface concentric with the Y-axis larger than the spherical surface G. Main bearings 13, 1 on the opposite wall of the housing 10
The housing 6 is formed into a spherical inner shell having an inner side surface forming a spherical surface G by enclosing R and S circular surfaces.
0 is assembled in the housing 10 so as to be rotatable and slidable with the Y axis as the axis of rotation. The housing 60 has a partition plate-shaped housing slanting plate 61 made of two symmetrically-arranged arcuate plates that are fixed to the S-circular surface of the housing 60 and separate the internal space of the housing 60 from both sides, and both of them are opposed to each other on the Y-axis. Shaft plate chambers 64, 64 with inner walls cut out in circular recesses
And the housing bearing 6 of a circular hole penetrating through the center of the wall of each shaft plate chamber 64.
3 and 3.

【0129】その対向両側の筺体軸受63,63と前記
主軸受13,13にはZ軸23が両軸頸を嵌挿させて回
転自由に軸承されるが、このZ軸23は上記形態2の実
施例の構成と同様に、軸頸とする柄状の丸棒を外側面中
心部に固着させて前記軸板室64,64に回転可能に収
納される互いの内側面が球面Gをなす凹面円形板の軸板
24,24と、その軸板24,24の各々を中間斜軸に
架け渡して連結するX軸線上の連結棒26とによって全
体形がZ字形の一体構造に形成されると共に、このZ軸
23の連結棒26の中心部分にも円形体素子の枢結子8
8が取付けられて回転ピストン30内中央に形成した円
孔のピストン枢35に枢着する。
The Z-axis 23 is rotatably supported by the housing bearings 63, 63 and the main bearings 13, 13 on both sides of the Z-axis so that both shaft necks are fitted and the Z-axis 23 is rotatably supported. Similar to the configuration of the embodiment, a handle-shaped round bar serving as a shaft neck is fixed to the central portion of the outer surface and is rotatably housed in the shaft plate chambers 64, 64. The shaft plates 24, 24 of the plate and the connecting rod 26 on the X axis for connecting the shaft plates 24, 24 to the intermediate oblique shaft are connected to each other to form a Z-shaped integral structure. The central part of the connecting rod 26 of the Z axis 23 also has a pivot member 8 of a circular body element.
8 is attached and pivotally attached to a piston pivot 35 having a circular hole formed in the center of the rotary piston 30.

【0130】また、前記筺体斜行板61は、半円より小
さい二つの弓形板が互いの弓形輪郭面を筺体60の内部
面に固着させてK軸線上に対面する両弦側面42,42
と、前記点Ka、点Kb側に位置する筺体60の内部面
との4辺からなる矩形に突き抜けた窓を持つ筺体60内
部の仕切り板状に形成されるが、その窓枠の点Ka、点
Kb側にピン柱の蝶番ピン51,51を設けた上で、そ
の窓枠にピストン中間軸33を差し込み入れ、且つその
蝶番ピン51,51の各々に与する回転ピストン30の
蝶番ピン受52,52を嵌合させて蝶番関節50を組成
すると、S円面上の筺体斜行板61とR円面上の回転ピ
ストン30とが交差割線Kを蝶着連結の基軸線として
(θ×2)の角度範囲を擺動可能に連結し、筺体60内
に密閉した櫛形状の空間をなす四つの気室A,B,C,
Dを形成する。
Further, in the skewed board 61, the two chord side surfaces 42 and 42 facing each other on the K-axis by the two arcuate boards smaller than a semicircle having their arcuate contour surfaces fixed to the inner surface of the housing 60.
And the inner surface of the housing 60 located on the side of the points Ka and Kb is formed in a partition plate shape inside the housing 60 having a rectangular window having four sides, and the point Ka of the window frame, The hinge pins 51, 51 of the pin pillar are provided on the side of the point Kb, the piston intermediate shaft 33 is inserted into the window frame, and the hinge pin receiver 52 of the rotary piston 30 is provided to each of the hinge pins 51, 51. , 52 are fitted to each other to form the hinge joint 50, the housing skew plate 61 on the S circle surface and the rotating piston 30 on the R circle surface use the intersecting secant K as the base axis of the hinged connection (θ × 2 ) Is slidably connected, and four air chambers A, B, C, which form a comb-shaped space sealed in the housing 60, are formed.
Form D.

【0131】尚筺体60には、筺体軸受63,63の孔
径より大きいピッチ円径を有する外歯傘歯車の筺体歯車
62,62を各筺体軸受63孔を中心とした対向する両
外側面に取付け、そして各筺体歯車62の外側に位置す
るZ軸23の両軸頸にも、各筺体歯車62と同一のピッ
チ円径を有する外歯傘歯車のZ軸歯車27を設け、且つ
互いに与する筺体歯車62とZ軸歯車27間に中間噛み
合いの中間歯車54を介在させてそれらに歯合させると
共に、Z軸23に矢印方向の回転を与えると中間歯車5
4を介して各筺体歯車62がZ軸歯車27の反対方向に
回転する。
The housing 60 is provided with the housing gears 62, 62 of external bevel gears having a pitch circle diameter larger than the hole diameters of the housing bearings 63, 63 on both outer surfaces facing each other around the housing bearing 63 holes. The Z-axis gear 27 of the external bevel gear having the same pitch circle diameter as that of each of the housing gears 62 is also provided on both shaft necks of the Z-axis 23 located outside of each of the housing gears 62, and the Z-axis gears 27 are provided together. When the intermediate gear 54 having an intermediate mesh is interposed between the gear 62 and the Z-axis gear 27 so as to mesh with them, and the Z-axis 23 is rotated in the direction of the arrow, the intermediate gear 5
Each of the housing gears 62 rotates in the opposite direction of the Z-axis gear 27 via 4.

【0132】その筺体歯車62の回転は、筺体60内部
に連結する回転ピストン30を前記連結棒26上におい
て前記円錐軌跡U上を一次回転Poさせると同時に、連
結棒26をZ軸23の回転方向に前記円錐軌跡J上の二
次回転Neをさせる。その一次回転Poの逆回転をする
二次回転Neは、半回転につきR円面の自転軸LをX軸
線上からY軸線上に、そして再びX軸線上に戻るように
働くもので一次回転Poと同様にR,S円面間の間隙を
変化させるから、互いに与するZ軸歯車27と筺体歯車
62とのピッチ円径を1:1の等しい比にして作動させ
れば、互いが逆方向に等しい距離を移動し、その正逆9
0度分の回転において回転ピストン30と筺体斜行板6
1との間隙が最大変化する。
The rotation of the housing gear 62 causes the rotary piston 30 connected inside the housing 60 to make a primary rotation Po on the conical locus U on the connecting rod 26, and at the same time, to rotate the connecting rod 26 in the rotating direction of the Z axis 23. Causes a secondary rotation Ne on the conical locus J. The secondary rotation Ne, which is the reverse rotation of the primary rotation Po, works so as to return the rotation axis L of the R-circle surface from the X-axis line to the Y-axis line and back to the X-axis line again per half rotation. Similarly, since the gap between the R and S circle surfaces is changed, if the pitch circle diameters of the Z-axis gear 27 and the housing gear 62, which are given to each other, are made to operate at the same ratio of 1: 1, they are moved in opposite directions. Move a distance equal to
The rotary piston 30 and the diagonal plate 6 of the housing during the rotation of 0 degree
The gap with 1 changes the maximum.

【0133】この回転ピストン30と筺体斜行板61と
の間隙変化が創出する気室A,B,C,Dの各体積変化
と4行程の作動は上記形態2の実施例の場合と同様であ
り、作動媒体の流出入孔In,Exにおいても、図示は
しないが各気室A,B,C,Dに面する筺体60の内側
面か、又は筺体斜行板61の各板面41から筺体60の
外側面に連通する筺体流路孔69,69、69,69
と、その外側面孔口円周上のハウジング10壁を貫通す
る2筋のハウジング流路孔19,19とを設け、また点
火具Igも、ハウジング流路孔19,19の穿孔箇所と
対向する位置で各筺体流路孔69の外側面孔口を窺う回
転円周上のハウジング10壁に、左右の半月状作動室H
a,Ha分として少なくとも1本ずつを挿着する。結局
この実施例における各筺体流路孔69は、上記形態2の
実施例における斜行板流路孔49を置き換えたものであ
り、ハウジング流路孔19、点火具Ig共にその取付け
と作動は上記形態2の実施例の場合と全く同じである。
The respective volumetric changes of the air chambers A, B, C and D created by the gap change between the rotary piston 30 and the casing skew plate 61 and the 4-stroke operation are the same as in the case of the embodiment of the second embodiment. Also, in the working medium inflow / outflow holes In and Ex, although not shown, from the inner side surface of the housing 60 facing the air chambers A, B, C, and D, or each plate surface 41 of the housing skew plate 61. Housing flow passage holes 69, 69, 69, 69 communicating with the outer surface of the housing 60
And two streak housing flow passage holes 19 and 19 penetrating the wall of the housing 10 on the outer circumference of the hole on the outer side surface thereof, and the igniter Ig also faces the perforated portions of the housing flow passage holes 19 and 19. The left and right half-moon-shaped working chambers H are formed on the wall of the housing 10 on the circumference of rotation, which covers the outer surface hole opening of each housing flow path 69.
Insert at least one each for a and Ha. After all, each casing flow passage hole 69 in this embodiment is a substitute for the oblique plate flow passage hole 49 in the embodiment of the above-described mode 2, and the mounting and operation of both the housing flow passage hole 19 and the ignition tool Ig are as described above. This is exactly the same as the case of the embodiment of form 2.

【0134】[0134]

【形態7の実施例】この形態7の実施例は、前記解決手
段7、及び前記共通の解決手段1に基づく構成であり、
上記形態3の実施例において斜行板40の外周として取
付けた環状の斜行板環43に換えて、内部を中空に形成
した球形状の筺体60をハウジング10内に組込んだも
のであり、同時に上記形態6の実施例におけるZ軸23
の軸板24,24の各々を任意形状の軸腕25,25に
置き換えて作動させるもので前記幾何図形上の作動原理
1に属する。
[Embodiment 7] The embodiment 7 of the embodiment 7 has a configuration based on the solving means 7 and the common solving means 1,
In place of the ring-shaped skew plate ring 43 attached as the outer circumference of the skew plate 40 in the embodiment of the above-described mode 3, a spherical housing 60 having a hollow inside is incorporated in the housing 10. At the same time, the Z-axis 23 in the embodiment of the above-mentioned mode 6
Each of the shaft plates 24, 24 is replaced with a shaft arm 25, 25 having an arbitrary shape to operate, and belongs to the above-mentioned operating principle 1 on the geometrical figure.

【0135】即ち、図59に示されるこの実施例では、
上記形態6の実施例における構成と同じく球面Gに同心
の球面か、又はY軸線に同心の回転面に、何れも球面G
より大きいハウジング10内壁面に形成すると共に、Y
軸線上のハウジング10対向両壁に主軸受13,13を
貫設し、そのハウジング10内にR,S円面を内包して
球面Gをなす内側面を有する球体状の内部殻に形成した
前記筺体60をY軸線を回転軸線として回転摺動可能に
組込むものである。尚この筺体60には、上記形態6の
実施例における軸板室64,64の形成はないが、S円
面上に仕切り板状の筺体斜行板61と、Y軸線が貫通す
る対向両側に筺体軸受63,63と、その筺体軸受63
孔を中心とした対向外側面に筺体歯車62,62とを備
え、且つZ軸23の両軸頸にもZ軸歯車27,27を備
え、その上それらに歯合する中間歯車54,54も介在
させる。
That is, in this embodiment shown in FIG.
The spherical surface G is concentric with the spherical surface G or the spherical surface G is concentric with the Y-axis, as in the configuration of the embodiment of the sixth aspect.
It is formed on the inner wall surface of the larger housing 10, and Y
Main bearings 13 and 13 are provided on both axially opposite walls of the housing 10 to form a spherical inner shell having an inner surface forming a spherical surface G by enclosing the R and S circular surfaces in the housing 10. The housing 60 is assembled so as to be rotatable and slidable with the Y axis as the rotation axis. The housing 60 does not have the shaft plate chambers 64, 64 in the embodiment of the sixth embodiment, but the partition plate-shaped housing slanting plate 61 is formed on the S circle surface, and the housings are formed on both sides opposite to each other through which the Y axis passes. Bearing 63, 63 and its housing bearing 63
Housing gears 62, 62 are provided on opposite outer surfaces centering on the holes, Z shaft gears 27, 27 are also provided on both shaft necks of the Z shaft 23, and intermediate gears 54, 54 meshing with them are also provided. Intervene.

【0136】そして、何れもY軸線上に設けられる筺体
軸受63,63と前記主軸受13,13にはZ軸23軸
頸を嵌挿させて軸承させるが、このZ軸23は上記形態
3の実施例における構成と同様に、軸頸をなす軸柱を外
側面端部に固着させた腕状板からなる両軸腕25,25
を連結棒26が架け渡してZ状の一体的に形成され、且
つこの軸腕25,25と連結棒26とが回転ピストン3
0のピストン通軸孔34内に遊離関係に収容されると共
に、連結棒26の中心部分に取付けた円形体素子の枢結
子88が回転ピストン30内中央のピストン枢35に枢
着する。また、気室A,B,C,Dの各々は、筺体60
の球面Gをなす内側凹面とピストン中間軸33の軸柱面
を含む回転ピストン30と筺体斜行板61との両弓形面
31,41とに囲われて密閉された空間であるが、これ
らの構成による以下の作動、並びに点火装置Igを含め
た作動媒体の流出入機構と各気室A,B,C,Dが進行
させる4行程の作動は上記形態6の実施例の場合と全く
同じである。
The Z-axis 23 shaft neck is fitted into the housing bearings 63 and 63 and the main bearings 13 and 13 provided on the Y-axis to support the Z-axis 23 of the third embodiment. Similar to the configuration in the embodiment, both shaft arms 25, 25 formed of an arm plate having a shaft column forming a shaft neck fixed to the end of the outer surface.
And a connecting rod 26 is formed integrally with each other in a Z shape, and the shaft arms 25, 25 and the connecting rod 26 are connected to each other by the rotary piston 3.
The pivot connector 88 of the circular body element, which is accommodated in a free relation in the piston shaft hole 34 of 0, and is attached to the central portion of the connecting rod 26, is pivotally attached to the central piston pivot 35 in the rotary piston 30. In addition, each of the air chambers A, B, C, D is a housing 60.
Is a space enclosed by the inner concave surface forming the spherical surface G and the cylindrical surface of the piston intermediate shaft 33, and the arcuate surfaces 31, 41 of the skewed plate 61 of the housing. The following operation according to the configuration, and the four-stroke operation in which the working medium inflow / outflow mechanism including the ignition device Ig and each of the air chambers A, B, C, D proceed are exactly the same as the case of the embodiment of the above-mentioned mode 6. is there.

【0137】[0137]

【形態8の実施例】この形態8の実施例は、前記解決手
段8と前記共通の解決手段1の構成に基づくと共に、前
記幾何図形上の作動原理2に属する作動形態である。尚
この実施例は、上記形態4の実施例における凹面板から
なる位相板56,56に換えて内部中空の球体からなる
位相筺体80をハウジング10内に組込んだものであ
り、その位相筺体80の内部に組込まれる回転ピストン
30と斜行板40と回転主軸20の形成と構成は上記形
態4の実施例のものである。
[Embodiment 8] The embodiment 8 of the embodiment 8 is an operation mode based on the configuration of the solution means 8 and the common solution means 1 and belonging to the operation principle 2 on the geometrical figure. In this embodiment, instead of the phase plates 56, 56 made of concave plates in the embodiment of the above-mentioned embodiment 4, a phase housing 80 made of a hollow sphere is incorporated in the housing 10, and the phase housing 80 is provided. The rotary piston 30, the oblique plate 40, and the rotary main shaft 20 which are incorporated inside are formed and configured as in the embodiment of the above-described fourth embodiment.

【0138】即ち、図62に示されるこの実施例では、
ハウジング10の内壁面を球面Gより大きい球面G同心
の球面か、又はY軸線に同心の回転面に、何れも球面G
より大きい摺接面に形成してX軸線上のハウジング10
対向両壁に主軸受13,13を貫設するが、そのように
形成されたハウジング10内には、R,S円面を内包す
る球面Gの内側面を持たせた球体状の内部殻からなる前
記位相筺体80をX軸線を回転軸として回転自由に組込
み嵌合させる。この位相筺体80には、X軸線上の対向
両壁の各々を貫通する筺体軸受83,83と、S円面の
延長平面に沿った内側面を半径rより大きい内径長の周
回溝に削成した軌道隙87とを有し、その軌道隙87に
前記斜行板環43を嵌合させて斜行板40を回転可能に
拘束する。
That is, in this embodiment shown in FIG.
The inner wall surface of the housing 10 is a spherical surface G that is larger than the spherical surface G, that is, a concentric spherical surface, or a rotating surface that is concentric with the Y axis.
Housing 10 on the X-axis formed on a larger sliding contact surface
The main bearings 13 and 13 are provided so as to penetrate through the opposite walls, and in the housing 10 thus formed, a spherical inner shell having an inner surface of a spherical surface G including R and S circular surfaces is provided. The above phase housing 80 is rotatably incorporated and fitted with the X axis as a rotation axis. In this phase housing 80, housing bearings 83, 83 penetrating both opposite walls on the X-axis and an inner side surface along the extension plane of the S circle surface are machined into a circular groove having an inner diameter longer than the radius r. The orbital clearance 87 is formed, and the oblique plate ring 43 is fitted into the orbital clearance 87 to rotatably restrain the oblique plate 40.

【0139】そして、X軸線上の両側に設けられた筺体
軸受83,83と主軸受13,13とには、X軸線を回
転軸線とする直軸状をなす回転主軸20が両軸頸を嵌挿
させて軸承され、上記形態4の実施例の構成と同じく、
回転主軸20の球心Oに位置してピン受孔を有する円形
部分の軸央枢21が、回転ピストン30内中央に取付け
たピン状柱のピストン枢35に枢着して前記ピン継手関
節55を組成する。一方、気室A,B,C,Dの各々
は、位相筺体80の球面Gをなす内側凹面とピストン中
間軸33の軸柱面を含む回転ピストン30と斜行板40
との両弓形面31,41とに囲われて密閉された空間で
ある。
Then, the main body bearings 13 and 13 and the housing bearings 83 and 83 provided on both sides of the X-axis line are fitted with the double-sided neck of the rotary main shaft 20 in the form of a straight axis with the X-axis line as the rotation axis line. It is inserted and supported, and like the configuration of the embodiment of the above-mentioned mode 4,
A shaft center 21 of a circular portion having a pin receiving hole located at the ball center O of the rotary main shaft 20 is pivotally attached to a piston pivot 35 of a pin-shaped column mounted in the center of the rotary piston 30, and the pin joint joint 55 is formed. To compose. On the other hand, each of the air chambers A, B, C, D includes a rotary piston 30 including an inner concave surface forming a spherical surface G of the phase housing 80 and a shaft surface of the piston intermediate shaft 33, and a skew plate 40.
It is a space that is enclosed and enclosed by both arcuate surfaces 31 and 41.

【0140】また、この実施例においても、上記形態4
の実施例における位相板56,56取付けの位相板歯車
58,58と同様な外歯傘歯車の筺体歯車82,82が
筺体軸受83,83の孔を中心として位相筺体80の対
向両側の外側面に取付けられると共に、回転主軸20の
両軸頸にも各筺体歯車82と同一ピッチ円径の主軸歯車
22が筺体歯車82と並立して設けられ、且つその両者
間にその両者を逆転させる中間歯車54も介在させて作
動させれば、位相筺体80内の気室A,B,C,Dの体
積変化は上記形態4の実施例の場合と全く同じ過程を示
す。
Also in this embodiment, the form 4 is used.
Of the external bevel gears, which are similar to the phase plate gears 58, 58 attached to the phase plates 56, 56 in the embodiment described above, are the outer side surfaces of the opposite sides of the phase housing 80 centered on the holes of the housing bearings 83, 83. The main shaft gear 22 having the same pitch circle diameter as that of each of the housing gears 82 is provided on both shaft necks of the rotary main shaft 20 in parallel with the housing gear 82, and an intermediate gear for reversing both of them is provided between them. If 54 is also operated, the volume changes of the air chambers A, B, C and D in the phase housing 80 show exactly the same process as in the case of the embodiment of the above-mentioned form 4.

【0141】尚、位相筺体80には上記形態5の実施例
のZ軸筺体70と同様な作動媒体の流出入孔In,Ex
と点火具Igが取付けられて同様に作動する。つまり、
位相筐体には、半月状作動室Ha,Haの各々に面して
二つずつの筺体流路孔89,89、89,89が穿設さ
れ、且つその各筺体流路孔89の開口回転円周上のハウ
ジング10壁に、その内壁面円周の概ね1/2円周長の
筋長を有するハウジング流路孔19が穿設されると共
に、点火具Igは、各半月状作動室Haに面して位相筺
体80壁を貫く点火孔86を二つの筺体流路孔89,8
9間に設けた上で、その各点火孔86を窺う回転円周上
のハウジング10壁に互いが直角度分を隔てて少なくと
も2本を挿着するか、又は位相筺体80か斜行板40に
その必要数を埋め込み状に挿着する。
The phase housing 80 is similar to the Z-axis housing 70 of the embodiment of the above-described fifth embodiment, inflow and outflow holes In and Ex for the working medium.
And igniter Ig are attached and operate in the same manner. That is,
The phase housing is provided with two housing flow passage holes 89, 89, 89, 89 facing the respective half-moon shaped operation chambers Ha, Ha, and the opening rotation of each of the housing flow passage holes 89. A housing flow path hole 19 having a streak length of about ½ circumference of the inner wall surface circumference is bored in the wall of the housing 10 on the circumference, and the igniter Ig is provided in each half-moon shaped operation chamber Ha. Ignition hole 86 that passes through the wall of the phase housing 80 facing the
9 and then each of the ignition holes 86 is inserted into the wall of the housing 10 on the circumference of rotation for checking the respective ignition holes 86, and at least two of them are inserted at right angles to each other, or the phase housing 80 or the skewed plate 40. Then, the required number of them are embedded and attached.

【0142】以上のように構成したこの実施例において
も、回転主軸20と位相筺体80との90度毎の回転が
各気室A,B,C,Dの気室体積を最大に変化させるか
ら、その気室A,B,C,Dの体積変化に同期させて適
宜作動媒体の流出入孔In,Exを開閉する。即ち、位
相筺体80の回転に伴って各筺体流路孔89が互いに与
するハウジング流路孔19に連接すれば、その連接空間
にあたる気室A,B,C,Dの何れかは、吸、排気孔I
n,Exの何れかが開放されて吸、排気行程の何れかを
行い、その連接が過ぎれば圧縮、膨張行程の何れかを行
う。尚、点火具Igによる作動媒体への点火は各気室
A,B,C,Dの圧縮行程の最高時に同期させる。
Also in this embodiment configured as described above, the rotation of the rotary main shaft 20 and the phase housing 80 by 90 degrees changes the air chamber volume of each air chamber A, B, C, D to the maximum. , The working medium inflow and outflow holes In and Ex are opened and closed in synchronization with the volume changes of the air chambers A, B, C and D. That is, if each casing flow passage hole 89 is connected to the housing flow passage hole 19 provided along with the rotation of the phase housing 80, any of the air chambers A, B, C, D corresponding to the connection space sucks, Exhaust hole I
Either n or Ex is opened to perform either intake or exhaust stroke, and if the connection is over, either compression or expansion stroke is performed. It should be noted that the ignition of the working medium by the igniter Ig is synchronized with the maximum compression stroke of each of the air chambers A, B, C, D.

【0143】上記構成と作動の連繋から、図62に示す
気室Aが排気行程を終了して吸気行程、気室Bが膨張行
程を終了して排気行程、気室Cが膨張行程、気室Dが圧
縮行程を何れも開始する回転角位置にあるが、この図6
2においては、気室Cの膨張圧力が回転ピストン30と
斜行板40との間隙を押し広げて回転ピストン30に力
の方向である一次回転Poをさせると共に、位相筺体8
0に斜行板40の位相を変化させる一次回転Poの逆向
きの回転である二次回転Neをさせて出力軸の前記回転
主軸20を回転させる。
From the connection of the above-described construction and operation, the air chamber A shown in FIG. 62 ends the exhaust stroke and the intake stroke, and the air chamber B ends the expansion stroke and the exhaust stroke, and the air chamber C expands and strokes. D is at the rotation angle position where both compression strokes are started.
In 2, the expansion pressure of the air chamber C spreads the gap between the rotary piston 30 and the skew plate 40 to cause the rotary piston 30 to perform the primary rotation Po, which is the direction of the force, and at the same time, the phase housing 8
The rotation main shaft 20 of the output shaft is rotated by causing the secondary rotation Ne that is the opposite rotation of the primary rotation Po that changes the phase of the skew plate 40 to 0.

【0144】[0144]

【その他の実施例】上記何れの実施例においても、四つ
の櫛形状作動室Fu,Fu、Fu,Fuを一つ乃至三つ
の櫛形状作動室(Fuか、又はFu,Fuか、又はF
u,Fu,Fu)の何れかに換えて構成し、且つ作動さ
せることが可能である。特に、ハウジング10内に円形
状板の回転ピストン30を組込んで四つの気室A,B,
C,Dを形成する上記形態1乃至8の各実施例における
別形態として、一つのハウジング10内に、半球状の略
円形板からなる回転ピストン30を組込んで回転軸に対
して水平方向に並ぶ二つの気室A,Dか、又は気室B,
Cに構成するか、又は略半円板の回転ピストン30を組
込んで回転軸に対して垂直方向に並ぶ二つの気室A,B
か、又は気室C,Dに構成するかする各実施例を以下図
によって説明する。
[Other Embodiments] In any of the above embodiments, four comb-shaped working chambers Fu, Fu, Fu, Fu are provided with one to three comb-shaped working chambers (Fu, Fu, Fu, or F).
u, Fu, Fu), and can be configured and operated. In particular, the rotary piston 30 having a circular plate is incorporated in the housing 10 so that the four air chambers A, B,
As another form of each of the above-described forms 1 to 8 forming C and D, a rotary piston 30 made of a hemispherical substantially circular plate is incorporated in one housing 10 so as to be horizontal with respect to the rotation axis. Two air chambers A and D in a row, or air chamber B,
Two air chambers A and B which are arranged in the vertical direction with respect to the rotation axis by incorporating the rotary piston 30 of C-shaped or substantially semi-circular plate.
Each of the embodiments in which the air chambers C and D are configured will be described below with reference to the drawings.

【0145】〔水平2気室の形態〕この形態は、図3
7,40,46,51,54,57,60,63に示す
各々が上記形態1乃至8の各実施例において、回転ピス
トン30を半球状の略円形板に形成して球面G内のR,
S円面間を回転軸に対して水平方向に並ぶ2櫛形状作動
室Fu,Fu(気室A,Dか、又は気室B,C)に形成
した前記共通の解決手段2に基づく構成の実施例であ
る。因に、図37に示す実施例は図35,36の上記形
態1の実施例、図40に示す実施例は図39の上記形態
2の実施例に何れも対置する態様である。また、図46
に示す実施例が図44,45の上記形態3の実施例、図
51に示す実施例が図49,50の上記形態4の実施
例、そして図54に示す実施例が図53の上記形態5の
実施例、図57に示す実施例が図56の上記形態6の実
施例にそれぞれ対置され、更に図60に示す実施例が図
59の上記形態7の実施例、図63に示す実施例が図6
2の上記形態8の実施例に対応する態様である。
[Form of Horizontal Two Air Chambers] This form is shown in FIG.
7, 40, 46, 51, 54, 57, 60, and 63, in each of the embodiments 1 to 8, the rotary piston 30 is formed into a hemispherical substantially circular plate, and R in the spherical surface G is
A configuration based on the common solving means 2 formed in the two comb-shaped working chambers Fu and Fu (air chambers A and D or air chambers B and C) arranged between the S circle surfaces in the horizontal direction with respect to the rotation axis. This is an example. Incidentally, the embodiment shown in FIG. 37 is a mode in which both the embodiment shown in FIGS. 35 and 36 and the embodiment shown in FIG. 40 are opposed to the embodiment shown in FIG. 39. Also, in FIG.
The embodiment shown in FIG. 44 is the embodiment of the third embodiment of FIGS. 44 and 45, the embodiment of FIG. 51 is the embodiment of the fourth embodiment of FIGS. 49 and 50, and the embodiment of FIG. 54 is the embodiment of the fifth embodiment of FIG. 57 and the embodiment shown in FIG. 57 are respectively opposed to the embodiment shown in FIG. 56, and the embodiment shown in FIG. 60 is the embodiment shown in FIG. 59, and the embodiment shown in FIG. 63. Figure 6
2 is an aspect corresponding to the example of the above-described aspect 8.

【0146】即ち、これらの各形態は各々が与する上述
した形態1乃至8の各実施例との相違において、R円面
上に配置される回転ピストン30は、R円面における表
裏の一方面側にS円面を跨ぐ範囲の半球面を越える球弧
面32ともう一方面側にその球弧面32の弓形輪郭平面
をなして互いの弦側がK軸線を挟む弓形面31,31と
を有する略半球体に、その略半球体の両弓形面31,3
1間にK軸線を取付け軸線として半埋込み状に円柱状の
前記ピストン中間軸33を介在合体させた半球体より大
きい容積を持つ略円形板である。
That is, in contrast to each of the embodiments of the above-described modes 1 to 8 given by each of these modes, the rotary piston 30 arranged on the R circular surface has one surface on the R circular surface. On one side, a spherical arc surface 32 that exceeds the hemisphere in the range straddling the S circle surface, and on the other side, an arcuate contour plane of the spherical arc surface 32 is formed, and the arcuate surfaces 31 and 31 whose chord sides sandwich the K axis. The substantially hemispherical shape has two arcuate surfaces 31 and 3 of the substantially hemisphere.
It is a substantially circular plate having a larger volume than a hemisphere in which the semi-embedded cylindrical piston intermediate shaft 33 is interleaved with the K axis as a mounting axis.

【0147】また、S円面上に配置される斜行板40
(図37,40,46,51,54,63に示す各実施
例)か、又は筺体斜行板61(図57,60に示す各実
施例)は、ピストン中間軸33を挟む両側の何れか一方
側に半球状回転ピストン30の前記弓形面31,31に
対応する表裏の弓形面41,41と、ピストン中間軸3
3柱面に摺接する弦側面42とから形成される半円より
小さい弓形板が、斜行板40では環状の斜行板環43と
合体して円形板状に形成され、筐体斜行板61では弓形
輪郭面側を筺体60のS円面上の内部面に結合させて筺
体60内の仕切り板状に形成されるから、その斜行板4
0、筐体斜行板61の何れにおいてもK軸線上に弦側面
42を辺とする半円より大きく突き抜けた窓を有する。
Further, the skew plate 40 arranged on the S circle surface
(Embodiments shown in FIGS. 37, 40, 46, 51, 54 and 63), or the housing skew plate 61 (Embodiments shown in FIGS. 57 and 60) is provided on either side of the piston intermediate shaft 33. On one side, front and back arcuate surfaces 41, 41 corresponding to the arcuate surfaces 31, 31 of the hemispherical rotary piston 30, and the piston intermediate shaft 3
A bow-shaped plate smaller than a semicircle formed by the chord side surface 42 that slidably contacts the three pillar surfaces is formed into a circular plate shape by combining with the slanting plate ring 43 in the slanting plate 40 to form a circular plate. In 61, since the arcuate contour surface side is joined to the inner surface on the S-circle surface of the housing 60 to form a partition plate inside the housing 60, the slanting plate
0, any of the housing slanting plates 61 has a window on the K-axis that is larger than a semicircle whose side is the chord side surface 42.

【0148】そのK軸線上の突き抜けた窓に回転ピスト
ン30のピストン中間軸33を軸柱方向に沿って差し込
み入れると、前記点Ka、点Kb側に互いの両片を以て
組成される蝶番関節50が回転ピストン30と斜行板4
0、又は回転ピストン30と筺体60及び筺体斜行板6
1とをK軸線を蝶着の軸として連結する。すると、S円
面上の斜行板40がハウジング10内における球面Gを
両側に隔てるか、筺体斜行板61が球面Gをなす筺体6
0の内側面を両側に隔てるかし、その何れも凹面を対面
させた半球状の空間をなす半月状作動室Ha,Haを形
成し、その半月状作動室Ha,Haの各々をR円面上の
回転ピストン30が互いの体積を反比例に変化させる密
閉した櫛形状空間からなる軸水平方向に並ぶ二つの気室
A,Dか、又は気室B,Cに形成する。
When the piston intermediate shaft 33 of the rotary piston 30 is inserted into the window penetrating on the K-axis along the axial direction, the hinge joint 50 composed of both pieces on the points Ka and Kb sides. Is the rotary piston 30 and the skew plate 4
0, or the rotating piston 30, the housing 60, and the housing skew plate 6
1 and 1 with the K-axis as the hinge axis. Then, the skewed plate 40 on the S-circle separates the spherical surface G in the housing 10 on both sides, or the housing skewed plate 61 forms the spherical surface G.
The inner surface of 0 is divided into both sides, and each of them forms a hemispherical working chamber Ha, Ha which forms a hemispherical space with concave surfaces facing each other. The upper rotary piston 30 is formed into two air chambers A and D or air chambers B and C that are arranged in the axial horizontal direction and are formed of a closed comb-shaped space that changes their volumes in inverse proportion to each other.

【0149】〔垂直2気室の形態〕この形態は、図3
8,41,47,52,55,58,61,64に示す
各々が上記形態1乃至8の各実施例において、回転ピス
トン30を略半円板に形成して球面G内のR,S円面間
を回転軸に対して垂直方向に並ぶ2櫛形状作動室Fu,
Fu(気室A,Bか、又は気室C,D)に形成した前記
共通の解決手段3に基づく構成の実施例である。その図
38に示す実施例は図35,36の上記形態1の実施
例、図41に示す実施例は図39の上記形態2の実施例
に何れも対置する態様である。また、図47に示す実施
例が図44,45の上記形態3の実施例、図52に示す
実施例が図49,50の上記形態4の実施例、そして図
55に示す実施例が図53の上記形態5の実施例、図5
8に示す実施例が図56の上記形態6の実施例にそれぞ
れ対置され、更に図61に示す実施例が図59の上記形
態7の実施例、図64に示す実施例が図62の上記形態
8の実施例に対応する態様である。
[Form of Vertical Two Air Chambers] This form is shown in FIG.
8, 41, 47, 52, 55, 58, 61, and 64, in each of the embodiments 1 to 8, the rotary piston 30 is formed into a substantially semi-circular plate, and the R and S circles inside the spherical surface G are formed. 2 comb-shaped working chambers Fu arranged between the surfaces in a direction perpendicular to the rotation axis,
It is an embodiment of a configuration based on the common solution means 3 formed in Fu (air chambers A and B or air chambers C and D). The embodiment shown in FIG. 38 corresponds to the embodiment of the first embodiment shown in FIGS. 35 and 36, and the embodiment shown in FIG. 41 corresponds to the embodiment of the second embodiment shown in FIG. 39. In addition, the embodiment shown in FIG. 47 is the embodiment of the third embodiment of FIGS. 44 and 45, the embodiment of FIG. 52 is the embodiment of the fourth embodiment of FIGS. 49 and 50, and the embodiment of FIG. 55 is the embodiment of FIG. FIG. 5 shows an example of the above-mentioned form 5 of FIG.
The embodiment shown in FIG. 8 is opposed to the embodiment shown in FIG. 56, and the embodiment shown in FIG. 61 is the embodiment shown in FIG. 59. The embodiment shown in FIG. 64 is the embodiment shown in FIG. This is a mode corresponding to the eighth embodiment.

【0150】即ち、これらの実施例は各々が与する上述
した形態1乃至8の各実施例との相違において、R円面
上に配置される回転ピストン30は、S円面を挟む何れ
か一方側に球弧面32と、その球弧面32の弓形輪郭平
面をなす表裏の弓形面31,31と、その表裏の弓形面
31,31の弓形弦が挟持する弦側面とから形成される
弓形板が、その弦側面にK軸線を取付け軸線として円柱
状のピストン中間軸33と合体した略半円板である。
That is, in contrast to each of the embodiments of the above-described modes 1 to 8 given by each of these embodiments, the rotary piston 30 arranged on the R-circle surface has one of the S-circle surfaces sandwiched therebetween. An arc shape formed by a spherical arc surface 32 on the side, front and back arcuate surfaces 31 and 31 forming an arcuate contour plane of the ball arc surface 32, and chord side surfaces sandwiched by arcuate chords of the front and back arcuate surfaces 31 and 31. The plate is a substantially semi-circular plate which is united with the cylindrical piston intermediate shaft 33 with the K axis attached to the chord side surface as the axis.

【0151】また、S円面上に配置される斜行板40
か、又は筺体斜行板61は、ピストン中間軸33を挟む
両側に略半円板回転ピストン30の前記表裏弓形面3
1,31に対応する半円より小さい対称弓形面41,4
1と、その弓形面41,41の外周輪郭をなす弓形の輪
郭面と、K軸線上の両弓形面41,41間が溝状凹みの
半円柱形凹面からなる弦側面42と、両弓形面41,4
1の裏面が同一の回転面からなる外郭摺接面45とから
円形状板を形成し、図38,41,47,52,55,
64に示す各実施例の斜行板40では、その円形状板の
弓形輪郭面に環状の斜行板環43を合体させて外周面と
した球面G径より大きい径を持つ1枚の円形板に形成
し、また図58,61に示す各実施例の筺体斜行板61
では、その円形状板の弓形輪郭面を筺体60のS円面上
の内部面に固着させて筺体60内の空間を隔壁状に閉鎖
する。
Further, the slanting plate 40 arranged on the S-circle surface
Alternatively, the skewed plate 61 of the housing is formed on both sides of the intermediate shaft 33 of the piston, and the front and back arcuate surfaces 3 of the substantially semi-circular rotary piston 30 are provided.
Symmetrical arcuate surfaces 41,4 smaller than a semicircle corresponding to 1,31
1, an arcuate contour surface forming the outer peripheral contour of the arcuate surfaces 41, 41, a chordal side surface 42 formed by a semicylindrical concave surface having a groove-like recess between the arcuate surfaces 41, 41 on the K axis, and bilateral arcuate surfaces. 41,4
38, 41, 47, 52, 55, a circular plate is formed from the outer sliding contact surface 45 whose back surface is the same rotation surface.
In the skewed plate 40 of each embodiment shown in 64, one circular plate having a diameter larger than the spherical surface G diameter which is formed by combining the circular skewed plate ring 43 with the arcuate contour surface of the circular plate to form the outer peripheral surface. 58 and 61, each of which is shown in FIGS.
Then, the arcuate contour surface of the circular plate is fixed to the inner surface on the S circle surface of the housing 60 to close the space inside the housing 60 in a partition shape.

【0152】その斜行板40、又は筺体斜行板61の溝
状凹面をなす弦側面42に回転ピストン30のピストン
中間軸33を軸柱方向に沿って差し込み入れると、前記
点Ka、点Kb側に互いの両片を以て組成される蝶番関
節50が回転ピストン30と斜行板40、又は回転ピス
トン30と筺体60及び筺体斜行板61とをK軸線を蝶
着の軸として連結する。すると、S円面上の斜行板40
がハウジング10の球面Gをなす凹面を閉鎖するか、筺
体斜行板61が球面Gをなす筺体60の内側凹面を閉鎖
して何れも半球状の空間をなす半月状作動室Haを形成
し、その半月状作動室HaをR円面上の回転ピストン3
0が互いの体積を反比例に変化させる密閉した櫛形状空
間からなる軸垂直方向に並ぶ二つの気室A,Bか、又は
気室C,Dに形成する。
When the piston intermediate shaft 33 of the rotary piston 30 is inserted into the slanting plate 40 or the chordal side surface 42 of the housing slanting plate 61 forming the groove-like concave surface along the axial direction, the points Ka and Kb are obtained. A hinge joint 50 composed of both pieces on the side connects the rotary piston 30 and the skew plate 40, or the rotary piston 30, the housing 60, and the chassis skew plate 61 with the K axis as the hinge axis. Then, the skew plate 40 on the S circle surface
Closes the concave surface forming the spherical surface G of the housing 10, or the diagonal plate 61 closes the inner concave surface of the housing 60 forming the spherical surface G to form a half-moon-shaped working chamber Ha that forms a hemispherical space. The half-moon shaped working chamber Ha is set to the rotary piston 3 on the R circle surface.
Zeros are formed in two air chambers A and B, or air chambers C and D, which are arranged in the axially perpendicular direction and are formed of a closed comb-shaped space that changes their volumes in inverse proportion to each other.

【0153】そして、上記軸水平並びの2気室Fu,F
u、又は上記軸垂直並びの2気室Fu,Fuの何れの形
態においても、各気室Fuの体積が最小位置から大きく
なる過程に作動媒体を吸入させて圧縮し、その圧縮の上
死点付近で作動媒体に点火して燃焼させると、回転ピス
トン30と斜行板40、又は回転ピストン30と筺体斜
行板61との互いの弓形面31,41間が押し広げられ
る。つまり、回転ピストン30は、膨張する燃焼ガス圧
力を受けてX軸線上の前記連結棒26に取付けた前記転
がり軸72の軸央枢74(図37,54、図38,55
の各実施例)、又は連結棒26に取付けた前記枢結子8
8(図40,46,57,60、図41,47,58,
61の各実施例)、又は回転主軸20の前記軸央枢21
(図51,63、図52,64の各実施例)から拘束を
受けつつ、且つK軸線を中心に角度(θ×2)の範囲を
揺動しつつ枢結するZ軸23(図37,40,46,5
7,60、図38,41,47,58,61の各実施
例)か、又は回転主軸20(図51,63、図52,6
4の各実施例)か、又は前記筺体軸71(図54、図5
5の実施例)の各回転軸を回転させる。
Then, the two air chambers Fu, F arranged in the above-mentioned horizontal axis are arranged.
u or any of the above-mentioned two air chambers Fu, which are vertically aligned, the working medium is sucked and compressed in the process in which the volume of each air chamber Fu increases from the minimum position, and the top dead center of the compression. When the working medium is ignited and burned in the vicinity, the arcuate surfaces 31, 41 of the rotary piston 30 and the skew plate 40, or the rotary piston 30 and the housing skew plate 61 are spread apart. In other words, the rotary piston 30 receives the expanding combustion gas pressure and receives the expanding combustion gas pressure, and the shaft center 74 (FIGS. 37, 54, 38, 55) of the rolling shaft 72 attached to the connecting rod 26 on the X-axis.
Each embodiment), or the pivot connector 8 attached to the connecting rod 26.
8 (Fig. 40, 46, 57, 60, Fig. 41, 47, 58,
61 each embodiment), or the shaft center 21 of the rotary main shaft 20.
The Z-axis 23 (FIG. 37, 40,46,5
7, 60, each embodiment of FIGS. 38, 41, 47, 58, 61) or the rotary spindle 20 (FIGS. 51, 63, 52, 6).
4) or the housing shaft 71 (FIGS. 54 and 5).
Each of the rotating shafts of the fifth embodiment) is rotated.

【0154】結局、上記何れの2気室Fu,Fuの形態
においても、回転軸の転回と、それに伴う回転ピストン
30と斜行板40、又は回転ピストン30と筺体斜行板
61との板面間に形成される二つの気室Fu,Fuの容
積変化、及び作動媒体の流出入孔In,Exの取付け等
は、上述した形態1乃至8の各実施例における4気室を
2気室分に置き換えたもので、その構成の主要素と作動
は各々が与する上記形態1乃至8の各実施例の場合と同
様である。
After all, in any of the above-mentioned two air chambers Fu, Fu, the rotation of the rotary shaft and the plate surface of the rotary piston 30 and the skewed plate 40 or the rotary piston 30 and the skewed plate 61 of the housing associated therewith. The volume changes of the two air chambers Fu, Fu formed between them, the attachment of the inflow / outflow holes In, Ex of the working medium, etc. are equal to the two air chambers of the four air chambers in each of the above-described embodiments 1 to 8. The main elements of the configuration and the operation are the same as those in the respective embodiments of the above-described modes 1 to 8.

【0155】[0155]

【形態1乃至8の実施例の共通態様(θ角度)】上記何
れの形態の実施例においても、X軸線とY軸線とが球心
Oにおいて交差して創出する角度θは10°<θ<60
°が実用の範囲であり、その最適角度は25°〜35°
である。
[Common Aspect of Embodiments of Modes 1 to 8 (θ Angle)] In any of the embodiments described above, the angle θ created when the X axis and the Y axis intersect at the spherical center O is 10 ° <θ < 60
° is the practical range, and the optimum angle is 25 ° to 35 °
Is.

【0156】[0156]

【形態1,2,4,6の実施例の別態様(作動室凹
面)】半月状作動室Haの球面Gをなす凹面の態様とし
て、上記形態1,2の各実施例では、図35乃至図41
におけるハウジング10の内壁面に換わって前記斜行板
環43を軸板24の縁部まで拡張した環幅に形成し、そ
の広げた斜行板環43内周面と軸板24の内側凹面とか
ら形成するか、又は軸板24と斜行板環43との間にハ
ウジング10内壁面を環状に残して軸板24凹面とハウ
ジング10内壁面と斜行板環43の内周面とで形成する
か、又は斜行板環43の側面円周にまで広げた凹面板に
形成した軸板24の内側凹面のみから形成する。また上
記形態4の実施例では、図49乃至図52における斜行
板環43内周面に換えて位相板56の口径を大きく取っ
た凹面板に形成し、その全部を位相板56内側面に持た
せ、上記形態6の実施例では、図56乃至図58におけ
る筺体60の内側面に換え、軸板24径を大きく取った
凹面板に形成して筺体60の球面Gをなす内側面を後退
させ、その全部を軸板24の内側面に持たせる。
[Aspects of Embodiments of Modes 1, 2, 4, and 6 (Concave Surface of Working Chamber)] As a mode of the concave surface forming the spherical surface G of the half-moon shaped working chamber Ha, in each of the embodiments 1 and 2 shown in FIGS. Figure 41
In place of the inner wall surface of the housing 10, the skew plate ring 43 is formed to have a ring width extended to the edge of the shaft plate 24, and the widened inner circumferential surface of the skew plate ring 43 and the inner concave surface of the shaft plate 24 are formed. Or a concave surface of the shaft plate 24, the inner wall surface of the housing 10 and the inner peripheral surface of the skew plate ring 43, with the inner wall surface of the housing 10 left annularly between the shaft plate 24 and the skew plate ring 43. Or, it is formed only from the inner concave surface of the shaft plate 24 which is formed as a concave plate that is spread to the side surface circumference of the skew plate ring 43. Further, in the embodiment of the above-mentioned mode 4, instead of the inner peripheral surface of the slanting plate ring 43 in FIGS. 49 to 52, a concave plate having a large diameter of the phase plate 56 is formed, and the whole is formed on the inner surface of the phase plate 56. In the embodiment of Mode 6, the inner side surface of the housing 60, which is formed into a concave plate having a large diameter of the shaft plate 24, is retracted instead of the inner side surface of the housing 60 in FIGS. 56 to 58. Then, all of them are held on the inner surface of the shaft plate 24.

【0157】[0157]

【形態2,3,6,7,8の実施例の別態様(逆転装
置)】上記形態2,3の各実施例共通の別態様として、
図示はしないがZ軸23の両軸頸にZ軸歯車27,27
を取付けて斜行板環43の両側面円周に斜行板環歯車4
4,44を設け、且つその両側の各々に中間歯車54,
54を介在させてそれらに歯合させ、上記形態6,7の
各実施例においては、筺体歯車62とZ軸歯車27とそ
れらに歯合する中間歯車54とから構成されてハウジン
グ10の両側部に装置される2組の逆転装置を図57,
58、及び図60,61に示す実施例のように両側のう
ちの何れか一方側のみの構成でもよく、この実施例にお
いても両側部に逆転装置を設けたとしても何ら差し支え
がない。また上記形態8の実施例においても、図示はし
ないが筺体歯車82と主軸歯車22とその両者に歯合す
る中間歯車54とから構成されてハウジング10の対向
両側に装置される2組の逆転装置を何れか一方側のみに
してもよい。
[Aspects of Embodiments of Modes 2, 3, 6, 7 and 8 (Reversing Device)]
Although not shown in the drawing, the Z-axis gears 27, 27 are provided on both shaft necks of the Z-axis 23.
And install the skewed plate ring gear 4 on both sides of the skewed plate ring 43.
4, 44 are provided, and intermediate gears 54,
54 is engaged with them, and in each of the embodiments 6 and 7 described above, both side parts of the housing 10 are composed of the housing gear 62, the Z-axis gear 27, and the intermediate gear 54 meshing with them. 57. Two sets of reversing devices installed in FIG.
58 and the embodiment shown in FIGS. 60 and 61, only one of the both sides may be configured, and in this embodiment, there is no problem even if the reversing devices are provided on both sides. Also in the embodiment of the above-mentioned mode 8, although not shown in the figure, two sets of reversing devices, which are composed of a housing gear 82, a main shaft gear 22, and an intermediate gear 54 meshing with both of them, are provided on opposite sides of the housing 10. May be provided on only one side.

【0158】[0158]

【形態1,2,4の実施例の別態様(吸、排気機構と点
火具)】上記形態1,2,4の各実施例共通の別態様と
して、吸、排気機構と点火具Igは上記形態5,8の実
施例と同様な構成が可能である。即ち、上記形態1,
2,4(括弧内の記載が形態4)の各実施例において、
斜行板40の斜行板流路孔49に換えて軸板24(位相
板56)にその内外面を貫通する二つの軸板流路孔2
9,29(位相板流路孔59,59)を穿設するが、こ
の二つの軸板流路孔29,29(位相板流路孔59,5
9)は、軸板24(位相板56)が図35,39,49
に示す位置の時に軸板24と連結棒26(回転主軸20
と位相板56)の取付け軸線であるX,Y軸線の双方を
通る平面を中心とした対称位置に一方を吸気孔Inとし
てもう一方を排気孔Exとし、且つ互いが異なる回転円
周上に穿孔される。
[Aspects of Embodiments 1, 2 and 4 (Intake / Exhaust Mechanism and Ignition Tool)] As an aspect common to each of the embodiments 1, 2 and 4, the intake / exhaust mechanism and the igniter Ig are as described above. Configurations similar to those in the examples of the forms 5 and 8 are possible. That is, the above mode 1,
In each of Examples 2 and 4 (the description in parentheses is form 4),
The shaft plate 24 (phase plate 56) has two shaft plate flow passage holes 2 penetrating the inner and outer surfaces thereof in place of the skew plate flow passage holes 49 of the skew plate 40.
9, 29 (phase plate flow passage holes 59, 59) are formed, but these two shaft plate flow passage holes 29, 29 (phase plate flow passage holes 59, 5) are formed.
9), the shaft plate 24 (phase plate 56) is shown in FIGS.
The shaft plate 24 and the connecting rod 26 (rotating main shaft 20
And the phase plate 56), one is an intake hole In and the other is an exhaust hole Ex at symmetrical positions about a plane passing through both the X and Y axes which are the mounting axes of the phase plate, and the holes are formed on different rotation circles. To be done.

【0159】この場合のハウジング流路孔19は、軸板
流路孔29,29(位相板流路孔59,59)が開口す
る二つの回転円周上のハウジング10壁を穿つ溝状の孔
であるが、その各円周内の溝状孔が順逆回転をする回転
ピストン30、及び斜行板40とZ軸23、及び軸板2
4(位相板56)との正逆の回転率に応じて筋長と筋数
が変化すると共に、点火具Igの取付け本数も変化す
る。尚この吸、排気機構と点火具Igの取付けは、回転
ピストン30、及び斜行板40の一次回転PoがZ軸2
3(位相板56)の二次回転Neよりも同速度を含む速
い速度の領域においてのみ成立する。
In this case, the housing flow passage hole 19 is a groove-like hole which is formed in the wall of the housing 10 on two rotation circles in which the shaft plate flow passage holes 29, 29 (phase plate flow passage holes 59, 59) are opened. However, the rotary piston 30 in which the groove-shaped hole in each circumference makes forward and reverse rotations, the skew plate 40, the Z axis 23, and the shaft plate 2
No. 4 (phase plate 56), the muscle length and the number of muscles change in accordance with the rotational speed of the forward and reverse directions, and the number of igniters Ig attached also changes. The intake / exhaust mechanism and the igniter Ig are attached to the rotary piston 30 and the primary rotation Po of the skew plate 40 by the Z-axis 2.
3 (phase plate 56) is satisfied only in a region of a higher speed than the secondary rotation Ne of the second rotation Ne.

【0160】例えば正逆回転比が1:1(1/1)の場
合には、各半月状作動室Ha分としてハウジング流路孔
19,19は、ハウジング10内壁面の二つの円周にそ
の円周の概ね1/2円周長からなる1筋ずつの2筋が筋
長の半分(1/4円周長)ずつをハウジング10の同一
中心角に重ねて設けられ、尚この時に軸板24(位相板
56)の1回転に対して斜行板40、及び回転ピストン
30もその逆向きに1回転するが、その間に各気室Fu
は4行程分を進行させる。この時の点火具Igは、各軸
板24(位相板56)に点火孔(ディーゼル機関では燃
料噴射孔)86を二つの軸板流路孔29,29(位相板
流路孔59,59)間に設けた上で、その点火孔86を
窺う位置のハウジング10壁に少なくとも気室A(又は
気室C)の分として1本、気室B(又は気室D)の分と
して1本を中心角で互いが90度を隔てて挿着するか、
又は軸板24(位相板56)か、斜行板40にその必要
数を埋め込み状に挿着する。
For example, when the forward / reverse rotation ratio is 1: 1 (1/1), the housing flow passage holes 19 and 19 corresponding to each half-moon-shaped working chamber Ha are formed in two circles on the inner wall surface of the housing 10. Two streaks each having a semicircular length of about 1/2 of the circumference are provided so that half of the stir length (1/4 circumference length) is superposed on the same central angle of the housing 10, and at this time, the shaft plate The skew plate 40 and the rotary piston 30 also make one rotation in the opposite direction for one rotation of the phase plate 56 (phase plate 56), while each air chamber Fu is in between.
Advances four strokes. The igniter Ig at this time has an ignition hole (fuel injection hole in a diesel engine) 86 in each shaft plate 24 (phase plate 56) and two shaft plate passage holes 29, 29 (phase plate passage holes 59, 59). At least one for the air chamber A (or the air chamber C) and one for the air chamber B (or the air chamber D) are provided on the wall of the housing 10 at the position where the ignition hole 86 is checked after being provided between them. Whether they are attached at 90 ° apart from each other at the central angle,
Alternatively, the required number is embedded in the shaft plate 24 (phase plate 56) or the skew plate 40.

【0161】[0161]

【形態1,5の実施例の別態様(固定位相歯車と転がり
歯車)】上記形態1,5の各実施例において、図示はし
ないがハウジング10に取付け固定の固定位相歯車1
4,14と転がり軸72両端取付けの転がり歯車76,
76とを両側の何れか一方側のみの1組分でもよい。
[Another Mode of Embodiments of Forms 1 and 5 (Fixed Phase Gear and Rolling Gear)] In each of the embodiments of Embodiments 1 and 5 described above, although not shown, the fixed phase gear 1 mounted and fixed to the housing 10 is fixed.
4, 14 and rolling shafts 72 rolling gears 76 mounted at both ends,
76 and 76 may be one set on either side only.

【0162】[0162]

【形態1〜4,6,7の実施例の別態様(点火具と流路
孔)】図示はしないが点火具Igは、上記形態1乃至4
においてハウジング10壁の挿着のみに限らず、櫛形状
作動室Fuに面して少なくとも1本ずつを斜行板40に
埋込み状に挿着してもよく、上記形態6,7の各実施例
においてもハウジング10壁に限らず、各々の櫛形状作
動室Fuに面して少なくとも1本ずつを筺体60壁に埋
込み状に挿着する。
[Aspects of Embodiments 1 to 4, 6 and 7 (Ignition Tool and Flow Path Hole)] Although not shown, the ignition tool Ig is the same as the above Embodiments 1 to 4.
In addition to the insertion of the housing 10 wall, at least one piece may be embedded in the skewed plate 40 so as to face the comb-shaped working chamber Fu and embedded in the skewed plate 40. Also in the above, not only the wall of the housing 10 but also at least one comb-shaped working chamber Fu facing each comb-shaped working chamber Fu is inserted into the wall of the housing 60 in an embedded manner.

【0163】また、上記形態1乃至4、及び上記形態
6,7(括弧内の記載が形態6,7における筐体60、
又は筐体流路孔69である)の各実施例において、斜行
板流路孔49(筐体流路孔69)とハウジング流路孔1
9とが接合する互いの開口円周の別態様として、気室A
と気室Cから連通する斜行板流路孔49,49(筺体流
路孔69,69)の二つを斜行板40(筺体60)外周
面の同一回転円周上に互いが対向する180度分を隔て
て開口させ、同様に気室Bと気室Dとの斜行板流路孔4
9,49(筺体流路孔69,69)も先の気室A,C分
の開口円周とは競合しない別円周上に互いを180度分
を隔てて開口させる。そして、ハウジング流路孔(1
9,19)×2は、斜行板流路孔49,49、49,4
9(筺体流路孔69,69、69,69)の二つの開口
回転円周上のハウジング10内壁面に、その内壁面円周
の概ね1/4円周長ずつの筋長を有して連なる斜行板4
0(筺体60)回転方向の進み側を吸気孔In、遅れ側
を排気孔Exとする2筋ずつの溝状孔を開口し、尚その
2円周に開口する2筋ずつはハウジング10中心角の同
一回転角において並列する。
In addition, the above-mentioned modes 1 to 4 and modes 6 and 7 (the description in the parentheses is the case 60 in modes 6 and 7,
Or the housing channel hole 69), the skewed plate channel hole 49 (housing channel hole 69) and the housing channel hole 1
As another aspect of the mutual circumference of the opening where 9 and 9 are joined,
And two of the slanting plate flow passage holes 49, 49 (casing flow passage holes 69, 69) communicating with the air chamber C face each other on the same rotation circumference of the outer peripheral surface of the slanting plate 40 (casing 60). 180 degrees apart and opened, and similarly, the oblique plate flow path hole 4 between the air chamber B and the air chamber D is formed.
9, 49 (case flow passage holes 69, 69) are also opened 180 degrees apart from each other on another circumference that does not compete with the opening circumferences of the air chambers A and C. Then, the housing channel hole (1
9 and 19) × 2 is a slanting plate flow path hole 49, 49, 49, 4
9 (housing flow path holes 69, 69, 69, 69) on the inner wall surface of the housing 10 on the two rotation circumferences of the openings, the length of the streaks is about 1/4 of the circumference of the inner wall surface. A series of skew plates 4
0 (enclosure 60) two groove-shaped holes each having an intake hole In on the advance side and an exhaust hole Ex on the delay side in the rotation direction are opened. Are paralleled at the same rotation angle.

【0164】上記のように斜行板流路孔49,49、4
9,49(筺体流路孔69,69、69,69)とハウ
ジング流路孔(19,19)×2の接合円周を二つの円
周に構成しても、その作動と機能は全部の斜行板流路孔
49,49、49,49(筺体流路孔69,69、6
9,69)を一つの円周に開口させてハウジング流路孔
19,19に接合させた前述の場合と同様である。ま
た、上記形態1乃至4、及び上記形態6,7の各実施例
において、上記その他の実施例の水平2気室Fu,Fu
と、垂直2気室Fu,Fuとの各態様(共通の解決手段
2,3)における二つの斜行板流路孔49,49(筺体
流路孔69,69)を斜行板40(筺体60)の外周面
の別々の回転円周上に開口させれば、ハウジング流路孔
(19,19)×2との接合は各々の円周に1/4円周
長ずつの2筋が連なる2円周分となって上述の構成と同
様である。
As described above, the oblique plate flow passage holes 49, 49, 4
Even if the joint circumference of 9,49 (the housing flow path holes 69, 69, 69, 69) and the housing flow path hole (19, 19) x 2 is configured to be two circumferences, its operation and function are all Oblique plate flow path holes 49, 49, 49, 49 (case flow path holes 69, 69, 6
(9, 69) is opened in one circumference and joined to the housing flow passage holes 19, 19 in the same manner as described above. In addition, in each of the embodiments 1 to 4 and the embodiments 6 and 7, the horizontal two air chambers Fu and Fu of the other embodiments are provided.
And two vertical air chambers Fu and Fu (common solution means 2 and 3) in each of the two oblique plate flow passage holes 49 and 49 (the housing flow passage holes 69 and 69), the oblique plate 40 (the housing). By opening the outer peripheral surface of 60) on different rotation circles, the two joints with the housing flow path holes (19, 19) × 2 are connected with two lines each having a quarter circumference length. It is equivalent to two circles and is the same as the above-mentioned configuration.

【0165】[0165]

【形態1乃至8の実施例の別態様(ハウジング流路
孔)】上記形態1乃至8における各実施例共通の別態様
として、図示はしないが溝状の孔からなるハウジング流
路孔19を、その溝状孔の筋長分(ハウジング10内壁
面の円周に対し、形態1乃至4と形態6,7の各実施例
では概ね1/4円周長ずつ、形態5,8の各実施例では
概ね1/2円周長ずつ)の範囲内に各形態の実施例に与
する各流路孔(斜行板流路孔49、筐体流路孔69、筺
体流路孔89)の孔径より小さい間隔を開けて円孔を直
列に穿設した連続孔でもよい。また、その連続孔、溝状
孔の何れの場合においても、ハウジング10外壁側に開
口させる孔口の円周長(口径)は自由である。
[Another Mode of Embodiments of Modes 1 to 8 (Housing Channel Hole)] As another mode common to each of the above-described modes of Embodiments 1 to 8, a housing channel hole 19 formed of a groove-shaped hole (not shown) is provided. The length of the groove-shaped hole (for each of the embodiments 1 to 4 and 6 and 7 with respect to the circumference of the inner wall surface of the housing 10, about 1/4 of the circumference, each of the embodiments 5 and 8) Then, the diameter of each flow path hole (oblique plate flow path hole 49, casing flow path hole 69, housing flow path hole 89) given to the embodiment of each mode is within a range of about 1/2 circumference length). It may be a continuous hole in which circular holes are bored in series with a smaller interval. Further, in any of the continuous hole and the groove-shaped hole, the circumferential length (diameter) of the hole opening to the outer wall side of the housing 10 is free.

【0166】[0166]

【作動原理】次に、本発明の球形の回転ピストン機関に
おける作動原理を、上記形態1,2,3,5,6,7と
その各実施例においては形態1の作動を示す図16,1
7(各行程の進行は図65,66)に基づき、また上記
形態4,8とその各実施例においては形態4の作動を示
す図33,34(各行程の進行は図67,68)に基づ
いて何れも正逆回転比1:1を例として説明する。
[Principle of Operation] Next, the principle of operation of the spherical rotary piston engine of the present invention will be described with reference to the above-described modes 1, 2, 3, 5, 6, 7 and the mode 1 of each of the embodiments shown in FIGS.
7 (the progress of each stroke is shown in FIGS. 65 and 66), and FIGS. 33 and 34 (the progress of each stroke is shown in FIGS. 67 and 68) showing the operation of the fourth and eighth embodiments and the fourth embodiment. Based on the above description, the forward / reverse rotation ratio is 1: 1 as an example.

【0167】まず、各気室A,B,C,Dにおける気室
体積の増減について述べれば、斜行板40、又は筺体斜
行板61によってダブルエンドに形成された半月状作動
室Ha内に組込まれるダブルエンドの回転ピストン30
の作動に伴って、同一半月状作動室Ha内の何れか一方
の櫛形状作動室Fuの間隙が拡張して体積を増加させる
と、もう一方の櫛形状作動室Fuの間隙が収縮して体積
を減少させる。また、両半月状作動室Ha,Haの空間
を等しい体積に形成してピストン中間軸33を境とする
回転ピストン30の両側半円分ずつも同一容積に形成す
れば、斜行板40か、又は筺体斜行板61の同一弓形面
41を挟む二つの櫛形状作動室A,Dか、又はB,Cの
空間も常に互いの体積を反比例に変化させて作動し、斜
行板40、又は筺体斜行板61を斜めに挟んで対向する
二つの櫛形状作動室A,Cか、又はB,Dは互いが常に
正比例する気室体積の増減関係を有して拮抗し、且つ四
つの櫛形状作動室A,B,C,Dの行程体積は等しい。
First, the increase / decrease of the air chamber volume in each of the air chambers A, B, C and D will be described. In the half-moon shaped operating chamber Ha formed at the double end by the skew plate 40 or the housing skew plate 61. Double-ended rotary piston 30 incorporated
When the gap between any one of the comb-shaped working chambers Fu in the same half-moon shaped working chamber Ha is expanded to increase the volume, the gap of the other comb-shaped working chamber Fu is contracted and the volume is increased. To reduce. Further, if the spaces of both the half-moon-shaped working chambers Ha and Ha are formed to have the same volume and the semicircles on both sides of the rotary piston 30 with the piston intermediate shaft 33 as the boundary are also formed to have the same volume, the skew plate 40, Alternatively, the two comb-shaped working chambers A and D sandwiching the same arcuate surface 41 of the housing slanting plate 61 or the spaces of B and C always operate by changing their volumes inversely proportionally, and the slanting plate 40, or Two comb-shaped working chambers A, C or B, D facing each other with the diagonal plate 61 sandwiched therebetween have an increasing / decreasing relationship of the air chamber volume that is always directly proportional to each other, and antagonize each other, and four combs. The stroke volumes of the shape working chambers A, B, C, D are equal.

【0168】結局、各櫛形状作動室A,B,C,Dにお
ける体積の増減は、相対する回転ピストン30と斜行板
40か、又は回転ピストン30と筺体斜行板61との離
合による互いの板面間隙の大小であるが、互いの板面の
接近は気室間隙の収縮であると共に、気室体積の減少を
意味して往復ピストン機関におけるピストンがシリンダ
ー内を下死点から上死点に向かう過程の作動に相当し、
反対に互いの板面の離反はその気室間隙の拡張に伴う気
室体積の増加であると共に、ピストンがシリンダー内を
上死点から下死点に移動する過程に相当するから、回転
ピストン30と斜行板40か、又は回転ピストン30と
筺体斜行板61との板面間の弛緩と収縮が各気室A,
B,C,Dにおける気室体積の増加と減少である。
After all, the volume of each of the comb-shaped working chambers A, B, C, D is increased or decreased by the mutual engagement of the rotary piston 30 and the skew plate 40 or the rotary piston 30 and the housing skew plate 61 which are opposed to each other. Although the gap between the plate surfaces is small, the close proximity of the plate surfaces to each other causes the contraction of the air chamber gap, which means that the volume of the air chamber decreases and the piston in the reciprocating piston engine top dead from the bottom dead center in the cylinder. Corresponding to the operation of the process toward the point,
On the other hand, the separation of the plate surfaces from each other is an increase in the volume of the air chamber due to the expansion of the air chamber gap, and corresponds to the process of the piston moving from the top dead center to the bottom dead center in the cylinder. And the skew plate 40, or the relaxation and contraction between the plate surfaces of the rotary piston 30 and the skew plate 61 of the housing are caused by the air chambers A,
The increase and decrease of the air chamber volume in B, C, and D.

【0169】そこで、図16、及び図33における双方
の(A)を見ると、気室Aと、気室Aの対向位置にある
気室Cは気室空間が収縮していて体積も最小であるが、
気室Aと共に同じ半月状作動室Haを共用する気室B
と、気室Cと共にもう一方側の半月状作動室Haを共用
する気室Dは気室間隙を上限まで拡張させた最大量の体
積を持っている。その図16と図33の各(A)におい
て矢印方向の回転を与えれば、各(A)から各(B)、
(C)、(D)、(E)、(F)の順に示すように気室
Aと気室Cの気室間隙は徐々に押し広げられ、その気室
A,Cの体積が増加すると逆に気室B,Dにおける回転
ピストン30と斜行板40、又は回転ピストン30と筺
体斜行板61との板面は近付いて気室B,Dの体積を減
少させる。
Therefore, looking at both (A) in FIG. 16 and FIG. 33, the air chamber A and the air chamber C located at the position opposite to the air chamber A have a contracted air chamber space and a minimum volume. But
Air chamber B that shares the same half-moon shaped operating chamber Ha with air chamber A
Then, the air chamber D sharing the half-moon shaped operation chamber Ha on the other side with the air chamber C has the maximum volume in which the air chamber gap is expanded to the upper limit. If rotation in the arrow direction is given in each (A) of FIG. 16 and FIG. 33, each (A) to each (B),
As shown in the order of (C), (D), (E), and (F), the air chamber gap between the air chambers A and C is gradually widened, and when the volume of the air chambers A and C increases, the opposite occurs. Further, the plate surfaces of the rotary piston 30 and the skew plate 40 or the rotary piston 30 and the chassis skew plate 61 in the air chambers B and D approach each other, and the volumes of the air chambers B and D are reduced.

【0170】つまり、その作動が図16,33の各
(A)から45度分の順逆回転(一次、二次回転Po,
Ne)をすると、各(B)、(C)を経て各(D)に至
って各気室A,B,C,Dの体積変化が中位となり、そ
の体積が等しくなる。更に、その各(D)から各
(E)、(F)の方向に順次作動が進めば、気室Aと気
室Cの気室空間は更に広がって体積を増加させ、反対に
気室Bと気室Dの体積を更に減少させ、図16,33の
各(A)から90度分の順逆回転をして図17,34の
各(G)に至って気室A,Cの各気室間隙を最大限に拡
張させ、反対に気室B,Dの各気室間隙を最小限まで収
縮させる。
That is, the operation is forward / reverse rotation by 45 degrees from each (A) in FIGS. 16 and 33 (first and second rotations Po,
When Ne), the volume changes of the air chambers A, B, C, and D are intermediate, reaching the respective (D) through the respective (B) and (C), and the volumes become equal. Further, if the operation is sequentially advanced from the respective (D) to the respective (E) and (F), the air chamber spaces of the air chamber A and the air chamber C are further expanded to increase the volume, and conversely, the air chamber B. And the volume of the air chamber D is further reduced, and forward / reverse rotation of 90 degrees is performed from each (A) of FIGS. 16 and 33 to reach each (G) of FIGS. The gap is expanded to the maximum, and conversely, the air gaps of the air chambers B and D are contracted to the minimum.

【0171】そして更に、その各(G)から各(H)、
(I)、(J)、(K)を経て図17,34の各(L)
に至ると図16,33の各(A)からでは、順逆の回転
が180度分である半回転をして回転ピストン30の表
裏が入れ替わる。結局、図16,33の各(A)に示す
気室Aと気室Cは、その各(A)から図17,34の各
(G)に至って各々の気室間隙を上限まで拡張させた最
大体積となり、更に図17,34の各(L)に至って各
々が出発時と同じ最小の気室体積となるが、それとは反
対に気室Bと気室Dの各々は、図16,33の各(A)
に示す最大容積から図17,34の各(G)の最小容積
に気室空間を減少させ、更に図17,34の各(L)に
至って再度出発と同様な最大の気室体積となる。
Further, from each (G) to each (H),
Each of (L) in FIGS. 17 and 34 through (I), (J), and (K)
From (A) in FIGS. 16 and 33, the front and back of the rotary piston 30 are switched by performing a half rotation in which the forward and reverse rotations are 180 degrees. After all, the air chamber A and the air chamber C shown in each (A) of FIGS. 16 and 33 extend from each (A) to each (G) of FIGS. It becomes the maximum volume, and further reaches each (L) in FIGS. 17 and 34, and each has the same minimum air chamber volume as at the time of departure. On the contrary, each of the air chambers B and D is Each (A)
The air chamber space is reduced from the maximum volume shown in FIG. 17 to the minimum volume of each (G) of FIGS. 17 and 34, and further reaches each (L) of FIGS.

【0172】また、各気室A,B,C,Dの容積変化を
示す図16,33の各(A)から図17,34の各
(L)までは順逆回転の180度分であるが、各(L)
に示す気室A,Cの各々が再び最大の容積時を経て最小
容積になるまで、又は気室B,Dの各々が再び最小の容
積時を経て最大容積になるまで更に正・逆の回転を与え
れば、回転ピストン30は再び表裏を入れ替えて初めの
図16,33の各(A)の位相に戻るから、図16,3
3の各(A)の時点から順逆回転の各々が360度(1
回転)分を回転し、その回転に伴って気室A,B,C,
Dの各々が四つずつの行程を完了させる。従って、各気
室A,B,C,Dが上述の如くの容積変化を繰り返せば
4行程のサイクルは継続するが、それには各気室A,
B,C,Dに対して供給する給気と排出される廃気との
作動媒体を流出入させることが必要である。
Further, from (A) in each of FIGS. 16 and 33 showing the volume change of each air chamber A, B, C, D to each (L) in each of FIGS. , Each (L)
Each of the air chambers A and C shown in Fig. 2 again rotates forward and backward until it reaches the minimum volume after the maximum volume, or until each of the air chambers B and D again reaches the maximum volume after the minimum volume. , The rotary piston 30 is switched back and forth again to return to the initial phase (A) of FIGS. 16 and 33.
Each forward and reverse rotation is 360 degrees (1
Rotation), and the air chambers A, B, C,
Each of D completes four strokes. Therefore, if each air chamber A, B, C, D repeats the volume change as described above, the cycle of four strokes will continue, but each air chamber A,
It is necessary to allow the working media of the supply air supplied to B, C, and D and the exhaust air discharged to flow in and out.

【0173】ここで、内燃ピストン機関における一般的
な作動媒体の燃焼と吸気と排気の作用について述べる
と、燃焼室内における混合気の燃焼にはある時間を必要
とし、定積燃焼が出来ない為にピストンの上死点よりも
かなり前に点火をするが、一般的には最高圧力が上死点
後12度(クランク回転角)あたりにくるようにして点
火すると、この原因による仕事損失が最小になる。つま
り、通常は上死点前30度付近で点火されるが、すぐに
は燃焼せずに着火待ち時間があって上死点前15度付近
で燃焼が開始され、それから気筒内圧力が急激に上昇
し、上死点後10度ほどで燃焼が終了して最高圧力とな
るから、その燃焼開始の上死点前15度付近の回転角位
置を(A)とし、燃焼終了の上死点後10度付近の位置
を(B)とした時の(A)、(B)間の中央が上死点と
なるように点火進角を合わせると最高出力になる。ま
た、燃焼ガスの排出にもある時間を必要とし、下死点ま
で膨張を続けてから排気弁を開いたのでは排気噴き出し
によって気筒内圧力が十分に低下する余裕がなく、排気
行程に負の仕事をさせることになる。そこで下死点より
もかなり前に排気弁を開き、排気噴き出しによって気筒
内圧力を大気圧力近くまで落して排気行程に移るほうが
よく、また吸気においても、高速の吸入空気流動の慣性
を考慮して吸気弁の閉まる時期を下死点よりもかなり遅
らせて(クランク回転角において数十度)ある。即ち、
バルブ開閉のバルブタイミングにおいて、吸気バルブは
上死点のかなり前で開き、下死点のかなり後で閉じ、同
様に排気バルブも下死点のかなり前で開き上死点のかな
り後で閉じるから、吸、排気バルブの作用角は上死点に
おいて大きくオーバーラップする。
Here, the general combustion of the working medium and the action of the intake air and the exhaust gas in the internal combustion piston engine will be described. It takes a certain time to burn the air-fuel mixture in the combustion chamber. Ignition is performed well before the top dead center of the piston, but generally, when ignition is performed with the maximum pressure around 12 degrees (crank rotation angle) after top dead center, work loss due to this cause is minimized. Become. In other words, normally, ignition is performed around 30 degrees before top dead center, but it does not burn immediately and there is an ignition waiting time, combustion starts around 15 degrees before top dead center, and then the cylinder pressure rapidly increases. As it rises and the combustion is completed at about 10 degrees after top dead center and reaches the maximum pressure, the rotation angle position around 15 degrees before top dead center before the start of combustion is set to (A), and after top dead center after combustion end The maximum output is obtained by adjusting the ignition advance angle so that the center between (A) and (B) when the position near 10 degrees is (B) is the top dead center. Also, it takes a certain time to discharge the combustion gas, and if the exhaust valve is opened after the expansion is continued until the bottom dead center, there is no room for the cylinder pressure to sufficiently drop due to the exhaust gas injection, and there is a negative impact on the exhaust stroke. You will be forced to work. Therefore, it is better to open the exhaust valve well before bottom dead center and drop the pressure in the cylinder to near atmospheric pressure by ejecting the exhaust gas to move to the exhaust stroke, and also consider the inertia of the high-speed intake air flow during intake. The closing timing of the intake valve is considerably delayed from the bottom dead center (a few tens of degrees in crank rotation angle). That is,
At the valve timing of opening and closing the valve, the intake valve opens well before top dead center and closes well after bottom dead center, and similarly the exhaust valve opens well before bottom dead center and close well after top dead center. The working angles of the intake and exhaust valves largely overlap at the top dead center.

【0174】しかし、本発明において基準とする正逆回
転比1:1(1/1)の態様における1サイクルの各行
程は、クランク軸に代わるZ軸23か筺体軸71、又は
回転主軸20(以下、それらの回転軸を総じて機関軸と
いう)の回転角0度から吸入作用に入り、90度で吸気
行程を終了して圧縮行程を開始し、その圧縮行程は回転
角の180度において終了するものとし、その時に圧縮
された作動媒体が点火されて膨張行程を開始し、その膨
張行程は回転角の270度で終了して同時に排気行程を
開始し、回転角の360度において排気行程が終了する
ものとする。従って、本発明における櫛形状作動室Fu
の最小から最大、又は最大から最小への容積変化は機関
軸回転角の90度毎に行われ、吸気行程から圧縮、膨
張、排気行程までの4行程サイクルの全作動は2ストロ
ークの往復ピストン機関と同様に360度、即ち機関軸
の1回転の間に行われる。
However, each stroke of one cycle in the embodiment of the forward / reverse rotation ratio of 1: 1 (1/1), which is the reference in the present invention, includes the Z-axis 23 instead of the crankshaft, the housing shaft 71, or the rotating main shaft 20 ( Hereinafter, those rotary shafts will be generally referred to as engine shafts) and the intake action starts at a rotation angle of 0 degree, the intake stroke ends at 90 degrees, and the compression stroke starts, and the compression stroke ends at a rotation angle of 180 degrees. At that time, the compressed working medium is ignited to start the expansion stroke, and the expansion stroke ends at the rotation angle of 270 degrees and simultaneously starts the exhaust stroke, and the exhaust stroke ends at the rotation angle of 360 degrees. It shall be. Therefore, the comb-shaped working chamber Fu in the present invention
Change from the minimum to the maximum or from the maximum to the minimum at every 90 degrees of the engine shaft rotation angle, and the full operation of the 4-stroke cycle from the intake stroke to the compression, expansion, and exhaust stroke is a 2-stroke reciprocating piston engine. Similarly to, 360 degrees, that is, during one rotation of the engine shaft.

【0175】また、作動媒体の通路である流路孔は、各
気室A,B,C,Dの吸気時と排気時に見合う適位置の
ハウジング10壁を貫通するハウジング流路孔19と斜
行板40を貫く斜行板流路孔49(形態6,7の各実施
例では筺体流路孔69、形態5,8の各実施例では筺体
流路孔89)として設けられ、各気室A,B,C,Dの
各行程の進行に伴って両者は適宜接続する。つまり、各
気室A,B,C,Dの排気行程時には、ハウジング流路
孔19の排気孔Exに斜行板流路孔49、又は筺体流路
孔69、又は筺体流路孔89が接続して燃焼ガスを排出
し、吸気行程時には、その排気孔Exとの連接から外れ
ると共に吸気孔Inに接続して新気を吸入する。
The flow passage hole which is a passage for the working medium is oblique to the housing flow passage hole 19 penetrating the wall of the housing 10 at a proper position for intake and exhaust of the air chambers A, B, C and D. The slanted plate passage hole 49 penetrating the plate 40 is provided as a slanted plate passage hole 49 (a casing passage hole 69 in each of the embodiments of the modes 6 and 7, and a casing passage hole 89 in each of the embodiments of the embodiments 5 and 8), and each air chamber A , B, C, D are appropriately connected as the respective strokes progress. That is, during the exhaust stroke of each of the air chambers A, B, C, D, the oblique plate passage hole 49, the housing passage hole 69, or the housing passage hole 89 is connected to the exhaust hole Ex of the housing passage hole 19. Then, the combustion gas is discharged, and at the time of the intake stroke, it is removed from the connection with the exhaust hole Ex and is connected to the intake hole In to intake fresh air.

【0176】更に、各気室A,B,C,Dの体積が作動
に伴って最小になる辺りの空隙容積室(ピストンが上死
点位置の燃焼室)内を窺うハウジング10壁か、又は斜
行板40(形態5の実施例ではZ軸筺体70、形態6,
7の各実施例では筺体60、形態8の実施例では位相筺
体80)に点火具Ig、又はディーゼル機関の態様では
燃料噴射弁を挿着しておき、各気室A,B,C,Dの圧
縮行程が最高時に達する付近で点火具Igにより点火す
るか、燃料噴射弁により燃料を噴射するかして燃焼さ
せ、内燃ピストン機関における給気の吸入、その給気の
圧縮と、圧縮気の燃焼と膨張、及び廃気排出からなる各
行程を成立させるものである。
Further, either the wall of the housing 10 which checks the inside of the void volume chamber (the combustion chamber where the piston is at the top dead center position) around which the volume of each air chamber A, B, C, D becomes minimum with the operation, or Skew plate 40 (Z-axis housing 70 in the embodiment of form 5, form 6,
No. 7 in each of the embodiments, the ignition device Ig in the case 60 in the embodiment of mode 8 and the phase housing 80 in the embodiment of mode 8 or the fuel injection valve in the mode of the diesel engine is inserted, and the air chambers A, B, C, D are inserted. In the vicinity of when the compression stroke reaches the maximum, the ignition device Ig ignites the fuel or the fuel injection valve injects the fuel to burn the air, thereby sucking the intake air in the internal combustion piston engine, compressing the intake air, and compressing the intake air. Each process of combustion, expansion, and exhaust of exhaust air is established.

【0177】[0177]

【行程の進行】次に、気室A,B,C,Dの各々が次々
と行う吸気、圧縮、膨張、及び排気の各行程の進行を、
上記形態1,2,3,5,6,7の各実施例においては
形態1の実施例の作動を示す図65,66に基づき、上
記形態4,8の各実施例においては形態4の実施例の作
動を示す図67,68に基づき、何れも正逆回転比1:
1(1/1)を例として説明する。この図65,66、
及び図67,68に示す各形態の実施例の作動は、回転
ピストン30と斜行板40(形態6,7の実施例では筺
体斜行板61)の1回転における各気室A,B,C,D
の体積変化を示すものである。
[Progress of stroke] Next, the progress of each stroke of intake, compression, expansion, and exhaust performed by each of the air chambers A, B, C, and D one after another,
Based on FIGS. 65 and 66 showing the operation of the embodiment of the first aspect in the respective embodiments of the first, second, third, fifth, sixth and seventh aspects, the implementation of the fourth aspect in the respective examples of the fourth and eighth aspects. Based on FIGS. 67 and 68 showing the operation of the example, both the forward / reverse rotation ratio 1:
1 (1/1) will be described as an example. 65, 66,
67 and 68, the operation of the embodiments of the respective embodiments is performed by the air chambers A, B, in one rotation of the rotary piston 30 and the skew plate 40 (in the embodiment of the sixth and seventh embodiments, the frame skew plate 61). C, D
It shows the change in volume.

【0178】まず、図65、及び図67の各(イ)にお
いて、気室Aはいま燃焼ガスの排出を終了して吸気孔I
nが開放された上死点に相当する給気開始の位置にいる
が、気室Bは行程体積いっぱいまで膨張行程をして排気
孔Exが開放された燃焼ガスの排出を開始する気室空間
の収縮開始時である。その点、気室Dは気室間隙を拡張
させた吸気行程の終了時であり、気室Cは圧縮行程の上
限時にある作動媒体が既に点火された位置である。その
気室Cにおける圧縮媒体の燃焼熱と膨張圧力とが、気室
Cを形成する回転ピストン30と斜行板40、又は回転
ピストン30と筺体斜行板61との板面に作用して互い
の板面間を押し広げる。
First, in each of (a) in FIGS. 65 and 67, the air chamber A has finished the discharge of the combustion gas and the intake hole I
Although n is at the position of the start of air supply corresponding to the opened top dead center, the air chamber B undergoes the expansion stroke to the full stroke volume and the exhaust hole Ex is opened to start discharging the combustion gas. Is the start of contraction. In that respect, the air chamber D is at the end of the intake stroke in which the air chamber gap is expanded, and the air chamber C is at the position where the working medium at the upper limit of the compression stroke has already been ignited. The combustion heat and the expansion pressure of the compression medium in the air chamber C act on the plate surfaces of the rotary piston 30 and the skew plate 40, or the rotary piston 30 and the housing skew plate 61, which form the air chamber C, so that they are mutually affected. Spread the space between the plates.

【0179】つまり、気室Cの膨張行程は自らの気室間
隙を拡張させ、既に膨張行程を終了させた気室Bに換わ
って前記機関軸に回転力を与えると共に、図65,67
における各(イ)から各(ロ)、各(ハ)の順に示すよ
うに気室Cの対向位置にある気室Aの気室間隙も拡張さ
せ、それとは反対に気室B,Dの各気室間隙を縮小させ
るように作用する。結局、図65,67の各(イ)にお
いては、膨張行程を開始する気室Cに対して気室Aが吸
気行程、気室Bが排気行程、気室Dが圧縮行程であり、
而も各々がその行程における初期の段階にあるが、図6
5,67の各(イ)から各(ロ)、各(ハ)を経て各
(ニ)に至ると90度分の回転をしたことになり、各気
室A,B,C,Dが重複しない1行程分ずつを終了させ
る。
That is, the expansion stroke of the air chamber C expands its own air chamber gap, and instead of the air chamber B which has already completed the expansion stroke, a rotational force is applied to the engine shaft, and FIGS.
As shown in the order of (a) to (b) and (c), the air chamber gap of the air chamber A at the opposite position of the air chamber C is also expanded, and, on the contrary, each of the air chambers B and D is expanded. It acts to reduce the air space. After all, in each of (a) of FIGS. 65 and 67, the air chamber A is the intake stroke, the air chamber B is the exhaust stroke, and the air chamber D is the compression stroke with respect to the air chamber C that starts the expansion stroke.
Although each is in the early stage of the process,
When each (i) of 5,67 goes through each (b), each (c), and each (d), it means that the air chambers A, B, C, D overlap. Do not finish one stroke at a time.

【0180】即ち、気室Aは気室空間を最大体積まで拡
張させた各(ニ)に至って吸気行程を終了させて次の圧
縮行程を臨み、気室Bは最小体積になった各(ニ)に至
って次の吸気行程を開始する位置にあり、気室Cは気室
空隙を行程いっぱいに拡張させて膨張行程の終了と共に
排気孔Exと連接し、気室Dは気室空間を最も収縮させ
て圧縮仕事の終了と共に作動媒体が点火された位置にい
る。この気室Dの膨張行程における膨張圧力は、その気
室Dの気室間隙を押し広げて対向位置にある気室Bの気
室間隙も拡張させ、その反対に気室A,Cの各気室間隙
を収縮させ、且つ先に膨張行程を終了した気室Cに後続
して前記機関軸の回転力に変換されるから、図65,6
7の各(ニ)においては、各々が次の行程である気室A
に圧縮行程、気室Bに吸気行程、気室Cに排気行程を行
わせる。
That is, the air chamber A reaches each (d) in which the air chamber space is expanded to the maximum volume, ends the intake stroke, and faces the next compression stroke, and the air chamber B reaches the minimum volume (d). ) Is reached and the next intake stroke is started, the air chamber C expands the air chamber void to the full stroke, and is connected to the exhaust hole Ex at the end of the expansion stroke, and the air chamber D contracts the air chamber space most. With the end of the compression work, the working medium is in the ignited position. The expansion pressure in the expansion stroke of the air chamber D expands the air chamber gap of the air chamber D and also expands the air chamber gap of the air chamber B at the opposite position, and conversely, the air pressures of the air chambers A and C are increased. 65 and 6 because the chamber gap is contracted and the air chamber C that has completed the expansion stroke is converted into the rotational force of the engine shaft.
In each (d) of 7, air chamber A is the next stroke.
The compression stroke, the intake stroke in air chamber B, and the exhaust stroke in air chamber C are performed.

【0181】そして、その各(ニ)から各(ホ)、各
(ヘ)を経て到達する図66,68の各(ト)におい
て、起点とする図65,67の各(イ)からでは各気室
A,B,C,Dが丁度180度分を回転して2行程分ず
つの作動を完了させるが、その各(ト)においては、気
室Aと気室Bの各々が吸、排気孔In,Exとの連接か
ら外れ、それとは逆に気室Cが吸気孔Inに接続を開始
し、気室Dが気室Cに後続して排気孔Exと連接する。
つまり、気室Cは排気行程の終了と共に吸気行程を始め
る位置にあって気室内容は空に近い状態であり、また吸
気によって気室空間を拡張させた気室Bが圧縮行程を開
始し、気室Dが膨張行程を終えて廃気排出を開始する。
この時、気室Aの圧縮気が点火され、この気室Aの膨張
行程が先の気室Dに換わって回転ピストン30と前記機
関軸に回転力を与えると共に、気室Cの気室空隙を拡張
させて気室B,Dの気室空隙を縮小すべく作用する。
Then, in each (g) of FIGS. 66 and 68 arriving from each (d) via each (e) and each (f), each of (a) of FIGS. The air chambers A, B, C, D rotate exactly 180 degrees to complete the operation of two strokes each, but in each (g), each of the air chambers A and B sucks and exhausts. The air chamber C is disconnected from the connection with the holes In and Ex, on the contrary, the air chamber C starts to be connected to the intake hole In, and the air chamber D follows the air chamber C and is connected to the exhaust hole Ex.
That is, the air chamber C is at a position where the intake stroke starts at the end of the exhaust stroke, and the air chamber content is almost empty, and the air chamber B whose air chamber space has been expanded by the intake starts the compression stroke, The air chamber D finishes the expansion stroke and starts exhausting exhaust air.
At this time, the compressed air in the air chamber A is ignited, and the expansion stroke of the air chamber A replaces the previous air chamber D to give a rotational force to the rotary piston 30 and the engine shaft, and at the same time, the air chamber void of the air chamber C. Is expanded to reduce the air chamber voids of the air chambers B and D.

【0182】更に、図66,68の各(ト)から各
(チ)、各(リ)を経て各(ヌ)に至ると、気室A,C
は共に気室空間を拡張させて最大の容積を擁するが、気
室Aでは既に膨張仕事を終息させて廃気排出の為に排気
孔Exと連接し、気室Cでは行程体積いっぱいまで吸入
した作動媒体の圧縮を開始する。一方、気室Bと気室D
は共に気室空間を最小に収縮させているが、気室Bは圧
縮最大の作動媒体が点火されて膨張行程を開始し、気室
Dは廃気排出後の吸気行程を開始すべく吸気孔Inに接
続する。結局、各気室A,B,C,Dが、図65,67
の各(イ)を振り出して図66,68の各(ヌ)に至る
と270度(90度×3)分を回転したことになるが、
この場合の1行程は90度分の回転において成立するか
ら各気室A,B,C,Dが3行程分ずつを終了させたこ
とになる。
Further, when each (G) in FIG.
Both expand the air chamber space to have the maximum volume, but in the air chamber A, the expansion work has already ended and the exhaust hole Ex is connected to discharge the exhaust air, and in the air chamber C, the stroke volume is sucked up to the full volume. Start compressing the working medium. On the other hand, air chamber B and air chamber D
Both contract the air chamber space to the minimum, but the air chamber B starts the expansion stroke by igniting the working medium having the maximum compression, and the air chamber D starts the intake stroke after starting the intake stroke after exhausting the exhaust air. Connect to In. After all, the air chambers A, B, C and D are shown in FIGS.
When each (a) of is drawn out to reach each (nu) of FIGS. 66 and 68, it means that it has rotated 270 degrees (90 degrees × 3).
In this case, one stroke is completed in the rotation of 90 degrees, so that each of the air chambers A, B, C and D has completed three strokes.

【0183】その上、この各(ヌ)における気室Bの膨
張仕事によって気室A,B,C,Dが各(ル)、各
(ヲ)を経て起点となった図65,67の各(イ)の位
置までを1巡すれば、回転ピストン30と斜行板40
(又は筺体斜行板61)と気室A,B,C,Dが1回転
(90度×4)をしたことになるが、それは各気室A,
B,C,Dが四つの行程の1サイクル分を終了させ、且
つ四つの気室A,B,C,Dの連鎖した膨張圧力が回転
ピストン30に作用してZ軸23か筺体軸71、又は回
転主軸20の機関軸を回転させる。即ち、各気室A,
B,C,Dに図65,67の各(イ)から図66,68
の各(ヲ)間を順次、循環させて吸気、圧縮、膨張、及
び排気の各行程を繰り返して行わせれば機関軸が常に回
転力を受ける。
In addition, the expansion work of the air chamber B in each (nu) causes each of the air chambers A, B, C, and D to be the starting point through each (le) and each (wo). By making one round to the position (a), the rotary piston 30 and the skew plate 40
(Or the diagonal board 61) and the air chambers A, B, C, D have made one rotation (90 degrees x 4), but each air chamber A,
B, C, D completes one cycle of four strokes, and the chained expansion pressures of the four air chambers A, B, C, D act on the rotary piston 30, and the Z axis 23 or the housing axis 71, Alternatively, the engine shaft of the rotary main shaft 20 is rotated. That is, each air chamber A,
B, C, and D from (a) of FIGS. 65 and 67 to FIGS.
If the intake, compression, expansion, and exhaust strokes are repeatedly circulated in each of the above (i), the engine shaft will always receive the rotational force.

【0184】[0184]

【トルク発生原理】本発明の球形の回転ピストン機関に
おけるトルク発生は、従来の往復ピストン機関と同様に
考えることが出来る。また、本発明も従来の往復ピスト
ン機関と同様に、燃焼室内において作動媒体(この場合
は混合気である)の燃焼時間はかなり短く、大まかには
燃焼がほぼ定容のもとに行われ、その燃焼質量の割合に
応じた燃焼ガスの圧力が回転ピストン30の弓形面31
に作用して回転ピストン30そのものに力を及ぼす。つ
まり、回転ピストン30は膨張する燃焼ガス圧力による
力を受けつつ力の方向に運動をするからこの力が仕事を
し、上記形態1,2,3,6,7の各実施例ではZ軸2
3、上記形態5の実施例では筺体軸71、上記形態4,
8の各実施例では回転主軸20の各機関軸の回転のかた
ちで機械エネルギーに変換される。ここで本発明の球形
の回転ピストン機関におけるトルク発生の原理を、上記
形態1,2,3,5,6,7の各実施例においては図6
9に基づき、また上記形態4,8の各実施例においては
図70に基づき、正逆回転比が1:1(1/1)の設定
において説明する。
Torque Generation Principle The torque generation in the spherical rotary piston engine of the present invention can be considered in the same manner as in the conventional reciprocating piston engine. Further, in the present invention, similarly to the conventional reciprocating piston engine, the combustion time of the working medium (in this case, the air-fuel mixture) is considerably short in the combustion chamber, and the combustion is roughly performed under a substantially constant volume. The pressure of the combustion gas corresponding to the ratio of the combustion mass is the arcuate surface 31 of the rotary piston 30.
To exert a force on the rotary piston 30 itself. That is, since the rotary piston 30 moves in the direction of the force while receiving the force due to the expanding combustion gas pressure, this force works, and in each of the embodiments 1, 2, 3, 6 and 7, the Z-axis 2 is used.
3, in the embodiment of the above-mentioned mode 5, the housing shaft 71, the above-mentioned mode 4,
In each embodiment of No. 8, the rotary main shaft 20 is converted into mechanical energy by the rotation of each engine shaft. Here, the principle of torque generation in the spherical rotary piston engine of the present invention is shown in FIG. 6 in each of the embodiments 1, 2, 3, 5, 6, and 7.
9 and in each of the embodiments 4 and 8 described above with reference to FIG. 70, the forward / reverse rotation ratio is set to 1: 1 (1/1).

【0185】即ち、ピストン中間軸33柱面を含む回転
ピストン30の弓形面31に加わるガス圧力Pgは、軸
線X,Yが球心Oから同一方向に同一距離分を移動して
球面Gに交差する点P,Qの2点間を直径とした円周
(回転ピストン30のL軸線の公転軌跡)において、そ
の円周の切線方向に作用する切線力Ftと機関軸(形態
1,2,3,6,7の各実施例ではZ軸23、形態5の
実施例では筺体軸71、形態4,8の各実施例では回転
主軸20)における軸頸ジャーナルの軸受荷重として作
用するPbとに分けて考えることが出来る。つまり、X
軸線上のM軸線を連結軸とする前記ピン継手関節55の
枢結部分が往復ピストン機関のクランクピンの部分に相
当し、K軸線の両端(点Ka、点Kb)における前記蝶
番関節50の蝶番ピン51が往復ピストン機関のピスト
ンピン位置に相当するが、そのピン継手関節55と蝶番
関節50との連結部は共に±θ角度を揺動する。
That is, regarding the gas pressure Pg applied to the arcuate surface 31 of the rotary piston 30 including the cylindrical surface of the piston intermediate shaft 33, the axis lines X and Y move the same distance in the same direction from the spherical center O and intersect the spherical surface G. In a circumference having a diameter between two points P and Q (revolution locus of the L axis of the rotary piston 30), the cutting force Ft acting in the cutting direction of the circumference and the engine shaft (forms 1, 2, 3) , 6 and 7 in the embodiment, the Z axis 23 in the embodiment of the fifth embodiment, the housing shaft 71 in the embodiment of the fifth embodiment, and the Pb acting as the bearing load of the shaft neck journal in the embodiment of the fourth and eighth embodiments. You can think about it. That is, X
The pivot portion of the pin joint joint 55 with the M axis on the axis as the connecting shaft corresponds to the crank pin portion of the reciprocating piston engine, and the hinge of the hinge joint 50 at both ends (point Ka, point Kb) of the K axis. The pin 51 corresponds to the piston pin position of the reciprocating piston engine, and the connecting portion between the pin joint joint 55 and the hinge joint 50 both swings at an angle of ± θ.

【0186】また、上記形態4,8の各実施例において
は図70に示すように、M軸線上のピン継手関節55と
K軸線両端(点Ka、点Kb)の蝶番ピン51と回転ピ
ストン30のピストン通軸孔34における開口部の中心
点(L軸線が球面Gに交わる点)とが回転に伴って共に
角度θ分の等しい距離を移動するから、そのL軸線上に
点Pと同一半径上に位置するピストン通軸孔34開口部
の中心も往復ピストン機関のクランクピンに相当すると
考えてもなんら変わることがない。また、上記形態4の
実施例を除く上記形態1乃至7の各実施例を示す図69
においてはY軸線上の点Qが、或は上記形態4,8の各
実施例を示す図70においてはX軸線上の点Pが往復ピ
ストン機関のクランク回転中心に相当する。その時、出
力軸トルクTは、往復ピストン機関のクランクピン、ク
ランク半径(e)に相当する回転ピストン30の回転偏
心量(L軸線の公転軌跡の直径、点P,Q間)をeとす
れば、T=Ft・eで示される。
Further, in each of the embodiments 4 and 8, as shown in FIG. 70, the pin joint joint 55 on the M-axis, the hinge pin 51 at both ends of the K-axis (point Ka, point Kb) and the rotary piston 30. Since the center point of the opening of the piston through-hole 34 (the point where the L axis intersects the spherical surface G) moves with the rotation by an equal distance of the angle θ, the same radius as the point P on the L axis. Even if it is considered that the center of the opening of the piston shaft hole 34 located above corresponds to the crank pin of the reciprocating piston engine, it does not change at all. Further, FIG. 69 showing each example of the above-mentioned modes 1 to 7 except the example of the above-mentioned mode 4
In FIG. 70 showing the embodiments of the above-mentioned Embodiments 4 and 8, the point Q on the Y-axis corresponds to the crank rotation center of the reciprocating piston engine. At that time, the output shaft torque T can be obtained by taking the crank pin of the reciprocating piston engine and the rotational eccentric amount of the rotary piston 30 (diameter of the revolution trajectory of the L axis, between points P and Q) corresponding to the crank radius (e) as e. , T = Ft · e.

【0187】[0187]

【出力計算】従って、本発明の球形の回転ピストン機関
における出力Neは、次式によって計算される。 Ne=Pme・Vh・z・i/75×60×100 =2・π・T・n/75×60(PS) Ne:軸出力 Pme:正味平均有効圧力 Vh:単室作動容積 (cm3) n:機関軸の回転数 (r.p.m) i:機関軸1回転あたりのサイクル数 z:作動室数 T:トルク (kg/m) 尚、本発明の球形の回転ピストン機関では、正逆回転比
を1:1(1/1)に設定した場合の機関軸(形態1,
2,3,6,7の各実施例ではZ軸23、形態5の実施
例では筺体軸71、形態4,8の各実施例では回転主軸
20)の1回転で1回の膨張行程のため、i=1/1で
ある。
[Output Calculation] Therefore, the output Ne in the spherical rotary piston engine of the present invention is calculated by the following equation. Ne = Pme · Vh · z · i / 75 × 60 × 100 = 2 · π · T · n / 75 × 60 (PS) Ne: Shaft output Pme: Net average effective pressure Vh: Single chamber working volume (cm 3 ). n: number of revolutions of the engine shaft (rpm) i: number of cycles per one revolution of the engine shaft z: number of working chambers T: torque (kg / m) In the spherical rotary piston engine of the present invention, the forward / reverse rotation ratio is When set to 1: 1 (1/1), the engine shaft (form 1,
In each of the examples 2, 3, 6 and 7, the Z-axis 23, in the example of the form 5, the housing shaft 71, and in each of the examples of the forms 4 and 8, the main shaft 20) rotates once for one expansion stroke. , I = 1/1.

【0188】[0188]

【正逆回転(形態6,7及び形態2,3,4の各実施
例)】上記形態6,7の各実施例において、互いに逆回
転をするZ軸23と回転ピストン30、及び筺体60と
の正逆回転比は、前述した1:1(1/1)以外に1:
2(1/2)を除いて1:3(1/3),1:4(1/
4),1:5(1/5),1:6(1/6),1:7
(1/7)、、、というように、Z軸23の回転比率が
高い領域に変更が可能である。
[Forward / Reverse Rotation (Embodiments of Modes 6 and 7 and Embodiments 2, 3 and 4)] In each of Embodiments 6 and 7 described above, the Z-axis 23, the rotary piston 30, and the housing 60 that rotate in opposite directions are provided. The forward / reverse rotation ratio of: is 1: other than 1: 1 (1/1) described above.
Except for 2 (1/2), 1: 3 (1/3), 1: 4 (1 /
4), 1: 5 (1/5), 1: 6 (1/6), 1: 7
It is possible to change to a region where the rotation ratio of the Z axis 23 is high, such as (1/7).

【0189】尚、この形態6,7の各実施例における正
逆回転比の変化による態様は、上記形態2乃至4の各実
施例についても構成を設定する基本要素は同じであるか
ら、以下の記述は上記形態2乃至4の各実施例も共通で
あり、その場合には形態2乃至4の各実施例の構成名称
を括弧内の構成名称に置き換えればよい。即ち、筺体歯
車62(形態2,3の各実施例は斜行板環歯車44、形
態4の実施例では主軸歯車22)、Z軸歯車27(形態
4の実施例は位相板歯車58)、Z軸23(形態4の実
施例は位相板56)、筺体60及び筺体斜行板61(形
態2,3,4の各実施例は斜行板40)、筺体流路孔6
9(形態2,3,4の各実施例では斜行板流路孔49)
がそれである。
The mode of changing the forward / reverse rotation ratio in each of the embodiments of modes 6 and 7 has the same basic elements for setting the configuration in each of the modes 2 to 4 described above. The description is common to the respective embodiments of the above-described modes 2 to 4, and in that case, the configuration names of the respective examples of the modes 2 to 4 may be replaced with the configuration names in parentheses. That is, the housing gear 62 (the oblique plate ring gear 44 in each of the embodiments of modes 2 and 3, the main shaft gear 22 in the example of the mode 4), the Z-axis gear 27 (the phase plate gear 58 in the example of the mode 4), Z-axis 23 (the phase plate 56 in the embodiment of the form 4), the housing 60 and the skewed plate 61 of the housing (the skewed plate 40 in each of the embodiments of the embodiments 2, 3 and 4), the housing flow path hole 6
9 (oblique plate flow path hole 49 in each of the embodiments of modes 2, 3 and 4)
Is that.

【0190】例えば、1:3(1/3)の正逆回転比に
おいては、Z軸歯車27のピッチ円径に対して3倍長の
ピッチ円径を持つ筺体歯車62に形成し、前述した正逆
回転比1:1(1/1)における構成の場合と同様にZ
軸歯車27と筺体歯車62との互いに歯合して定位軸回
転をする中間歯車54を介在させる。つまり、形態2の
実施例では図42,43、また形態3の実施例では図4
8に示すようにZ軸歯車27に対して3倍長のピッチ円
径を持つ斜行板環歯車44に形成し、又は形態4の実施
例では図示はしないが位相板歯車58に対して3倍長の
ピッチ円径の主軸歯車22に形成すると共に、その両者
に歯合する中間歯車54を介在させる。
For example, when the forward / reverse rotation ratio is 1: 3 (1/3), the casing gear 62 having a pitch circle diameter three times as long as the pitch circle diameter of the Z-axis gear 27 is formed, and is described above. Z as in the case of the configuration at the forward / reverse rotation ratio of 1: 1 (1/1)
An intermediate gear 54, which meshes with the shaft gear 27 and the housing gear 62 to rotate in a fixed axis, is interposed. That is, FIGS. 42 and 43 in the embodiment of the second aspect, and FIG.
8, the skew plate ring gear 44 having a pitch circle diameter three times longer than that of the Z-axis gear 27 is formed. The main shaft gear 22 having a double length pitch circle diameter is formed, and an intermediate gear 54 meshing with the both is interposed.

【0191】上記の如くに構成した正逆1:3(1/
3)の回転比では、Z軸23に135度(45度×3)
分の回転を与えると回転ピストン30が45度分を逆転
して回転ピストン30と筺体斜行板61との間隙が最大
変化を示す。即ち、回転ピストン30が前記円錐軌跡U
上を回転する前記一次回転Poの1回転分を、Z軸歯車
27と筺体歯車62の比が1:1の場合では回転ピスト
ン30回転の90度分毎に終了したが、この1:3の歯
車レシオにおいては45度毎に終了するから、回転ピス
トン30の45度分の回転毎に各気室Fuが一つずつの
行程を完了させ、回転ピストン30の1回転(45度×
8)では各気室Fuが8行程分ずつを進行させる。
Forward / reverse 1: 3 (1 /
With the rotation ratio of 3), the Z axis 23 has 135 degrees (45 degrees x 3).
When the rotation of 30 minutes is given, the rotation piston 30 reverses the rotation of 45 degrees, and the gap between the rotation piston 30 and the skewed plate 61 of the housing shows the maximum change. That is, the rotary piston 30 moves in the conical locus U.
When the ratio of the Z-axis gear 27 and the housing gear 62 is 1: 1, one rotation of the primary rotation Po rotating above is completed every 90 degrees of rotation of the rotary piston 30. Since the gear ratio ends every 45 degrees, each air chamber Fu completes one stroke every 45 degrees of rotation of the rotary piston 30, and one rotation of the rotary piston 30 (45 degrees x 45 degrees x
In 8), each air chamber Fu advances for eight strokes.

【0192】その時、四つの気室A,B,C,Dの存在
においては、各半月状作動室Haに連通する二つの筺体
流路孔69,69が中心角で135度分を隔てる同一回
転円周上の筺体60外周面に開口し、両半月状作動室H
a,Ha分の二つずつが筺体60外周面の異なる回転円
周上に開口する。そして、筺体流路孔69,69、6
9,69が開口する二つの回転円周上のハウジング10
壁には、ハウジング流路孔(In,Ex)×2,(I
n,Ex)×2が何れの円周上にも、ハウジング10内
壁面円周の概ね1/8円周長ずつを有して連なる溝状孔
の一方を吸気孔In(筺体60回転方向の先行側)、も
う一方を排気孔Ex(筺体60回転方向の後続側)とす
る2筋を1対とし、その2対分が対向して設けられる。
また、この場合の点火具Igは、各半月状作動室Haを
窺って少なくとも2本をハウジング10壁に挿着する
が、互いがハウジング流路孔(In,Ex)×2間の中
間位置に筺体流路孔69,69の開口円周上に面して挿
着される。
At that time, in the presence of the four air chambers A, B, C, D, the two enclosure flow passage holes 69, 69 communicating with the respective half-moon-shaped working chambers Ha are rotated in the same rotation with a central angle of 135 degrees. Opened on the outer peripheral surface of the housing 60 on the circumference, both half-moon shaped working chambers H
Two a and Ha parts open on different rotation circles on the outer peripheral surface of the housing 60. Then, the housing flow path holes 69, 69, 6
Housing 10 on two rotating circumferences with openings 9 and 69
On the wall, housing channel holes (In, Ex) × 2, (I
n, Ex) × 2 on any circumference, one of the groove-shaped holes connected with each other having about 1/8 circumference length of the inner wall surface circumference of the housing 10 is connected to the intake hole In (in the rotation direction of the housing 60). Two lines having the leading side) and the other as the exhaust hole Ex (the trailing side in the rotation direction of the housing 60) are set as one pair, and two pairs thereof are provided to face each other.
Further, in this case, the igniter Ig is arranged so that at least two of the crescent-shaped working chambers Ha are inserted into the wall of the housing 10 by checking each half-moon-shaped working chamber Ha, but they are located at an intermediate position between the housing flow passage holes (In, Ex) × 2. The housing flow passage holes 69, 69 are inserted and faced on the circumference of the opening.

【0193】そして更に、正逆回転比が1:4(1/
4)の構成においては、回転ピストン30の30度分毎
の回転に各気室Fuが1行程ずつを進行させ、その1回
転(30度×12)では各気室Fuが12行程分ずつを
行う。その時、各半月状作動室Haに連通して同一円周
に開口する二つの筺体流路孔69,69は、互いが筺体
60の中心角で概ね150度分を隔て、その同一回転円
周上に開口させるハウジング流路孔(In,Ex)×3
は、そのハウジング10壁面円周の概ね1/12円周長
ずつの2筋が連なる溝状孔を1対とし、その3対分を均
等間隔を置いて穿設され、また点火具Igは、各半月状
作動室Ha分として3本ずつが均衡間隔に挿着される。
Further, the forward / reverse rotation ratio is 1: 4 (1 /
In the configuration of 4), each air chamber Fu advances one stroke for each rotation of the rotary piston 30 every 30 degrees, and each rotation (30 degrees × 12) causes each air chamber Fu to travel for 12 strokes. To do. At that time, the two housing flow passage holes 69, 69 communicating with the respective half-moon-shaped working chambers Ha and opening in the same circumference are separated from each other by approximately 150 degrees at the central angle of the housing 60, and on the same rotation circumference. Housing channel holes (In, Ex) x 3
Is a groove-shaped hole in which two streaks each having a circumferential length of about 1/12 of the circumference of the wall surface of the housing 10 are set as one pair, and three pairs thereof are formed at equal intervals, and the igniter Ig is As for each half-moon-shaped working chamber Ha, three are inserted at equilibrium intervals.

【0194】加えて、正逆回転比が1:5(1/5)の
場合も述べれば、回転ピストン30の22.5度分毎の
回転に各気室Fuが1行程ずつを進行させ、1回転(2
2.5度×16)では各気室Fuが16行程分ずつを行
う。その時、各半月状作動室Haに連通して同一回転円
周に開口する二つの筺体流路孔69,69は、互いが概
ね157.5度分を隔て、その同一回転円周上に開口さ
せるハウジング流路孔(In,Ex)×4は、概ね1/
16円周長ずつの2筋が連なる溝状孔を1対とする4対
分を均等間隔を置いて穿設され、且つ点火具Igは、各
半月状作動室Ha分として4本ずつを等間隔を開けて挿
着する。また、正逆回転比の1:6(1/6),1:7
(1/7)、、、においても、その正逆回転比に見合う
各部の構成をすればよい。
In addition, to describe the case where the forward / reverse rotation ratio is 1: 5 (1/5), each air chamber Fu advances one stroke for each rotation of the rotary piston 30 every 22.5 degrees. 1 rotation (2
At 2.5 degrees × 16), each air chamber Fu performs 16 strokes. At that time, the two housing flow passage holes 69, 69 communicating with the respective half-moon-shaped working chambers Ha and opening on the same rotation circumference are opened on the same rotation circumference with an interval of about 157.5 degrees from each other. Housing channel hole (In, Ex) x 4 is approximately 1 /
Four pairs of groove-shaped holes each having two circumferential lines of 16 circumferences are formed at equal intervals, and the igniter Ig has four pieces for each half-moon-shaped working chamber Ha. Insert at intervals. Further, the forward / reverse rotation ratio is 1: 6 (1/6), 1: 7.
Also in (1/7), ..., the configuration of each part corresponding to the forward / reverse rotation ratio may be configured.

【0195】[0195]

【正逆回転(形態5,8及び形態1,2,4の各実施
例)】上記形態5,8の各実施例において、図示はしな
いがZ軸筺体70と回転ピストン30(形態5の実施
例)、又は位相筺体80と回転ピストン30(形態8の
実施例)の正逆回転比は、1:1(1/1)を含めて
3:1(3/1),5:1(5/1),7:1(7/
1),9:1(9/1)、、、というように、Z軸筺体
70、及び位相筺体80よりも回転ピストン30の方が
速い回転速度に変更しても1サイクル4行程を連続して
作動させることが可能である。
[Forward / Reverse Rotation (Embodiments of Forms 5 and 8 and Forms 1, 2 and 4)] In each of Embodiments 5 and 8 above, although not shown, the Z-axis housing 70 and the rotary piston 30 (implementation of Form 5) Example), or the forward / reverse rotation ratio of the phase housing 80 and the rotary piston 30 (embodiment of mode 8) is 3: 1 (3/1) including 1: 1 (1/1), 5: 1 (5 / 1), 7: 1 (7 /
1), 9: 1 (9/1), and so on, even if the rotational piston 30 is changed to a higher rotational speed than the Z-axis housing 70 and the phase housing 80, one cycle and four strokes continue. It is possible to operate it.

【0196】また、上記形態1,2,4の各実施例にお
いても、形態1,2,4の実施例の別態様(吸、排気機
構と点火具)において前述したように、形態1,2の各
実施例では軸板24に軸板流路孔29,29を、形態4
の実施例では位相板56に位相板流路孔59,59を何
れも設けて対応すれば、この形態5,8の各実施例の場
合と同様に、その正逆回転比の変更による作動が可能で
ある。以下、形態1,2,4の各実施例も含めて形態
5,8の各実施例における正逆回転の比率変化に伴う構
成と吸、排気孔In,Exの形成と挿着する点火具Ig
との態様を回転比1:1(1/1)を基準として述べる
が、括弧内記載の名称は形態1,2,4の各実施例分で
ある。
Further, in each of the embodiments of the above-described modes 1, 2 and 4, as described above in the other mode (intake / exhaust mechanism and igniter) of the embodiment of modes 1, 2, and 4, In each of the embodiments, the shaft plate passage holes 29, 29 are formed in the shaft plate 24, and
In the embodiment, if both the phase plate flow passage holes 59, 59 are provided in the phase plate 56 to cope with the operation, the operation by changing the forward / reverse rotation ratio is performed as in the case of each of the embodiments 5 and 8. It is possible. In the following, the configuration and the suction and exhaust holes In and Ex associated with the change in the forward / reverse rotation ratio in each of the embodiments of the fifth and eighth embodiments, including the embodiments of the first, second, and fourth embodiments, and the ignition tool Ig that is inserted and attached.
Will be described on the basis of the rotation ratio of 1: 1 (1/1), but the names in parentheses are for each of the embodiments 1, 2 and 4.

【0197】尚この順逆回転の形態において、正逆回転
の比率を変化させても同一半月状作動室Haに面して開
口する前記筺体流路孔89,89(軸板流路孔29,2
9、位相板流路孔59,59)の二つは、Z軸筺体70
では筺体軸71と転がり軸受73、位相筺体80では軌
道隙87と筺体軸受83(軸板24と連結棒26、回転
主軸20と位相板56)との取付け軸線の何れもX,Y
軸線を通る平面を対称面として互いが中心角で180度
分を隔てた対称位置に、且つ互いが別々の回転円周上に
一方を吸気孔Inとして他方を排気孔Exとして穿設さ
れる。そして、ハウジング流路孔19は、その筺体流路
孔89,89(軸板流路孔29,29、位相板流路孔5
9,59)が開口する二つの回転円周上のハウジング1
0壁を穿つ溝状の孔であるが、正逆回転の比率割合に応
じて同一円周内の筋長と筋数が以下のように変化する。
In this forward / reverse rotation mode, even if the ratio of forward / reverse rotation is changed, the casing flow passage holes 89, 89 (the shaft plate flow passage holes 29, 2) that open toward the same half-moon shaped operation chamber Ha are formed.
9, two of the phase plate flow path holes 59, 59) are provided in the Z-axis housing 70.
In the case of the housing shaft 71 and the rolling bearing 73, in the case of the phase housing 80, the orbital gap 87 and the housing bearing 83 (the shaft plate 24 and the connecting rod 26, the rotary main shaft 20 and the phase plate 56) are both attached to the axes X and Y.
One is an intake hole In and the other is an exhaust hole Ex. The housing flow path hole 19 includes the housing flow path holes 89, 89 (the shaft plate flow path holes 29, 29, the phase plate flow path hole 5).
Housing 1 on two rotating circumferences with openings 9 and 59)
Although it is a groove-shaped hole that pierces the 0 wall, the muscle length and the number of muscles in the same circumference change as follows according to the ratio ratio of forward and reverse rotations.

【0198】因に、前述した正逆回転比が1:1(1/
1)の設定における気室A,Bの半月状作動室Haに面
するハウジング流路孔19は、ハウジング10壁の二つ
の円周にその円周の概ね1/2円周長の1筋ずつが各筋
長の半分(1/4円周長)ずつをハウジング10の同一
中心角で重なる位置に開口し、両半月状作動室Ha,H
a分では両側分が同一の中心角位置に並列するが、この
2筋のうち斜行板40回転方向の進み側が吸気孔In、
遅れ側が排気孔Exであり、各々の進み側の半分の筋長
分が気室A、各々の遅れ側の半分の筋長分が気室Bと接
続する。また、この1:1(1/1)の正逆回転比で
は、Z軸筺体70、及び位相筺体80(軸板24、位相
板56)の1回転に対して斜行板40、及び回転ピスト
ン30も1回転し、その間に各気室Fuが4行程分ずつ
を作動するものである。
Incidentally, the forward / reverse rotation ratio described above is 1: 1 (1 /
In the setting of 1), the housing flow passage holes 19 facing the half-moon-shaped working chambers Ha of the air chambers A and B are provided in two circles of the wall of the housing 10 with one line having a circumferential length of approximately ½ of each circle. Open half of each muscle length (1/4 circumference length) at a position where they overlap at the same central angle of the housing 10, and both half-moon shaped operation chambers Ha, H
Both sides are parallel to the same central angle position in the portion a, but the advancing side of the skew plate 40 in the rotation direction of these two streaks is the intake hole In,
The lagging side is the exhaust hole Ex, and half the muscle length of each leading side is connected to the air chamber A, and the half muscle length of each lagging side is connected to the air chamber B. Further, at this 1: 1 (1/1) forward / reverse rotation ratio, the skew plate 40 and the rotary piston are rotated with respect to one rotation of the Z-axis housing 70 and the phase housing 80 (the shaft plate 24 and the phase plate 56). 30 also makes one revolution, during which each air chamber Fu operates for four strokes.

【0199】それに対して、正逆回転比が3:1(3/
1)における気室A,Bの半月状作動室Haに面するハ
ウジング流路孔19は、ハウジング10壁の二つの円周
上の各々にその円周の概ね1/4円周長ずつの2筋が互
いの中心を180度隔てて対向し、二つの円周に合わせ
て4筋が設けられる。その対向する2筋ずつは、互いの
半筋長分を同一の回転角上に重ねて互いが45度分を隔
て、斜行板40回転の進み側の対向2筋が排気孔Ex,
Exであり、遅れ側が吸気孔In,Inであって各々の
進み側の半分に相当する筋長分ずつが気室Aと接続し、
各々の遅れ側の半分の筋長分ずつが気室Bと接続する。
この3:1(3/1)の正逆回転比においては、Z軸筺
体70、及び位相筺体80(軸板24、位相板56)の
1回転に対して斜行板40、及び回転ピストン30は3
回転し、その間に各気室Fuは8行程分ずつを進行させ
る。
On the other hand, the forward / reverse rotation ratio is 3: 1 (3 /
The housing flow passage holes 19 facing the half-moon-shaped working chambers Ha of the air chambers A and B in 1) are formed on each of the two circumferences of the wall of the housing 10 by approximately 1/4 of the circumference. The muscles are opposed to each other 180 degrees apart from each other, and four muscles are provided along two circles. The opposing two muscles are overlapped with each other by a half-muscle length on the same rotation angle and separated from each other by 45 degrees, and the two opposing muscles on the advancing side of the rotation of the skew plate 40 have exhaust holes Ex,
Ex, the lagging side is the intake holes In, In, and the muscle lengths corresponding to half of the leading side of each are connected to the air chamber A,
Half of each delay side muscle length is connected to the air chamber B.
In the forward / reverse rotation ratio of 3: 1 (3/1), the skew plate 40 and the rotary piston 30 are rotated with respect to one rotation of the Z-axis housing 70 and the phase housing 80 (the shaft plate 24 and the phase plate 56). Is 3
While rotating, each air chamber Fu advances by eight strokes.

【0200】そして、正逆回転比が5:1(5/1)の
場合における気室A,Bの半月状作動室Haに面するハ
ウジング流路孔19は、二つの円周の各々に概ね1/6
円周長ずつからなる3筋の溝状孔が120度分ずつを隔
てた均等な間隔を置いて穿孔されると共に、2円周の3
筋ずつが中心角で30度分を隔て、且つ3筋ずつがハウ
ジング10の同一の中心角で30度分ずつを重ね合わせ
る。また、その3筋ずつは斜行板40の回転に対して進
み側に穿孔される同一円周内の3筋が吸気孔In,I
n,Inであり、遅れ側に穿孔される同一円周内の3筋
が排気孔Ex,Ex,Exであるが、その各々の筋長に
対する進み側の前半分が気室Aと接続し、遅れ側の後半
分が気室Bと接続する。この5:1(5/1)の正逆回
転比においては、Z軸筺体70、及び位相筺体80(軸
板24、位相板56)の1回転に対して斜行板40、及
び回転ピストン30は5回転し、この時に各気室Fuが
12行程分ずつを終了させる。
When the forward / reverse rotation ratio is 5: 1 (5/1), the housing flow passage holes 19 facing the half-moon-shaped working chambers Ha of the air chambers A and B are generally formed on each of the two circumferences. 1/6
Three streak-shaped holes, each of which has a circumference length, are drilled at equal intervals of 120 degrees apart, and three of the two circumferences.
The muscles are separated by a central angle of 30 degrees, and the muscles of three muscles are overlapped by 30 degrees at the same central angle of the housing 10. Further, each of the three lines is drilled on the advance side with respect to the rotation of the skew plate 40.
n and In, and three muscles in the same circumference that are drilled on the lag side are exhaust holes Ex, Ex, Ex, but the front half on the leading side for each muscle length is connected to the air chamber A, The rear half of the delay side is connected to the air chamber B. In the forward / reverse rotation ratio of 5: 1 (5/1), the skew plate 40 and the rotary piston 30 are rotated with respect to one rotation of the Z-axis housing 70 and the phase housing 80 (the shaft plate 24 and the phase plate 56). Rotates 5 times, at which time each air chamber Fu completes 12 strokes.

【0201】また、正逆回転比を7:1(7/1)にし
た時のハウジング流路孔19では、各円周に概ね1/8
円周長ずつからなる4筋が均等な間隔の90度分ずつを
隔て、二つの円周に合わせて8筋の溝状孔が設けられ
る。その時、Z軸筺体70、及び位相筺体80(軸板2
4、位相板56)の1回転に対して斜行板40、回転ピ
ストン30は7回転し、その間に各気室Fuは16行程
分ずつを終了させる。また、正逆回転比を9:1(9/
1)とした場合のハウジング流路孔19は、各々の円周
に概ね1/10円周長ずつからなる5筋(2円周に10
筋)の溝状孔が設けられ、Z軸筺体70、及び位相筺体
80(軸板24、位相板56)の1回転に対して斜行板
40、回転ピストン30は9回転し、その間に各気室F
uが20行程分ずつを終了させる。
When the forward / reverse rotation ratio is set to 7: 1 (7/1), the housing flow passage hole 19 has approximately 1/8 of each circumference.
Four streaks each having a circumferential length are equally spaced at intervals of 90 degrees, and eight streak-like holes are provided along the two circumferences. At that time, the Z-axis housing 70 and the phase housing 80 (the shaft plate 2
4, the skew plate 40 and the rotary piston 30 rotate 7 times for one rotation of the phase plate 56), during which each air chamber Fu completes 16 strokes. The forward / reverse rotation ratio is 9: 1 (9 /
In the case of 1), the housing flow path hole 19 has five lines (10 in 2 circles) each having a circumference length of approximately 1/10 in each circle.
Groove) hole is provided, and the skew plate 40 and the rotary piston 30 rotate 9 times for one rotation of the Z-axis housing 70 and the phase housing 80 (the shaft plate 24 and the phase plate 56), and in between, Air chamber F
u completes 20 strokes each.

【0202】更に、正逆回転比が11:1(11/1)
におけるハウジング流路孔19は、各々の円周に概ね1
/12円周長ずつの6筋(2円周に12筋)が設けら
れ、Z軸筺体70、及び位相筺体80(軸板24、位相
板56)の1回転に斜行板40と回転ピストン30は1
1回転し、各気室Fuは24行程分ずつをする。以下、
正逆回転比が13:1(13/1),15:1(15/
1),17:1(17/1)、、、の方向に従ってハウ
ジング流路孔19の筋長は更に短く、筋数は更に多い範
囲において構成されて各気室Fuが行う行程数は増加す
る。
Further, the forward / reverse rotation ratio is 11: 1 (11/1).
The housing flow passage holes 19 in each of the
/ 12 circles are provided with 6 lines (12 lines in 2 circles), and the skew plate 40 and the rotary piston are included in one rotation of the Z-axis housing 70 and the phase housing 80 (the shaft plate 24 and the phase plate 56). 30 is 1
One rotation is performed, and each air chamber Fu performs 24 strokes. Less than,
Forward / reverse rotation ratio is 13: 1 (13/1), 15: 1 (15 /
1), 17: 1 (17/1), and so on, the housing channel hole 19 has a shorter streak length, and the streak number is configured in a larger range to increase the number of strokes performed by each air chamber Fu. .

【0203】その正逆回転を創出する構成において、例
えば回転比を3:1(3/1)に設定した上記形態5
(又は形態1)の実施例の場合では、前記固定位相歯車
14の1/3ピッチ円径の前記転がり歯車76に形成し
て固定位相歯車14に歯合させるが、同様形態の実施例
における回転比が5:1(5/1)では、転がり歯車7
6を固定位相歯車14の1/5ピッチ円径に構成する。
また、例えば正逆回転比を3:1(3/1)に設定した
上記形態8(又は形態4)の実施例の場合では、回転主
軸20取付けの前記主軸歯車22の同心円上に主軸歯車
22の3倍長のピッチ円径を持たせた筺体歯車82(位
相板歯車58)を内歯歯車に形成して配置し、その上で
定位軸回転をする中間歯車54を筺体歯車82と主軸歯
車22との間に介在させてその両者に歯合させる。更に
正逆回転比が5:1(5/1)においては、上記筺体歯
車82(位相板歯車58)を主軸歯車22の5倍長のピ
ッチ円径に形成する。
In the configuration for creating the forward and reverse rotations, for example, the rotation speed ratio is set to 3: 1 (3/1), and the fifth embodiment is adopted.
In the case of the embodiment of (or mode 1), the fixed phase gear 14 is formed on the rolling gear 76 having a diameter of 1/3 pitch and meshes with the fixed phase gear 14. If the ratio is 5: 1 (5/1), the rolling gear 7
6 is configured to have a 1/5 pitch circle diameter of the fixed phase gear 14.
Further, for example, in the case of the embodiment of the above-mentioned mode 8 (or mode 4) in which the forward / reverse rotation ratio is set to 3: 1 (3/1), the main shaft gear 22 is provided on the concentric circle of the main shaft gear 22 attached to the rotary main shaft 20. A casing gear 82 (phase plate gear 58) having a pitch circle diameter three times longer than that of the above is formed and arranged as an internal gear, and an intermediate gear 54 for rotating a fixed axis on the casing gear 82 and the main gear. It is intervened between 22 and 22 and meshes with both. Further, when the forward / reverse rotation ratio is 5: 1 (5/1), the housing gear 82 (phase plate gear 58) is formed to have a pitch circle diameter five times longer than the main shaft gear 22.

【0204】また、例えば正逆回転比を3:1(3/
1)に設定した場合の上記形態2の実施例では、斜行板
環43の外周面と軸板24の縁部外周面との双方の円周
を同一ピッチ円径の歯車に形成すると共に、互いのピッ
チ円径比が(3)対(1)となる二つの歯車を同軸に取
付け固定した中間歯車54と、そのピッチ円径(1)の
中間歯車54に歯合するピッチ円径の自由な中間歯車5
4とを設けてハウジング10壁の定位置に軸受けさせ、
その上でピッチ円径の自由な中間歯車54を斜行板環4
3外周面の歯車に歯合させ、且つ同軸二つの歯車のピッ
チ円径(3)の中間歯車54を軸板24縁部外周面の歯
車に歯合させる。又は、その回転比が5:1(5/1)
においては、上記(3)対(1)の同軸二つの歯車から
なる中間歯車54のピッチ円径比を(5)対(1)にな
るように形成して構成する。
Further, for example, the forward / reverse rotation ratio is 3: 1 (3 /
In the embodiment of the above-mentioned mode 2 when set to 1), both the outer peripheral surface of the oblique plate ring 43 and the outer peripheral surface of the edge portion of the shaft plate 24 are formed into gears having the same pitch circle diameter, and An intermediate gear 54 in which two gears having a pitch circle diameter ratio of (3) to (1) are coaxially mounted and fixed, and a pitch circle diameter that meshes with the intermediate gear 54 having the pitch circle diameter (1) is free. Intermediate gear 5
4 is provided to allow bearings to be fixedly positioned on the wall of the housing 10,
Then, the intermediate gear 54 having a free pitch circle diameter is attached to the oblique plate ring 4
The gears on the outer peripheral surface of the shaft 3 are meshed with each other, and the intermediate gear 54 having the pitch circle diameter (3) of the two coaxial gears is meshed with the gear on the outer peripheral surface of the edge portion of the shaft plate 24. Or the rotation ratio is 5: 1 (5/1)
In the above, the intermediate gear 54 composed of the two coaxial gears of (3) to (1) is formed so that the pitch diameter ratio is (5) to (1).

【0205】また、点火具Igは、同一半月状作動室H
aに面する二つの前記筺体流路孔89,89(軸板流路
孔29,29、位相板流路孔59,59)の中間位置に
開口させた前記点火孔86から圧縮行程末期の各気室F
u空間を窺う適位置のハウジング10壁に挿着するが、
前述したように正逆回転比が1:1(1/1)では、気
室A,Bの半月状作動室Haに面して気室Aの分が少な
くとも1本、気室Bの分としても少なくとも1本をハウ
ジング10の中心角で90度を隔てて挿着し、その同数
分を気室C,Dの半月状作動室Haに面して挿着する。
Further, the igniter Ig has the same half-moon-shaped working chamber H.
From the ignition hole 86 opened at the intermediate position of the two housing flow passage holes 89, 89 (the shaft plate flow passage holes 29, 29, the phase plate flow passage holes 59, 59) facing the a to the end of the compression stroke. Air chamber F
Although it is attached to the wall of the housing 10 at the proper position to check the u space,
As described above, when the forward / reverse rotation ratio is 1: 1 (1/1), at least one portion of the air chamber A faces the half-moon shaped operating chamber Ha of the air chambers A and B, and one portion of the air chamber B is provided. Also, at least one of them is inserted at 90 ° apart from the center angle of the housing 10, and the same number of them are inserted so as to face the half-moon-shaped working chambers Ha of the air chambers C and D.

【0206】それに対して、正逆回転比が3:1(3/
1)における点火具Igは、少なくとも2本を気室Aの
分とし、2本を気室Bの分として挿着するが、その同一
気室の2本は互いが対向して気室A,B分の2本ずつは
45度を隔て、且つ気室C,Dに対しても同数分が同様
に挿着される。更に、正逆回転比が5:1(5/1)で
は、各気室A,B分として少なくとも3本ずつが挿着さ
れるが、その時の点火孔86は少なくとも2穴である。
或は、Z軸筺体70、位相筺体80(軸板24、位相板
56)、又は斜行板40中にその必要数を埋め込み状に
挿着する等、点火具Igの取付けは自由であるがその場
合点火孔86は不要である。
On the other hand, the forward / reverse rotation ratio is 3: 1 (3 /
The igniter Ig in 1) is inserted with at least two for the air chamber A and two for the air chamber B, but two of the same air chambers face each other, Two B parts are separated by 45 degrees, and the same number is similarly inserted into the air chambers C and D. Further, when the forward / reverse rotation ratio is 5: 1 (5/1), at least three air chambers A and B are inserted, and the ignition holes 86 at that time are at least two holes.
Alternatively, the igniter Ig can be freely attached by, for example, inserting the required number of the Z-axis housing 70, the phase housing 80 (the shaft plate 24, the phase plate 56), or the skew plate 40 in a buried shape. In that case, the ignition hole 86 is unnecessary.

【0207】次に、順逆の回転をする上記形態5,8の
各実施例において、Z軸筺体70、及び位相筺体80の
1回転と、1サイクル4行程の作動を気室A,Bが存在
する半月状作動室Ha分の正逆回転比1:1(1/1)
を例として図71に基づいて説明する。尚この図71に
おいて、連続の図a,b,c,dの各(イ)側は気室
A,Bの吸気孔In側であり、各(ロ)側が気室A,B
の排気孔Ex側である。
Next, in each of the embodiments 5 and 8 in which the forward and reverse rotations are made, the Z-axis housing 70 and the phase housing 80 are rotated once and the air chambers A and B are operated for four strokes per cycle. Rotating forward / reverse rotation ratio for half-moon working chamber Ha is 1: 1 (1/1)
Will be described as an example with reference to FIG. 71. In FIG. 71, the (a) side of successive figures a, b, c, d is the intake hole In side of the air chambers A, B, and the (b) side is the air chambers A, B.
Of the exhaust hole Ex.

【0208】まず図71aにおいて、気室Aはその図a
(ロ)に示すように排気孔Ex側のハウジング流路孔1
9との連接から外れると同時に、図a(イ)に示すよう
に吸入側の筺体流路孔89と接合し、その筺体流路孔8
9は更にハウジング流路孔19の吸気孔Inと接合を開
始したピストンの上死点に相当する位置であるから、気
室Aのこれからの作動は作動媒体を吸入する吸気行程で
ある。また、気室Bは図a(ロ)に示すように排気孔側
の筺体流路孔89と接合し、その筺体流路孔89が更に
ハウジング流路孔19の排気孔Exに接合するピストン
の下死点相当の位置になっているから、これから気室B
では燃焼ガスを排出する排気行程が行われる。
First, in FIG. 71a, the air chamber A is shown in FIG.
As shown in (b), the housing passage hole 1 on the exhaust hole Ex side
At the same time as it is disengaged from the connection with the casing 9, it is joined to the suction-side casing flow passage hole 89 as shown in FIG.
Further, 9 is a position corresponding to the top dead center of the piston at which joining with the intake hole In of the housing flow path hole 19 is started, so that the operation of the air chamber A from now on is an intake stroke for sucking the working medium. Further, the air chamber B is joined to the housing passage hole 89 on the exhaust hole side as shown in FIG. A (b), and the housing passage hole 89 is further joined to the exhaust hole Ex of the housing passage hole 19 of the piston. Since it is at the position corresponding to bottom dead center, air chamber B
In the exhaust stroke, the combustion gas is discharged.

【0209】そして、その図71における回転ピストン
30と気室A,Bが矢印方向の時計廻り(右廻り)の回
転をし、筺体流路孔89,89とZ軸筺体70、又は位
相筺体80が反時計廻り(左廻り)の回転をすると図a
から図b,c,dの方向に順次作動するが、図a
(イ)、(ロ)から回転ピストン30、及び斜行板40
が90度分を回転し、同時にその反対方向にZ軸筺体7
0、又は位相筺体80が90度分を回転すると、気室
A,Bと筺体流路孔89,89とが図b(イ)、(ロ)
に示す回転角位置になって1行程分の作動を終了させ
る。この図b(イ)、(ロ)においては、気室Aがハウ
ジング流路孔19の吸気孔Inとの連接から外れて吸気
行程の終了と共に圧縮行程を開始し、気室Bが排気孔E
xから吸気孔Inに接合を移して吸気行程を開始する。
Then, the rotary piston 30 and the air chambers A and B in FIG. 71 rotate clockwise (clockwise) in the direction of the arrow, and the housing flow passage holes 89 and 89 and the Z-axis housing 70 or the phase housing 80. Rotates counterclockwise (counterclockwise) as shown in Figure a.
From FIG. A to FIG.
From (a) and (b), the rotary piston 30 and the skew plate 40
Rotates 90 degrees, and at the same time, in the opposite direction, Z-axis housing 7
0, or when the phase housing 80 rotates 90 degrees, the air chambers A and B and the housing flow passage holes 89 and 89 are shown in FIGS.
At the rotation angle position shown in, the operation for one stroke is completed. In FIGS. B (a) and (b), the air chamber A is disengaged from the connection with the intake hole In of the housing flow passage hole 19 and the compression stroke is started at the end of the intake stroke, and the air chamber B is discharged from the exhaust hole E.
The joint is moved from x to the intake hole In, and the intake stroke is started.

【0210】更に図b(イ)、(ロ)から気室A,Bが
90度分を回転し、その反対方向にZ軸筺体70、又は
位相筺体80も90度分を回転すると、気室A,Bは更
に1行程分ずつを作動させ、その図c(イ)、(ロ)に
おいて、気室Aは吸、排気孔In,Exの何れとも連接
はなく上死点に達した気室空間の作動媒体が点火されて
膨張行程を開始し、気室Bは下死点位置に相当する気室
空間に吸入給気を終了させて圧縮行程を開始する位置で
ある。そして図c(イ)、(ロ)から気室A,BとZ軸
筺体70、又は位相筺体80とが互いに逆方向に90度
分を回転すると、気室A,Bが更に1行程分ずつを作動
させた図d(イ)、(ロ)に至り、気室Aは膨張行程を
終了させた下死点相当の気室空間がハウジング流路孔1
9の排気孔Exに接合して排気行程を開始し、気室Bは
上死点位置の圧縮気が点火された回転角位置である。
Further, when the air chambers A and B are rotated by 90 degrees and the Z-axis housing 70 or the phase housing 80 is also rotated by 90 degrees in the opposite direction from FIGS. B (a) and (b), the air chambers are rotated by 90 degrees. A and B are operated one stroke at a time, and in the figures c (a) and (b), the air chamber A is not connected to either the intake or exhaust holes In and Ex, and reaches the top dead center. The working medium in the space is ignited to start the expansion stroke, and the air chamber B is the position where the intake air supply to the air chamber space corresponding to the bottom dead center position is finished and the compression stroke is started. When the air chambers A and B and the Z-axis housing 70 or the phase housing 80 are rotated by 90 degrees in opposite directions from each other from FIGS. C (a) and (b), the air chambers A and B are moved by one stroke each. D) and (b) in which the air chamber A is operated, the air chamber A has an air chamber space corresponding to the bottom dead center at which the expansion stroke is completed.
The exhaust stroke is started by joining to the exhaust hole Ex of No. 9, and the air chamber B is at the rotation angle position where the compressed air at the top dead center position is ignited.

【0211】そして更に図d(イ)、(ロ)から気室
A,Bが90度分を回転し、その反対方向にZ軸筺体7
0、又は位相筺体80も90度分を回転すると、気室
A,Bは更に1行程分ずつを作動させて作動の起点とな
った図aに戻るが、その図dから図aの間に、気室空間
を最大容積から最小容積に変化させた気室Aはハウジン
グ流路孔19の排気孔Exと接合して排気行程を終了さ
せ、作用しない筺体流路孔89によって閉鎖された気室
空間を最小容積から最大容積に変化させた気室Bは膨張
行程を終了させる。結局、図a(イ)、(ロ)から図
b,c,dの各(イ)、(ロ)を経て元の図a(イ)、
(ロ)に戻れば、気室A,Bと回転ピストン30、及び
斜行板40は90度×4回(1回転)分を回転し、その
逆方向にZ軸筺体70、又は位相筺体80も90度×4
回(1回転)分を回転し、その間に気室A,Bの各々が
吸気、圧縮、膨張、及び排気の4行程ずつを終了させ
る。
Further, from FIGS. D (a) and (b), the air chambers A and B are rotated by 90 degrees, and the Z-axis housing 7 is rotated in the opposite direction.
When 0 or the phase housing 80 is also rotated by 90 degrees, the air chambers A and B are further operated by one stroke each and the operation returns to the starting point a in FIG. The air chamber A in which the air chamber space is changed from the maximum volume to the minimum volume is joined to the exhaust hole Ex of the housing flow passage hole 19 to end the exhaust stroke, and the air chamber closed by the inoperative casing flow passage hole 89. The air chamber B whose space is changed from the minimum volume to the maximum volume ends the expansion stroke. Eventually, the original figure a (a) is passed through the figures a (a) and (b) through the respective a (b), c, and d (a) and (b).
Returning to (B), the air chambers A and B, the rotary piston 30, and the skew plate 40 rotate 90 degrees × 4 times (one rotation), and in the opposite direction, the Z-axis housing 70 or the phase housing 80. 90 degrees x 4
Each time (one rotation), the air chambers A and B complete four strokes of intake, compression, expansion, and exhaust.

【0212】従って、トルクを発生させる膨張行程は、
仮に気室C,D分を加えて四つの気室A,B,C,Dを
構成したとすると、図71aから図b,c,dを経て図
aに戻る1巡において、図aでは図示されていない気室
Cが行い、図bにおいても図示されてない気室Dが行
い、そして図cでは(イ)に示す気室Aが行い、図dに
おいては(イ)に示す気室Bが行うから、この形態5,
8(形態1,2,4でも同じ)の各実施例における正逆
回転比1:1(1/1)にする形態においては、四つの
気室A,B,C,Dを存在させれば機関回転力は継続す
る。尚、この正逆回転比を持つ形態を上記形態1,2,
4の各実施例において実施する場合には、Z軸筺体7
0、位相筺体80における各半月状作動室Ha分の二つ
の筺体流路孔89,89に換え、各軸板24に二つの軸
板流路孔29,29、又は各位相板56に二つの位相板
流路孔59,59の何れも貫通孔を開口させれば、以下
の構成と作動は上記形態5,8の各実施例の場合と同様
である。
Therefore, the expansion stroke for generating the torque is
If four air chambers A, B, C, and D are configured by adding air chambers C and D, in one cycle returning from FIG. 71a to FIG. The air chamber C which is not operated is performed, the air chamber D which is not illustrated in FIG. B is performed, and the air chamber A illustrated in (c) in FIG. C is performed, and the air chamber B illustrated in (a) is illustrated in FIG. Therefore, this form 5,
In the embodiment in which the forward / reverse rotation ratio is 1: 1 (1/1) in each of the eight examples (the same applies to modes 1, 2, and 4), if four air chambers A, B, C, and D are present. The engine rotation force continues. In addition, the form having the forward / reverse rotation ratio is
In the case of carrying out in each example of No. 4, the Z-axis housing 7
0, instead of the two casing flow passage holes 89, 89 for each half-moon shaped working chamber Ha in the phase casing 80, two shaft plate flow passage holes 29, 29 in each shaft plate 24, or two in each phase plate 56. If the through holes are opened in both the phase plate flow path holes 59, 59, the following configuration and operation are the same as those in the respective embodiments of the above-mentioned modes 5 and 8.

【0213】次にもう一つの例として、Z軸筺体70、
又は位相筺体80の回転速度よりもその各々に与する回
転ピストン30、及び斜行板40の回転速度が速い場合
の正逆回転比3:1(3/1)を、上記形態8の実施例
における気室A,Bの半月状作動室Ha分に構成し、且
つ位相筺体80の1回転分を図72,73に基づいて以
下簡潔に説明する。尚、この正逆回転比3:1(3/
1)の4行程を示す図72,73のa乃至hにおける各
(イ)側の連続図が吸気孔In,In側を示し、各
(ロ)側の連続図が排気孔Ex,Ex側を示すが、また
各々の図から次の図までは回転角度で気室A,Bと回転
ピストン30、斜行板40とが135度分の回転である
と同時に、位相筺体80が反対方向への45度分の回転
であるから、図aから図b乃至hを経て再び図aに戻る
作動は、回転ピストン30、及び気室A,Bの135度
×8回分である3回転であり、位相筺体80の45度×
8回分である1回転であって気室A,Bの各々が8行程
ずつを終了させる分に相当する。
Next, as another example, the Z-axis housing 70,
Alternatively, the forward / reverse rotation ratio of 3: 1 (3/1) when the rotational speeds of the rotary pistons 30 and the skew plates 40 applied to the respective phase housings 80 are higher than the rotational speeds of the phase housings is set to 3: 1 (3: 1). The air chambers A and B in FIG. 7 are configured to correspond to the half-moon-shaped working chamber Ha, and one rotation of the phase housing 80 will be briefly described below with reference to FIGS. The forward / reverse rotation ratio is 3: 1 (3 /
72 (a) to 73 (h) showing the four strokes of 1), the continuous diagram on each side (a) shows the intake holes In and In, and the continuous diagram on each side (b) shows the exhaust holes Ex, Ex. Also, from each figure to the next figure, the air chambers A and B, the rotary piston 30, and the skew plate 40 are rotated by 135 degrees at the rotation angle, and at the same time, the phase housing 80 is rotated in the opposite direction. Since the rotation is 45 degrees, the operation returning from FIG. A to FIGS. B to h to FIG. A again is three rotations of 135 degrees × 8 rotations of the rotary piston 30 and the air chambers A and B, and 45 degrees of housing 80 ×
One rotation, which is eight times, corresponds to the amount that each of the air chambers A and B ends eight strokes.

【0214】図72a(イ)、(ロ)からb(イ)、
(ロ)までの作動は、各気室A,Bが1行程分に相当す
る135度、その逆方向に位相筺体80が45度分を回
転し、互いが筺体流路孔89,89を仲介として何れも
2筋のうちの一方のハウジング流路孔19に接合する
が、図a(イ)から図b(イ)に示すように吸気孔In
の後半分に接合する気室Aは吸気行程、図a(ロ)から
図b(ロ)に示すように排気孔Exの前半分に接合する
気室Bが排気行程である。そこから気室A,Bが135
度分を回転した次の図b(イ)、(ロ)から図c
(イ)、(ロ)に至る作動は、気室Aが閉鎖空間におけ
る圧縮行程であり、気室Bが図b(イ)から図c(イ)
の吸気孔Inに接合する吸気行程である。
72a (a), (b) to b (a),
In the operation up to (b), the air chambers A and B rotate 135 degrees, which corresponds to one stroke, and the phase housing 80 rotates 45 degrees in the opposite direction, and mediates through the housing flow passage holes 89 and 89. Both are joined to the housing flow passage hole 19 of one of the two streaks, but as shown in FIGS.
The air chamber A joined to the rear half is the intake stroke, and the air chamber B joined to the front half of the exhaust hole Ex is the exhaust stroke, as shown in FIGS. From there air chambers A and B are 135
Figure b (a), (b) to c below
In the operations leading to (a) and (b), the air chamber A is the compression stroke in the closed space, and the air chamber B is from FIG. B (a) to FIG. C (a).
This is the intake stroke of joining to the intake hole In.

【0215】その図c(イ)、(ロ)における各気室
A,Bが更に135度分を回転して図d(イ)、(ロ)
までに示す作動は、気室A,Bが共に吸、排気孔In,
Exのハウジング流路孔19,19と接合はなく閉鎖さ
れ、気室Aが図c(イ)において点火された膨張行程で
あり、気室Bが圧縮行程である。更に、気室A,Bの各
々が1行程分ずつに相当する135度分を回転して図d
(イ)、(ロ)から図73e(イ)、(ロ)に至るまで
の作動は、気室Aが図d(ロ)から図73e(ロ)に示
すように排気孔Exのハウジング流路孔19と接合して
排気行程を終了させ、気室Bは図d(イ)において点火
された作動媒体が閉鎖された空間で膨張行程を終える。
Each of the air chambers A and B in FIGS. C (a) and (b) is further rotated by 135 degrees, and thus, in FIGS. D (a) and (b).
In the operation shown up to, the air chambers A and B both suck and the exhaust holes In,
Ex is not connected to the housing flow passage holes 19 and 19 and is closed, and the air chamber A is the ignited expansion stroke and the air chamber B is the compression stroke in FIG. Further, each of the air chambers A and B is rotated by 135 degrees, which corresponds to one stroke, and is rotated as shown in FIG.
The operation from (a), (b) to FIG. 73e (a), (b) is performed by the air chamber A as shown in FIG. D (b) to FIG. 73e (b). The exhaust stroke is ended by joining with the hole 19, and the air chamber B ends the expansion stroke in the space where the ignited working medium is closed in FIG.

【0216】この図73eに至った気室A,Bは図72
aからでは(135度×4)の1回転半をし、同じく位
相筺体80が気室A,Bの反対方向に(45度×4)の
半回転し、その間に各気室A,Bが4行程ずつの1サイ
クル分を終了させる。そして、その図e(イ)、(ロ)
から図f(イ)、(ロ)に示すように更に気室A,Bが
135度分を回転して位相筺体80が45度分を反対方
向に回転すれば、その間に再度、気室Aは吸気行程を行
って気室Bが排気行程を行う。更に、そこから気室A,
Bに135度分、その逆方向に位相筺体80に45度分
を回転させて図fから図g(イ)、(ロ)に至る1行程
分の作動は、気室Aが再び圧縮行程であり、気室Bも再
び吸気行程である。
The air chambers A and B which reach this FIG. 73e are shown in FIG.
From a, it makes one and a half rotations of (135 degrees x 4), and the phase housing 80 also makes a half rotation of (45 degrees x 4) in the opposite direction to the air chambers A and B, during which each air chamber A, B Complete one cycle of 4 strokes each. And that figure e (a), (b)
As shown in FIGS. F (a) and (b), if the air chambers A and B further rotate 135 degrees and the phase housing 80 rotates 45 degrees in the opposite direction, the air chamber A again Performs an intake stroke and air chamber B performs an exhaust stroke. From there, air chamber A,
Rotation of 135 degrees to B and 45 degrees to the opposite direction to the phase housing 80 in the opposite direction, the operation for one stroke from Figure f to Figure g (a), (b) is that the air chamber A is in the compression stroke again. Yes, the air chamber B is in the intake stroke again.

【0217】その上、次の図gから図h(イ)、(ロ)
までの作動は、気室Aが再び膨張行程、気室Bが再び圧
縮行程であり、そして更に図hから気室A,Bが135
度、位相筺体80が逆方向に45度分の回転をすると、
気室Aが排気行程、気室Bが再度の膨張行程を終了して
作動を開始した図72a(イ)、(ロ)に戻る。結局、
それまでに気室A,Bの各々がサイクルを2巡する8行
程ずつを行い、上述したように気室A,Bの各々が13
5度×8回分である3回転をして位相を元に戻し、同時
に気室A,Bの反対方向に回転した位相筺体80も1回
転をして位相を元に戻す。
In addition, the following figures g to h (a) and (b)
The operation up to is that the air chamber A is again in the expansion stroke, the air chamber B is in the compression stroke again, and from FIG.
When the phase housing 80 rotates 45 degrees in the opposite direction,
72a (a) and (b) in which the air chamber A has completed the exhaust stroke and the air chamber B has finished the expansion stroke again and started operation. After all,
By that time, each of the air chambers A and B has performed eight strokes of two cycles, and as described above, each of the air chambers A and B has 13 strokes.
The phase is returned to the original by performing three rotations of 5 degrees × 8 times, and at the same time, the phase housing 80 rotated in the opposite direction to the air chambers A and B is also rotated once to return the phase.

【0218】[0218]

【順転(形態1乃至8の各実施例)】本発明の球形の回
転ピストン機関は、上述したように円錐軌跡U上を回転
する一次回転Poと円錐軌跡J上を回転する二次回転N
eとが順逆の回転をする正逆回転の構成において成り立
つが、その正逆回転に対置して一次、二次回転Po,N
eの互いが相対的に速い遅いの速度比を伴うとしても同
一方向の回転をする順転同士に構成して作動させること
も可能であることは前述した。次に、その一次回転Po
と二次回転Neとの順転同士における形態の構成と、順
転比率の変化に伴って適宜変化する吸、排気機構とを図
74乃至図81(上記形態1の実施例を示す図75、上
記形態6の実施例を示す図79、上記形態8の実施例を
示す図74)に基づいて説明する。
[Progression (Embodiments of Embodiments 1 to 8)] As described above, the spherical rotary piston engine of the present invention has the primary rotation Po rotating on the conical locus U and the secondary rotation N rotating on the conical trajectory J.
e is valid in a forward / reverse rotation configuration in which the forward and reverse rotations are performed, but the primary and secondary rotations Po, N are opposed to the forward / reverse rotation.
As described above, it is also possible to configure and operate e.g. forward rotations that rotate in the same direction, even though the speed ratios of e are relatively fast and slow. Next, the primary rotation Po
74 to 81 (FIG. 75 showing the embodiment of the above-mentioned embodiment 1; FIG. 75, It demonstrates based on FIG. 79 which shows the Example of the said form 6, and FIG. 74 which shows the example of the said form 8.

【0219】この順転同士の形態においては、一次回転
Poをする回転ピストン30、及び斜行板40が二次回
転NeをするZ軸23か、位相板56か、Z軸筺体70
か、位相筺体80よりも、回転速度が速い場合と遅い場
合とに大別される作動形態があるが、そのうちの前者に
属する一次回転Po側の回転速度が速い作動形態は、上
記形態1,2,4,5,8の各実施例の構成において可
能であり、後者に属する二次回転Ne側の速度比が高い
作動形態は、上記形態1,2,3,4,6,7の各実施
例の構成において可能である。また、この順転同士にお
ける形態は、相関関係にある一次回転Poと二次回転N
eとの回転比の何れも順転率が低い(遅い)方を基準と
して1サイクルの4行程が作動し、また何れの形態にお
いても互いの比率は、1:3、又は3:1を基準とし、
以下1:5,1:7,1:9,1:11,1:1
3、、、又は5:1,7:1,9:1,11:1,1
3:1の方向へと変化させても成立する。
In the normal rotation mode, the rotary piston 30 that performs the primary rotation Po and the skew plate 40 that performs the secondary rotation Ne are the Z-axis 23, the phase plate 56, or the Z-axis housing 70.
There are operation modes that are roughly divided into cases in which the rotation speed is faster and slower than the phase housing 80. Among them, the operation mode in which the rotation speed on the primary rotation Po side, which belongs to the former case, is higher, The second, fourth, fifth, and eighth embodiments are possible, and the operation modes having a high speed ratio on the secondary rotation Ne side belonging to the latter are the above-mentioned modes 1, 2, 3, 4, 6, and 7. This is possible in the configuration of the embodiment. In addition, the forms in this normal rotation are the primary rotation Po and the secondary rotation N which have a correlation.
4 strokes of 1 cycle operate based on the lower (slower) forward rotation ratio in either of the rotation ratios of e and e. In any form, the mutual ratio is based on 1: 3 or 3: 1 age,
Below 1: 5,1: 7,1: 9,1: 11,1: 1
3, or 5: 1, 7: 1, 9: 1, 11: 1, 1
It holds even if the direction is changed to 3: 1.

【0220】[0220]

【一次回転の順転比が二次回転よりも高い形態】そこ
で、一次回転Poが二次回転Neよりも順転比を高く設
定することが可能な上記形態1,2,4,5,8の各実
施例において、一つ目の例として上記形態8の実施例に
おける作動室Fuを両半月状作動室Ha,Ha分である
四つの気室A,B,C,Dに形成し、順転比を3:1
(3/1〜分子が一次回転Po、分母が二次回転Neの
回転速度比を示す)に構成した図74に基づいて説明す
る。
[Form in which the forward rotation ratio of the primary rotation is higher than that in the secondary rotation] Therefore, the above-described forms 1, 2, 4, 5, 8 in which the primary rotation Po can set the forward rotation ratio higher than that in the secondary rotation Ne. In each of the embodiments, as a first example, the working chamber Fu in the embodiment of the above-mentioned mode 8 is formed into four air chambers A, B, C, D which are the two half-moon shaped working chambers Ha, Ha, and 3: 1 ratio
A description will be given based on FIG. 74 configured such that (3/1 to numerator represents the rotation speed ratio of the primary rotation Po and the denominator represents the rotation speed of the secondary rotation Ne).

【0221】図74に示すように、回転主軸20の軸頸
には外歯歯車の主軸歯車22を取付けて位相筺体80に
も主軸歯車22より大きいピッチ円径からなる外歯歯車
の筺体歯車82を取付け、その両歯車22,82の取付
け平面上に同軸固着の大小二つの中間歯車54,54を
ハウジング10の定位置に取付けて介在させ、その大き
い方の中間歯車54を主軸歯車22に歯合させて小さい
方の中間歯車54を筺体歯車82に歯合させるが、その
大小中間歯車54,54には位相筺体80が回転主軸2
0に対して1/3の回転速度になるような歯車レシオを
持たせる。又は、図示はしないが順転比3:1(3/
1)を創出する歯車装置は、主軸歯車22の3倍長のピ
ッチ円径を有する内歯歯車の筺体歯車82を主軸歯車2
2の同心円上にあたる位相筺体80に筐体軸受83孔を
中心として取付け、且つその主軸歯車22と筺体歯車8
2との間に定位軸回転をして互いに噛み合う二つの中間
歯車54,54を介在させ、一方の中間歯車54を主軸
歯車22に外接歯合させ、もう一方の中間歯車54を筺
体歯車82に内接させて歯合させる。
As shown in FIG. 74, the main shaft gear 22 of the external gear is attached to the shaft neck of the rotary main shaft 20, and the phase gear 80 also has the external gear gear 82 of the external gear having a pitch circle diameter larger than that of the main gear 22. Are mounted, and two large and small intermediate gears 54, 54 coaxially fixed on the mounting planes of the two gears 22, 82 are mounted at a fixed position of the housing 10 so as to intervene, and the larger intermediate gear 54 is toothed on the main shaft gear 22. The smaller intermediate gear 54 is meshed with the housing gear 82, and the phase housing 80 is attached to the large and small intermediate gears 54, 54.
The gear ratio is set so that the rotation speed becomes 1/3 of 0. Alternatively, although not shown, the forward turn ratio is 3: 1 (3 /
The gear device that produces 1) is a casing gear 82 of an internal gear having a pitch circle diameter three times longer than that of the spindle gear 22.
2 is attached to the phase housing 80, which is on the concentric circle, with the housing bearing 83 hole as the center, and the main shaft gear 22 and the housing gear 8
Two intermediate gears 54, 54 that rotate with a fixed axis and mesh with each other are interposed between the two, one of the intermediate gears 54 is externally meshed with the main shaft gear 22, and the other of the intermediate gears 54 is a housing gear 82. Inscribe and mesh.

【0222】上記何れの構成においても、回転主軸20
と同一方向にその1/3の速度で位相筺体80を回転さ
せるから、位相筺体80の1回転に対して回転主軸20
は3回転し、その回転主軸20の3回転は回転ピストン
30、及び斜行板40を3回転させて順転比の3:1
(3/1)を成立させる。尚、前述した正逆回転の形態
では180度分以下の回転に対して行われた1行程分
が、この順転比3:1(3/1)では回転ピストン30
の270度分の回転においてなされ、その間に位相筺体
80が90度分を順転する。従って、位相筺体80の1
回転と回転ピストン30の3回転は、吸気、圧縮、膨
張、及び排気の四つの行程分に相当する各気室A,B,
C,Dの気室空隙を4変化させる。
In any of the above constructions, the rotary main shaft 20
Since the phase housing 80 is rotated in the same direction as and at a speed that is ⅓ thereof, the main shaft 20 is rotated for one rotation of the phase housing 80.
Rotates 3 times, and the rotation main shaft 20 rotates 3 times to rotate the rotary piston 30 and the skewed plate 40 3 times to obtain a forward rotation ratio of 3: 1.
(3/1) is established. It should be noted that in the above-described forward / reverse rotation mode, one stroke performed for a rotation of 180 degrees or less rotates at the forward rotation ratio of 3: 1 (3/1).
Of 270 degrees, the phase housing 80 rotates 90 degrees in the meantime. Therefore, 1 of the phase housing 80
The rotation and the three rotations of the rotary piston 30 correspond to the four strokes of intake, compression, expansion, and exhaust, respectively.
The air chamber voids of C and D are changed by 4.

【0223】その場合、図示はしないが位相筺体80に
は二つの筺体流路孔89,89が各半月状作動室Ha分
として穿設されるが、その各半月状作動室Ha分の二つ
は、筺体軸受83と軌道隙87との形成軸線であるX,
Y軸線を通る平面を中心面として互いに対向し、且つ互
いが異なる回転円周上に一方を吸気孔Inとしてもう一
方を排気孔Exとして開口する。尚、両半月状作動室H
a,Ha分として並列する二つの筐体流路孔89,89
の一方が吸気孔Inであれば、もう一方が排気孔Exで
ある。更に、各半月状作動室Haに面する二つの筺体流
路孔89,89間に点火口としての点火孔(ディーゼル
機関の態様においては燃料噴射孔)86を筺体流路孔8
9,89の開口円周と円周違いに少なくとも一つを開口
させ、両半月状作動室Ha,Ha分の二つは対向位置に
開口させる。結局、この位相筺体80には、各半月状作
動室Ha分として二つの筺体流路孔89,89と一つの
点火孔86とを合わせた少なくとも3穴が開口し、両半
月状作動室Ha,Ha分の全体では6穴が開口する。
In this case, although not shown in the figure, the phase housing 80 is provided with two housing flow passage holes 89, 89 for the respective half-moon operating chambers Ha, but two for each half-moon operating chamber Ha. Is X, which is the axis of formation of the housing bearing 83 and the orbital gap 87,
One is an intake hole In and the other is an exhaust hole Ex, which are opposed to each other with a plane passing through the Y-axis line as a center plane and on different rotation circumferences. Both half-moon working chambers H
Two casing flow passage holes 89, 89 arranged in parallel for a and Ha
If one is the intake hole In, the other is the exhaust hole Ex. Further, an ignition hole (a fuel injection hole in the case of a diesel engine) 86 as an ignition port is provided between the two housing flow passages 89, 89 facing each half-moon working chamber Ha.
At least one of the opening circles 9 and 89 is opened with a difference in circumference, and two half moon-shaped working chambers Ha, two for Ha are opened at opposite positions. Eventually, the phase housing 80 has at least three holes, which are two housing flow passage holes 89, 89 and one ignition hole 86, for each half-moon-shaped working chamber Ha, and both half-moon-shaped working chambers Ha, Six holes are opened in the entire Ha part.

【0224】一方、筺体流路孔89,89、89,89
が開口する四つの開口回転円周上のハウジング10壁に
は、その円周に沿った概ね1/2円周長ずつを有して溝
状孔からなるハウジング流路孔19,19、19,19
の4筋が、各半月状作動室Haに面する2筋のうち回転
ピストン30と位相筺体80との回転方向に遅れ側の筋
を吸気孔In、進み側の筋を排気孔Exとして穿設され
るが、その吸、排気孔In,Exの2筋は互いの筋長の
半分ずつ(吸気孔Inは前半分、排気孔Exは後半分)
をハウジング10の同一中心角に置き、両半月状作動室
Ha,Ha分がハウジング10の同一中心角に並列し、
且つ気室A,B側の2筋の互いが筋長の前半分を気室B
と接合させて後半分を気室Aと接合させ、気室C,D側
の2筋の各々も筋長の前半分が気室Dと接合して後半分
が気室Cと接合する。また、点火具Igは、点火時期に
なった気室A,BとC,Dを位相筺体80の点火孔8
6,86から窺うハウジング10壁に各気室A,B,
C,Dの分として少なくとも1本ずつの合わせて4本を
挿着するが、各半月状作動室Ha分の2本はハウジング
10の中心角で90度を隔てた適位置に挿着される。
On the other hand, the housing flow passage holes 89, 89, 89, 89
The housing flow path holes 19, 19, 19, which are groove-shaped holes having approximately ½ circumference lengths along the circumference of the housing 10 wall on the four opening rotation circumferences 19
Among the two muscles facing the half-moon shaped working chamber Ha, the muscles on the delay side in the rotation direction of the rotary piston 30 and the phase housing 80 are bored as intake holes In and the muscles on the leading side are bored as exhaust holes Ex. However, the two muscles of the intake and exhaust holes In and Ex are half of each other's muscle length (the intake hole In is the front half and the exhaust hole Ex is the rear half).
Are placed at the same central angle of the housing 10, and both half-moon-shaped working chambers Ha, Ha are arranged in parallel at the same central angle of the housing 10,
In addition, the two muscles on the air chambers A and B are located in the air chamber B with the front half of the muscle length
The rear half is joined to the air chamber A, and the front half of the muscle length of each of the two muscles on the air chamber C and D sides is joined to the air chamber D and the rear half is joined to the air chamber C. Further, the igniter Ig uses the ignition chambers A, B, C, and D whose ignition timing has come to the ignition hole 8 of the phase housing 80.
The air chambers A, B,
At least one is inserted for each of C and D, and four are inserted in total, but two for each half-moon-shaped working chamber Ha are inserted at appropriate positions separated by 90 degrees at the central angle of the housing 10. .

【0225】次の例として、順転比3:1(3/1)の
上記形態1の実施例における構成も述べれば、図75に
示すように転がり軸72に取付けの転がり歯車76に対
し、その3倍長のピッチ円径を有する外歯歯車の固定位
相歯車14をY軸線上のハウジング10壁に固定する
が、この場合には転がり歯車76を固定位相歯車14の
取付け平面上に配置して固定位相歯車14に外接歯合さ
せ、その上でZ軸23に回転を与えると、連結棒26の
図示は省略するが、連結棒26に回転自由に外嵌させた
転がり軸72も連結棒26旋回の方向に同一分を旋回す
る。つまり、転がり軸72は、固定位相歯車14に外接
歯合する転がり歯車76によってZ軸23の回転方向に
旋回すると同時に、その旋回速度であるZ軸23の3倍
の速度で自転するから、Z軸23の1回転に対して転が
り軸72は同数分の旋回をし、同時に3回転分の自転は
回転ピストン30、及び斜行板40にも3回転をさせて
順転比の3:1(3/1)を成立させる。
As a next example, to describe the configuration of the embodiment of the above-described mode 1 with a forward rotation ratio of 3: 1 (3/1), as shown in FIG. 75, with respect to the rolling gear 76 attached to the rolling shaft 72, The fixed phase gear 14, which is an external gear having a pitch circle diameter of 3 times the length, is fixed to the wall of the housing 10 on the Y axis. In this case, the rolling gear 76 is arranged on the mounting plane of the fixed phase gear 14. When the Z-axis 23 is rotated by externally meshing with the fixed phase gear 14, the connecting rod 26 is not shown in the drawing, but the rolling shaft 72 rotatably fitted on the connecting rod 26 is also connected to the connecting rod 26. Twenty-six turns in the same direction. In other words, since the rolling shaft 72 turns in the rotational direction of the Z-axis 23 by the rolling gear 76 externally meshed with the fixed phase gear 14, at the same time, the rolling shaft 72 rotates at a speed three times as fast as that of the Z-axis 23. The rolling shaft 72 makes the same number of turns for one rotation of the shaft 23, and at the same time, the rotation piston 30 and the skew plate 40 also make three rotations for three rotations, and the forward rotation ratio is 3: 1 ( 3/1) is established.

【0226】ここで、この順転比3:1(3/1)の構
成における1サイクル4行程の作動を上記形態8の実施
例を例として気室A,Bを存在させた半月状作動室Ha
を示す図76に基づき、位相筺体80の1回転分におい
て説明する。尚、この図76におけるa乃至dの(イ)
側は上記形態8の実施例における気室A,Bの吸気孔I
n側であり、(ロ)側が排気孔Ex側である。
Here, the half-moon-shaped working chamber in which the air chambers A and B are present is taken as an example of the operation of the above-mentioned mode 8 in the operation of four strokes per cycle in the configuration of the forward rotation ratio of 3: 1 (3/1). Ha
Based on FIG. 76 showing the above, description will be made for one rotation of the phase housing 80. Incidentally, (a) of a to d in FIG.
The side is the intake holes I of the air chambers A and B in the embodiment of the above-mentioned mode 8.
It is the n side, and the (b) side is the exhaust hole Ex side.

【0227】いま気室Aは図76a(イ)に示すように
吸入側の筺体流路孔89と接合し、その筺体流路孔89
は更にハウジング流路孔19の吸気孔Inと接合を開始
して図a(ロ)に示すように排気側のハウジング流路孔
19との連接から外れた位置であると共に、ピストンの
上死点に相当する回転角位置であるから、これから作動
媒体を吸入する吸気行程である。また、図a(ロ)にお
ける気室Bは排気側の筺体流路孔89と接合し、その筺
体流路孔89もハウジング流路孔19の排気孔Exと接
合を開始し、且つピストンの下死点に相当する回転角位
置になっており、これから燃焼ガスを排出する排気行程
が行われる。
Now, the air chamber A is joined to the suction-side casing flow passage hole 89 as shown in FIG. 76a (a), and the casing flow passage hole 89 is formed.
Is a position at which joining with the intake hole In of the housing flow path hole 19 is started and is out of the connection with the housing flow path hole 19 on the exhaust side as shown in FIG. Since the rotation angle position corresponds to, the intake stroke for inhaling the working medium is started. Further, the air chamber B in FIG. A (b) is joined to the exhaust-side casing flow passage hole 89, and the casing flow passage hole 89 also starts to be joined to the exhaust passage Ex of the housing flow passage hole 19, and under the piston. The rotation angle position corresponds to the dead point, and the exhaust stroke for discharging the combustion gas is performed from this position.

【0228】この時、この図76における回転ピストン
30と気室A,B、及び位相筺体80は、矢印方向時計
廻りの回転をして図aから図b,c,d順に作動するか
ら、図aから回転ピストン30、及び斜行板40が27
0度分を回転し、同時に位相筺体80が90度分を回転
すると、気室A,Bと筺体流路孔89,89とが図bに
示す回転角位置になって1行程分の作動を終了させる。
この図b(イ)、(ロ)においては、ハウジング流路孔
19の吸気孔Inが気室Aとの連接から外れて気室Bと
連接した位置であるから、この図bにおける気室Aは圧
縮行程を、気室Bは吸気行程を何れも開始した直後であ
る。
At this time, the rotary piston 30, the air chambers A and B, and the phase housing 80 shown in FIG. 76 rotate clockwise in the direction of the arrow and operate in the order of FIGS. A to b, c, and d. From a, the rotary piston 30 and the skew plate 40 are 27
When the phase housing 80 is rotated by 90 degrees at the same time as it is rotated by 0 degree, the air chambers A and B and the housing flow passage holes 89 and 89 are at the rotation angle position shown in FIG. To finish.
In FIGS. B (a) and (b), since the intake hole In of the housing flow path hole 19 is out of the connection with the air chamber A and is in contact with the air chamber B, the air chamber A in FIG. Is immediately after the start of the compression stroke and the start of the intake stroke of the air chamber B.

【0229】更に、図bから気室A,Bが270度分、
同時に同方向に位相筺体80が90度分を回転して各気
室A,Bが更に1行程ずつを作動させた図c(イ)、
(ロ)において、気室Aは吸、排気孔In,Exの何れ
とも連接はなく上死点に達した気室空間の作動媒体が点
火されて膨張行程を開始し、気室Bは下死点位置に相当
する気室空間で吸気行程が終了して圧縮行程を開始す
る。そして、図cから気室A,Bが270度を回転して
位相筺体80も90度分を回転すると、気室A,Bが更
に1行程分ずつを作動させて図d(イ)、(ロ)に至
り、気室Aは下死点位置に相当する気室空間になって膨
張行程を終了させると共にハウジング流路孔19の排気
孔Exと接合し、気室Bは上死点の気室空間における圧
縮気が点火された回転角位置であるから、この図dにお
ける気室Aは排気行程、気室Bは膨張行程を何れも開始
した直後である。
Further, from FIG. B, the air chambers A and B correspond to 270 degrees,
At the same time, the phase housing 80 is rotated by 90 degrees in the same direction, and each of the air chambers A and B is operated one stroke at a time, as shown in FIG.
In (b), the air chamber A is not connected to any of the intake and exhaust holes In and Ex, the working medium in the air chamber space reaching the top dead center is ignited to start the expansion stroke, and the air chamber B bottoms to the bottom. The intake stroke ends and the compression stroke starts in the air chamber space corresponding to the point position. When the air chambers A and B are rotated by 270 degrees and the phase housing 80 is also rotated by 90 degrees from the state shown in FIG. (B), the air chamber A becomes an air chamber space corresponding to the bottom dead center position, ends the expansion stroke, and is joined to the exhaust hole Ex of the housing flow passage hole 19, and the air chamber B is the gas at the top dead center. Since the compressed air in the chamber space is at the rotational angle position where the compressed air is ignited, the air chamber A in FIG. 8D is immediately after the exhaust stroke and the air chamber B is immediately after the expansion stroke.

【0230】そして更に、図dから気室A,Bが270
度分、同時に位相筺体80も90度分を回転すると、更
に1行程分ずつを作動させた気室A,Bは図aからでは
4行程分ずつを終了させて作動の起点とした図aに戻
る。即ち、図dから図aの間に、気室Aは気室空間を最
大容積から最小容積に変化させ、且つその間にハウジン
グ流路孔19の排気孔Exと接合して排気行程を終了さ
せ、気室Bは作用しない筺体流路孔89によって閉鎖さ
れた気室空間を気室Aとは反対に最小容積から最大容積
に変化させて膨張行程を終了させる。
Further, the air chambers A and B are 270 in FIG.
When the phase housing 80 is also rotated 90 degrees at the same time, the air chambers A and B, which have been operated one stroke at a time, end in four strokes in FIG. Return. That is, between FIG. D and FIG. A, the air chamber A changes the air chamber space from the maximum volume to the minimum volume, and in the meantime, it joins with the exhaust hole Ex of the housing flow passage hole 19 to end the exhaust stroke, In contrast to the air chamber A, the air chamber B changes the air chamber space closed by the casing flow passage hole 89 from the minimum volume to the maximum volume to end the expansion stroke.

【0231】結局、図a(イ)、(ロ)から図b,c,
dの各(イ)、(ロ)を経て元の図a(イ)、(ロ)に
戻れば、気室A,B、及び回転ピストン30と斜行板4
0は270度×4回分である3回転をし、気室A,Bと
同一方向に位相筺体80も90度×4回分である1回転
し、その間に気室A,Bの各々が吸気、圧縮、膨張、排
気の4行程ずつを作動させる。この場合の膨張行程は、
仮に四つの気室A,B,C,Dを構成したとすると、図
a乃至dを経て再度図aに戻る1巡において、図aでは
図示されていない気室Cが行い、また図bでも図示され
てない気室Dが行い、そして図cでは気室Aが行って図
dにおいては気室Bが行うから、四つの気室A,B,
C,Dが繰り返しトルクを発生させる。
After all, from FIGS. A (a) and (b) to FIGS.
After returning to (a) and (b) of the original diagram after going through (a) and (b) of d, the air chambers A and B, the rotary piston 30, and the skew plate 4 are shown.
0 makes three rotations of 270 degrees x 4 times, and the phase housing 80 also makes one rotation of 90 degrees x 4 times in the same direction as the air chambers A and B, while each of the air chambers A and B inhales, Operates every four strokes of compression, expansion and exhaust. The expansion stroke in this case is
If four air chambers A, B, C, and D are constructed, in one cycle returning to FIG. A again through FIGS. A to d, the air chamber C not shown in FIG. The air chamber D, not shown, performs, and in FIG. C, the air chamber A, and in FIG. D, the air chamber B, so that four air chambers A, B,
C and D repeatedly generate torque.

【0232】また、この順転の回転比3:1(3/1)
を持つ形態を上記形態1,2の各実施例の構成において
実施する場合には、上述した形態8の実施例における各
半月状作動室Ha分の筺体流路孔89,89に換え、そ
の構成と同様な位置においてZ軸23の各軸板24に二
つの軸板流路孔29,29を開口させれば、以下の構成
と作動は上述した形態8の実施例の場合と同様であり、
上記形態4の実施例において実施する場合も、各位相板
56に二つの位相板流路孔59,59を同様に開口させ
ればよく、上記形態5の実施例においても各半月状作動
室Ha分として二つの筺体流路孔89,89をZ軸筺体
70の適位置に設ければ、以下の構成も上述の形態8の
実施例と同様にすればよい。
[0232] Further, the rotation ratio of this forward rotation is 3: 1 (3/1).
In the case of carrying out the embodiment having the above-mentioned configuration in the configurations of the respective embodiments of the above-described first and second embodiments, the configuration is changed to the case flow passage holes 89, 89 for each half-moon shaped operation chamber Ha in the above-described embodiment of the eighth embodiment. If two shaft plate passage holes 29, 29 are opened in each shaft plate 24 of the Z-axis 23 at a position similar to, the following configuration and operation are similar to those of the embodiment of the above-mentioned mode 8,
Also in the case of carrying out in the embodiment of the form 4, the two phase plate passage holes 59, 59 may be similarly opened in each of the phase plates 56, and in the embodiment of the form 5, the half-moon-shaped working chamber Ha may be formed. If the two housing flow passage holes 89, 89 are provided at appropriate positions in the Z-axis housing 70, the following configuration may be the same as that of the embodiment of the above-described mode 8.

【0233】次にもう一つの例として、順転比5:1
(5/1)を上記形態8の実施例において気室A,Bを
存在させた半月状作動室Ha分に構成し、且つ位相筺体
80の1回転分を図77,78に基づいて、以下簡潔に
説明する。尚、この5:1(5/1)の順転比における
二つの筺体流路孔89,89と点火孔(燃料噴射孔)8
6も、上述した順転比3:1(3/1)の場合と同様に
互いの筺体流路孔89,89が180度を隔てた位置の
位相筺体80に穿設され、その中間位置に点火孔86が
穿設されるが、その三者は円周違いである。その点、ハ
ウジング流路孔(19,19)×2は、筺体流路孔8
9,89が開口する二つの回転円周上の各々に、その円
周に沿って概ね1/4円周長ずつの溝状孔の2筋を対面
させ、且つその二つの円周の2筋ずつが各々の半分ずつ
の筋長を重ねる同一回転角位置のハウジング10壁を貫
通して穿設されるが、回転ピストン30と位相筺体80
の回転方向に対して進み側円周の2筋が吸気孔In,I
n、遅れ側円周の2筋が排気孔Ex,Exである。
Next, as another example, the forward turn ratio is 5: 1.
(5/1) is configured for the half-moon-shaped working chamber Ha in which the air chambers A and B are present in the embodiment of the above-described mode 8, and one rotation of the phase housing 80 is based on FIGS. Explain briefly. The two housing flow passage holes 89 and 89 and the ignition hole (fuel injection hole) 8 at the forward rotation ratio of 5: 1 (5/1).
Similarly to the case of the forward rotation ratio of 3: 1 (3/1) described above, the casing 6 is provided with the casing casing flow passage holes 89, 89 formed in the phase casing 80 at positions 180 degrees apart from each other, and at the intermediate position thereof. Ignition holes 86 are provided, but the three of them have different circumferences. In that respect, the housing channel hole (19, 19) × 2 is the casing channel hole 8
Two lines of groove-shaped holes each having a circumference length of approximately 1/4 are faced to each other on each of two rotation circles where 9,89 are opened, and two lines of the two circles are opposed to each other. Each of them is pierced by penetrating through the wall of the housing 10 at the same rotation angle position where the respective half lengths of the rotation piston 30 and the phase housing 80 are overlapped.
The two lines on the leading side with respect to the rotation direction of the intake holes In, I
The exhaust lines Ex and Ex are two lines of n and the circumference on the delay side.

【0234】また、図77,78a乃至hにおける各
(イ)側の連続図が吸気孔In,In側、各(ロ)側の
連続図が排気孔Ex,Ex側を示し、各図から次の図ま
での作動は気室A,Bと回転ピストン30と斜行板40
が225度分、それらと同一方向に位相筺体80が45
度分の回転であるから、図aから図b乃至hを経て再び
図aに戻る作動は、回転ピストン30と斜行板40と気
室A,Bが225度×8回分である5回転をして位相筺
体80が45度×8回分である1回転をするが、それは
各気室A,Bが8行程ずつを終了させる分に相当する。
77 (a) to 78 (a) to 78 (h), the continuous views on the (a) side show the intake holes In, In, and the continuous views on the (b) side show the exhaust holes Ex, Ex, respectively. The operation up to the figure is the air chambers A and B, the rotary piston 30, and the skew plate 40.
Is 225 degrees, and the phase housing 80 is 45 in the same direction as those.
Since the rotation is a rotation of a degree, the operation of returning from FIG. A to FIGS. B to h to FIG. Then, the phase housing 80 makes one rotation of 45 degrees × 8 times, which corresponds to the amount by which each of the air chambers A and B completes eight strokes.

【0235】つまり、図77aから図bまでの作動は、
気室A,Bの各々が1行程分に相当する225度分、位
相筺体80が45度分を回転するが、この時の各気室
A,Bが筺体流路孔89,89を仲介として何れも2筋
のうちの別々なハウジング流路孔19,19に接合する
から、図a(イ)から図b(イ)に示すように吸気孔I
nの後ろ半分に接合する気室Aは吸気行程であり、図a
(ロ)から図b(ロ)に示すように排気孔Exの前半分
に接合する気室Bが排気行程である。そこから気室A,
Bが225度分を回転した次の図bから図cに至る作動
は、気室Aが閉鎖空間における圧縮行程、気室Bが図b
(イ)から図c(イ)の吸気孔Inに接合する吸気行程
である。
That is, the operation from FIG. 77a to FIG.
Each of the air chambers A and B rotates 225 degrees, which corresponds to one stroke, and the phase housing 80 rotates 45 degrees. At this time, each air chamber A and B uses the housing flow passage holes 89 and 89 as an intermediary. Since both are joined to the separate housing flow passage holes 19 of the two streaks, as shown in FIGS.
The air chamber A joined to the rear half of n is the intake stroke,
As shown in (b) to (b) of FIG. B, the air chamber B joined to the front half of the exhaust hole Ex is the exhaust stroke. From there air chamber A,
When B is rotated by 225 degrees, the operation from the next figure b to the figure c is as follows.
It is an intake stroke from (a) to the intake hole In shown in FIG.

【0236】その図cから気室A,Bが更に225度分
を回転して図dまでの作動は、気室A,B共にハウジン
グ流路孔19,19との接合はなく、気室Aが図c
(イ)において作動媒体に点火した膨張行程、気室Bが
給気後の圧縮行程である。更に、気室A,Bが1行程分
ずつに相当する225度分の回転をして図dから図78
eに至るまでの作動は、気室Aが図d(ロ)から図78
e(ロ)に示すように排気孔Exのハウジング流路孔1
9と接合して排気行程を終了させ、気室Bが図d(イ)
において点火された作動媒体の膨張行程を終える。する
と、その図78eに至った気室A,Bは図77aからで
は2回転半(225度×4)をし、同じく位相筺体80
が半回転(45度×4)するが、その間に気室A,Bの
各々が4行程ずつを行って1サイクル分を終了させる。
From the figure c, the air chambers A and B are further rotated by 225 degrees, and the operation up to the diagram d is such that there is no joint between the air chambers A and B and the housing flow passage holes 19 and 19. Is figure c
In (a), the expansion stroke in which the working medium is ignited and the compression stroke after the air chamber B is supplied are shown. Further, the air chambers A and B are rotated by 225 degrees, which corresponds to one stroke each, and the air chambers A and B are rotated from FIG.
The operation up to e is performed by the air chamber A from FIG.
As shown in e (b), the housing flow path hole 1 of the exhaust hole Ex
The exhaust stroke is completed by joining with 9 and the air chamber B is shown in FIG.
The expansion stroke of the working medium ignited at is ended. Then, the air chambers A and B, which have reached FIG. 78e, make two and a half rotations (225 degrees × 4) from FIG. 77a, and also the phase housing 80
Rotates half a turn (45 degrees × 4), during which each of the air chambers A and B makes four strokes to complete one cycle.

【0237】そして、図eから図fに示すように更に気
室A,Bが225度分、位相筺体80も45度分を同一
方向に回転すれば、その間に再度気室Aは吸気行程、気
室Bが排気行程を行い、更に図fから図g(イ)、
(ロ)に至る1行程分の作動は、気室Aが再び圧縮行程
であり、気室Bが再び吸気行程である。次の図gから図
h(イ)、(ロ)までの作動は、気室Aが再び膨張行
程、気室Bが再び圧縮行程であり、そして図hから更に
気室A,Bが225度分、位相筺体80が45度分を回
転すると、気室Aが排気行程、気室Bが膨張行程を何れ
も再び終了して作動を開始した図77a(イ)、(ロ)
に戻る。結局、それまでに気室A,Bが共にサイクルを
2巡する8行程分ずつを行い、各気室A,Bが5回転
(225度×8)をして位相を元に戻し、同時に気室
A,Bの回転に追従した位相筺体80も同一方向に1回
転をして位相を元に戻す。
Then, as shown in FIGS. E to f, when the air chambers A and B are further rotated by 225 degrees and the phase housing 80 is rotated by 45 degrees in the same direction, the air chamber A is again in the intake stroke, The air chamber B performs the exhaust stroke, and further, from FIG. F to FIG.
In the operation for one stroke up to (b), the air chamber A is the compression stroke again, and the air chamber B is the intake stroke again. The operation from the next diagram g to h (a) and (b) is that the air chamber A is in the expansion stroke, the air chamber B is in the compression stroke again, and from FIG. When the phase housing 80 rotates by 45 degrees, the air chamber A ends the exhaust stroke and the air chamber B ends the expansion stroke again, and starts operation.
Return to. Eventually, both air chambers A and B perform 8 strokes in each cycle, and each air chamber A and B makes 5 revolutions (225 degrees x 8) to return the phase to the original state. The phase housing 80 following the rotation of the chambers A and B also makes one rotation in the same direction to restore the phase.

【0238】この順転比5:1(5/1)の構成におけ
る点火具Igは、図77c(イ)と図78g(イ)に示
すように気室Aの分として少なくとも2本、図77d
(イ)と図78h(イ)に示すように気室Bの分として
も少なくとも2本が同一の点火孔86から点火可能なハ
ウジング10壁の同一円周上に挿着されるが、その気室
Aの分の二つが対向して気室Bの分の二つも対向し、且
つ気室A,B分が位相筺体80において1行程分の回転
角に相当する45度分を隔てる。また、この点火具Ig
の挿着については、一次回転Poの順転比率が高い形態
の全般において、位相筺体80(形態1,2の各実施例
では軸板24、形態4の実施例では位相板56、形態5
の実施例ではZ軸筺体70)か、又は斜行板40中にそ
の必要数を埋め込み状にする等、その取付けについては
自由であるがその場合には点火孔86は不要である。
[0238] As shown in Figs. 77c (a) and 78g (a), at least two igniters Ig in the configuration of the forward rotation ratio of 5: 1 (5/1) are used for the air chamber A, and Fig. 77d.
As shown in (a) and FIG. 78h (a), at least two air chambers B are inserted on the same circumference of the wall of the housing 10 that can be ignited from the same ignition hole 86. Two of the chambers A face each other and two of the air chambers B also face each other, and the air chambers A and B are separated by 45 degrees corresponding to the rotation angle of one stroke in the phase housing 80. Also, this igniter Ig
Regarding the insertion and attachment of the phase housing 80 (the shaft plate 24 in each of the examples of modes 1 and 2, the phase plate 56 and the mode 5 in the examples of mode 4) in all the modes in which the forward rotation ratio of the primary rotation Po is high.
In the embodiment, the Z-axis housing 70) or the required number of the slanting plates 40 may be embedded in the slanting plate 40 or the like, but the ignition hole 86 is not necessary in that case.

【0239】また、一次回転Poの順転比が高い形態に
おける7:1(7/1)も、上述の3:1(3/1)、
5:1(5/1)の構成と同様に気室A,B分の筺体流
路孔89,89の二つが位相筺体80の対向する位置
に、点火孔(燃料噴射孔)86がその筺体流路孔89,
89の中間位置に、三者が円周違いに穿設される。その
二つの筺体流路孔89,89上のハウジング10壁に穿
設されるハウジング流路孔19は、各々の円周にその円
周の概ね1/6円周長ずつの3筋が均等間隔を置いて、
2円周の3筋ずつが互いの筋長の半分ずつを重ねる同一
の中心角に開口し、その一方の円周の3筋が吸気孔(I
n×3)であり、もう一方の円周の3筋が排気孔(Ex
×3)である。
7: 1 (7/1) in the form in which the forward rotation ratio of the primary rotation Po is high is 3: 1 (3/1),
Similar to the 5: 1 (5/1) configuration, an ignition hole (fuel injection hole) 86 is provided at a position where two housing flow path holes 89, 89 for the air chambers A and B face each other in the phase housing 80. Channel hole 89,
At the intermediate position of 89, the three members are drilled with different circumferences. The housing flow passage holes 19 formed in the wall of the housing 10 on the two housing flow passage holes 89, 89 have three streaks equally spaced on each circumference, each of which is approximately 1/6 of the circumference. Put
The three muscles of the two circumferences open at the same central angle where half the lengths of each other are overlapped, and the three muscles of one circumference are the intake holes (I
n × 3) and the other three lines on the circumference are exhaust holes (Ex
X3).

【0240】この7:1(7/1)の構成では、位相筺
体80が1回転する間に気室A,Bが7回転(210度
×12)をするが、位相筺体80の30度分、気室A,
Bの210度分の回転が1行程分であるから、各気室
A,Bは位相筺体80の1回転毎に3サイクル分に相当
する12行程分ずつの作動を終了させる。この場合の点
火具Igは、気室A,B分として3サイクル分の3本ず
つが点火孔86を臨むハウジング10壁の同一円周内に
等間隔を置いて挿着される。或は、順転比が9:1(9
/1)の場合では、各々が概ね1/8円周長の4筋ずつ
のハウジング流路孔(In×4,Ex×4)を穿設し、
位相筺体80の1回転(22.5度×16)に気室A,
Bは9回転(202.5度×16)して4サイクル分の
16行程ずつの作動を行い、挿着される点火具Igは各
気室A,B分として4本ずつである。
In this 7: 1 (7/1) configuration, the air chambers A and B make 7 rotations (210 degrees × 12) while the phase housing 80 makes one rotation, but the phase housing 80 is equivalent to 30 degrees. , Air chamber A,
Since the rotation of B by 210 degrees corresponds to one stroke, each of the air chambers A and B ends the operation of 12 strokes corresponding to three cycles for each rotation of the phase housing 80. In this case, the igniter Ig is installed in the same circumference of the wall of the housing 10 facing the ignition hole 86 at three equal intervals for three air chambers A and B for three cycles. Alternatively, the forward turn ratio is 9: 1 (9
In the case of / 1), the housing flow passage holes (In × 4, Ex × 4) are formed by four lines each having a circumferential length of about 1/8,
Air chamber A for one rotation (22.5 degrees × 16) of the phase housing 80,
B performs 9 rotations (202.5 degrees × 16) and operates in 16 strokes each for 4 cycles, and four ignition tools Ig are inserted and inserted for each of the air chambers A and B.

【0241】[0241]

【二次回転の順転比率が一次回転よりも高い形態】次
に、二次回転Neが一次回転Poよりも高い順転比を設
定することが可能な上記形態1,2,3,4,6,7の
各実施例において、例として順転比を1:3(1/3)
に構成した形態6の実施例を両半月状作動室Ha,Ha
分の気室A,B,C,Dに形成した図79に基づいて説
明する。
[Form in which the forward rotation ratio of the secondary rotation is higher than that in the primary rotation] Next, the above-mentioned forms 1, 2, 3, 4, in which the secondary rotation Ne can set a forward rotation ratio higher than that in the primary rotation Po. In each of Examples 6 and 7, the forward ratio is 1: 3 (1/3) as an example.
In the embodiment of the sixth embodiment configured as described above, both half-moon shaped working chambers Ha, Ha
A description will be given based on FIG. 79 formed in the air chambers A, B, C and D of the minutes.

【0242】図79に示すように、Z軸23軸頸に外歯
歯車のZ軸歯車27を取付け、そのZ軸歯車27の同心
円上に筺体60取付けの筺体歯車62をZ軸歯車27の
3倍長のピッチ円径を有する内歯歯車に形成すると共
に、そのZ軸歯車27と筺体歯車62との間に互いが定
位軸回転をして互いに噛み合う二つの中間歯車54,5
4を介在させ、その一方をZ軸歯車27に外接歯合させ
てもう一方を筺体歯車62に内接歯合させる。その上で
Z軸23に回転を与えると、まずZ軸歯車27が回転
し、そのZ軸歯車27の回転は二つの中間歯車54,5
4の噛み合いを経て筺体歯車62をZ軸23の1/3速
度で同一方向に回転させる。
As shown in FIG. 79, a Z-axis gear 27, which is an external gear, is attached to the Z-axis 23-axis neck, and a casing gear 62 attached to a casing 60 is attached to the Z-axis gear 27 on the concentric circle of the Z-axis gear 27. Two intermediate gears 54, 5 are formed on the internal gear having a double pitch pitch diameter, and the Z-axis gear 27 and the housing gear 62 rotate with respect to each other by stereotactic rotation and mesh with each other.
4 is interposed, one of which is externally meshed with the Z-axis gear 27 and the other is internally meshed with the housing gear 62. When the Z-axis 23 is then rotated, the Z-axis gear 27 first rotates, and the Z-axis gear 27 rotates by rotating the two intermediate gears 54, 5
After the meshing of No. 4, the casing gear 62 is rotated in the same direction at the 1/3 speed of the Z axis 23.

【0243】即ち、Z軸23の1回転は、その同一方向
に筺体60を1/3回転させるが、回転ピストン30、
及び各気室A,B,C,Dにも1/3回転をさせて順転
比の1:3(1/3)を行わせる。この場合、回転ピス
トン30と筺体斜行板61とが互いの板面間隙を最大変
化させる1行程分は、上述した順転比3:1では回転ピ
ストン30回転の270度分毎に行われたが、この順転
比1:3では回転ピストン30の90度分の回転におい
てなされ、その間にZ軸23が270度分を順転するか
ら、筺体60と回転ピストン30の1回転、及びZ軸2
3の3回転は、吸気、圧縮、膨張、及び排気の4行程分
に相当する各気室A,B,C,Dの空隙を4変化させ
る。
That is, one rotation of the Z-axis 23 rotates the housing 60 one third in the same direction, but the rotary piston 30,
Also, the air chambers A, B, C and D are also rotated 1/3 to perform a forward rotation ratio of 1: 3 (1/3). In this case, one stroke in which the rotary piston 30 and the skewed plate 61 of the housing change the mutual plate surface gap to the maximum is performed every 270 degrees of rotation of the rotary piston 30 at the forward rotation ratio of 3: 1. However, at the forward rotation ratio of 1: 3, the rotation piston 30 is rotated by 90 degrees, and the Z axis 23 is rotated by 270 degrees during that time. Therefore, one rotation of the housing 60 and the rotation piston 30 and the Z axis is performed. Two
Three rotations of 3 changes the air gaps of the air chambers A, B, C, D corresponding to four strokes of intake, compression, expansion, and exhaust by 4 changes.

【0244】作動媒体の流出入孔In,Exは、図示は
しないが前述した正逆回転における形態6の実施例の場
合と同様に、筺体60の内側面、又は筺体斜行板61の
各板面から何れも筺体60外側面に連通して開口する筺
体流路孔69,69、69,69と、その外側面孔口の
回転円周上のハウジング10内壁面から外壁面に貫通す
る溝状の孔が筺体60回転の進み側を吸気孔In、遅れ
側を排気孔Exとする2筋のハウジング流路孔19,1
9とを設ける。尚、各気室A,B,C,Dに別々に連通
している各筺体流路孔69は、各々が吸気孔Inと排気
孔Exとを共用していて、その外側面孔口の各々を均等
間隔の90度分ずつを隔てた筺体60外側面の同一回転
円周上に開口させ、2筋のハウジング流路孔19,19
は、ハウジング10内壁面円周の概ね1/4円周長ずつ
の筋長を有して互いの内壁面側孔口が同一円周に連なっ
て開口する。また、点火具Igは、各筺体流路孔69外
側面孔口を窺う回転円周上のハウジング10壁(好まし
くは各半月状作動室Ha分として1本)に挿着する。
Although not shown, the working medium inflow / outflow holes In and Ex are the same as in the case of the embodiment 6 in the forward / reverse rotation described above, but the inner surface of the housing 60 or each plate of the housing slanting plate 61. The housing flow passage holes 69, 69, 69, 69, which are open to communicate with the outer surface of the housing 60 from both surfaces, and a groove-like shape penetrating from the inner wall surface of the housing 10 on the outer circumference of the outer surface hole opening to the outer wall surface The two holes of the housing flow passage holes 19 and 1 are the intake holes In on the advance side of the housing 60 rotation and the exhaust holes Ex on the delay side.
9 and are provided. In addition, each of the housing flow passage holes 69 that communicates with each of the air chambers A, B, C, and D separately shares the intake hole In and the exhaust hole Ex, and each of the outer surface hole openings thereof is The housing 60 is opened on the outer surface of the housing 60, which is evenly spaced by 90 degrees, on the same circumference of rotation, and the two housing flow passage holes 19 and 19 are provided.
Has a streak length of approximately ¼ of the circumference of the inner wall surface of the housing 10, and the inner wall surface side hole openings of the housing 10 are continuous in the same circumference and open. Further, the igniter Ig is inserted into the wall of the housing 10 (preferably one for each half-moon shaped operation chamber Ha) on the rotation circumference, which covers the outer surface hole opening of each housing flow path hole 69.

【0245】以上のように構成してZ軸23に与える2
70度分の回転は、筺体60に90度分の回転をさせて
気室A,B,C,Dの各気室間隙を最大変化させ、その
時に各筺体流路孔69がハウジング流路孔19,19の
内部側孔口の開口円周上を回転するから、その連接を各
気室A,B,C,D空間の増減に同期させると、その連
接空間にあたる気室A,B,C,Dの何れかでは吸、排
気孔In,Exの何れかが開放されて吸、排気の何れか
の行程を行い、その連接が無ければ圧縮、膨張の何れか
の行程を行う。尚、その圧縮空間を窺って装着させた点
火具Igによる作動媒体の点火においても、燃焼最高圧
力が圧縮行程の最高時、いわゆるピストンが上死点の位
置になるように点火進角を同期させて作動させる。
2 constructed as above and applied to the Z-axis 23
The rotation of 70 degrees causes the housing 60 to rotate by 90 degrees to change the air chamber gaps of the air chambers A, B, C, D to the maximum, and at that time, the respective housing flow passage holes 69 are changed to the housing flow passage holes. Since it rotates on the opening circumference of the inner side hole mouths of 19, 19, when the connection is synchronized with the increase and decrease of the air chambers A, B, C, D, the air chambers A, B, C corresponding to the air spaces. , D, either suction or exhaust hole In, Ex is opened to perform either suction or exhaust stroke, and if there is no connection, either compression or expansion stroke is performed. Even when the working medium is ignited by the igniter Ig fitted in the compression space, the ignition advance is synchronized so that the so-called piston is located at the top dead center when the maximum combustion pressure is at the highest compression stroke. To operate.

【0246】更に、例として上記形態1の実施例におけ
る順転比1:3(1/3)の構成も述べれば、図示はし
ないが転がり軸72端部に取付ける外歯歯車の転がり歯
車76に対して、その1/3ピッチ円径を有する外歯歯
車の固定位相歯車14をY軸線上のハウジング10壁に
転がり歯車76の取付け平面と一致させて固定すると共
に、転がり歯車76を固定位相歯車14に外接歯合させ
る。その上でZ軸23に回転を与えると、連結棒26に
外嵌させた転がり軸72も連結棒26と共に旋回する
が、この転がり軸72は固定位相歯車14に外接歯合す
る転がり歯車76によってZ軸23の回転方向にのみZ
軸23の1回転に対して同数分の旋回をすると同時に1
/3回転分の自転をし、その転がり軸72自転の1/3
回転が回転ピストン30、及び斜行板40にも1/3回
転をさせて順転比の1:3(1/3)を成立させる。
Further, as an example, the structure of the forward rotation ratio of 1: 3 (1/3) in the embodiment of the first embodiment will be described. Although not shown, the rolling gear 76 of the external gear mounted on the end of the rolling shaft 72 is used. On the other hand, the fixed phase gear 14 of the external gear having the 1/3 pitch circle diameter is fixed to the wall of the housing 10 on the Y axis so as to match the mounting plane of the rolling gear 76, and the rolling gear 76 is fixed phase gear. 14 is externally meshed. When the Z-axis 23 is then rotated, the rolling shaft 72 fitted on the connecting rod 26 also turns together with the connecting rod 26. This rolling shaft 72 is rotated by the rolling gear 76 externally meshed with the fixed phase gear 14. Z only in the direction of rotation of the Z axis 23
The same number of turns is made for one rotation of the shaft 23, and at the same time 1
/ Rotating for 3 rotations, 1/3 of the rotation of the rolling shaft 72
The rotation also causes the rotary piston 30 and the skew plate 40 to make 1/3 rotation to establish a forward rotation ratio of 1: 3 (1/3).

【0247】次に、上記のように構成して作動させる順
転比1:3(1/3)における1サイクルの4行程を、
上記形態6,7の実施例を例として気室A,B,C,D
の存在を示す図80に基づき筺体60の1回転分におい
て説明する。尚この図80a,b,c,dにおいて、符
号Aは気室Aを示すと共に、その気室Aに連通する筺体
流路孔69を示すものであり、同様に符号B,C,Dも
各々の気室B,C,Dを示すと共に、その気室B,C,
Dに連通するそれぞれの筺体流路孔69,69,69を
示すものである。
Next, the four strokes of one cycle at a forward rotation ratio of 1: 3 (1/3) configured and operated as described above,
As an example of the embodiments 6 and 7, the air chambers A, B, C, D
Based on FIG. 80 showing the existence of the above, description will be made for one rotation of the housing 60. In FIGS. 80a, 80b, 80c, 80c, 80d, 80c, 80d, 80d, 80c, 80d, 80a, 80b, 80c, 80d, 80a, 80b, 80c, 80d, 80a, 80b, 80c, 80d, 80a, 80b, 80c, and 100d, the reference numeral A indicates the housing chamber flow path 69 communicating with the air chamber. The air chambers B, C, D of the
The respective housing flow passage holes 69, 69, 69 communicating with D are shown.

【0248】まず図80aにおいて、気室Aは筺体流路
孔Aが排気孔Ex側のハウジング流路孔19との連接か
ら外れたピストンの上死点位置に相当し、次に連接する
ハウジング流路孔19が吸気孔Inであり、気室Bは筺
体流路孔Bが排気孔Ex側のハウジング流路孔19と接
合を開始したピストンの下死点位置に相当する。この
時、気室Cは筺体流路孔Cが吸、排気孔In,Ex何れ
のハウジング流路孔19,19とも接合はなく、閉鎖さ
れた圧縮最大の作動媒体が点火された上死点に位置し、
気室Dは筺体流路孔Dが吸気のハウジング流路孔19と
の接合から外れて気室空間を閉鎖した回転角位置であ
る。従って、この図aにおける気室Aが吸気行程、気室
Bが排気行程、気室Cが膨張行程、気室Dが圧縮行程を
何れも開始した直後である。
First, in FIG. 80a, the air chamber A corresponds to the top dead center position of the piston where the housing flow passage hole A is out of the connection with the housing flow passage hole 19 on the exhaust hole Ex side, and the housing flow passage to be connected next is shown. The passage hole 19 is the intake hole In, and the air chamber B corresponds to the bottom dead center position of the piston where the housing passage hole B starts joining with the housing passage hole 19 on the exhaust hole Ex side. At this time, in the air chamber C, the housing flow passage hole C sucks, and there is no joint with the exhaust passages In and Ex, either of the housing flow passage holes 19, 19, and the closed working maximum compression medium is ignited at the top dead center. Position to,
The air chamber D is at a rotation angle position where the housing flow passage hole D is disengaged from the joint with the housing flow passage hole 19 for intake air and the air chamber space is closed. Therefore, immediately after the air chamber A in FIG. A starts the intake stroke, the air chamber B starts the exhaust stroke, the air chamber C starts the expansion stroke, and the air chamber D starts the compression stroke.

【0249】この図80における回転ピストン30と各
気室A,B,C,Dと筺体60は、時計廻りの回転をし
て図aから図b,c,dの順に作動するから、図aにお
ける回転ピストン30と筺体60とが90度分を回転
し、同時にZ軸23が270度分を回転すると、気室
A,B,C,Dと筺体流路孔A,B,C,Dが図bに示
す回転角位置になって1行程分の作動を終了させる。こ
の図bにおいて、気室Aが吸気孔Inとの連接を終えて
圧縮行程、気室Bが排気孔Exとの連接から外れると同
時に吸気孔Inと連接を開始して吸気行程、そして気室
Cは膨張行程を終了させて排気行程、気室Dは作動媒体
が点火された上死点に相当する回転角位置の膨張行程を
何れも開始する。
The rotary piston 30, the air chambers A, B, C and D, and the housing 60 in FIG. 80 rotate clockwise and operate in the order of FIGS. A to b, c and d. When the rotary piston 30 and the housing 60 in FIG. 1 rotate 90 degrees and the Z-axis 23 simultaneously rotates 270 degrees, the air chambers A, B, C, D and the housing flow passage holes A, B, C, D At the rotation angle position shown in FIG. B, the operation for one stroke is completed. In this figure b, the air chamber A finishes its connection with the intake hole In and undergoes a compression stroke, and the air chamber B begins to connect with the intake hole In at the same time as it disengages from the exhaust hole Ex and the intake stroke, and C finishes the expansion stroke and starts the exhaust stroke, and air chamber D starts the expansion stroke at the rotation angle position corresponding to the top dead center where the working medium is ignited.

【0250】更に、図bから各気室A,B,C,Dが9
0度分を回転し、Z軸23が270度分を回転すると、
気室A,B,C,Dは更に1行程分ずつを作動させる。
この図cにおいて、気室Aは上死点に達した気室空間の
作動媒体が点火され、気室Bは吸気行程を終了させた下
死点位置であり、気室Cは上死点位置になって排気行程
を終了し、気室Dは膨張行程を終了した下死点の位置に
相当するから、気室Aは膨張行程、気室Bは圧縮行程、
気室Cが吸気行程、気室Dが排気行程を何れも開始す
る。そして、図cから更に各気室A,B,C,Dが90
度分を回転してZ軸23も270度分を回転すると、各
気室A,B,C,Dが更に1行程分ずつを作動させた図
dにおいて、気室Aはハウジング流路孔19の排気孔E
xと接合して排気行程を開始し、気室Bは圧縮気が点火
された上死点位置に相当し、気室Cが圧縮行程を開始
し、気室Dが吸気孔Inと接合して吸気行程を開始した
位置である。
Furthermore, from FIG. B, each air chamber A, B, C, D is 9
When 0 degree is rotated and Z axis 23 is rotated by 270 degrees,
The air chambers A, B, C, and D are operated one stroke at a time.
In this figure c, the air chamber A is at the bottom dead center position where the working medium in the air chamber space that has reached the top dead center is ignited, the air chamber B is at the bottom dead center position where the intake stroke is finished, and the air chamber C is at the top dead center position. Since the exhaust stroke is completed and the air chamber D corresponds to the position of the bottom dead center after the expansion stroke, the air chamber A is the expansion stroke, the air chamber B is the compression stroke,
The air chamber C starts the intake stroke and the air chamber D starts the exhaust stroke. Then, from FIG.
When the Z-axis 23 is rotated by 270 degrees by rotating the air chamber A by one degree, the air chambers A, B, C, D are operated by one stroke each in FIG. Exhaust hole E
The exhaust stroke is started by joining with x, the air chamber B corresponds to the top dead center position where the compressed air is ignited, the air chamber C starts the compression stroke, and the air chamber D joins with the intake hole In. This is the position where the intake stroke has started.

【0251】そして更に、図dにおける各気室A,B,
C,Dが90度分、Z軸23が270度分を回転する
と、各気室A,B,C,Dは更に1行程分ずつを作動さ
せて作動の起点とした図aに戻るが、この図dから図a
の間に、気室体積を最大から最小に変化させた気室Aは
ハウジング流路孔19の排気孔Exと接合して排気行程
を終了し、気室Bは作用しない筺体流路孔Bによって閉
鎖された気室体積を気室Aとは反対に最小から最大に変
化させて膨張行程を終了させ、気室Cは圧縮最大の作動
媒体が点火され、気室Dは圧縮行程に入る回転角位置で
ある。
Further, in addition, each air chamber A, B, in FIG.
When C and D rotate 90 degrees and the Z-axis 23 rotates 270 degrees, the air chambers A, B, C and D are operated by one stroke each and the operation returns to the starting point a in FIG. This figure d to figure a
In the meantime, the air chamber A whose air chamber volume has been changed from the maximum to the minimum is joined to the exhaust hole Ex of the housing flow passage hole 19 to end the exhaust stroke, and the air chamber B is not operated by the casing flow passage hole B. The closed volume of the air chamber is changed from the minimum to the maximum in the opposite direction to the air chamber A to end the expansion stroke, and the air chamber C is ignited with the working medium having the maximum compression, and the air chamber D enters the compression stroke. The position.

【0252】結局、図aが図b,c,dを経て再び図a
に戻れば、各気室A,B,C,D、及び回転ピストン3
0と筺体60は1回転(90度×4回分)し、その同一
方向にZ軸23は3回転(270度×4回分)をし、そ
の間に気室A,B,C,Dの各々が吸気、圧縮、膨張、
及び排気の4行程ずつの作動を終了させる。従って、こ
の順転比1:3(1/3)の構成における膨張行程は、
図a乃至dを経て再び図aに戻る1巡において、図aで
は気室Cが行い、図bでは気室Dが行い、図cでは気室
Aが行い、そして図dにおいては気室Bが行うから四つ
の気室A,B,C,Dが繰り返しトルクを発生させる。
After all, FIG. A goes through FIG.
Returning to each air chamber A, B, C, D, and the rotary piston 3
0 and the housing 60 make one rotation (90 degrees x 4 times), and the Z-axis 23 makes three rotations (270 degrees x 4 times) in the same direction, while each of the air chambers A, B, C, D Intake, compression, expansion,
And, the operation of each four strokes of exhaust is completed. Therefore, the expansion stroke in the configuration of this forward rotation ratio of 1: 3 (1/3) is
In one cycle returning to FIG. A through FIGS. A to d, air chamber C is performed in FIG. A, air chamber D is performed in FIG. B, air chamber A is performed in FIG. C, and air chamber B is performed in FIG. Therefore, the four air chambers A, B, C and D repeatedly generate torque.

【0253】尚、この順転比の作動形態を上記形態1乃
至4の各実施例において実施する場合には、形態6,7
の実施例における各筺体流路孔69に換えて各形態の実
施例における斜行板40に四つの斜行板流路孔49,4
9、49,49を開口させれば、以下の構成と作動は上
述した形態6,7の実施例の場合と同様である。また、
この順転比の1:3(1/3)においては、筺体流路孔
AとCを筺体60外周面の同一回転円周に、筺体流路孔
BとDも筺体流路孔A,Cとは異なる筺体60外周面の
同一回転円周に、何れも互いが対向する180度分を隔
てて開口させると共に、その二つの開口回転円周上のハ
ウジング10壁に、その円周の概ね1/4円周長ずつを
有する2筋ずつのハウジング流路孔(In,Ex)×2
を設ける構成でもよく、且つ筺体流路孔AとC、BとD
との開口の隔たりを90度分ずつにしても、同一円周に
開口させる組合わせも筺体流路孔A,DとB,Cにして
もよく、而も筺体流路孔A,B,C,Dの開口円周を何
れかが競合する3円周に、又は各々が別円周の4円周に
開口させる構成にしてもよい。
When the operation mode of this forward rotation ratio is carried out in each of the above-mentioned Examples 1 to 4, Modes 6 and 7 are used.
In place of the casing flow passage holes 69 in the embodiment of FIG.
If 9, 49 and 49 are opened, the following constitution and operation are the same as in the case of the embodiments of the above-mentioned modes 6 and 7. Also,
At the forward rotation ratio of 1: 3 (1/3), the casing flow passage holes A and C are arranged on the same rotation circumference of the outer peripheral surface of the casing 60, and the casing flow passage holes B and D are also made into the casing flow passage holes A and C. Different from each other, they are opened in the same rotation circumference of the outer peripheral surface of the housing 60 at intervals of 180 degrees facing each other, and the housing 10 wall on the two opening rotation circumferences has approximately 1 of the circumference. / 4 housing channel holes (In, Ex) × 2 each having a circumference of 2
May be provided, and the housing flow path holes A and C, B and D
Even if the openings are separated from each other by 90 degrees, the combination of opening them in the same circumference may be the case flow path holes A, D and B, C, and also the case flow path holes A, B, C. , D may be configured such that the opening circles are opened in three circles in which one competes with each other, or each circle is opened in four circles in different circles.

【0254】次の例として、順転比1:5(1/5)に
おける4行程の進行を上記形態6,7の実施例において
気室A,Bの半月状作動室Ha分に構成し、且つ回転ピ
ストン30、及び筺体60の1回転分を図81に基づい
て、以下簡潔に説明する。この順転比1:5(1/5)
における二つの筺体流路孔A,Bは、互いが135度分
か、又は225度分を隔てた筺体60外周面の同一回転
円周上に開口し、ハウジング流路孔(19,19)×2
は、筺体流路孔A,Bの開口回転円周に沿って概ね1/
8円周長ずつの連なる2筋ずつの溝状孔がハウジング1
0の対向壁を貫通するが、その2筋ずつは回転ピストン
30、及び筺体60の回転方向に対して進み側が吸気孔
In,In、遅れ側が排気孔Ex,Exである。また、
点火具Igは、ハウジング流路孔(In,Ex)×2が
穿孔されていない部分の中間位置に、筺体流路孔A,B
の孔口を窺うハウジング10の対向壁の各々に少なくと
も1本ずつが挿着される。
As a next example, the progression of four strokes at a normal rotation ratio of 1: 5 (1/5) is configured for the half-moon-shaped working chamber Ha of the air chambers A and B in the embodiments of the above modes 6 and 7. Moreover, one rotation of the rotary piston 30 and the housing 60 will be briefly described below with reference to FIG. 81. This turnover ratio is 1: 5 (1/5)
The two housing flow path holes A and B in the above are opened on the same rotation circumference of the outer peripheral surface of the housing 60 separated by 135 degrees or 225 degrees from each other, and the housing flow path holes (19, 19) × Two
Is approximately 1 / along the circumference of the opening rotation of the housing flow passage holes A and B.
The housing 1 has two groove-shaped holes with 8 circumferences each.
Although passing through the opposite wall 0, the two lines are the intake holes In, In on the advance side and the exhaust holes Ex, Ex on the delay side with respect to the rotation direction of the rotary piston 30 and the housing 60. Also,
The igniter Ig has a housing flow passage holes A, B at an intermediate position of a portion where the housing flow passage hole (In, Ex) × 2 is not formed.
At least one piece is inserted into each of the opposing walls of the housing 10 for checking the hole opening.

【0255】尚、図81のa乃至hの連続図において、
各々の図から次の図までの作動は、気室A,B、及び回
転ピストン30、又は筺体60の回転角において45度
分の回転であると共に、Z軸23がその同一方向への2
25度分の回転であるから、図aから図b乃至hを経て
図aに戻る作動は、回転ピストン30、及び気室A,B
の1回転(45度×8)であってZ軸23の5回転(2
25度×8)であり、それは気室A,Bの各々が8行程
ずつを終了させる分に相当する。
Incidentally, in the continuous view of a to h of FIG.
The operation from each drawing to the next drawing is a rotation of 45 degrees in the rotation angle of the air chambers A and B and the rotary piston 30 or the housing 60, and the Z axis 23 moves in the same direction.
Since the rotation is for 25 degrees, the operation returning from FIG. A to FIGS. B to h to FIG.
1 rotation (45 degrees × 8) of the Z axis 23 and 5 rotations (2
25 degrees × 8), which corresponds to the amount that each of the air chambers A and B completes eight strokes.

【0256】この図81aからbまでの作動は、気室A
と気室Bが1行程分ずつに相当する45度分、同じくZ
軸23が225度分を回転するが、筺体流路孔A,Bの
何れもが2筋のうちの一方のハウジング流路孔19,1
9に接合していて、気室Aが吸気行程をして気室Bが排
気行程をする。そこから気室A,Bが45度分を回転し
た図bから図cに至る作動は、気室Aが閉ざされた空間
の圧縮行程、気室Bが吸気孔Inに接合する吸気行程で
あり、そして図cから図dまでの間に示す作動は、気室
A,B共にハウジング流路孔19,19との接合はな
く、気室Aが図cにおいて点火された膨張行程、気室B
が圧縮行程を進行させる。
The operation from FIG. 81a to FIG.
And air chamber B is 45 degrees, which is equivalent to one stroke each, and Z
Although the shaft 23 rotates by 225 degrees, both the housing flow passage holes A and B have one housing flow passage hole 19 or 1 of the two lines.
The air chamber A has an intake stroke and the air chamber B has an exhaust stroke. The operation from FIGS. B to c in which the air chambers A and B are rotated by 45 degrees from there is a compression stroke of the space in which the air chamber A is closed, and an intake stroke in which the air chamber B is joined to the intake hole In. The operation shown in FIGS. C to d has no joint between the air chambers A and B and the housing flow passage holes 19 and 19, and the air chamber A is ignited in FIG.
Advances the compression process.

【0257】更に図dから図eに至る作動は、気室Aが
排気孔Exと接合して排気行程を終了させ、気室Bは図
dにおいて点火された作動媒体が膨張行程を終了する。
すると、その図eに至った気室A,Bは図aから半回転
(45度×4)をしてZ軸23が2回転半(225度×
4)をし、その間に気室A,Bの各々が四つずつの行程
を行って1サイクル分を終了させる。そして、その図e
から図fに示すように、気室A,Bが45度、Z軸23
が225度分を同一方向に回転すれば、その間に再度気
室Aは吸気行程を行って気室Bが排気行程を行い、更に
その気室A,Bに45度分とZ軸23に225度分を回
転させて図fから図gに至る1行程は、気室Aが再び圧
縮行程であり、気室Bも再び吸気行程である。
Further, in the operation from FIG. D to FIG. E, the air chamber A joins with the exhaust hole Ex to end the exhaust stroke, and in the air chamber B, the working medium ignited in FIG.
Then, the air chambers A and B reaching the figure e make a half turn (45 degrees x 4) from the figure a and the Z axis 23 makes two and a half turns (225 degrees x 225 degrees).
4), during which each of the air chambers A and B makes four strokes to complete one cycle. And that figure e
As shown in FIG. F, the air chambers A and B are at 45 degrees and the Z-axis 23
Rotate 225 degrees in the same direction, during that time, the air chamber A again performs the intake stroke and the air chamber B performs the exhaust stroke, and the air chambers A and B are 45 degrees and the Z-axis 23 is 225 degrees. The air chamber A is the compression stroke again and the air chamber B is the intake stroke again in one stroke from the rotation of the degree to the rotation from FIG.

【0258】その上、次の図gと図hまでの作動は、気
室Aが再び膨張行程、気室Bも再び圧縮行程をし、そし
て更に気室Aが次の排気行程、気室Bが再度の膨張行程
を終了すると作動を開始した図aに戻る。結局、それま
でに気室A,Bの各々がサイクルを2巡する8行程ずつ
を行い、上述したように気室A,Bが45度×8回分で
ある1回転し、同時にZ軸23もその同一方向に5回転
して位相を元に戻す。尚、点火具Igは、上述したハウ
ジング10壁の挿着以外に二次回転Neの順転比率が高
い形態の全般において筺体60(形態1,2の各実施例
では軸板24、形態4の実施例では位相板56)か、斜
行板40にその必要数を埋め込み状に挿着する等、その
取付けは自由である。
In addition, in the operation up to the next FIG. G and FIG. H, the air chamber A again undergoes the expansion stroke, the air chamber B again undergoes the compression stroke, and the air chamber A further goes to the next exhaust stroke, air chamber B. When the expansion stroke is completed again, the operation returns to the starting point a in FIG. Eventually, each of the air chambers A and B performed 8 strokes in two cycles, and as described above, the air chambers A and B made one rotation of 45 degrees × 8 times, and at the same time, the Z axis 23 also. Rotate 5 times in the same direction to restore the phase. In addition, the igniter Ig has a casing 60 (the shaft plate 24 in each of the embodiments of the first and second embodiments and the fourth embodiment in the fourth embodiment) in all of the forms in which the forward rotation ratio of the secondary rotation Ne is high in addition to the insertion of the wall of the housing 10 described above. In the embodiment, the phase plate 56) or the slanting plate 40 is embedded in a required number so as to be embedded, and the attachment is free.

【0259】或は、一次回転Poよりも二次回転Neの
順転比が高い1:7(1/7)においては、筺体流路孔
AとB、又は筺体流路孔CとDの各々の二つが筺体60
の中心角で210度分を隔て、二つずつの筺体流路孔
A,BとC,Dとが30度分を隔てた同一円周の筐体6
0外周面に開口する。その四つの筺体流路孔A,B,
C,D開口円周上に穿設されるハウジング流路孔(1
9,19)×3は、同一円周内にその円周の概ね1/1
2円周長を有する溝状孔の連なる2筋を1対とする3対
が均等間隔を有し、且つ筺体60回転方向に対して進み
側の3筋の各々を吸気孔In,In,Inとし、遅れ側
の各3筋を排気孔Ex,Ex,Exとして穿設される。
Alternatively, in the case where the forward rotation ratio of the secondary rotation Ne is higher than the primary rotation Po of 1: 7 (1/7), each of the housing passage holes A and B or the casing passage holes C and D is obtained. Two of them are housing 60
Two enclosure flow passages A, B and C, D separated by 210 degrees at the central angle of 30 degrees and having the same circumference.
0 Open on the outer peripheral surface. The four housing channel holes A, B,
Housing channel holes (1
9,19) × 3 is approximately 1/1 of the circumference within the same circumference
Three pairs of two continuous lines of groove-shaped holes each having a two-circumferential length have an equal interval, and each of the three lines on the advance side with respect to the rotation direction of the housing 60 has intake holes In, In, In. And each of the three lines on the delay side are formed as exhaust holes Ex, Ex, Ex.

【0260】この順転比1:7(1/7)の構成におい
ては、回転ピストン30と筺体60と各気室A,B,
C,Dが1回転する間にZ軸23が7回転(210度×
12)するが、この筺体60の30度分、Z軸23の2
10度分の回転が1行程分であるから、各気室A,B,
C,Dは筺体60の1回転毎に3サイクル分に相当する
12行程ずつの作動が終了する。この時の点火具Ig
は、ハウジング流路孔(In,Ex)×3間のハウジン
グ10壁に等間隔を置いて少なくとも3本が挿着され
る。
In the structure having the forward rotation ratio of 1: 7 (1/7), the rotary piston 30, the housing 60, the air chambers A, B,
The Z-axis 23 makes seven revolutions (210 degrees x
12) Yes, 30 degrees of this housing 60, 2 of Z axis 23
Since rotation for 10 degrees is for one stroke, each air chamber A, B,
For C and D, the operation of 12 strokes corresponding to 3 cycles is completed for each rotation of the housing 60. Igniter Ig at this time
Are inserted into the wall of the housing 10 between the housing flow path holes (In, Ex) × 3 at equal intervals.

【0261】また、順転比1:9(1/9)では、概ね
1/16円周長ずつの溝状孔の連なる2筋を1対とした
4対のハウジング流路孔(In,Ex)×4が穿設さ
れ、筺体60、及び各気室A,B,C,Dの1回転(2
2.5度×16)の間にZ軸23が9回転(202.5
度×16)をして各気室A,B,C,Dは4サイクル分
の16行程ずつを行い、挿着される点火具Igは少なく
とも4本である。
When the forward rotation ratio is 1: 9 (1/9), four pairs of housing flow passage holes (In, Ex ) × 4 is drilled, and the housing 60 and each air chamber A, B, C, D makes one rotation (2
The Z axis 23 rotates 9 times (202.5
The air chambers A, B, C, and D perform 16 strokes for 4 cycles each, and the number of ignition tools Ig inserted and inserted is at least 4.

【0262】[0262]

【発明の効果】従来の往復ピストン機関では、その構造
において円筒シリンダー、ピストン、コネクティングロ
ッド、クランクシャフト、バルブ等があって部品数が多
く複雑であり、単位出力あたりの機関容積が大きい上
に、その作動において往復運動部分の慣性質量による障
害が発生して機関の高速回転を阻止し、出力と燃費性能
を低下させると共に、ピストンはシリンダー内壁面に嵌
まってのみ支持されて定位軸の支持がなく、その上下摺
動の上端における反転時にピストンがシリンダー壁を強
打して振動、騒音の原因をなすピストンスラップを発生
させる。また、吸、排気機構の取付けがシリンダー頭部
にのみ限られていて、そのバルブ装置の取付けによって
出入空気の流れを阻止する狭窄部分を作動媒体の流出入
孔に形成するもので、吸入空気重量が少なく吸、排気効
率を低下させる。その上、シリンダー内の燃焼温度が高
い為に異常燃焼や浄化の困難な窒素酸化物(NOx)の
生成が多く、高い冷却性能を要求される等の欠点があ
る。
In the conventional reciprocating piston engine, the structure thereof has a cylindrical cylinder, a piston, a connecting rod, a crankshaft, a valve, etc., and the number of parts is large and complicated, and the engine volume per unit output is large, and In its operation, the inertial mass of the reciprocating part causes obstacles to prevent high-speed rotation of the engine, lowering the output and fuel consumption performance, and the piston is supported only by fitting it on the inner wall surface of the cylinder to support the localization axis. However, the piston slams the cylinder wall at the time of reversal at the upper end of the vertical sliding, causing piston slap that causes vibration and noise. In addition, the attachment of the intake and exhaust mechanisms is limited to only the head of the cylinder, and the valve device is attached to form a narrowed portion in the inlet and outlet holes of the working medium that blocks the flow of the inlet and outlet air. Less and reduce exhaust efficiency. In addition, since the combustion temperature in the cylinder is high, abnormal combustion and generation of nitrogen oxides (NOx), which are difficult to purify, are large, and high cooling performance is required.

【0263】そのような従来の往復ピストン機関に対
し、本発明の球形の回転ピストン機関は、上記構成と作
用によるものであり、機関軸をクランク軸からZ状のZ
軸23か筺体軸71、又は直軸状の回転主軸20の何れ
かに置き換えることによって、回転ピストン30の中心
とピストン中間軸33両端の点Ka、点Kb側とを関節
連結の軸承部として捉えると共に、受圧・加圧に係わる
可動体の全部が外部殻の球体内に収まる構造上の特徴を
有するものである。即ち、立体形において最大容積と最
小表面積からなる球形を基本構造とすることにより機関
体積に対して行程容積の占める割合が著しく大きいこ
と、クランク機構がないこと、ダブルエンドのピストン
であること、基準球体内に4気筒分に相当する4気室が
存在すること等、極めて軽量、コンパクトである。
In contrast to such a conventional reciprocating piston engine, the spherical rotary piston engine of the present invention is based on the above-described structure and operation. The engine shaft is a Z-shaped Z from the crankshaft.
The center of the rotary piston 30 and the points Ka and Kb on both ends of the piston intermediate shaft 33 are regarded as bearing parts for joint connection by replacing the shaft 23, the housing shaft 71, or the rotary shaft 20 having a straight shaft shape. At the same time, it has a structural feature that all the movable bodies involved in pressure reception / pressurization are contained in the spherical body of the outer shell. That is, by adopting a basic structure of a spherical shape consisting of the maximum volume and the minimum surface area in the three-dimensional shape, the ratio of the stroke volume to the engine volume is extremely large, there is no crank mechanism, it is a double-ended piston, the standard It is extremely lightweight and compact because there are four air chambers corresponding to four cylinders in the sphere.

【0264】また、機関軸からクランク軸を排除してピ
ストンの往復加速運動による往復質量の慣性力を排除し
たことは、往復ピストン機関のようなピストンスラップ
の発生がなく、平均ピストンスピードの上限を押し上げ
て機関の使用回転範囲を広げると共に、機関の高速回転
を意味するから高出力が実現し、高回転をするほどにP
S/lの比出力が増大するから必然的に燃費性能も向上
する。その上、回転ピストン30と斜行板40(又は筺
体斜行板61)と機関軸との組合わせから構成する主要
部品の各々がシンプルであり、部品数が少ないと同時に
同一部品も少なく、機構も簡単平明であって複雑でない
から、分解、組立て、手入れ等の作業性に有利であると
共に、球体の機関本体は熱変形や応力、衝撃荷重に強く
堅牢であり、機構からくる高い製作精度、高い組立て精
度を要求されないから、低コストであり、故障しにくく
耐久性に富む。
Further, by eliminating the crankshaft from the engine shaft and eliminating the inertial force of the reciprocating mass due to the reciprocating acceleration movement of the piston, the piston slap unlike the reciprocating piston engine is not generated, and the upper limit of the average piston speed is increased. As the engine is pushed up to widen the rotation range of the engine, it means high-speed rotation of the engine, so high output is achieved.
Since the specific output of S / l is increased, the fuel efficiency is inevitably improved. In addition, each of the main parts configured by the combination of the rotary piston 30, the oblique plate 40 (or the housing oblique plate 61) and the engine shaft is simple, and the number of parts is small and the same parts are small at the same time. It is easy and clear and is not complicated, so it is advantageous for workability such as disassembly, assembly, maintenance, etc., and the spherical engine body is robust against thermal deformation, stress, impact load, and has high manufacturing accuracy from the mechanism. Since it does not require high assembly precision, it is low in cost, hard to break down, and highly durable.

【0265】そして、球形内に形成される偏平な空間の
櫛形状作動室Fuは、容積に対して面積の比が従来機関
に比して著しく大きい上、球面の凹面内を作動室空間が
移動すること等から流入空気に乱れと撹拌が生じ、その
為に火炎伝播は進行して完全燃焼が促され、不完全燃焼
による有害なCOの生成や未燃焼のHCガスの排出を抑
えて高い燃焼効率が得られる。その反面、火炎が接触す
る燃焼室壁の表面積が大きい為に、火炎は燃焼室壁に冷
やされて最高燃焼温度が低く抑えられ、高温で発生する
有害排気ガスの窒素酸化物(NOx)が生成されにくい
上にノッキング、或はピンキングに代表される高温によ
る異常燃焼の発生が少ない。
In the comb-shaped working chamber Fu having a flat space formed in a spherical shape, the ratio of the area to the volume is remarkably large as compared with the conventional engine, and the working chamber space moves within the spherical concave surface. As a result, turbulence and agitation occur in the inflowing air, which promotes flame propagation and promotes complete combustion, and suppresses the generation of harmful CO due to incomplete combustion and the emission of unburned HC gas, resulting in high combustion. Efficiency is obtained. On the other hand, since the surface area of the combustion chamber wall that the flame contacts is large, the flame is cooled by the combustion chamber wall and the maximum combustion temperature is suppressed to a low level, and nitrogen oxide (NOx) of harmful exhaust gas generated at high temperature is generated. In addition to being hard to be knocked, there is little occurrence of abnormal combustion due to high temperature such as knocking or pinking.

【0266】而もそのように燃焼温度が低いということ
は、耐熱の観点からもより低級な材質の安価な材料を以
て機関の製造が可能であり、高温の為のより大型の冷却
装置を必要とせず、球体内の燃焼、取り分け燃焼に伴っ
て移動する燃焼室は燃焼熱が燃焼室壁に伝導拡散して機
関全体の温度を均一化させ、温度差による機関の剛性・
強度の低下、バイメタル的熱変形を抑制する。或はま
た、回転体の回転外周面と球面をなす作動室の内側面と
が、潤滑油膜の生成と気密保持に特に有利な面接触をし
て同一の気密具を複数の作動室が共用するから、その取
り扱い、製造、耐久性についても優位である。更に、円
形体からなる回転体の回転荷重は、円形の接触面に分散
されて耐摩耗性に有利であり、往復動の摩擦抵抗に起因
する作動室の変形と、摩擦摩耗によるリークロスの発生
要素がない。
In addition, such a low combustion temperature means that it is possible to manufacture an engine using an inexpensive material that is a low-grade material from the viewpoint of heat resistance, and requires a larger cooling device for high temperatures. In the combustion chamber that moves with combustion in the sphere, especially with combustion, the combustion heat is conducted and diffused to the wall of the combustion chamber to make the temperature of the entire engine uniform, and the rigidity of the engine due to the temperature difference
Reduces strength and suppresses bimetallic thermal deformation. Alternatively, the rotation outer peripheral surface of the rotating body and the inner surface of the working chamber forming a spherical surface are in surface contact which is particularly advantageous for generating a lubricating oil film and maintaining airtightness, and a plurality of working chambers share the same airtight tool. Therefore, it is also superior in handling, manufacturing and durability. Furthermore, the rotating load of the rotating body composed of a circular body is dispersed on the circular contact surface, which is advantageous for wear resistance, and the deformation of the working chamber due to the frictional resistance of reciprocating motion and the generation of leakage due to frictional wear. There are no elements.

【0267】尚、球面内に回転し得る回転体はシンメト
リーな造形を可能にし、その軸対称な回転体は慣性モー
メントが小さく過渡特性に優れ、回転運動をする為に機
械効率が良く、振動・騒音の発生が少ない。一方、吸、
排気機構は、バルブの装着がない上に従来機関のように
シリンダー頭部の一箇所に吸、排気孔が集中しないこ
と、吸、排気孔の孔径範囲に自由度があること、互いの
体積を反比例に変化させて対を成す二つの櫛形状作動室
Fu,Fuが吸気行程と排気行程とを連続して行うこと
により、空気流出入の慣性抵抗質量が小さく吸、排気効
率に優れ、より多くの吸入空気重量を取り込むから高い
平均有効圧力値を得ることが出来る。
It should be noted that the rotating body capable of rotating in the spherical surface enables symmetrical shaping, and the axisymmetric rotating body has a small moment of inertia and excellent transient characteristics, and has a good mechanical efficiency for vibrating rotationally. Low noise generation. On the other hand, sucking,
The exhaust mechanism does not have a valve installed, and unlike the conventional engine, it sucks in one place of the cylinder head, the exhaust holes do not concentrate, there is a degree of freedom in the hole diameter range of the intake and exhaust holes, and the mutual volume Since the two comb-shaped working chambers Fu and Fu which are inversely changed to form a pair continuously perform the intake stroke and the exhaust stroke, the inertial resistance mass of the air inflow and outflow is small, and the suction efficiency is excellent, and more A high average effective pressure value can be obtained because the intake air weight is taken.

【0268】以上説明したように本発明によれば、回転
するピストンという従来の往復ピストン機関とは全く異
なった原理に基づく構造と動作態様とを示すもので、ク
ランクレスを構成するパーツを球体内に収めたことによ
り、小形軽量と高回転が実現し、且つ振動と騒音の発生
を抑制することが出来た。また、燃焼状態においては、
燃焼室の形状と球面を移動する燃焼室とから完全燃焼と
低い最高温度の燃焼が得られるもので、その低い燃焼温
度は有害排出ガスである窒素酸化物(NOx)の発生を
著しく低減させるものである。反面、球体内に集中する
燃焼室は、必要な熱の分散を抑えて高い熱効率の水準が
得られるもので大型の冷却装置を必要としない等、多数
の利点を有すると共に従来の往復ピストン機関では相矛
盾して解決が不可能とされていた出力と燃費性能との両
立を実現させた高性能の回転ピストン機関である。
As described above, according to the present invention, the structure and operation mode based on the principle of rotating piston, which is completely different from the conventional reciprocating piston engine, is shown. It was possible to realize small size, light weight and high rotation, and to suppress the generation of vibration and noise. Also, in the combustion state,
Complete combustion and low maximum temperature combustion can be obtained from the shape of the combustion chamber and the combustion chamber that moves on a spherical surface, and the low combustion temperature significantly reduces the generation of nitrogen oxides (NOx) which are harmful exhaust gases. Is. On the other hand, the combustion chamber concentrated in the sphere has many advantages such as suppressing the necessary heat dispersion and achieving a high level of thermal efficiency, and does not require a large cooling device. It is a high-performance rotary piston engine that achieves both power output and fuel efficiency that were contradictory and impossible to solve.

【0269】即ち、本発明の球形の回転ピストン機関
は、高出力で優れた燃料経済性を兼ね備え、有害排出ガ
スの生成が少なく、部品や組成に難解さがなく簡単平明
で取り扱い易く、その単純さ故に製造コストが大幅に低
く安価である。その上、耐久品であり、軽量コンパクト
であり、静粛機関である等の多数の優れた効果を奏する
ものである。
That is, the spherical rotary piston engine of the present invention has a high output and excellent fuel economy, produces little harmful exhaust gas, has no difficulty in parts and composition, is simple, plain, and easy to handle. Therefore, the manufacturing cost is significantly low and the cost is low. In addition, it is a durable product, lightweight and compact, and has many excellent effects such as being a quiet engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理(解決手段1,2,3,5,6,
7)を示す基本図形の一部縦断斜視図。
FIG. 1 shows the principle of the present invention (solving means 1, 2, 3, 5, 6,
7 is a partial vertical perspective view of a basic figure showing 7). FIG.

【図2】基準図形の角度変化を示す斜視図。FIG. 2 is a perspective view showing an angle change of a reference figure.

【図3】基準図形の角度変化を示す斜視図。FIG. 3 is a perspective view showing an angle change of a reference figure.

【図4】基準図形の角度変化を示す斜視図。FIG. 4 is a perspective view showing an angle change of a reference figure.

【図5】基準図形の角度変化を示す斜視図。FIG. 5 is a perspective view showing an angle change of a reference figure.

【図6】基準図形の角度変化を示す斜視図。FIG. 6 is a perspective view showing an angle change of a reference figure.

【図7】基準図形の角度変化を示す斜視図。FIG. 7 is a perspective view showing a change in angle of a reference figure.

【図8】基準図形の角度変化を示す斜視図。FIG. 8 is a perspective view showing a change in angle of a reference figure.

【図9】基準図形の角度変化を示す斜視図。FIG. 9 is a perspective view showing an angle change of a reference figure.

【図10】基準図形の角度変化を示す斜視図。FIG. 10 is a perspective view showing an angle change of a reference figure.

【図11】基準図形の角度変化を示す斜視図。FIG. 11 is a perspective view showing a change in angle of a reference figure.

【図12】基準図形の角度変化を示す斜視図。FIG. 12 is a perspective view showing a change in angle of a reference figure.

【図13】基準図形の角度変化を示す斜視図。FIG. 13 is a perspective view showing a change in angle of a reference figure.

【図14】解決手段1,2,3,5,6,7における一
次回転を示す(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)の
各斜視図。
FIG. 14 is a perspective view of (a), (b), (c), (d), (e), and (f) showing the primary rotation in the solving means 1, 2, 3, 5, 6, 7.

【図15】図14の続き、解決手段1,2,3,5,
6,7における一次回転を示す(ト)(チ)(リ)
(ヌ)(ル)(ヲ)の各斜視図。
FIG. 15 is a continuation of FIG. 14, and solving means 1, 2, 3, 5,
Shows primary rotation at 6 and 7 (G) (H) (L)
(Nu) (lu) (wo) perspective views.

【図16】本発明(解決手段1,2,3,5,6,7)
の作動と各気室の容積変化を示す(A)(B)(C)
(D)(E)(F)の一部縦断各側面図。
16] The present invention (Solution means 1, 2, 3, 5, 6, 7)
(A) (B) (C) showing the operation of and the volume change of each air chamber
(D) (E) (F) partial longitudinal cross-sectional side view.

【図17】図16の続き、本発明(解決手段1,2,
3,5,6,7)の作動と各気室の容積変化を示す
(G)(H)(I)(J)(K)(L)の一部縦断各側
面図。
FIG. 17 is a continuation of FIG. 16 and the present invention (solving means 1, 2,
3, 5, 6, 7) operation and partial side views of (G), (H), (I), (J), (K), and (L) showing changes in volume of each air chamber.

【図18】本発明の原理(解決手段4,8)を示す基本
図形の一部縦断斜視図。
FIG. 18 is a partial vertical perspective view of a basic figure showing the principle (solving means 4, 8) of the present invention.

【図19】基本図形の角度変化を示す斜視図。FIG. 19 is a perspective view showing an angle change of a basic figure.

【図20】基本図形の角度変化を示す斜視図。FIG. 20 is a perspective view showing a change in angle of a basic figure.

【図21】基本図形の角度変化を示す斜視図。FIG. 21 is a perspective view showing an angle change of a basic figure.

【図22】基本図形の角度変化を示す斜視図。FIG. 22 is a perspective view showing a change in angle of a basic figure.

【図23】基本図形の角度変化を示す斜視図。FIG. 23 is a perspective view showing a change in angle of a basic figure.

【図24】基本図形の角度変化を示す斜視図。FIG. 24 is a perspective view showing an angle change of a basic figure.

【図25】基本図形の角度変化を示す斜視図。FIG. 25 is a perspective view showing a change in angle of a basic figure.

【図26】基本図形の角度変化を示す斜視図。FIG. 26 is a perspective view showing a change in angle of a basic figure.

【図27】基本図形の角度変化を示す斜視図。FIG. 27 is a perspective view showing a change in angle of a basic figure.

【図28】基本図形の角度変化を示す斜視図。FIG. 28 is a perspective view showing an angle change of a basic figure.

【図29】基本図形の角度変化を示す斜視図。FIG. 29 is a perspective view showing an angle change of a basic figure.

【図30】基本図形の角度変化を示す斜視図。FIG. 30 is a perspective view showing an angle change of a basic figure.

【図31】解決手段4,8における一次回転を示す
(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)の各斜視図。
FIG. 31 is a perspective view of (a), (b), (c), (d), (e), and (f) showing the primary rotation in the solving means 4 and 8.

【図32】図31の続き、解決手段4,8における一次
回転を示す(ト)(チ)(リ)(ヌ)(ル)(ヲ)の各
斜視図。
32 is a perspective view of (g), (h), (g), (g), (g), (g), and (g) showing the primary rotation in the solving means 4, 8 following FIG. 31;

【図33】本発明(解決手段4,8)の作動と各気室の
容積変化を示す(A)(B)(C)(D)(E)(F)
の一部縦断各側面図。
FIG. 33 shows the operation of the present invention (solving means 4, 8) and the volume change of each air chamber (A) (B) (C) (D) (E) (F).
Partial vertical section of each.

【図34】図33の続き、本発明(解決手段4,8)の
作動と各気室の容積変化を示す(G)(H)(I)
(J)(K)(L)の一部縦断各側面図。
FIG. 34 is a sequel to FIG. 33, showing the operation of the present invention (solving means 4, 8) and the volume change of each air chamber (G) (H) (I).
(J) (K) (L) partial longitudinal cross-sectional side view.

【図35】本発明における形態1の実施例(1)を示す
一部縦断側面図(括弧内の数字はその他の解決手段1〜
3の何れかを示す)。
FIG. 35 is a partially longitudinal side view showing the embodiment (1) of the first embodiment of the present invention (the numbers in parentheses indicate other solving means 1 to 1).
3).

【図36】図35の一部断面分解斜視図。FIG. 36 is an exploded perspective view of a partial cross section of FIG. 35.

【図37】本発明における形態1の実施例(2)を示す
一部縦断側面図。
FIG. 37 is a partial vertical cross-sectional side view showing an embodiment (2) of mode 1 of the present invention.

【図38】本発明における形態1の実施例(3)を示す
一部縦断側面図。
38 is a partially longitudinal side view showing the embodiment (3) of the form 1 in accordance with the present invention. FIG.

【図39】本発明における形態2の実施例(1)を示す
一部縦断側面図。
FIG. 39 is a partially longitudinal side view showing the embodiment (1) of the second aspect of the present invention.

【図40】本発明における形態2の実施例(2)を示す
一部縦断側面図。
FIG. 40 is a partially longitudinal side view showing an embodiment (2) of mode 2 of the present invention.

【図41】本発明における形態2の実施例(3)を示す
一部縦断側面図。
FIG. 41 is a partially longitudinal side view showing the embodiment (3) of the second aspect of the present invention.

【図42】形態2の実施例の別態様(正逆回転比1:
3)を示す一部縦断側面図。
FIG. 42 is another mode of the embodiment of form 2 (forward / reverse rotation ratio 1:
3) A partial vertical side view showing 3).

【図43】形態2の実施例の別態様(正逆回転比1:
3)を示す一部縦断側面図。
43] Another aspect of the embodiment of form 2 (forward / reverse rotation ratio 1:
3) A partial vertical side view showing 3).

【図44】本発明における形態3の実施例(1)を示す
一部縦断側面図。
FIG. 44 is a partial vertical cross-sectional side view showing the embodiment (1) of the form 3 in the present invention.

【図45】図44の一部断面分解斜視図。45 is an exploded perspective view, partly in section, of FIG. 44.

【図46】本発明における形態3の実施例(2)を示す
一部縦断側面図。
FIG. 46 is a partial vertical cross-sectional side view showing the embodiment (2) of the third embodiment of the present invention.

【図47】本発明における形態3の実施例(3)を示す
一部縦断側面図。
FIG. 47 is a partially longitudinal side view showing an example (3) of the form 3 in the present invention.

【図48】形態3の実施例(1)の別態様(正逆回転比
1:3)を示す一部縦断側面図。
FIG. 48 is a partially longitudinal side view showing another mode (forward / reverse rotation ratio 1: 3) of the example (1) of the third embodiment.

【図49】本発明における形態4の実施例(1)を示す
一部縦断側面図。
FIG. 49 is a partial vertical cross-sectional side view showing the embodiment (1) of mode 4 in the present invention.

【図50】図49の一部断面分解斜視図。50 is an exploded perspective view, partly in section, of FIG. 49. FIG.

【図51】本発明における形態4の実施例(2)を示す
一部縦断側面図。
FIG. 51 is a partially longitudinal side view showing an example (2) of mode 4 of the present invention.

【図52】本発明における形態4の実施例(3)を示す
一部縦断側面図。
52 is a partial vertical cross-sectional side view showing the embodiment (3) of the form 4 in the present invention. FIG.

【図53】本発明における形態5の実施例(1)を示す
一部縦断側面図。
FIG. 53 is a partially longitudinal side view showing the embodiment (1) of the fifth aspect of the present invention.

【図54】本発明における形態5の実施例(2)を示す
一部縦断側面図。
FIG. 54 is a partially longitudinal side view showing an embodiment (2) of mode 5 of the present invention.

【図55】本発明における形態5の実施例(3)を示す
一部縦断側面図。
FIG. 55 is a partial vertical cross-sectional side view showing the embodiment (3) of the fifth aspect of the present invention.

【図56】本発明における形態6の実施例(1)を示す
一部縦断側面図。
FIG. 56 is a partially longitudinal side view showing the embodiment (1) of mode 6 of the present invention.

【図57】本発明における形態6の実施例(2)を示す
一部縦断側面図。
FIG. 57 is a partially longitudinal side view showing embodiment (2) of mode 6 of the present invention.

【図58】本発明における形態6の実施例(3)を示す
一部縦断側面図。
FIG. 58 is a partial vertical cross-sectional side view showing the embodiment (3) of mode 6 of the present invention.

【図59】本発明における形態7の実施例(1)を示す
一部縦断側面図。
FIG. 59 is a partially longitudinal side view showing the embodiment (1) of the seventh aspect of the present invention.

【図60】本発明における形態7の実施例(2)を示す
一部縦断側面図。
FIG. 60 is a partial vertical cross-sectional side view showing an embodiment (2) of mode 7 of the present invention.

【図61】本発明における形態7の実施例(3)を示す
一部縦断側面図。
FIG. 61 is a partially longitudinal side view showing an example (3) of the seventh aspect of the present invention.

【図62】本発明における形態8の実施例(1)を示す
一部縦断側面図。
FIG. 62 is a partial vertical cross-sectional side view showing the embodiment (1) of mode 8 of the present invention.

【図63】本発明における形態8の実施例(2)を示す
一部縦断側面図。
FIG. 63 is a partial vertical cross-sectional side view showing an embodiment (2) of mode 8 in the present invention.

【図64】本発明における形態8の実施例(3)を示す
一部縦断側面図。
FIG. 64 is a partial vertical cross-sectional side view showing an embodiment (3) of mode 8 of the present invention.

【図65】本発明における形態1,2,3,5,6,7
の4行程を示す(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)
の各一部縦断側面図。
[FIG. 65] Forms 1, 2, 3, 5, 6, 7 according to the present invention
4 steps of (a) (b) (c) (d) (e) (f) (f)
FIG.

【図66】図65の続き、本発明における形態1,2,
3,5,6,7の4行程を示す(ト)(チ)(リ)
(ヌ)(ル)(ヲ)の各一部縦断側面図。
66 is a continuation of FIG. 65, modes 1, 2 in the present invention,
Show 4 steps of 3, 5, 6, 7 (G) (G) (G)
(Nu) (ru) (wo) Partial vertical side view.

【図67】本発明における形態4,8の4行程を示す
(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)の各一部縦断側
面図。
FIG. 67 is a partial vertical sectional side view of (a), (b), (c), (d), (e), and (f) showing four strokes of modes 4 and 8 in the present invention.

【図68】図67の続き、本発明における形態4,8の
4行程を示す(ト)(チ)(リ)(ヌ)(ル)(ヲ)の
各一部縦断側面図。
FIG. 68 is a partial vertical cross-sectional side view of (G), (H), (G), (G), (G), and (W) showing four strokes of modes 4 and 8 in the present invention, subsequent to FIG. 67;

【図69】本発明(解決手段1,2,3,5,6,7)
におけるトルク発生原理を示す一部縦断正面図。
69] This invention (Solution means 1, 2, 3, 5, 6, 7)
6 is a partial vertical sectional front view showing the principle of torque generation in FIG.

【図70】本発明(解決手段4,8)におけるトルク発
生原理を示す一部縦断正面図。
FIG. 70 is a partial vertical sectional front view showing the principle of torque generation in the present invention (Solutions 4, 8).

【図71】形態1,2,4,5,8の別態様(吸、排気
機構)における4行程(正逆回転比1:1)を示すa,
b,c,dの各(イ)(ロ)の各一部縦断正面図。
71 shows four strokes (forward / reverse rotation ratio 1: 1) in another mode (intake / exhaust mechanism) of modes 1, 2, 4, 5, 8 a,
b, c, d each (i) (b) each partial longitudinal front view.

【図72】形態1,2,4,5,8の別態様(吸、排気
機構)における4行程(正逆回転比3:1)を示すa,
b,c,dの各(イ)(ロ)の各一部縦断正面図。
72 is a diagram showing four strokes (forward / reverse rotation ratio 3: 1) in another mode (intake / exhaust mechanism) of modes 1, 2, 4, 5, 8;
b, c, d each (i) (b) each partial longitudinal front view.

【図73】図72の続き、形態1,2,4,5,8の別
態様(吸、排気機構)における4行程(正逆回転比3:
1)を示すe,f,g,hの各(イ)(ロ)の各一部縦
断正面図。
FIG. 73 is a continuation of FIG. 72 and is a four-stroke process (forward / reverse rotation ratio 3: in another mode (intake / exhaust mechanism) of modes 1, 2, 4, 5 and 8;
FIG. 2 is a partial vertical sectional front view of (a) and (b) of e, f, g, and h showing 1).

【図74】本発明における順転同士の形態(順転比3:
1の形態8)を示す一部縦断側面図。
FIG. 74 is a form of forward rotation according to the present invention (forward rotation ratio 3:
1 is a partially longitudinal side view showing Embodiment 8) of FIG.

【図75】本発明における順転同士の形態(順転比3:
1の形態1)を示す一部縦断側面図。
FIG. 75 is a form of forward rotation according to the present invention (forward rotation ratio 3:
1 is a partial vertical cross-sectional side view showing Embodiment 1) of FIG.

【図76】形態1,2,4,5,8における順転比3:
1の4行程を示すa,b,c,dの各(イ)(ロ)の各
一部縦断正面図。
FIG. 76 shows the forward turn ratios in forms 1, 2, 4, 5, and 8:
The partial longitudinal front view of each of (a) and (b) of a, b, c, d showing the four strokes of 1.

【図77】形態1,2,4,5,8における順転比5:
1の4行程を示すa,b,c,dの各(イ)(ロ)の各
一部縦断正面図。
77 is a ratio of forward turn 5 in forms 1, 2, 4, 5, and 8:
The partial longitudinal front view of each of (a) and (b) of a, b, c, d showing the four strokes of 1.

【図78】図77の続き、形態1,2,4,5,8にお
ける順転比5:1の4行程を示すe,f,g,hの各
(イ)(ロ)の各一部縦断正面図。
78 is a continuation of FIG. 77, and each part (a) and (b) of e, f, g, and h showing four strokes in the forward ratio of 5: 1 in the forms 1, 2, 4, 5, and 8. FIG.

【図79】本発明における順転同士の形態(順転比1:
3の形態6)を示す一部縦断側面図。
FIG. 79 shows a form of forward rotation in the present invention (forward rotation ratio 1:
3 is a partially longitudinal side view showing the third embodiment 6).

【図80】形態1,2,3,4,6,7における順転比
1:3の4行程を示すa,b,c,dを示す各一部縦断
正面図。
80 is a partial vertical sectional front view showing a, b, c, and d showing four strokes in the forward rotation ratio 1: 3 in the forms 1, 2, 3, 4, 6, and 7. FIG.

【図81】形態1,2,3,4,6,7における順転比
1:5の4行程を示すa,b,c,d,e,f,g,h
を示す各一部縦断正面図。
81 is a, b, c, d, e, f, g, h showing four strokes in the forward ratio 1: 5 in the forms 1, 2, 3, 4, 6, 7. FIG.
FIG.

【符号の説明】[Explanation of symbols]

G 球面 O 球面Gの球心 r 球面Gの半径 X X軸線(回転主軸、転がり軸、枢結子の回転軸
線) Y Y軸線(S円面の形成軸線、斜行板の回転軸線) θ θ角度(X軸線とY軸線との鋭角側の交差角度) P P点(X軸線が球面Gに交わる点) Q Q点(Y軸線が球面Gに交わる点) U 円錐軌跡U(点P,Qが底面の直径、球心Oが頂
点の円錐軌跡) J 円錐軌跡J(点P,Qが底面の半径、球心Oが頂
点の円錐軌跡) M M軸線(X軸線とR円面の垂直軸線、ピン継手関
節の関節基軸線) R R円面(X軸線上の水平円面) S S円面(Y軸線の垂直円面) L L軸線(R円面の自転軸線) K K軸線(R円面とS円面との交差割線、M軸線の
垂直線) Ka K軸線両端の一方の端点 Kb K軸線両端のもの一方の端点 Ha 半月状の空間、半月状作動室 Fu 櫛形状の空間、櫛形状作動室 In 吸気孔 Ex 排気孔 Ig 点火具、又は燃料噴射弁 A 空間A、気室A、櫛形状作動室A、筺体流路孔A
(形態6,7) B 空間B、気室B、櫛形状作動室B、筺体流路孔B
(形態6,7) C 空間C、気室C、櫛形状作動室C、筺体流路孔C
(形態6,7) D 空間D、気室D、櫛形状作動室D、筺体流路孔D
(形態6,7) Po 一次回転 Ne 二次回転 10 ハウジング 11 ハウジングの凹面内壁 12 軌道隙 13 主軸受 14 固定位相歯車 15 軸板室 19 ハウジング流路孔 20 回転主軸 21 回転主軸の軸央枢 22 主軸歯車 23 Z軸 24 軸板 25 軸腕 26 連結棒 27 Z軸歯車 28 歯車ポケット 29 軸板流路孔 30 回転ピストン 31 回転ピストンの弓形面 32 回転ピストンの球弧面 33 ピストン中間軸 34 ピストン通軸孔 35 ピストン枢 40 斜行板 41 斜行板、及び筐体斜行板の弓形面 42 斜行板、及び筐体斜行板の弦側面 43 斜行板環 44 斜行板環歯車 45 外郭摺接面 49 斜行板流路孔 50 蝶番関節 51 蝶番ピン 52 蝶番ピン受 54 中間歯車 55 ピン継手関節 56 位相板 57 位相板軸受 58 位相板歯車 59 位相板流路孔 60 筺体 61 筺体斜行板 62 筺体の筺体歯車 63 筺体の筺体軸受 64 筺体の軸板室 69 筺体の筺体流路孔 70 Z軸筺体 71 筺体軸 72 転がり軸 73 転がり軸受 74 転がり軸の軸央枢 76 転がり歯車 80 位相筺体 81 位相筺体の凹面内壁 82 位相筺体の筺体歯車 83 位相筺体の筺体軸受 86 点火孔、又は燃料噴射孔 87 Z軸筺体、位相筺体の軌道隙 88 枢結子 89 Z軸筺体、位相筺体の筺体流路孔
G spherical surface O spherical center of spherical surface G radius of spherical surface G X X axis line (main axis of rotation, rolling axis, rotation axis of pivot) Y Y axis line (formation axis of S circle surface, rotation axis of skew plate) θ θ angle (An intersecting angle of the X axis and the Y axis on the acute angle side) P P point (point where the X axis intersects the spherical surface G) Q Q point (point where the Y axis intersects the spherical surface G) U Conical locus U (points P and Q are Diameter of bottom surface, conical locus of apex with spherical center O) J Conical locus J (radius of bottom surface with points P and Q, conical locus of apex with spherical center O) M M axis (vertical axis of X axis and R circle, Pin joint joint joint axis) R R circle surface (horizontal circle surface on X axis line) S S circle surface (vertical circle surface of Y axis line) L L axis line (rotation axis line of R circle surface) K K axis line (R circle) (Intersecting secant of plane and S circle, vertical line of M axis) Ka K One end point of K axis Kb One end point of K axis One end point Ha Half-moon space, half-moon operation Chamber Fu Comb-shaped space, Comb-shaped working chamber In Intake hole Ex Exhaust hole Ig Ignition device or fuel injection valve A Space A, Air chamber A, Comb-shaped working chamber A, Case flow path hole A
(Modes 6 and 7) B space B, air chamber B, comb-shaped working chamber B, casing flow path hole B
(Modes 6 and 7) C Space C, air chamber C, comb-shaped working chamber C, housing flow path hole C
(Modes 6 and 7) D Space D, air chamber D, comb-shaped working chamber D, housing flow path hole D
(Modes 6 and 7) Po Primary rotation Ne Secondary rotation 10 Housing 11 Housing concave surface inner wall 12 Orbital gap 13 Main bearing 14 Fixed phase gear 15 Shaft plate chamber 19 Housing passage hole 20 Rotating main shaft 21 Rotating main shaft shaft center 22 Main shaft Gear 23 Z-axis 24 Shaft plate 25 Shaft arm 26 Connecting rod 27 Z-axis gear 28 Gear pocket 29 Shaft plate passage hole 30 Rotating piston 31 Rotating piston arcuate surface 32 Rotating piston spherical arc surface 33 Piston intermediate shaft 34 Piston shaft Hole 35 Piston pivot 40 Oblique plate 41 Oblique plate and arcuate surface of oblique plate of housing 42 Oblique plate and chord side surface of oblique plate of housing 43 Oblique plate ring 44 Oblique plate ring gear 45 Outer sliding Contact surface 49 Oblique plate flow path hole 50 Hinge joint 51 Hinge pin 52 Hinge pin receiver 54 Intermediate gear 55 Pin joint joint 56 Phase plate 57 Phase plate bearing 58 Phase plate gear 59 Phase plate flow path hole 60 Body 61 Case skew plate 62 Case case gear 63 Case case bearing 64 Case shaft plate chamber 69 Case case passage hole 70 Z axis case 71 Case axis 72 Rolling shaft 73 Rolling bearing 74 Central axis 76 Gear 80 phase housing 81 concave inner wall of phase housing 82 phase housing housing gear 83 phase housing housing bearing 86 ignition hole or fuel injection hole 87 Z axis housing, phase housing orbital gap 88 pivots 89 Z axis housing, phase housing Case flow path

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F01C 3/06 F01C 9/00 F02B 53/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) F01C 3/06 F01C 9/00 F02B 53/00

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、円面(S)の延長平面に沿ったハウジ
ング(10)内壁の部分を周回する溝に削成した軌道隙
(12)と軸線(Y)上の対向両壁の各々を円形凹みに
欠切形成した軸板室(15)とを球面(G)の外側に設
け且つ各々の軸板室(15)の側壁中心部に主軸受(1
3)を貫設し、 その両主軸受(13)には前記軸板室(15)の各々に
回転可能に収納される軸板(24)の各々を軸線(X)
上の連結棒(26)が結合してZ字形をなすZ軸(2
3)の両軸頸を軸承させこの連結棒(26)に管状の転
がり軸(72)を外嵌させ且つこの転がり軸(72)の
中心部分に軸線(M)を連結軸とするピン継手関節(5
5)の円形体からなる軸央枢(74)を有し、 円面(R)上には球面(G)に摺接する外周面の球弧面
(32)とその球弧面(32)の弓形輪郭平面をなして
前記軸線(K)側を弦とする弓形面(31)とを有し且
つその弓形面(31)の弦側に円柱状のピストン中間軸
(33)を合体させた略板状の回転ピストン(30)が
前記転がり軸(72)を挿通させて配置されこの回転ピ
ストン(30)の内部中央に前記軸央枢(74)の円形
体を受容するピストン枢(35)を形成しそのピストン
枢(35)を軸央枢(74)に軸線(X)上の転がり軸
(72)を基軸として角度(θ)×2の範囲を揺動可能
に枢着させ且つピストン中間軸(33)両端の前記点
(Ka)点(Kb)側に交差割線(K)を関節基軸線と
する蝶番関節(50)のピンか又はピン受孔からなる何
れかの連結素子を設け、 また円面(S)上には弓形面(41)とその弓形面(4
1)の弓形輪郭面と弦側面(42)とを有し且つ弓形輪
郭面に内周面側を固着させて一体構造をなす環状の斜行
板環(43)を外周に形成した円形板状の斜行板(4
0)がその斜行板環(43)を前記軌道隙(12)に回
転可能に嵌合させて配置され尚その斜行板環(43)の
点(Ka)点(Kb)に位置する対向部分に前記蝶番関
節(50)の連結素子に対応する連結素子を設けて嵌合
させると斜行板(40)と前記回転ピストン(30)が
前記交差割線(K)を蝶着の軸として角度(θ)×2範
囲を擺動可能に連結し、 その上前記軸板室(15)の周壁を固定歯車の固定位相
歯車(14)に刻設し且つ転がり軸(72)端部に外歯
歯車の転がり歯車(76)を設けて固定位相歯車(1
4)に歯合させ、 すると円面(S)上の斜行板(40)がハウジング(1
0)内の球面(G)をなす内側凹面を閉鎖して半球状空
間の半月状作動室(Ha)を形成しその半月状作動室
(Ha)を円面(R)上の回転ピストン(30)が櫛形
状の空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
1. A straight line intersecting at a spherical center (O) having a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and having an angle (θ). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
In (0), each of the raceway gaps (12) formed in the groove surrounding the inner wall portion of the housing (10) along the extension plane of the circular surface (S) and the opposing both walls on the axis (Y) are circular. A shaft plate chamber (15), which is formed by notching in the recess, is provided outside the spherical surface (G), and a main bearing (1) is provided at the center of the side wall of each shaft plate chamber (15).
3) through which the shaft plates (24) rotatably housed in the shaft plate chambers (15) are provided in both main bearings (13) of the shaft lines (X).
The Z-axis (2
3) A pin joint joint in which both shaft necks are supported, a tubular rolling shaft (72) is externally fitted to the connecting rod (26), and an axis (M) serves as a connecting shaft at the central portion of the rolling shaft (72). (5
5) has an axial center (74) consisting of a circular body, and on the circular surface (R), there is a spherical arc surface (32) of the outer peripheral surface which is in sliding contact with the spherical surface (G) and the spherical arc surface (32). An arcuate contour plane, a bow surface (31) having a chord on the axis (K) side, and a cylindrical piston intermediate shaft (33) joined to the chord side of the bow surface (31). A plate-shaped rotary piston (30) is arranged so that the rolling shaft (72) is inserted therethrough, and a piston pivot (35) for receiving the circular body of the axial center (74) is provided in the inner center of the rotary piston (30). The piston pivot (35) is pivotally attached to the pivot (74) about the axis (X) so that the piston pivot (35) can pivot within a range of angle (θ) × 2 and the piston intermediate shaft. (33) A pin of a hinge joint (50) whose joint base axis is the intersection secant (K) on the side of the points (Ka) and (Kb) at both ends. Or consisting of a pin receiving hole provided one of the connecting elements, also arcuate surface on the circular surface (S) (41) and its arcuate surface (4
A circular plate shape having an arcuate slant plate ring (43) formed on the outer periphery, which has the arcuate contour surface and the chordal side surface (42) of 1) and has an inner peripheral surface side fixedly attached to the arcuate contour surface. Skew board (4
0) is arranged so that the slanting plate ring (43) is rotatably fitted in the orbital space (12), and is facing at the point (Ka) point (Kb) of the slanting plate ring (43). When a connecting element corresponding to the connecting element of the hinge joint (50) is provided and fitted to the portion, the oblique plate (40) and the rotary piston (30) form an angle with the intersecting secant (K) as the hinge axis. (Θ) × 2 range is slidably connected, and the peripheral wall of the shaft plate chamber (15) is engraved on the fixed phase gear (14) of the fixed gear and the end of the rolling shaft (72) of the external gear is formed. A rolling gear (76) is provided to provide a fixed phase gear (1
4) meshed with each other, and then the slanting plate (40) on the circular surface (S) was attached to the housing (1
0), the inner concave surface forming the spherical surface (G) is closed to form a half-moon-shaped working chamber (Ha) in a hemispherical space, and the half-moon-shaped working chamber (Ha) is formed on the circular surface (R) by a rotary piston (30). ) Is formed in a comb-shaped working chamber (Fu) that forms a comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項2】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、円面(S)の延長平面に沿ったハウジ
ング(10)内壁の部分を周回する溝に削成した軌道隙
(12)と軸線(Y)上の対向両壁の各々を円形凹みに
欠切形成した軸板室(15)とを球面(G)の外側に設
け且つ各々の軸板室(15)の側壁中心部に主軸受(1
3)を貫設し、 その両主軸受(13)には前記軸板室(15)の各々に
回転可能に嵌合する軸板(24)の各々を軸線(X)上
の連結棒(26)が連結してZ字形をなすZ軸(23)
の両軸頸を軸承させこのZ軸(23)の球心(O)に位
置する連結棒(26)の中心部分に軸線(M)を連結軸
とするピン継手関節(55)の円形体素子からなる枢結
子(88)を取付け、 円面(R)上には球面(G)に摺接する外周面の球弧面
(32)とその球弧面(32)の弓形輪郭平面をなして
前記軸線(K)側を弦とする弓形面(31)とを有し且
つその弓形面(31)の弦側に円柱状のピストン中間軸
(33)を合体させた略板状の回転ピストン(30)が
前記Z軸(23)の連結棒(26)を挿通させて配置さ
れこの回転ピストン(30)の内部中央に前記枢結子
(88)の円形体素子を受容するピストン枢(35)を
形成しそのピストン枢(35)を枢結子(88)に軸線
(X)上の連結棒(26)を基軸として角度(θ)×2
の範囲を揺動可能に枢着させ且つピストン中間軸(3
3)両端の前記点(Ka)点(Kb)側に交差割線
(K)を関節基軸線とする蝶番関節(50)のピンか又
はピン受孔からなる連結素子を設け、 また円面(S)上には弓形面(41)とその弓形面(4
1)の弓形輪郭面と弦側面(42)とを有し且つ弓形輪
郭面に内周面側を固着させて一体構造をなす環状の斜行
板環(43)を外周に形成した円形板状の斜行板(4
0)がその斜行板環(43)を前記軌道隙(12)に回
転可能に嵌合させて配置され尚その斜行板環(43)の
点(Ka)点(Kb)に位置する対向部分に前記蝶番関
節(50)の連結素子に対応する連結素子を設けて嵌合
させると斜行板(40)と前記回転ピストン(30)が
前記交差割線(K)を蝶着の軸として角度(θ)×2範
囲を擺動可能に連結し、 その上前記Z軸(23)軸頸に外歯歯車のZ軸歯車(2
7)を装着して斜行板環(43)縁部円周も斜行板環歯
車(44)に刻設し且つそれらに噛み合う中間歯車(5
4)を介在させ、 すると円面(S)上の斜行板(40)がハウジング(1
0)内の球面(G)をなす内側凹面を閉鎖して半球状空
間の半月状作動室(Ha)を形成しその半月状作動室
(Ha)を円面(R)上の回転ピストン(30)が櫛形
状の空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
2. Each of two straight lines intersecting at a spherical center (O) having a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and having no angle (θ). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
In (0), each of the raceway gaps (12) formed in the groove surrounding the inner wall portion of the housing (10) along the extension plane of the circular surface (S) and the opposing both walls on the axis (Y) are circular. A shaft plate chamber (15), which is formed by notching in the recess, is provided outside the spherical surface (G), and a main bearing (1) is provided at the center of the side wall of each shaft plate chamber (15).
3) penetrating through each of the main bearings (13), each of the shaft plates (24) rotatably fitted in each of the shaft plate chambers (15) is connected to the connecting rod (26) on the axis (X). Z-axis (23) connecting to form a Z-shape
A circular body element of a pin joint joint (55) having a shaft (M) as a connecting shaft at the central portion of a connecting rod (26) positioned at the spherical center (O) of the Z-axis (23) by supporting both of the shaft necks. And a spherical arc surface (32) of the outer peripheral surface which is in sliding contact with the spherical surface (G) on the circular surface (R) and an arcuate contour plane of the spherical arc surface (32). A substantially plate-shaped rotary piston (30) having an arcuate surface (31) having a chord on the axis (K) side, and incorporating a cylindrical piston intermediate shaft (33) on the chord side of the arcuate surface (31). ) Is inserted through the connecting rod (26) of the Z-axis (23), and a piston pivot (35) for receiving the circular body element of the pivot connector (88) is formed in the inner center of the rotary piston (30). The piston pivot (35) is connected to the pivot connector (88), and the connecting rod (26) on the axis (X) is used as the base axis (angle (θ) ×).
Of the piston intermediate shaft (3
3) A connecting element composed of a pin or a pin receiving hole of a hinge joint (50) whose joint base axis is the intersection secant (K) is provided on both sides of the points (Ka) and (Kb) at both ends, and the circular surface (S) ) Above it is an arched surface (41) and its arched surface (4
A circular plate shape having an arcuate slant plate ring (43) formed on the outer periphery, which has the arcuate contour surface and the chordal side surface (42) of 1) and has an inner peripheral surface side fixedly attached to the arcuate contour surface. Skew board (4
0) is arranged so that the slanting plate ring (43) is rotatably fitted in the orbital space (12), and is facing at the point (Ka) point (Kb) of the slanting plate ring (43). When a connecting element corresponding to the connecting element of the hinge joint (50) is provided and fitted to the portion, the oblique plate (40) and the rotary piston (30) form an angle with the intersecting secant (K) as the hinge axis. (Θ) × 2 range is slidably connected, and the Z-axis gear (2) of the external gear is attached to the Z-axis (23) axis neck.
7) is attached and the circumference of the edge portion of the slanting plate ring (43) is also engraved on the slanting plate ring gear (44), and the intermediate gear (5
4) is interposed, and the slanting plate (40) on the circular surface (S) is then attached to the housing (1).
0), the inner concave surface forming the spherical surface (G) is closed to form a half-moon-shaped working chamber (Ha) in a hemispherical space, and the half-moon-shaped working chamber (Ha) is formed on the circular surface (R) by a rotary piston (30). ) Is formed in a comb-shaped working chamber (Fu) that forms a comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項3】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、そのハウジング(10)内壁面を前記
球面(G)をなす内壁面に形成して円面(S)の延長平
面に沿った内壁の部分を周回する溝の軌道隙(12)に
削成し且つ軸線(Y)上の対向両壁に主軸受(13)を
貫設し、 その両主軸受(13)には任意形状からなる軸腕(2
5)の各々を軸線(X)上の連結棒(26)が連結して
Z字形をなすZ軸(23)の両軸頸を軸承させこのZ軸
(23)の球心(O)に位置する連結棒(26)の中心
部分に軸線(M)を連結軸とするピン継手関節(55)
の円形体素子からなる枢結子(88)を取付け、 円面(R)上には球面(G)に摺接する外周面の球弧面
(32)とその球弧面(32)の弓形輪郭平面をなして
前記軸線(K)側を弦とする弓形面(31)とを有し且
つその弓形面(31)の弦側に円柱状のピストン中間軸
(33)を合体させた略板状の回転ピストン(30)が
前記軸腕(25)と連結棒(26)とのZ軸(23)の
中間部分を挿通させて配置されこの回転ピストン(3
0)の内部中央に前記枢結子(88)の円形体素子を受
容するピストン枢(35)を形成しそのピストン枢(3
5)を枢結子(88)に軸線(X)上の連結棒(26)
を基軸として角度(θ)×2の範囲を揺動可能に枢着さ
せ且つピストン中間軸(33)両端の前記点(Ka)点
(Kb)側に交差割線(K)を関節基軸線とする蝶番関
節(50)のピンか又はピン受孔からなる連結素子を設
け、 また円面(S)上には弓形面(41)とその弓形面(4
1)の弓形輪郭面と弦側面(42)とを有し且つ弓形輪
郭面に内周面側を固着させて一体構造をなす環状の斜行
板環(43)を外周に形成した円形板状の斜行板(4
0)がその斜行板環(43)を前記軌道隙(12)に回
転可能に嵌合させて配置され尚その斜行板環(43)の
点(Ka)点(Kb)に位置する対向部分に前記蝶番関
節(50)の連結素子に対応する連結素子を設けて嵌合
させると斜行板(40)と前記回転ピストン(30)が
前記交差割線(K)を蝶着の軸として角度(θ)×2範
囲を擺動可能に連結し、 その上前記Z軸(23)軸頸に外歯歯車のZ軸歯車(2
7)を装着して斜行板環(43)縁部円周も斜行板環歯
車(44)に刻設し且つそれらに噛み合う中間歯車(5
4)を介在させ、 すると円面(S)上の斜行板(40)が球面(G)をな
すハウジング(10)の凹面内壁(11)を閉鎖して半
球状空間の半月状作動室(Ha)を形成しその半月状作
動室(Ha)を円面(R)上の回転ピストン(30)が
櫛形状の空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
3. Two straight lines intersecting each other at a spherical center (O) having a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and forming an angle (θ). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
In (0), the inner wall surface of the housing (10) is formed as the inner wall surface forming the spherical surface (G), and the orbital gap (12) of the groove that surrounds the inner wall portion along the extension plane of the circular surface (S). And a main bearing (13) is pierced on both opposing walls on the axis (Y). The main bearing (13) has a shaft arm (2) having an arbitrary shape.
Each of 5) is connected to the connecting rod (26) on the axis (X) to support the Z-shaped neck of the Z axis (23) and is positioned at the spherical center (O) of the Z axis (23). A pin joint joint (55) having an axis (M) as a connecting axis at the center of the connecting rod (26)
A pivot connector (88) consisting of a circular body element is attached, and a spherical arc surface (32) of an outer peripheral surface slidingly contacting a spherical surface (G) on the circular surface (R) and an arcuate contour plane of the spherical arc surface (32). And an arcuate surface (31) having the axis (K) side as a chord, and a cylindrical piston intermediate shaft (33) united to the chord side of the arcuate surface (31). A rotary piston (30) is arranged by inserting an intermediate portion of the Z-axis (23) between the shaft arm (25) and the connecting rod (26).
0) has a piston pivot (35) for receiving the circular body element of the pivot connector (88) formed in the inner center of the piston pivot (3).
5) Connect the pivot rod (88) to the connecting rod (26) on the axis (X).
Is pivotally mounted in a range of angle (θ) × 2 with respect to the base axis and the intersection secant (K) is the joint base axis on the side of the points (Ka) and (Kb) at both ends of the piston intermediate shaft (33). A connecting element consisting of a pin or a pin receiving hole of the hinge joint (50) is provided, and an arcuate surface (41) and its arcuate surface (4) are provided on the circular surface (S).
A circular plate shape having an arcuate slant plate ring (43) formed on the outer periphery, which has the arcuate contour surface and the chordal side surface (42) of 1) and has an inner peripheral surface side fixedly attached to the arcuate contour surface. Skew board (4
0) is arranged so that the slanting plate ring (43) is rotatably fitted in the orbital space (12), and is facing at the point (Ka) point (Kb) of the slanting plate ring (43). When a connecting element corresponding to the connecting element of the hinge joint (50) is provided and fitted to the portion, the oblique plate (40) and the rotary piston (30) form an angle with the intersecting secant (K) as the hinge axis. (Θ) × 2 range is slidably connected, and the Z-axis gear (2) of the external gear is attached to the Z-axis (23) axis neck.
7) is attached and the circumference of the edge portion of the slanting plate ring (43) is also engraved on the slanting plate ring gear (44), and the intermediate gear (5
4) is interposed, and then the slanting plate (40) on the circular surface (S) closes the concave inner wall (11) of the housing (10) forming the spherical surface (G) to form a half-moon-shaped working chamber (). Ha) and the half-moon shaped working chamber (Ha) is formed into a comb-shaped working chamber (Fu) in which a rotary piston (30) on a circular surface (R) forms a comb-shaped space, and the comb-shaped working chamber is further formed. (Fu) facing the suction hole (I
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項4】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、そのハウジング(10)内壁面を球面
(G)同心の球面(G)より大きい球面に形成し且つ軸
線(X)上のハウジング(10)対向壁に主軸受(1
3)を貫設し、 その両主軸受(13)には直軸状をなす回転主軸(2
0)の両側軸頸を軸承させこの回転主軸(20)の球心
(O)に位置する中心部分に軸線(M)を連結軸とする
ピン継手関節(55)の円形体からなる軸央枢(21)
を有し、 円面(R)上には球面(G)に摺接する外周面の球弧面
(32)とその球弧面(32)の弓形輪郭平面をなして
前記軸線(K)側を弦とする弓形面(31)とを有し且
つその弓形面(31)の弦側に円柱状のピストン中間軸
(33)を合体させた略板状の回転ピストン(30)が
前記回転主軸(20)を遊挿させて配置されこの回転ピ
ストン(30)の内部中央に前記軸央枢(21)の円形
体を受容するピストン枢(35)を形成しそのピストン
枢(35)を軸央枢(21)に軸線(X)上の回転主軸
(20)を基軸として角度(θ)×2の範囲を揺動可能
に枢着させ且つピストン中間軸(33)両端の前記点
(Ka)点(Kb)側に交差割線(K)を関節の基軸線
とする蝶番関節(50)のピンか又はピン受孔からなる
連結素子を設け、 そして円面(S)上には弓形面(41)とその弓形面
(41)の弓形輪郭面と弦側面(42)とを有し且つ弓
形輪郭面に内周面側を一体構造に結合してハウジング
(10)内壁面に回転可能に契合する環状の斜行板環
(43)を外周に形成した円形板状の斜行板(40)が
配置され尚その斜行板環(43)の点(Ka)点(K
b)に位置する対向部分に前記蝶番関節(50)の連結
素子に対応する連結素子を設けて嵌合させると斜行板
(40)と前記回転ピストン(30)が前記交差割線
(K)を蝶着の軸として角度(θ)×2範囲を擺動可能
に連結し、 また斜行板環(43)を挟む両側の各々に球面(G)の
内側面を有する凹面板の位相板(56)を組込み且つそ
の位相板(56)の各々に点(P)上を貫通する位相板
軸受(57)を設けて回転主軸(20)を嵌挿させ、 その上位相板(56)外側面に位相板軸受(57)孔を
中心として外歯傘歯車の位相板歯車(58)を取付け回
転主軸(20)軸頸にも外歯傘歯車の主軸歯車(22)
を取付け且つそれらに噛み合う中間歯車(54)を介在
させ、 すると円面(S)上の斜行板(40)がハウジング(1
0)内の球面(G)をなす内側凹面を閉鎖して半球状空
間の半月状作動室(Ha)を形成しその半月状作動室
(Ha)を円面(R)上の回転ピストン(30)が櫛形
状の空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
4. A straight line intersecting at a spherical center (O) having a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and having an angle (θ). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
0), the inner wall surface of the housing (10) is formed into a spherical surface (G) larger than the concentric spherical surface (G), and the main bearing (1) is provided on the opposing wall of the housing (10) on the axis (X).
3) is penetrated, and both main bearings (13) have a rotary main shaft (2
No. 0) bearing both side shaft necks, and a central shaft center consisting of a circular body of a pin joint joint (55) having an axis (M) as a connecting axis at a central portion located at a spherical center (O) of the rotating main shaft (20). (21)
On the circular surface (R), the spherical arc surface (32) of the outer peripheral surface which is in sliding contact with the spherical surface (G) and the arcuate contour plane of the spherical arc surface (32) are formed so that the axis (K) side is A substantially plate-shaped rotary piston (30) having an arcuate surface (31) as a chord and having a cylindrical piston intermediate shaft (33) joined to the chord side of the arcuate surface (31) is the rotary spindle (30). 20) is loosely inserted and a piston center (35) for receiving the circular body of the shaft center (21) is formed in the inner center of the rotary piston (30), and the piston center (35) is centered. The rotation main shaft (20) on the axis (X) is pivotally attached to (21) so as to be swingable in a range of angle (θ) × 2, and the points (Ka) ((Ka)) at both ends of the piston intermediate shaft (33) ( On the Kb) side, a connecting element consisting of a pin or a pin receiving hole of a hinge joint (50) with the intersection secant (K) as the base axis of the joint. And has an arcuate surface (41), an arcuate contour surface of the arcuate surface (41) and a chord side surface (42) on the circular surface (S), and the inner peripheral surface side is integrally formed with the arcuate contour surface. A circular plate-shaped skew plate (40) having an annular skew plate ring (43) formed on the outer periphery, which is coupled and rotatably engages with the inner wall surface of the housing (10), is arranged. ) Point (Ka) point (K
When a connecting element corresponding to the connecting element of the hinge joint (50) is provided and fitted in the opposing portion located in b), the oblique plate (40) and the rotary piston (30) connect the intersecting secant (K). A phase plate (56) which is a concave plate having an angle (θ) × 2 range slidably connected as an axis of hinge attachment and having an inner surface of a spherical surface (G) on each side sandwiching the slant plate ring (43). Is installed and a phase plate bearing (57) penetrating above the point (P) is provided in each of the phase plates (56), and the rotary spindle (20) is fitted and inserted, and the phase is formed on the outer surface of the upper phase plate (56). The phase plate gear (58) of the external bevel gear is attached around the hole of the plate bearing (57) and the main shaft gear (22) of the external bevel gear is also attached to the rotary main shaft (20) shaft neck.
And an intermediate gear (54) that engages with them is interposed. Then, the oblique plate (40) on the circular surface (S) is attached to the housing (1).
0), the inner concave surface forming the spherical surface (G) is closed to form a half-moon-shaped working chamber (Ha) in a hemispherical space, and the half-moon-shaped working chamber (Ha) is formed on the circular surface (R) by a rotary piston (30). ) Is formed in a comb-shaped working chamber (Fu) that forms a comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項5】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、そのハウジング(10)内壁面を軸線
(Y)に同心の球面(G)より大きい回転面に形成して
軸線(Y)上のハウジング(10)対向壁に主軸受(1
3)を貫設しそのハウジング(10)内には球面(G)
をなす内側面と軸線(Y)上の対向両側に軸止めした柄
状の筺体軸(71)とを有する球体状のZ軸筺体(7
0)を回転可能に嵌合させて両筺体軸(71)を主軸受
(13)に軸承させ、 このZ軸筺体(70)には円面(S)の延長平面に沿っ
た内部面の部分を周回する溝に削成した軌道隙(87)
と軸線(X)上の対向両側に転がり軸受(73)とを設
けその転がり軸受(73)に直軸状をなす転がり軸(7
2)の両軸頸を軸承させこの転がり軸(72)の球心
(O)に位置して軸線(M)を連結軸とするピン継手関
節(55)の円形体からなる軸央枢(74)を有し、 前記Z軸筺体(70)内の円面(R)上には球面(G)
に摺接する外周面の球弧面(32)とその球弧面(3
2)の弓形輪郭平面をなして前記軸線(K)側を弦とす
る弓形面(31)とを有し且つその弓形面(31)の弦
側に円柱状のピストン中間軸(33)を合体させた略板
状の回転ピストン(30)が前記転がり軸(72)を遊
挿させて配置されこの回転ピストン(30)の内部中央
に前記軸央枢(74)の円形体を受容するピストン枢
(35)を形成しそのピストン枢(35)を軸央枢(7
4)に軸線(X)上の転がり軸(72)を基軸として角
度(θ)×2の範囲を揺動可能に枢着させ且つピストン
中間軸(33)両端の前記点(Ka)点(Kb)側に交
差割線(K)を関節の基軸線とする蝶番関節(50)の
ピンか又はピン受孔からなる連結素子を設け、 そしてZ軸筺体(70)内の円面(S)上には弓形面
(41)とその弓形面(41)の弓形輪郭面と弦側面
(42)とを有し且つ弓形輪郭面に内周面側を一体構造
に結合してZ軸筺体(70)の軌道隙(87)に回転可
能に契合する環状の斜行板環(43)を外周に形成した
円形板状の斜行板(40)が配置され尚その斜行板環
(43)の点(Ka)点(Kb)に位置する対向部分に
前記蝶番関節(50)の連結素子に対応する連結素子を
設けて嵌合させると斜行板(40)と前記回転ピストン
(30)が前記交差割線(K)を蝶着の軸として角度
(θ)×2範囲を擺動可能に連結し、 その上円面(S)を挟むハウジング(10)対向内壁に
固定歯車の固定位相歯車(14)を軸線(Y)同心に刻
設し且つ前記転がり軸(72)軸頸端部に外歯歯車の転
がり歯車(76)を設けて固定位相歯車(14)に歯合
させ、 すると円面(S)上の斜行板(40)が球面(G)をな
すZ軸筺体(70)の内側凹面を閉鎖して半球状空間の
半月状作動室(Ha)を形成しその半月状作動室(H
a)を円面(R)上の回転ピストン(30)が櫛形状の
空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
5. A straight line intersecting at a spherical center (O) having a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and having an angle (θ). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
0), the inner wall surface of the housing (10) is formed as a rotation surface larger than a spherical surface (G) concentric with the axis (Y), and the main bearing (1) is provided on the opposite wall of the housing (10) on the axis (Y).
3) is penetrated and the housing (10) has a spherical surface (G).
Spherical Z-axis housing (7) having an inner side surface and a handle-shaped housing shaft (71) axially fixed to opposite sides on the axis (Y).
0) is rotatably fitted so that both housing shafts (71) are supported by the main bearing (13), and this Z-axis housing (70) has a portion of the inner surface along the extension plane of the circular surface (S). Orbital clearance created in the groove that orbits the car (87)
And rolling bearings (73) are provided on opposite sides on the axis (X), and the rolling bearing (73) has a straight shaft-like rolling shaft (7).
2) Axial central axis (74) which is a circular body of a pin joint joint (55) which bears both shaft necks and is positioned at the ball center (O) of the rolling shaft (72) and uses the axis (M) as a connecting shaft. ), And a spherical surface (G) on the circular surface (R) in the Z-axis housing (70).
The spherical arc surface (32) of the outer peripheral surface which is in sliding contact with the spherical arc surface (3
2) having an arcuate contour plane and having an arcuate surface (31) having a chord on the axis (K) side, and incorporating a cylindrical piston intermediate shaft (33) on the chordal side of the arcuate surface (31). A substantially plate-shaped rotary piston (30) is arranged with the rolling shaft (72) inserted therein loosely, and a piston body for receiving the circular body of the central shaft (74) in the inner center of the rotary piston (30). (35) and its piston pivot (35) is pivoted (7)
4) is pivotally mounted in a range of angle (θ) × 2 about the rolling axis (72) on the axis (X) so as to be swingable, and the points (Ka) and (Kb) at both ends of the piston intermediate shaft (33) (Kb). ) Side, a connecting element consisting of a pin or a pin receiving hole of the hinge joint (50) with the intersection secant (K) as the base axis of the joint is provided, and on the circular surface (S) in the Z-axis housing (70). Has an arcuate surface (41), an arcuate contour surface of the arcuate surface (41) and a chordal side surface (42), and an inner peripheral surface side of the arcuate contour surface is integrally connected to the Z-axis housing (70). A circular plate-shaped slanting plate (40) having an annular slanting plate ring (43) rotatably engaged with the orbital space (87) formed on the outer periphery is arranged, and the point of the slanting plate ring (43) ( When a connecting element corresponding to the connecting element of the hinge joint (50) is provided at the facing portion located at the point (Ka) (Kb) and fitted, the skew plate (40) is attached. And the rotary piston (30) are slidably connected to each other in a range of an angle (θ) × 2 with the intersecting secant (K) as an axis of the hinge, and the upper circular surface (S) is sandwiched between the opposing inner walls of the housing (10). The fixed phase gear (14) of the fixed gear is formed concentrically with the axis (Y), and the rolling gear (76) of the external gear is provided at the neck end of the rolling shaft (72) to provide the fixed phase gear (14). Then, the slanting plate (40) on the circular surface (S) closes the inner concave surface of the Z-axis housing (70) forming the spherical surface (G) to close the half-moon-shaped working chamber (Ha) in the hemispherical space. Form the half-moon shaped working chamber (H
a) is formed in a comb-shaped working chamber (Fu) in which a rotary piston (30) on the circular surface (R) forms a comb-shaped space, and is made to face the comb-shaped working chamber (Fu), and an intake hole (I) is formed.
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項6】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、そのハウジング(10)内壁面を球面
(G)同心又は軸線(Y)同心の球面(G)より大きい
回転面に形成して軸線(Y)上のハウジング(10)対
向壁に主軸受(13)を設けそのハウジング(10)内
には球面(G)をなす内側面を有し且つその内側面の円
面(S)上に仕切り板状の筺体斜行板(61)と円面
(S)を挟む対向面に円形凹みに欠切形成した軸板室
(64)とその軸板室(64)の側壁中心部に筺体軸受
(63)とを有して回転可能に嵌合する球体状の筺体
(60)を軸線(Y)を回転軸線として組入れ、 また両側の主軸受(13)と筺体軸受(63)には前記
軸板室(64)の各々に回転可能に嵌合する軸板(2
4)の各々を軸線(X)上の連結棒(26)が連結して
Z字形をなすZ軸(23)の両軸頸を軸承させこのZ軸
(23)の球心(O)に位置する連結棒(26)の中心
部分に軸線(M)を連結軸とするピン継手関節(55)
の円形体素子からなる枢結子(88)を外嵌し、 前記筺体(60)内の円面(R)上には筺体(60)の
球面(G)からなる内側面に摺接する外周面の球弧面
(32)とその球弧面(32)の弓形輪郭平面をなして
前記軸線(K)側を弦とする弓形面(31)とを有し且
つその弓形面(31)の弦側に円柱状のピストン中間軸
(33)を合体させた略板状の回転ピストン(30)が
前記Z軸(23)の前記連結棒(26)を挿通させて配
置されこの回転ピストン(30)の内部中央に前記枢結
子(88)の円形体素子を受容するピストン枢(35)
を形成しそのピストン枢(35)を枢結子(88)に軸
線(X)上の連結棒(26)を基軸として角度(θ)×
2の範囲を揺動可能に枢着させ且つピストン中間軸(3
3)両端の前記点(Ka)点(Kb)側に交差割線
(K)を関節基軸線とする蝶番関節(50)のピンか又
はピン受孔からなる連結素子を設け、 そして筺体(60)内の円面(S)上には弓形面(4
1)とその弓形面(41)の弓形輪郭面と弦側面(4
2)とを有する前記筺体斜行板(61)がその弓形輪郭
面を筺体(60)の内部面に固着させて一体構造に形成
され尚その筐体(60)の点(Ka)点(Kb)側に位
置する対向部分に前記蝶番関節(50)の連結素子に対
応する連結素子を設けて嵌合させると筺体(60)内の
筺体斜行板(61)と前記回転ピストン(30)が前記
交差割線(K)を蝶着の軸として角度(θ)×2範囲を
擺動可能に連結し、 その上筺体(60)外部面に筺体軸受(63)孔を中心
として取付けた外歯傘歯車の筺体歯車(62)とZ軸
(23)軸頸に取付けた外歯傘歯車のZ軸歯車(27)
とを有し且つそれらに噛み合う中間歯車(54)を介在
させ、 すると円面(S)上の筺体斜行板(61)が筺体(6
0)内の球面(G)をなす内側凹面を閉鎖して半球状空
間の半月状作動室(Ha)を形成しその半月状作動室
(Ha)を円面(R)上の回転ピストン(30)が櫛形
状の空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
6. A straight line intersecting at a spherical center (O) having a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and having an angle (θ). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
In (0), the inner wall surface of the housing (10) is formed into a rotation surface larger than the spherical surface (G) concentric or the axial line (Y) concentric spherical surface (G) to form a housing (10) opposing wall on the axial line (Y). The main bearing (13) is provided, and the housing (10) has an inner side surface that forms a spherical surface (G), and a partition plate-like skewed plate (61) is provided on the circular surface (S) of the inner side surface. A shaft plate chamber (64) is formed by cutting out circular recesses on opposite surfaces sandwiching a circular surface (S), and a housing bearing (63) is rotatably fitted to the center part of the side wall of the shaft plate chamber (64). A shaft that incorporates a spherical housing (60) with the axis (Y) as the axis of rotation, and the main bearing (13) and the housing bearing (63) on both sides are rotatably fitted into each of the shaft plate chambers (64). Board (2
Each of 4) is connected to the connecting rod (26) on the axis (X) to support both Z-shaped necks of the Z axis (23) and is positioned at the spherical center (O) of the Z axis (23). A pin joint joint (55) having an axis (M) as a connecting axis at the center of the connecting rod (26)
Of the circular body element is fitted onto the circular surface (R) of the housing (60), and the outer peripheral surface of the outer peripheral surface slidingly contacting the inner surface of the spherical surface (G) of the housing (60). A arcuate surface (32) and an arcuate surface (31) which forms an arcuate contour plane of the arcuate surface (32) and has a chord on the side of the axis (K), and a chord side of the arcuate surface (31). A substantially plate-shaped rotary piston (30) in which a cylindrical piston intermediate shaft (33) is integrated with is arranged by inserting the connecting rod (26) of the Z-axis (23) into the rotary piston (30). Piston pivot (35) for receiving the circular body element of the pivot connector (88) in the inner center
And its piston pivot (35) is a pivot connector (88) with the connecting rod (26) on the axis (X) as the base angle (θ) ×
2 is pivotally mounted in the range of 2 and the piston intermediate shaft (3
3) A connecting element consisting of a pin or a pin receiving hole of a hinge joint (50) having a joint base line of the intersection secant (K) is provided on both sides of the points (Ka) and (Kb) at both ends, and a housing (60). An arcuate surface (4
1) and its arcuate surface (41), the arcuate contour surface and the chordal surface (4)
2) and the housing oblique plate (61) is formed into an integral structure by fixing its arcuate contour surface to the inner surface of the housing (60), and the housing (60) has a point (Ka) point (Kb). When a connecting element corresponding to the connecting element of the hinge joint (50) is provided and fitted to the facing portion located on the) side, the skewed plate (61) of the housing in the housing (60) and the rotary piston (30) are An externally toothed bevel gear having the cross secant (K) slidably connected in an angle (θ) × 2 range with the hinge axis as a shaft, and mounted on the outer surface of the upper housing (60) around the housing bearing (63) hole as a center. Z-axis gear (27) of external bevel gear attached to the housing gear (62) and the Z-axis (23) shaft neck
And an intermediate gear (54) that engages with them is interposed, and then the skewed board (61) on the circular surface (S) is moved to the housing (6).
0), the inner concave surface forming the spherical surface (G) is closed to form a half-moon-shaped working chamber (Ha) in a hemispherical space, and the half-moon-shaped working chamber (Ha) is formed on the circular surface (R) by a rotary piston (30). ) Is formed in a comb-shaped working chamber (Fu) that forms a comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項7】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、そのハウジング(10)内壁面を球面
(G)同心又は軸線(Y)同心の球面(G)より大きい
回転面に形成して軸線(Y)上のハウジング(10)対
向壁に主軸受(13)を設けそのハウジング(10)内
には球面(G)をなす内側面を有し且つその内側面の円
面(S)上に仕切り板状の筺体斜行板(61)と軸線
(Y)が貫通する対向両側に筺体軸受(63)とを有し
て回転可能に嵌合する球体状の筺体(60)を軸線
(Y)を回転軸線として組入れ、 また両側の主軸受(13)と筺体軸受(63)には任意
形状からなる軸腕(25)の各々を軸線(X)上の連結
棒(26)が連結してZ字形をなすZ軸(23)の両軸
頸を軸承させこのZ軸(23)の球心(O)に位置する
連結棒(26)の中心部分に軸線(M)を連結軸とする
ピン継手関節(55)の円形体素子からなる枢結子(8
8)を外嵌し、 前記筺体(60)内の円面(R)上には筺体(60)の
球面(G)からなる内側面に摺接する外周面の球弧面
(32)とその球弧面(32)の弓形輪郭平面をなして
前記軸線(K)側を弦とする弓形面(31)とを有し且
つその弓形面(31)の弦側に円柱状のピストン中間軸
(33)を合体させた略板状の回転ピストン(30)が
前記軸腕(25)と前記連結棒(26)とのZ軸(2
3)の中間部分を挿通させて配置されこの回転ピストン
(30)の内部中央に前記枢結子(88)の円形体素子
を受容するピストン枢(35)を形成しそのピストン枢
(35)を枢結子(88)に軸線(X)上の連結棒(2
6)を基軸として角度(θ)×2の範囲を揺動可能に枢
着させ且つピストン中間軸(33)両端の前記点(K
a)点(Kb)側に交差割線(K)を関節基軸線とする
蝶番関節(50)のピンか又はピン受孔からなる連結素
子を設け、 そして筺体(60)内の円面(S)上には弓形面(4
1)とその弓形面(41)の弓形輪郭面と弦側面(4
2)とを有する前記筺体斜行板(61)がその弓形輪郭
面を筺体(60)の内部面に固着させて一体構造に形成
され尚その筺体(60)の点(Ka)点(Kb)側に位
置する対向部分に前記蝶番関節(50)の連結素子に対
応する連結素子を設けて嵌合させると筺体(60)内の
筺体斜行板(62)と前記回転ピストン(30)が前記
交差割線(K)を蝶着の軸として角度(θ)×2範囲を
擺動可能に連結し、 その上筺体(60)外部面に筺体軸受(63)孔を中心
として取付けた外歯傘歯車の筺体歯車(62)とZ軸
(23)軸頸に取付けた外歯傘歯車のZ軸歯車(27)
とを有し且つそれらに噛み合う中間歯車(54)を介在
させ、 すると円面(S)上の筺体斜行板(61)が球面(G)
をなす筺体(60)の内側凹面を閉鎖して半球状空間の
半月状作動室(Ha)を形成しその半月状作動室(H
a)を円面(R)上の回転ピストン(30)が櫛形状の
空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
7. A straight line intersecting at a spherical center (O) having a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and having an angle (θ). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
In (0), the inner wall surface of the housing (10) is formed into a rotation surface larger than the spherical surface (G) concentric or the axial line (Y) concentric spherical surface (G) to form a housing (10) opposing wall on the axial line (Y). The main bearing (13) is provided, and the housing (10) has an inner side surface that forms a spherical surface (G), and a partition plate-like skewed plate (61) is provided on the circular surface (S) of the inner side surface. A spherical housing (60) having a housing bearing (63) on both opposite sides through which the axis (Y) penetrates and rotatably fitted is incorporated with the axis (Y) as a rotation axis, and main bearings on both sides ( 13) and the housing bearing (63), the shaft arms (25) each having an arbitrary shape are connected to the connecting rod (26) on the axis (X) to form a Z-shaped Z-axis (23) double-sided neck. The shaft (M) is connected to the central portion of the connecting rod (26) located at the spherical center (O) of the Z axis (23). A pivot connector (8) composed of a circular body element of a pin joint joint (55) which is an axis.
8) is externally fitted, and on the circular surface (R) in the housing (60), the spherical arc surface (32) of the outer peripheral surface and its sphere that are in sliding contact with the inner surface formed of the spherical surface (G) of the housing (60). The arcuate surface (32) has an arcuate contour plane and has an arcuate surface (31) having a chord on the axis (K) side, and a cylindrical piston intermediate shaft (33) on the chordal side of the arcuate surface (31). ) Are combined into a substantially plate-shaped rotary piston (30), which is a Z-axis (2) of the shaft arm (25) and the connecting rod (26).
3) A piston pivot (35) for inserting the circular body element of the pivot connector (88) is formed in the inner center of the rotary piston (30) by inserting the intermediate portion of the pivot pivot (35). Connect the connecting rod (2) on the axis (X) to the connector (88).
6) as a base axis so as to be swingable within an angle (θ) × 2 range, and the points (K) at both ends of the piston intermediate shaft (33).
a) On the side of the point (Kb), a pin of the hinge joint (50) having a joint secant line (K) as a joint axis or a connecting element composed of a pin receiving hole is provided, and a circular surface (S) in the housing (60). Above it is an arched surface (4
1) and its arcuate surface (41), the arcuate contour surface and the chordal surface (4)
2) and the skewed plate (61) having a box shape is integrally formed by fixing its arcuate contour surface to the inner surface of the box (60), and the point (Ka) and (Kb) of the box (60). When a connecting element corresponding to the connecting element of the hinge joint (50) is provided and fitted to the facing portion located on the side, the skewed plate (62) of the housing and the rotary piston (30) in the housing (60) are connected to each other. The crossing secant (K) is slidably connected in the range of the angle (θ) x 2 with the hinge axis as the axis of the hinge, and the external bevel gear of the upper housing (60) is attached to the outer surface of the housing bearing (63) centering the hole. External gear bevel gear Z-axis gear (27) attached to the housing gear (62) and the Z-axis (23) shaft neck
And an intermediate gear (54) having and meshing with them is interposed, and then the skewed plate (61) of the housing on the circular surface (S) is a spherical surface (G).
The inner concave surface of the housing (60) is closed to form a hemispherical working chamber (Ha) having a hemispherical space.
a) is formed in a comb-shaped working chamber (Fu) in which a rotary piston (30) on the circular surface (R) forms a comb-shaped space, and is made to face the comb-shaped working chamber (Fu), and an intake hole (I) is formed.
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項8】 球心(O)をハウジング(10)の中心
として半径(r)の球面(G)を有し角度(θ)をなし
球心(O)において交差する二つの直線のそれぞれを軸
線(X)軸線(Y)としその軸線(X)が球面(G)に
交わる点を点(P)としまた軸線(Y)が球面(G)に
交わる点を点(Q)としその点(P)点(Q)間を底面
の直径として球心(O)を頂点とする円錐形の軌跡を円
錐軌跡(U)とし更に点(P),(Q)間を底面直径の
半分として球心(O)を頂点とする円錐形の軌跡を円錐
軌跡(J)としまた球心(O)において軸線(X)に直
交する軸直線を軸線(M)としそして軸線(X)に水平
面をなしてその直径線分の軸線(L)を自転軸とする球
面(G)内の大円平面を円面(R)とし且つ軸線(Y)
を鉛直軸線として球面(G)内に球心(O)を通って形
成される大円平面を円面(S)としその円面(R)と円
面(S)とが球心(O)において交差し且つ軸線(M)
の垂線をなす交差割線を軸線(K)としその交差割線
(K)の両端を点(Ka)点(Kb)とし、 そのように点線面の各関係を設定したハウジング(1
0)内において、そのハウジング(10)内壁面を球面
(G)同心又は軸線(Y)同心の球面(G)より大きい
回転面に形成して軸線(X)上のハウジング(10)対
向壁に主軸受(13)を設けそのハウジング(10)内
には球面(G)をなす内側面を有し且つ円面(S)の延
長平面に沿った内側の部分を周回する溝に削成した軌道
隙(87)と軸線(X)が貫通する対向両側に筺体軸受
(83)とを有して回転可能に嵌合する球体状の位相筺
体(80)を軸線(X)を回転軸線として組入れ、 また両側の主軸受(13)と筺体軸受(83)には直軸
状をなす回転主軸(20)の両軸頸を軸承させこの回転
主軸(20)の球心(O)に位置する中心部分に軸線
(M)を連結軸とするピン継手関節(55)の円形体か
らなる軸央枢(21)を有し、 前記位相筺体(80)内の円面(R)上には位相筺体
(80)の球面(G)からなる内側面に摺接する外周面
の球弧面(32)とその球弧面(32)の弓形輪郭平面
をなして前記軸線(K)側を弦とする弓形面(31)と
を有し且つその弓形面(31)の弦側に円柱状のピスト
ン中間軸(33)を合体させた略板状の回転ピストン
(30)が前記回転主軸(20)を挿通させて配置され
この回転ピストン(30)の内部中央に前記軸央枢(2
1)の円形体を受容するピストン枢(35)を形成しそ
のピストン枢(35)を軸央枢(21)に軸線(X)上
の回転主軸(20)を基軸として角度(θ)×2の範囲
を揺動可能に枢着させ且つピストン中間軸(33)両端
の前記点(Ka)点(Kb)側に交差割線(K)を関節
基軸線とする蝶番関節(50)のピンか又はピン受孔か
らなる連結素子を設け、 そして位相筺体(80)内の円面(S)上には弓形面
(41)とその弓形面(41)の弓形輪郭面と弦側面
(42)とを有して弓形輪郭面に内周面側を固着させて
一体構造をなす環状の斜行板環(43)を外周に形成し
た円形板状の斜行板(40)がその斜行板環(43)を
前記軌道隙(87)に回転可能に嵌合させて配置され尚
その斜行板環(43)の点(Ka)点(Kb)に位置す
る対向部分に前記蝶番関節(50)の連結素子に対応す
る連結素子を設けて嵌合させると斜行板(40)と前記
回転ピストン(30)が前記交差割線(K)を蝶着の軸
として角度(θ)×2範囲を擺動可能に連結し、 その上位相筺体(80)外側面に筺体軸受(83)孔を
中心として取付けた外歯傘歯車の筺体歯車(82)と回
転主軸(20)軸頸に取付けた外歯傘歯車の主軸歯車
(22)とを有し且つそれらに噛み合う中間歯車(5
4)を介在させ、 すると円面(S)上の斜行板(40)が球面(G)をな
す位相筺体(80)の内側凹面を閉鎖して半球状空間の
半月状作動室(Ha)を形成しその半月状作動室(H
a)を円面(R)上の回転ピストン(30)が櫛形状の
空間をなす櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と排出孔(Ex)とを設け且つ燃焼室を窺って点火
具(Ig)或は燃料噴射弁を挿着したことを特徴とする
球形の回転ピストン機関。
8. A straight line which has a spherical surface (G) having a radius (r) with the spherical center (O) as the center of the housing (10) and has no angle (θ) and which intersects at the spherical center (O). The axis (X) is the axis (Y), the point where the axis (X) intersects the spherical surface (G) is the point (P), and the point where the axis (Y) intersects the spherical surface (G) is the point (Q). P) The conical locus with the diameter of the bottom surface between the points (Q) and the apex of the spherical center (O) is defined as the conical locus (U), and the distance between the points (P) and (Q) is half the diameter of the bottom surface. A conical locus having (O) as an apex is a conical locus (J), an axis line orthogonal to the axis line (X) at the spherical center (O) is an axis line (M), and a horizontal plane is formed on the axis line (X). The great circle plane in the spherical surface (G) having the axis (L) of the diameter line segment as the axis of rotation is the circular surface (R) and the axis (Y)
Is a vertical axis and a great circle plane formed through a spherical center (O) in a spherical surface (G) is a circular surface (S), and the circular surface (R) and the circular surface (S) are spherical centers (O). Intersect at and axis (M)
The axis (K) is defined as the intersecting secant forming the perpendicular line of the housing, and both ends of the intersecting secant (K) are defined as points (Ka) and points (Kb).
In (0), the inner wall surface of the housing (10) is formed as a rotation surface larger than the spherical surface (G) concentric or the axial line (Y) concentric spherical surface (G) to form a housing (10) facing wall on the axial line (X). A raceway which is provided with a main bearing (13) and has an inner side surface forming a spherical surface (G) in the housing (10) and is cut into a groove that circulates an inner portion along an extension plane of a circular surface (S). A spherical phase housing (80) having a housing bearing (83) on both opposite sides through which the gap (87) and the axis (X) penetrate is rotatably fitted, and the axis (X) is incorporated as a rotation axis. Further, the main bearing (13) and the housing bearing (83) on both sides support both shaft necks of a rotary spindle (20) having a straight shaft shape, and a central portion located at the spherical center (O) of the rotary spindle (20). And a shaft center (21) consisting of a circular body of a pin joint joint (55) having an axis (M) as a connecting shaft. A circular arc surface (R) in the phase housing (80), and a spherical arc surface (32) of the outer peripheral surface which is in sliding contact with the inner surface of the spherical surface (G) of the phase housing (80) and the spherical arc surface thereof. (32) has an arcuate contour plane and has an arcuate surface (31) having a chord on the axis (K) side, and a cylindrical piston intermediate shaft (33) is provided on the chordal side of the arcuate surface (31). A combined substantially plate-shaped rotary piston (30) is arranged so as to pass through the rotary main shaft (20), and the axial center (2
1) A piston pivot (35) for receiving the circular body is formed, and the piston pivot (35) is used as an axial pivot (21) with an axis of rotation (20) on the axis (X) as a base angle (θ) × 2. Or a pin of a hinge joint (50) whose pivot axis is the intersection secant (K) on the side of the points (Ka) and (Kb) at both ends of the piston intermediate shaft (33). A connecting element composed of a pin receiving hole is provided, and an arcuate surface (41), an arcuate contour surface of the arcuate surface (41) and a chordal side surface (42) are provided on the circular surface (S) in the phase housing (80). A circular plate-shaped slanting plate (40) having an annular slanting plate ring (43) formed integrally on the outer periphery of the slanting plate ring (43) is formed by fixing the inner peripheral surface side to the arcuate contour surface. 43) is rotatably fitted in the orbital gap (87) and is located at the point (Ka) and the point (Kb) of the slanting plate ring (43). When a connecting element corresponding to the connecting element of the hinge joint (50) is provided and fitted in the opposing portion, the slanting plate (40) and the rotary piston (30) make the intersecting secant (K) the hinge axis. As the angle (θ) × 2 range is slidably connected, and the housing gear (82) of the external bevel gear and the main spindle (80) are mounted on the outer surface of the phase housing (80) centering on the housing bearing (83) hole. 20) An intermediate gear (5) having a main shaft gear (22) of an external bevel gear attached to a shaft neck and meshing with them.
4) is interposed, and then the oblique plate (40) on the circular surface (S) closes the inner concave surface of the phase housing (80) forming the spherical surface (G) to form a half-moon-shaped working chamber (Ha) in a hemispherical space. Forming a half-moon shaped working chamber (H
a) is formed in a comb-shaped working chamber (Fu) in which a rotary piston (30) on the circular surface (R) forms a comb-shaped space, and is made to face the comb-shaped working chamber (Fu), and an intake hole (I) is formed.
n) and an exhaust hole (Ex) are provided, and a igniter (Ig) or a fuel injection valve is inserted and attached by checking the combustion chamber, and a spherical rotary piston engine.
【請求項9】 前記回転ピストン(30)が対向両側に
前記球弧面(32),(32)と両側の表裏に前記弓形
面(31),(31)、(31),(31)とを有する
二つの弓形板の弦側面に前記ピストン中間軸(33)を
介在合体させて円形状板に形成されると共に前記円面
(S)上の前記斜行板(40)がハウジング(10)内
を両側に隔てるか又は前記筺体斜行板(61)が前記筺
体(60)内を両側に隔てるかして球面(G)をなす互
いの凹面を対面させた前記半月状作動室(Ha),(H
a)を形成しその半月状作動室(Ha),(Ha)の各
々を前記円面(R)上の回転ピストン(30)が二つず
つの櫛形状をなす前記櫛形状作動室(Fu),(F
u)、(Fu),(Fu)に形成する請求項1乃至8の
うち何れか1項記載の球形の回転ピストン機関。
9. The rotary piston (30) has the arcuate surfaces (32), (32) on opposite sides and the arcuate surfaces (31), (31), (31), (31) on both sides. Is formed into a circular plate by interposing the piston intermediate shaft (33) on the chordal sides of two arcuate plates having a circular plate and the oblique plate (40) on the circular surface (S) is a housing (10). The half-moon-shaped working chamber (Ha) facing each other with concave surfaces forming a spherical surface (G) by dividing the inside into both sides or by dividing the inside of the casing (60) into both sides by the skewed plate (61). , (H
a) and each of the half-moon shaped working chambers (Ha), (Ha) has a comb-shaped working chamber (Fu) in which two rotary pistons (30) on the circular surface (R) form a comb shape. , (F
The spherical rotary piston engine according to any one of claims 1 to 8, which is formed into u), (Fu), or (Fu).
【請求項10】 前記回転ピストン(30)が前記円面
(S)を跨ぐ半球面より大きい範囲の前記球弧面(3
2)と円面(R)の同一面上に軸線(K)を挟む両側に
前記弓形面(31),(31)とを有し且つその弓形面
(31),(31)間に前記ピストン中間軸(33)を
介在合体させて半球状の略円形板に形成されると共に円
面(S)上の前記斜行板(40)がハウジング(10)
内を両側に隔てるか又は前記筺体斜行板(61)が前記
筺体(60)内を両側に隔てるかして球面(G)をなす
互いの凹面を対面させた前記半月状作動室(Ha),
(Ha)を形成しその半月状作動室(Ha),(Ha)
の互いを前記円面(R)上の回転ピストン(30)が櫛
形状をなす前記櫛形状作動室(Fu),(Fu)に形成
する請求項1乃至8のうち何れか1項記載の球形の回転
ピストン機関。
10. The spherical arc surface (3) in a range in which the rotary piston (30) is larger than a hemispherical surface straddling the circular surface (S).
2) has the arcuate surfaces (31), (31) on both sides of the axis (K) on the same plane of the circular surface (R) and the piston is provided between the arcuate surfaces (31), (31). The intermediate shaft (33) is joined together to form a hemispherical substantially circular plate, and the oblique plate (40) on the circular surface (S) is the housing (10).
The half-moon shaped working chamber (Ha) facing each other with concave surfaces forming a spherical surface (G) by separating the inside of the housing (60) from each other or by separating the inside of the housing (60) from both sides. ,
(Ha) and its half-moon shaped working chamber (Ha), (Ha)
9. The spherical shape according to claim 1, wherein the rotary pistons (30) on the circular surface (R) are formed in the comb-shaped working chambers (Fu), (Fu) having a comb shape. Rotary piston engine.
【請求項11】 前記回転ピストン(30)が前記軸線
(K)を挟む両側の何れか一方側に前記球弧面(32)
と表裏の前記弓形面(31),(31)とを有する弓形
板の弦側面に前記ピストン中間軸(33)を合体させて
略半円板に形成されると共に円面(S)上の前記斜行板
(40)がハウジング(10)内の球面(G)をなす凹
面を密閉するか又は前記筺体斜行板(61)が前記筺体
(60)内の球面(G)をなす凹面を密閉するかして前
記半月状作動室(Ha)を形成しその半月状作動室(H
a)を前記円面(R)上の回転ピストン(30)が櫛形
状をなす二つの前記櫛形状作動室(Fu),(Fu)に
形成する請求項1乃至8のうち何れか1項記載の球形の
回転ピストン機関。
11. The spherical arc surface (32) on either side of the rotary piston (30) sandwiching the axis (K).
The piston intermediate shaft (33) is united with the chordal side of the arcuate plate having the arcuate surfaces (31), (31) on the front and back, and is formed into a substantially semi-circular plate, and is formed on the circular surface (S). The skew plate (40) seals the concave surface forming the spherical surface (G) in the housing (10), or the skew plate (61) seals the concave surface forming the spherical surface (G) in the housing (60). Then, the half-moon shaped working chamber (Ha) is formed, and the half-moon shaped working chamber (H) is formed.
9. A) according to claim 1, wherein the rotary piston (30) on the circular surface (R) is formed in the two comb-shaped working chambers (Fu), (Fu). Spherical rotary piston engine.
JP2000174278A 2000-06-09 2000-06-09 Spherical rotating piston engine Expired - Fee Related JP3404571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174278A JP3404571B2 (en) 2000-06-09 2000-06-09 Spherical rotating piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174278A JP3404571B2 (en) 2000-06-09 2000-06-09 Spherical rotating piston engine

Publications (2)

Publication Number Publication Date
JP2001355402A JP2001355402A (en) 2001-12-26
JP3404571B2 true JP3404571B2 (en) 2003-05-12

Family

ID=18676352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174278A Expired - Fee Related JP3404571B2 (en) 2000-06-09 2000-06-09 Spherical rotating piston engine

Country Status (1)

Country Link
JP (1) JP3404571B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EE00618U1 (en) * 2006-03-21 2006-07-17 SNC Promex AS Rotor pump piston assembly
GB201520830D0 (en) * 2015-11-25 2016-01-06 Fenton Jonathan P Fluid compression apparatus

Also Published As

Publication number Publication date
JP2001355402A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
JP2005521828A (en) Internal combustion engine and method of operating the same
US8539930B2 (en) Rotary combustion apparatus
JPH02112627A (en) Crankless reciprocating motion machine
JPH0739814B2 (en) Rotating cylinder block, piston cylinder, engine
JP3404570B2 (en) Spherical rotating piston engine
WO2003052245A1 (en) Sequential rotary piston engine
JP3143564B2 (en) Cam type engine
JPH05503334A (en) rotary internal combustion engine
US3807368A (en) Rotary piston machine
JPS6147966B2 (en)
JP3404571B2 (en) Spherical rotating piston engine
US8230836B2 (en) Multi-cylinder reciprocating rotary engine
JPH07224673A (en) Rotary engine
US5429083A (en) Rotary internal combustion twin engine
JPH1068301A (en) Vane rotation type volume changing device and internal combustion engine using the device
RU2155272C1 (en) Rotary-wave engine
WO2004088110A1 (en) Rotary engine with alternated shifting rotors
US3349757A (en) Rotary positive displacement machine
US20050161016A1 (en) Rotary internal combustion engine with adjustable compression stroke
RU2539412C1 (en) Rotary two-chamber internal combustion engine
JP4326342B2 (en) Internal combustion engine
CN111764998B (en) Multi-rotor pure rolling internal combustion engine
JP2001355403A (en) Spherical z-axis piston engine
RU2693550C1 (en) Internal combustion rotor engine with asymmetric compression and expansion
WO2007036955A1 (en) Split cycle rotary internal combustion engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees